Science.gov

Sample records for advanced plasma fueling

  1. Application of a Plasma Mass Separator to Advanced LWR Spent Fuel Reprocessing

    SciTech Connect

    Freeman, Richard; Miller, Robert; Papay, Larry; Wagoner, John; Ahlfeld, Charles; Czerwinski, Ken

    2006-07-01

    The US Department of Energy (DOE) is investigating spent fuel reprocessing for the purposes of increasing the effective capacity of a deep geological repository, reducing the radiotoxicity of waste placed in the repository and conserving nuclear fuel resources. DOE is considering hydro-chemical processing of the spent fuel after cutting the fuel cladding and fuel dissolution in nitric acid. The front end process, known as UREX, is largely based on the PUREX process and extracts U, Tc as well as fission product gases. A number of additional processing steps have become known as UREX+. One of the steps includes a further chemical treatment of remove Cs and Sr to reduce repository heat load. Other steps include successive extraction of the actinides from residual fission products, including the lanthanides. The additional UREX+ processing renders the actinides suitable for burning as reactor fuel in an advanced reactor to convert actinides to shorter-lived fission products and to produce power. New methods for separating groups of elements by their atomic mass have been developed and can be exploited to enhance spent fuel reprocessing. These physical processes dry the waste streams so that they can be vaporized and singly ionized in plasma that is contained in longitudinal magnetic and perpendicular electric fields. Proper configuration of the fields causes the plasma to rapidly rotate and expel heavier mass ions at the center of the machine. Lower mass ions form closed orbits within the cylindrical plasma column and are transported to either end of the machine. This plasma mass separator was originally developed to reduce the mass of material that must be immobilized in borosilicate glass from DOE defense waste at former weapons production facilities. The plasma mass separator appears to be well-suited for processing the UREX raffinate and solids streams by exploiting the large atomic mass gap that exists between lanthanides (< {approx}180 amu) and actinides

  2. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  3. Advanced fuel concepts and applications

    SciTech Connect

    Miley, G.H.

    1981-01-01

    Despite their more stringent plasma heating and confinement requirements, advanced fuel (AF) fusion cycles potentially offer improved environmental compatibility and lower costs. This comes about by elimination of tritium breeding requirements and by a reduction in neutron flux (hence, activation and radiation damage). Also a larger energy fraction carried by charged particles makes direct energy conversion more suitable. As a first application, a symbiotic system of semi-catalyzed-deuterium fueled hybrid fuel factories, supplying both fissle fuel to light water reactors and /sup 3/He to D-/sup 3/He satellite fusion reactors, is proposed. Subsequently, an evolution into a system of synfuel factories with satellite D-/sup 3/He reactors is envisioned.

  4. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  5. NASA Advanced Fuels Program

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1998-01-01

    NASA with the USAF Research Laboratory and it's industry partners, has been conducting planning and research into advanced fuels. This work is sponsored under the NASA Advanced Space Transportation Program (ASTP). The current research focus is on Alternative Hydrocarbon fuels, Monopropellants, and Solid Cryogens for storing atoms of Hydrogen, Boron, Carbon, and Aluminum. Alternative hydrocarbons that are under consideration are bi cyclo propylidene, spiro pentane, and tri propargyl amine. These three fuels have been identified as initial candidates to increase the specific impulse of hydrocarbon fueled rockets by 10-15 seconds over 02/RP-1. Formulation of these propellants is proceeding this year, and rocket engine testing is planned for the near future. Monopropellant investigations are focused on dinitramine based fuels, and potential collaborations with the US Navy. The dinitramine fuel work is being conducted under an Small Business Innovation research (SBIR) contract with the team of Orbital Technologies Corp. (Madison, WI) and SRI (Menlo Park, CA). This work may lead to a high density, high specific impulse monopropellants that can simplify the operations for launch vehicles and spacecraft. Solid Cryogens are being considered to store atoms of Hydrogen, Boron, Carbon, and Aluminum. Stored atom propellants are potentially the highest specific impulse chemical rockets that may be practical. These fuels are composed of atoms, stored in solid cryogenic particles, suspended in a cryogenic liquid or gel. The fuel would be fed to a rocket engine as a slurry or gelled cryogenic liquid with the suspended particles with the trapped atoms. Testing is planned to demonstrate the formation of the particles, and then characterize the slurry flows. Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more

  6. Polarized advanced fuel reactors

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    The d-/sup 3/He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs.

  7. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  8. Metallic fuels for advanced reactors

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  9. ARPA advanced fuel cell development

    SciTech Connect

    Dubois, L.H.

    1995-08-01

    Fuel cell technology is currently being developed at the Advanced Research Projects Agency (ARPA) for several Department of Defense applications where its inherent advantages such as environmental compatibility, high efficiency, and low noise and vibration are overwhelmingly important. These applications range from man-portable power systems of only a few watts output (e.g., for microclimate cooling and as direct battery replacements) to multimegawatt fixed base systems. The ultimate goal of the ARPA program is to develop an efficient, low-temperature fuel cell power system that operates directly on a military logistics fuel (e.g., DF-2 or JP-8). The absence of a fuel reformer will reduce the size, weight, cost, and complexity of such a unit as well as increase its reliability. In order to reach this goal, ARPA is taking a two-fold, intermediate time-frame approach to: (1) develop a viable, low-temperature proton exchange membrane (PEM) fuel cell that operates directly on a simple hydrocarbon fuel (e.g., methanol or trimethoxymethane) and (2) demonstrate a thermally integrated fuel processor/fuel cell power system operating on a military logistics fuel. This latter program involves solid oxide (SOFC), molten carbonate (MCFC), and phosphoric acid (PAFC) fuel cell technologies and concentrates on the development of efficient fuel processors, impurity scrubbers, and systems integration. A complementary program to develop high performance, light weight H{sub 2}/air PEM and SOFC fuel cell stacks is also underway. Several recent successes of these programs will be highlighted.

  10. Advanced Technology and Alternative Fuel Vehicles

    SciTech Connect

    Tuttle, J.

    2001-08-20

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains.

  11. Advanced development: Fuels

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1981-01-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  12. Advanced development: Fuels

    NASA Astrophysics Data System (ADS)

    Ramohalli, K.

    1981-05-01

    The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.

  13. Advanced fuel cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Baumert, B.; Claar, T. D.; Fousek, R. J.; Huang, H. S.; Kaun, T. D.; Krumpelt, M.; Minh, N.; Mrazek, F. C.; Poeppel, R. B.

    1985-01-01

    Fuel cell research and development activities at Argonne National Laboratory (ANL) during the period January through March 1984 are described. These efforts have been directed principally toward seeking alternative cathode materials to NiO for molten carbonate fuel cells. Based on an investigation of the thermodynamically stable phases formed under cathode conditions, a number of prospective alternative cathode materials have been identified. From the list of candidates, LiFeO2, Li2MnO3, and ZnO were selected for further investigation. During this quarter, they were doped to promote conductivity and tested for solubility and ion migration in the cell environment. An investigation directed to understanding in cell densification of anode materials was initiated. In addition, calculations were made to evaluate the practicality of controlling sulfur accumulation in molten carbonate fuel cells by bleed off of a portion of the anode gas that could be recycled to the cathode. In addition, a model is being developed to predict the performance of solid oxide fuel cells as a function of cell design and operation.

  14. Advanced thermally stable jet fuels

    SciTech Connect

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  15. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect

    Not Listed

    2013-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  16. Advanced Fuels Campaign Execution Plan

    SciTech Connect

    Kemal Pasamehmetoglu

    2010-10-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  17. Advanced Fuels Campaign Execution Plan

    SciTech Connect

    Kemal Pasamehmetoglu

    2011-09-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  18. Advanced Nuclear Fuel Cycle Options

    SciTech Connect

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  19. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  20. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  1. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  2. Advanced Fuel Cycle Cost Basis

    SciTech Connect

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  3. Advanced Thermally Stable Jet Fuels

    SciTech Connect

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  4. Advanced Fuels Campaign FY 2015 Accomplishments Report

    SciTech Connect

    Braase, Lori Ann; Carmack, William Jonathan

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  5. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  6. Uncertainty Analyses of Advanced Fuel Cycles

    SciTech Connect

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  7. Upgrading of raw oil into advanced fuel

    SciTech Connect

    Not Available

    1991-10-01

    The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

  8. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  9. Advanced Fuels Campaign FY 2014 Accomplishments Report

    SciTech Connect

    Braase, Lori; May, W. Edgar

    2014-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to

  10. Advanced Computation in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Tang, William

    2001-10-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract

  11. Advanced computations in plasma physics

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2002-05-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  12. Could Advanced Fusion Fuels Be Used with Today's Technology?

    NASA Astrophysics Data System (ADS)

    Santarius, J. F.; Kulcinski, G. L.; El-Guebaly, L. A.; Khater, H. Y.

    1998-03-01

    Could today's technology suffice for engineering advanced-fuel, magnetic-fusion power plants, thus making fusion development primarily a physics problem? Such a path would almost certainly cost far less than the present D-T development program, which is driven by daunting engineering challenges as well as physics questions. Advanced fusion fuels, in contrast to D-T fuel, produce a smaller fraction of the fusion power as neutrons but have lower fusion reactivity, leading to a trade-off between engineering and physics. This paper examines the critical fusion engineering issues and related technologies with an eye to their application in tokamak and alternate-concept D-3He power plants. These issues include plasma power balance, magnets, surface heat flux, input power, fuel source, radiation damage, radioactive waste disposal, and nuclear proliferation.

  13. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  14. Advanced Fuels Campaign FY 2011 Accomplishments Report

    SciTech Connect

    Not Listed

    2011-11-01

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

  15. Advanced Fuel Development and Fuel Combustion

    DTIC Science & Technology

    1997-08-01

    operation, and quality control monitoring requirements for these new elements. 39 TASK NO. 26: Surfactant Additives for Improved Low and High...increases are required. Aspen Systems has designed and synthesized a new class of multifunctional additives known as metal deactivating surfactants (MDS... Recycling 4 TASK NO. 03: Emissions Control Through Advanced Combustor Mixing Schemes 5 TASK NO. 04: Gas Layer Protection of Hot Carbon

  16. Advanced Biorefineries for Production of Fuel Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review, "Advanced biorefineries for production of fuel ethanol," is a chapter in the Wiley book entitled Biomass to Biofuels: Strategies for Global Industries and is intended to cover all major ethanol production processes to date. The chapter discusses current fuel ethanol production processe...

  17. Physics challenges for advanced fuel cycle assessment

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  18. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect

    Lori Braase

    2010-12-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  19. Advanced Fuels Campaign Cladding & Coatings Meeting Summary

    SciTech Connect

    Not Listed

    2013-03-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

  20. Advanced Fuel-Cell Modules

    NASA Technical Reports Server (NTRS)

    Bell, William F., III; Martin, Ronald E.; Struning, Albin J.; Whitehill, Robert

    1989-01-01

    Modules designed for long life, light weight, reliability, and low cost. Stack of alkaline fuel cells based on modules, consisting of three fuel cells and cooler. Each cell includes following components: ribbed carbon fine-pore anode electrolyte-reservoir plate; platinum-on-carbon catalyst anode; potassium titanate matrix bonded with butyl rubber; gold-plated nickel-foil electrode substrates; and silver plated, gold-flashed molded polyphenylene sulfide cell holder. Each cell has active area of 1ft to the 2nd power (0.09 m to the 2nd power). Materials and configurations of parts chosen to extend life expectancy, reduce weight and manufacturing cost, and increase reliability.

  1. Plasma-catalyzed fuel reformer

    DOEpatents

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  2. Advances in HTGR spent fuel treatment technology

    SciTech Connect

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners.

  3. Future Transient Testing of Advanced Fuels

    SciTech Connect

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  4. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  5. Advanced Catalysts for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.

    2006-01-01

    This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.

  6. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  7. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  8. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  9. Plasma-aided solid fuel combustion

    SciTech Connect

    E.I. Karpenko; V.E. Messerle; A.B. Ustimenko

    2007-07-01

    Plasma supported solid fuel combustion is promising technology for use in thermal power plants (TPP). The realisation of this technology comprises two main steps. The first is the execution of a numerical simulation and the second involves full-scale trials of plasma supported coal combustion through plasma-fuel systems (PFS) mounted on a TPP boiler. For both the numerical simulation and the full-scale trials, the boiler of 200 MW power of Gusinoozersk TPP (Russia) was selected. The optimization of the combustion of low-rank coals using plasma technology is described, together with the potential of this technology for the general optimization of the coal burning process. Numerical simulation and full-scale trials have enabled technological recommendations for improvement of existing conventional TPP to be made. PFS have been tested for boilers plasma start-up and flame stabilization in different countries at 27 power boilers steam productivity of 75-670 tons per hour (TPH) equipped with different type of pulverised coal burners. At PFS testing power coals of all ranks (brown, bituminous, anthracite and their mixtures) were used. Volatile content of them varied from 4 to 50%, ash from 15 to 48% and calorific values from 6700 to 25,100 KJ/kg. In summary, it is concluded that the developed and industrially tested PFS improve coal combustion efficiency and decrease harmful emission from pulverised coal-fired TPP. 9 refs., 14 figs., 2 tabs.

  10. Fuel injector utilizing non-thermal plasma activation

    DOEpatents

    Coates, Don M.; Rosocha, Louis A.

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  11. Supersonic gas injector for plasma fueling

    SciTech Connect

    Soukhanovskii, V A; Kugel, H W; Kaita, R; Roquemore, A L; Bell, M; Blanchard, W; Bush, C; Gernhardt, R; Gettelfinger, G; Gray, T; Majeski, R; Menard, J; Provost, T; Sichta, P; Raman, R

    2005-09-30

    A supersonic gas injector (SGI) has been developed for fueling and diagnostic applications on the National Spherical Torus Experiment (NSTX). It is comprised of a graphite converging-diverging Laval nozzle and a commercial piezoelectric gas valve mounted on a movable probe at a low field side midplane port location. Also mounted on the probe is a diagnostic package: a Langmuir probe, two thermocouples and five pickup coils for measuring toroidal, radial, vertical magnetic field components and magnetic fluctuations at the location of the SGI tip. The SGI flow rate is up to 4 x 10{sup 21} particles/s, comparable to conventional NSTX gas injectors. The nozzle operates in a pulsed regime at room temperature and a reservoir gas pressure up to 0.33 MPa. The deuterium jet Mach number of about 4, and the divergence half-angle of 5{sup o}-25{sup o} have been measured in laboratory experiments simulating NSTX environment. In initial NSTX experiments reliable operation of the SGI and all mounted diagnostics at distances 1-20 cm from the plasma separatrix has been demonstrated. The SGI has been used for fueling of ohmic and 2-4 MW NBI heated L- and H-mode plasmas. Fueling efficiency in the range 0.1-0.3 has been obtained from the plasma electron inventory analysis.

  12. Computational Design of Advanced Nuclear Fuels

    SciTech Connect

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  13. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  14. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  15. Recent Advances in Plasma Acceleration

    SciTech Connect

    Hogan, Mark

    2007-03-19

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  16. Advances in cold plasma technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens continue to be an issue on a variety of commodities, prompting research into novel interventions. Cold plasma is a nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. The prim...

  17. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  18. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  19. Advanced ceramic cladding for water reactor fuel

    SciTech Connect

    Feinroth, H.

    2000-07-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of {approximately}60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies {ge}50% would be examined.

  20. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  1. Advances and Challenges in Computational Plasma Science

    SciTech Connect

    W.M. Tang; V.S. Chan

    2005-01-03

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology.

  2. Plasma-cyclone technology for firing solid fuels

    NASA Astrophysics Data System (ADS)

    Karpenko, Yu. E.; Messerle, V. E.; Karpenko, E. I.; Basargin, A. P.

    2014-08-01

    A new coal combustion technology is described, which involves preparation of fuel for combustion by subjecting it to electrothermochemical treatment followed by vortex firing of pulverized-coal fuel in a cyclone chamber with removing the molten mineral part of the fuel. A procedure for stepped calculation of the plasma-cyclone process is presented, which includes stage-wise determination of gas flow state parameters, mineral part of fuel, and geometrical characteristics of the chamber. The results of experimental investigations confirming the main theoretical statements are given. The solid fuel plasma-cyclone combustion technology application field including power-generating and power-processing areas is defined.

  3. Current Comparison of Advanced Fuel Cycle Options

    SciTech Connect

    Steven J. Piet; B. W. Dixon; A. Goldmann; R. N. Hill; J. J. Jacobson; G. E. Matthern; J. D. Smith; A. M. Yacout

    2006-03-01

    The nuclear fuel cycle includes mining, enrichment, nuclear power plants, recycling (if done), and residual waste disposition. The U.S. Advanced Fuel Cycle Initiative (AFCI) has four program objectives to guide research on how best to glue these pieces together, as follows: waste management, proliferation resistance, energy recovery, and systematic management/economics/safety. We have developed a comprehensive set of metrics to evaluate fuel cycle options against the four program objectives. The current list of metrics is long-term heat, long-term dose, radiotoxicity and weapons usable material. This paper describes the current metrics and initial results from comparisons made using these metrics. The data presented were developed using a combination of “static” calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This work aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, and the value of separating cesium and strontium. The results from a series of dynamic simulations evaluating these options are included in this report. The model interface includes a few “control knobs” for flying or piloting the fuel cycle system into the future. The results from the simulations show that the future is dark (uncertain) and that the system is sluggish with slow time response times to changes (i.e., what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants). Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would increase our

  4. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  5. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  6. Advanced-capability alkaline fuel cell powerplant

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  7. Advanced Diesel Oil Fuel Processor Development

    DTIC Science & Technology

    1986-06-01

    Fuel Cell Power Plants ," EPRI Report EM-2686, Octobe: 1982. 4. R. G. Minet and D. Warren, "Evaluation of Hybrid TER-1,TR Fuel Processor," EPRI Report ...EM-2096, October 1981. 5. R. G. Minet and D. Warren, "Assessment of Fuel Processing aysiems for Dispersed Fuel Cell Power Plants ,’ EPRI Report EM...34Fuel Processor Development for !i.- MW Fuel Cell Power Plants ,4 EPRI Report EM-1123, July 1985. 9. M. HI. Hyman, "Simulate Methane Reformer

  8. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  9. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  10. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  11. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  12. Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  13. Upgrading of raw oil into advanced fuel. Task 5

    SciTech Connect

    Not Available

    1991-10-01

    The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

  14. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    SciTech Connect

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-12-31

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR`s) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design.

  15. Plasma etching for advanced polymer optical devices

    NASA Astrophysics Data System (ADS)

    Bitting, Donald S.

    Plasma etching is a common microfabrication technique which can be applied to polymers as well as glasses, metals, and semiconductors. The fabrication of low loss and reliable polymer optical devices commonly makes use of advanced microfabrication processing techniques similar in nature to those utilized in standard semiconductor fabrication technology. Among these techniques, plasma/reactive ion etching is commonly used in the formation of waveguiding core structures. Plasma etching is a powerful processing technique with many potential applications in the emerging field of polymer optical device fabrication. One such promising application explored in this study is in the area of thin film-substrate adhesion enhancement. Two approaches involving plasma processing were evaluated to improve substrate-thin film adhesion in the production of polymer waveguide optical devices. Plasma treatment of polymer substrates such as polycarbonate has been studied to promote the adhesion of fluoropolymer thin film coatings for waveguide device fabrication. The effects of blanket oxygen plasma etchback on substrate, microstructural substrate feature formation, and the long term performance and reliability of these methods were investigated. Use of a blanket oxygen plasma to alter the polycarbonate surface prior to fluoropolymer casting was found to have positive but limited capability to improve the adhesive strength between these polymers. Experiments show a strong correlation between surface roughness and adhesion strength. The formation of small scale surface features using microlithography and plasma etching on the polycarbonate surface proved to provide outstanding adhesion strength when compared to any other known treatment methods. Long term environmental performance testing of these surface treatment methods provided validating data. Test results showed these process approaches to be effective solutions to the problem of adhesion between hydrocarbon based polymer

  16. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  17. Development of An Advanced JP-8 Fuel

    DTIC Science & Technology

    1993-12-01

    included the Microthermal Precipitation Test (MTP), Fuel Reactor Test, Hot Liquid Process Simulator (HLPS), and Isothermal Corrosion Oxidation Test (ICOT... Microthermal Precipitation Test The impetus for this development effort was the need for a screening test that could discriminate between fuels of...varying propensity to produce thermally induced insoluble particulate material in the bulk fuel. The Microthermal Precipitation (MTP) test thermally

  18. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  19. Metallic fuels: The EBR-II legacy and recent advances

    SciTech Connect

    Douglas L. Porter; Steven L. Hayes; J. Rory Kennedy

    2012-09-01

    Experimental Breeder Reactor – II (EBR-II) metallic fuel was qualified for high burnup to approximately 10 atomic per cent. Subsequently, the electrometallurgical treatment of this fuel was demonstrated. Advanced metallic fuels are now investigated for increased performance, including ultra-high burnup and actinide burning. Advances include additives to mitigate the fuel/cladding chemical interaction and uranium alloys that combine Mo, Ti and Zr to improve alloy performance. The impacts of the advances—on fabrication, waste streams, electrorefining, etc.—are found to be minimal and beneficial. Owing to extensive research literature and computational methods, only a modest effort is required to complete their development.

  20. Hydrocarbon fuel cooling technologies for advanced propulsion

    SciTech Connect

    Sobel, D.R.; Spadaccini, L.J.

    1997-04-01

    Storable hydrocarbon fuels that undergo endothermic reaction provide an attractive heat sink for future high-speed aircraft. An investigation was conducted to explore the endothermic potential of practical fuels, with inexpensive and readily available catalysts, under operating conditions simulative of high-speed flight applications. High heat sink capacities and desirable reaction products have been demonstrated for n-heptane and Norpar 12 fuels using zeolite catalysts in coated tube reactor configurations. The effects of fuel composition and operating condition on extent of fuel conversion, product composition, and the corresponding endotherm have been examined. The results obtained in this study provide a basis for catalytic-reactor/heat-exchanger design and analysis.

  1. Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems

    DTIC Science & Technology

    2010-04-30

    and advantageous of non- equilibrium chemically reacting plasmas. The main ideas are related to possibilities of cost-effective non-thermal plasma...properties of non- equilibrium plasma in heterogeneous gas-liquid systems; characteristics of plasma reforming of ethanol-water mixtures in plasma...thermodynamically equilibrium , has characteristics of high ionization by higher energetic density. This has merits of good rate of fuel decomposition but demerits

  2. Advanced Nuclear Fuel Development in Japan

    NASA Astrophysics Data System (ADS)

    Yamawaki, Michio

    2003-06-01

    The verification test programs of high burnup BWR and PWR fuels have been carried out by Nuclear Power Engineering Corporation under the sponsorship of Ministry of Economy, Trade and Industry since 1986. BWR and PWR fuel assemblies of high burnup range of up to about 48 GWd/t and 53 GWd/t, respectively were examined by hot cell PIEs and many segment rods of local burnup range of up to more than 60GWd/t were power ramped in test reactors. Though some fuel rods showed minor failure after power ramp tests beyond commercial reactor condition, the results have shown good performance of the high burnup fuels in general. In BWR power ramp tests, the new failure mode of segment rods and the decrease of the failure threshold for higher burnup fuels have been found. Other than oxide fuel, new type fuels such as metallic, nitride and hydride fuels are under research and development in Japan for fast breeder reactors and, in case of hydride fuel, for both fast reactors and LWRs. Topics on some of these new type fuels will be also presented.

  3. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  4. Advanced Aircraft Fuel Evaluation. Phase 1.

    DTIC Science & Technology

    1987-03-01

    sensible heat they can absorb and the endothermic heat of dehydrogenation at 450-500*C to the corresponding aromatic hydro- carbons. The aromatics in...hydrogen released in the endothermic dehydrogenation. Having absorbed this heat from the airframe, the fuel now has an effective heating value...reducing the heat absorbing capability of the fuel. The presence of an alkyl group increases the molecular weight of the fuel relative to the amount of

  5. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  6. Advanced fuel cell concepts for future NASA missions

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    1987-09-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  7. Advancements in predictive plasma formation modeling

    NASA Astrophysics Data System (ADS)

    Purvis, Michael A.; Schafgans, Alexander; Brown, Daniel J. W.; Fomenkov, Igor; Rafac, Rob; Brown, Josh; Tao, Yezheng; Rokitski, Slava; Abraham, Mathew; Vargas, Mike; Rich, Spencer; Taylor, Ted; Brandt, David; Pirati, Alberto; Fisher, Aaron; Scott, Howard; Koniges, Alice; Eder, David; Wilks, Scott; Link, Anthony; Langer, Steven

    2016-03-01

    We present highlights from plasma simulations performed in collaboration with Lawrence Livermore National Labs. This modeling is performed to advance the rate of learning about optimal EUV generation for laser produced plasmas and to provide insights where experimental results are not currently available. The goal is to identify key physical processes necessary for an accurate and predictive model capable of simulating a wide range of conditions. This modeling will help to drive source performance scaling in support of the EUV Lithography roadmap. The model simulates pre-pulse laser interaction with the tin droplet and follows the droplet expansion into the main pulse target zone. Next, the interaction of the expanded droplet with the main laser pulse is simulated. We demonstrate the predictive nature of the code and provide comparison with experimental results.

  8. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  9. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  10. Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)

    DOE Data Explorer

    This database contains information on advanced petroleum and non-petroleum based fuels, as well as key data on advanced compression ignition fuels. Included are data on physical, chemical, operational, environmental, safety, and health properties. These data result from tests conducted according to standard methods (mostly American Society for Testing and Materials (ASTM). The source and test methods for each fuel data set are provided with the information. The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

  11. Advances in fuel management and on-line core monitoring

    SciTech Connect

    Stout, R.B.; Hansen, L.E.; Patten, T.W.

    1988-01-01

    Advanced Nuclear Fuels Corporation (ANF) has developed and implemented advanced core power distribution monitoring methods for BWRs and PWRs based on the three dimensional nodal simulator codes used for incore fuel management design and analysis. The use of these methods has resulted in a more accurate assessment of the core power distribution and corresponding increased operating margins. These increased margins allow for more economical fuel cycle designs. Since the initial application in 1982, ANF has made enhancements to the incore monitoring system. These enhancements have permitted more rapid analysis of local power changes, power distribution projections during ascent to full power and on-line statistical analysis of the incore detector signal. The on-line analysis implemented in BWRs has also been developed for application PWRs. In the future, reactors are expected to operate with longer fuel cycles, more aggressive low radial leakage loadings, load follow and use higher burnup fuel. These advances will require more burnable neutron absorbers and more sophisticated fuel designs. To accommodate these advances, the fuel management methodologies and measurement system will require improvements. The state-of-the-art methods provided by ANF provide incore monitoring systems compatible with these expected needs.

  12. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    SciTech Connect

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  13. Advanced supersonic technology fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1976-01-01

    Status of the fuel tank simulation and YF-12A flight tests utilizing a fluorosilicone sealant is described. New elastomer sealant development is detailed, and comparisons of high and low temperature characteristics are made to baseline fluorosilicone sealants.

  14. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  15. Advanced Integrated Fuel/Combustion Systems

    DTIC Science & Technology

    2004-01-01

    This decrease will allow for increased combustion operating efficiencies and fuel economy with reduced emissions on both current and future aircraft...capability is planned to be implemented on the CFM-56 for future combustion studies. We made facility improvements to allow fuel composition studies...an Aero Gas Turbine Combustion Chamber," ASME 97-GT-148. 8. Tolpadi, A. K., Danis, A. M., Mongia , H. C., and Lindstedt R. P., "Soot Modeling in

  16. Cermet-fueled reactors for advanced space applications

    SciTech Connect

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.; Vaidyanathan, S.; Bhattacharyya, S.K.; Barner, J.O.

    1987-12-01

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.

  17. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    NASA Astrophysics Data System (ADS)

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-01

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  18. Elimination of dimethyl methylphosphonate by plasma flame made of microwave plasma and burning hydrocarbon fuel

    SciTech Connect

    Cho, S. C.; Uhm, H. S.; Hong, Y. C.; Park, Y. G.; Park, J. S.

    2008-06-15

    Elimination of dimethyl methylphosphonate (DMMP) in liquid phase was studied by making use of a microwave plasma burner, exhibiting a safe removal capability of stockpiled chemical weapons. The microwave plasma burner consisted of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The burner flames were sustained by injecting hydrocarbon fuels into the microwave plasma torch in air discharge. The Fourier transform infrared spectra indicated near perfect elimination of DMMP in the microwave plasma burner. This was confirmed by gas chromatography spectra as supporting data, revealing the disappearance of even intermediary compounds in the process of DMMP destruction. The experimental results and the physical configuration of the microwave plasma burner may provide an effective means of on-site removal of chemical warfare agents found on a battlefield.

  19. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  20. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    SciTech Connect

    Yang Zhong; Robert C. O'Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  1. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  2. Advanced Fuels Can Reduce the Cost of Getting Into Space

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1998-01-01

    Rocket propellant and propulsion technology improvements can reduce the development time and operational costs of new space vehicle programs, and advanced propellant technologies can make space vehicles safer and easier to operate, and can improve their performance. Five major areas have been identified for fruitful research: monopropellants, alternative hydrocarbons, gelled hydrogen, metallized gelled propellants, and high-energy-density propellants. During the development of the NASA Advanced Space Transportation Plan, these technologies were identified as those most likely to be effective for new NASA vehicles. Several NASA research programs had fostered work in fuels under the topic Fuels and Space Propellants for Reusable Launch Vehicles in 1996 to 1997. One component of this topic was to promote the development and commercialization of monopropellant rocket fuels, hypersonic fuels, and high-energy-density propellants. This research resulted in the teaming of small business with large industries, universities, and Government laboratories. This work is ongoing with seven contractors. The commercial products from these contracts will bolster advanced propellant research. Work also is continuing under other programs, which were recently realigned under the "Three Pillars" of NASA: Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. One of the five areas is described below, and its applications and effect on future missions is discussed. This work is being conducted at the NASA Lewis Research Center with the assistance of the NASA Marshall Space Flight Center. The regenerative cooling of spacecraft engines and other components can improve overall vehicle performance. Endothermic fuels can absorb energy from an engine nozzle and chamber and help to vaporize high-density fuel before it enters the combustion chamber. For supersonic and hypersonic aircraft, endothermic fuels can absorb the high heat fluxes created on the wing leading edges and

  3. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  4. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  5. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  6. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1991-09-01

    The combustion system discussed here incorporates a modular three- stage slagging combustor concept. Fuel-rich conditions inhibit NO{sub x} formation from fuel nitrogen in the first stage; also in the first stage, sulfur is captured with sorbent; coal ash and sulfated sorbent are removed from the combustion gases by inertial means in the second stage by the use of an impact separator and slagging cyclone separator in series. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The objective of this contract is to establish the technology required for subsequent commercial development and application by the private sector of utility-size direct coal-fueled gas turbines. Emissions from these units are to meet or be lower than the Environment Protection Agency's (EPA's) New Source Performance Standards (NSPS) for a pulverized coal-=fired steam turbine generator plant.

  7. Versatile Affordable Advanced Fuels and Combustion Technologies

    DTIC Science & Technology

    2010-11-01

    Fuels, Vol. 22, No. 4, 2008 2415 165 elastomer is highly fluorinated and relatively inert, as evident by the very low percentage of volume swell. Previous...hydrogen bonding involves hydrogen bound to nearly any electrophilic structure not just a highly electrophilic atom such as oxygen and nitrogen

  8. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  9. Plasma Diagnostics Development for Advanced Rocket Engines

    NASA Astrophysics Data System (ADS)

    Glover, Timothy; Kittrell, Carter; Chan, Anthony; Chang-Diaz, Franklin

    2000-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine is a next-generation rocket engine under development at the Johnson Space Center's Advanced Space Propulsion Laboratory. With an exhaust velocity up to 50 times that of chemical rocket engines such as the Space Shuttle Main Engine, the VASIMR concept promises fast, efficient interplanetary flight. Rice University has participated in VASIMR research since 1996 and at present is developing two new diagnostic probes: a retarding potential analyzer to measure the velocity of ions in the rocket's exhaust, and a moveable optical probe to examine the spectrum of the rocket's helicon plasma source. In support of the probe development, a test facility is under construction at Rice, consisting of a small electric rocket engine firing into a 2-m vacuum chamber. This engine, the MPD (magnetoplasmadynamic) thruster, dates from the 1960's and provides a well-characterized source plasma for testing of the probes under development. We present details of the ion energy analyzer and the facility under construction at Rice.

  10. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  11. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  12. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  13. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  14. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  15. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  16. Spent nuclear fuel recycling with plasma reduction and etching

    DOEpatents

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  17. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    SciTech Connect

    Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

    2009-04-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  18. Intercode Advanced Fuels and Cladding Comparison Using BISON, FRAPCON, and FEMAXI Fuel Performance Codes

    NASA Astrophysics Data System (ADS)

    Rice, Aaren

    As part of the Department of Energy's Accident Tolerant Fuels (ATF) campaign, new cladding designs and fuel types are being studied in order to help make nuclear energy a safer and more affordable source for power. This study focuses on the implementation and analysis of the SiC cladding and UN, UC, and U3Si2 fuels into three specific nuclear fuel performance codes: BISON, FRAPCON, and FEMAXI. These fuels boast a higher thermal conductivity and uranium density than traditional UO2 fuel which could help lead to longer times in a reactor environment. The SiC cladding has been studied for its reduced production of hydrogen gas during an accident scenario, however the SiC cladding is a known brittle and unyielding material that may fracture during PCMI (Pellet Cladding Mechanical Interaction). This work focuses on steady-state operation with advanced fuel and cladding combinations. By implementing and performing analysis work with these materials, it is possible to better understand some of the mechanical interactions that could be seen as limiting factors. In addition to the analysis of the materials themselves, a further analysis is done on the effects of using a fuel creep model in combination with the SiC cladding. While fuel creep is commonly ignored in the traditional UO2 fuel and Zircaloy cladding systems, fuel creep can be a significant factor in PCMI with SiC.

  19. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  20. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  1. Toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Priest, N D; Richardson, R B; Edwards, G W R

    2013-02-01

    The good neutron economy and online refueling capability of the CANDU® heavy water moderated reactor (HWR) enable it to use many different fuels such as low enriched uranium (LEU), plutonium, or thorium, in addition to its traditional natural uranium (NU) fuel. The toxicity and radiological protection methods for these proposed fuels, unlike those for NU, are not well established. This study uses software to compare the fuel composition and toxicity of irradiated NU fuel against those of two irradiated advanced HWR fuel bundles as a function of post-irradiation time. The first bundle investigated is a CANFLEX® low void reactor fuel (LVRF), of which only the dysprosium-poisoned central element, and not the outer 42 LEU elements, is specifically analyzed. The second bundle investigated is a heterogeneous high-burnup (LEU,Th)O(2) fuelled bundle, whose two components (LEU in the outer 35 elements and thorium in the central eight elements) are analyzed separately. The LVRF central element was estimated to have a much lower toxicity than that of NU at all times after shutdown. Both the high burnup LEU and the thorium fuel had similar toxicity to NU at shutdown, but due to the creation of such inhalation hazards as (238)Pu, (240)Pu, (242)Am, (242)Cm, and (244)Cm (in high burnup LEU), and (232)U and (228)Th (in irradiated thorium), the toxicity of these fuels was almost double that of irradiated NU after 2,700 d of cooling. New urine bioassay methods for higher actinoids and the analysis of thorium in fecal samples are recommended to assess the internal dose from these two fuels.

  2. Steady-State Analysis Model for Advanced Fuel Cycle Schemes.

    SciTech Connect

    SARTORI, ENRICO

    2008-03-17

    Version 00 SMAFS was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down cost analysis results. All the fuel cycle schemes considered in the model are represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can easily modify values of mass flows and/or cost parameters and see corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs.

  3. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  4. Assessment of Research Needs for Advanced Fuel Cells

    SciTech Connect

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  5. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  6. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-04-24

    No combustion tests for this program were conducted during this reporting period of January 1 to March 31, 1992. DOE-sponsored slogging combustor tests have been suspended since December 1991 in order to perform combustion tests on Northern States Power Company (NSP) coals. The NSP coal tests were conducted to evaluate combustor performance when burning western sub bituminous coals. The results of these tests will guide commercialization efforts, which are being promoted by NSP, Westinghouse Electric, and Textron Defense Systems. The NSP testing has been completed and preparation of the final report for that effort is underway. Although the NSP testing program has been completed, the Westinghouse/DOE program will not be resumed immediately. The reason for this is that Textron Defense Systems (TDS) has embarked on an internally funded program requiring installation of a new liquid fuel combustor system at the Haverhill site. The facility modifications for this new system are significant and it is not possible to continue the Westinghouse/DOE testing while these modifications are being made. These facility modifications are being performed during the period February 15, 1992 through May 31, 1992. The Westinghouse/DOE program can be resumed upon completion of this work.

  7. Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE

    SciTech Connect

    Fisher, P.W.; Foster, C.A.; Gentile, C.A.; Gouge, M.J.; Nelson, B.E.

    1999-11-13

    Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium fueling and to optimize the density profile for high fusion power. Conventional pneumatic pellet injectors, coupled with a guidetube system to launch pellets into the plasma from the high, field side, low field side, and vertically, will be provided for fueling along with gas puffing for plasma edge density control. About 0.1 g of tritium must be injected during each 10-s pulse. The tritium and deuterium will be exhausted into the divertor. The double null divertor will have 16 cryogenic pumps located near the divertor chamber to provide the required high pumping speed of 200 torr-L/s.

  8. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Astrophysics Data System (ADS)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  9. On-Going Comparison of Advanced Fuel Cycle Options

    SciTech Connect

    Steven J. Piet; Ralph G. Bennett; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mark Roth; J. D. Smith; Robert Hill; James Laidler; Kemal Pasamehmetoglu

    2004-10-01

    The Advanced Fuel Cycle Initiative (AFCI) program is addressing key issues associated with critical national needs. This paper compares the major options with these major “outcome” objectives - waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety as well as “process” objectives associated with readiness to proceed and adaptability and robustness in the face of uncertainties. Working together, separation, transmutation, and fuel technologies provide complete energy systems that can improve waste management compared to the current “once-through/no separation” approach. Future work will further increase confidence in potential solutions, optimize solutions for the mixtures of objectives, and develop attractive development and deployment paths for selected options. This will allow the nation to address nearer-term issues such as avoiding the need for additional geological repositories while making nuclear energy a more sustainable energy option for the long-term. While the Generation IV Initiative is exploring multiple reactor options for future nuclear energy for both electricity generation and additional applications, the AFCI is assessing fuel cycles options for either a continuation or expansion of nuclear energy in the United States. This report compares strategies and technology options for managing the associated spent fuel. There are four major potential strategies, as follows: · The current U.S. strategy is once through: standard nuclear power plants, standard fuel burnup, direct geological disposal of spent fuel. Variants include higher burnup fuels in water-cooled power plants, once-through gas-cooled power plants, and separation (without recycling) of spent fuel to reduce the number and cost of geological waste packages. · The second strategy is thermal recycle, recycling some fuel components in thermal reactors. This strategy extends the useful life of

  10. Advanced thermally stable jet fuels. Technical progress report, 1995

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1996-04-01

    The Penn State program in advanced thermally stable jet fuels has five components:(1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub- micrometer and micrometer sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics by direct liquefaction of coal. Progress reports for these tasks are presented.

  11. Advanced technology for extended endurance alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Sheibley, D. W.; Martin, R. A.

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  12. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  13. Advanced fuels for plutonium management in pressurized water reactors

    NASA Astrophysics Data System (ADS)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  14. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  15. Functionalization of plasma synthesized advanced carbons

    NASA Astrophysics Data System (ADS)

    Kovacevic, Eva; Labbaye, Thibault; Berndt, Johannes; Strunskus, Thomas; Tatarova, Elena; Henriques, Julio; Boulmer-Leborgne, Chantal

    2014-10-01

    We report here about experiments concerning the plasma based functionalization of plasma produced carbon nanotubes and free-standing graphenes. The influence of nitrogen and ammonia plasma on the surface properties is investigated, involving the role of the surface temperature on the functionalization procedure. The effect of the plasma treatment on the different carbon materials is analyzed by means of contact angle measurements, near edge x-ray absorption fine spectroscopy (NEXAFS) and XPS. We will discuss the importance of the plasma characteristics for the formation of amino groups and nitrogen incorporation in the material. The important issues concern: the formation of dangling bonds, destructive effects of plasma-surface interactions and recovery of the surfaces. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 312284.

  16. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  17. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  18. Particle transport in pellet fueled JET (Jet European Torus) plasmas

    SciTech Connect

    Baylor, L.R.

    1990-01-01

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a < 0.5) diffusivity {approximately}0.1 m{sup 2}/s that increases rapidly to {approximately}0.3 m{sup 2}/s at r/a = 0.6 and then increases out to the plasma edge as (r/a){sup 2}. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs.

  19. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  20. Coating parameters of zirconium carbide on advanced TRISO fuels

    NASA Astrophysics Data System (ADS)

    Dulude, Michael C.

    The feasibility of using very high temperature reactors (VHTR) as part of the next generation of nuclear reactors greatly depends on the tri-structural isotropic (TRISO) fuel particles reliability to retain both gaseous and metallic fission products created in irradiated UO2. Most research devoted to TRISO fuel particles has focused on the characteristics and retention ability of silicon carbide as the main barrier against metallic fission products. This work investigates the deposition parameters necessary to create advanced TRISO particles consisting of the standard SiC TRISO coatings with an additional layer of ZrC applied directly to the UO2 fuel kernel. The additional ZrC layer will act as an oxygen getter to prevent failure mechanisms experienced in TRISO particles. Two failure mechanisms that are of the most concern are the over pressurization of the particles and kernel migration within the TRISO particles. In this study successful ZrC coatings were created and the deposition characteristics were analyzed via optical and SEM microscopy techniques. The ZrC layer was confirmed through XRD analysis. This investigation also reduced U3O8 microspheres to UO2 in an argon atmosphere. The oxygen to metal ratio from the reduced U3O8 was back calculated from oxidation analysis performed with a TGA machine. Once consistent repeatability is shown with coating surrogate zirconia kernels, advanced TRISO coatings will be deposited on the UO2 fuel kernels.

  1. Advances in the IGNITOR Plasma Control^*

    NASA Astrophysics Data System (ADS)

    Villone, F.; Albanese, R.; Ambrosino, G.; Pironti, A.; Rubinacci, F.; Ramogida, G.; Bombarda, F.; Coletti, A.; Cucchiaro, A.; Coppi, B.

    2007-11-01

    The IGNITOR vertical position and shape controller has been designed on the basis of the CREATE-L linearized plasma response model, taking into account the engineering constraints of the machine and the features of the burning plasma regimes to be obtained. Special care has been devoted to the design of a robust control system, that can operate even when a degradation of the performance of the electro-magnetic diagnostics may occur. The coupling between the vertical position control and the plasma shape control has been analyzed, in order to allow the plasma vertical position to be stabilized also in the case where a shape disturbance is provoked by a change of the main plasma parameters. Simulations of the control system response have been carried out using realistic models of the electrical power supply system. The non-linear computation of equilibrium flux maps before and after the perturbation shows that the system is able to recover from all the assumed disturbances with this control scheme. In addition, the control of the plasma current and of the separatrix of the double-null plasma configuration is being studied.^*Sponsored in part by ENEA and the US D.O.E.

  2. Time parallelization of advanced operation scenario simulations of ITER plasma

    SciTech Connect

    Samaddar, D.; Casper, T. A.; Kim, S. H.; Berry, Lee A; Elwasif, Wael R; Batchelor, Donald B; Houlberg, Wayne A

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA - an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  3. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  4. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    NASA Astrophysics Data System (ADS)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  5. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  6. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  7. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  8. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  9. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema

    None

    2016-07-12

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  10. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled "Advances in Numerical Simulation of Plasmas," presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  11. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  12. Experimental and Computational Study on the Cusp-DEC and TWDEC for Advanced Fueled Fusion

    SciTech Connect

    Tomita, Y.; Yasaka, Y.; Takeno, H.; Ishikawa, M.; Nemoto, T.

    2005-01-15

    Experimental and computational results of direct energy converters (DECs) for advanced fueled fusion such as D-{sup 3}He are presented. Kinetic energy of thermal component of end loss plasma is converted to electricity by using the Cusp DEC. The proof-of-principle experiments of a single slanted cusp have been carried out and verified the faculty of the configuration. To improve a separation of electrons from ions, numerical simulation shows a Helmholtz magnetic configuration with a uniform magnetic field is more effective than the Cusp DEC. The fusion-produced high-energy ions like 15 MeV protons in D-{sup 3}He fueled fusion can pass through the Cusp DEC without disturbing their orbits and enter a traveling-wave direct energy converter (TWDEC). Small scale experiments have shown the effectiveness of the TWDEC and the numerical simulation on optimization of interval of electrodes in a decelerator gives high conversion efficiency up to 60 %.

  13. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  14. THE MISSION AND ACCOMPLISHMENTS FROM DOE’S FUEL CYCLE RESEARCH AND DEVELOPMENT (FCRD) ADVANCED FUELS CAMPAIGN

    SciTech Connect

    J. Carmack; L. Braase; F. Goldner

    2015-09-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.

  15. Fuel qualification plan for the Advanced Neutron Source Reactor

    SciTech Connect

    Copeland, G.L.

    1995-07-01

    This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

  16. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  17. RF Plasma Torch System for Metal Matrix Composite Production in Nuclear Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Holik, Eddie, III

    2007-10-01

    For the first time in 30 years, plans are afoot to build new fission power plants in the US. It is timely to develop technology that could improve the safety and efficiency of new reactors. A program of development for advanced fuel cycles and Generation IV reactors is underway. The path to greater efficiency is to increase the core operating temperature. That places particular challenges to the cladding tubes that contain the fission fuel. A promising material for this purpose is a metal matrix composite (MMC) in which ceramic fibers are bonded within a high-strength steel matrix, much like fiberglass. Current MMC technology lacks the ability to effectively bond traditional high-temperature alloys to ceramic strands. The purpose of this project is to design an rf plasma torch system to use titanium as a buffer between the ceramic fibers and the refractory outer material. The design and methods of using an rf plasma torch to produce a non-equilibrium phase reaction to bond together the MMC will be discussed. The effects of having a long lived fuel cladding in the design of future reactors will also be discussed.

  18. Modeling Constituent Redistribution in U-Pu-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    SciTech Connect

    Douglas Porter; Steve Hayes; Various

    2014-06-01

    The Advanced Fuels Campaign (AFC) metallic fuels currently being tested have higher zirconium and plutonium concentrations than those tested in the past in EBR reactors. Current metal fuel performance codes have limitations and deficiencies in predicting AFC fuel performance, particularly in the modeling of constituent distribution. No fully validated code exists due to sparse data and unknown modeling parameters. Our primary objective is to develop an initial analysis tool by incorporating state-of-the-art knowledge, constitutive models and properties of AFC metal fuels into the MOOSE/BISON (1) framework in order to analyze AFC metallic fuel tests.

  19. Advanced techniques in safeguarding a conditioning facility for spent fuel

    SciTech Connect

    Rudolf, K.; Weh, R. )

    1992-01-01

    Although reprocessing continues to be the main factor in the waste management of nuclear reactors, the alternative of direct final disposal is currently being developed to the level of industrial applications, based on an agreement between the heads of the federal government and the federal states of Germany. Thus, the Konrad and Gorleben sites are being studied as potential final repositories as is the pilot conditioning facility (PKA) under construction. Discussions on the application of safeguards measures have led to the drafting of an approach that will cover the entire back end of the fuel cycle. The conditioning of fuel prior to direct final disposal represents one element in the overall approach. A modern facility equipped with advanced technology, PKA is a pilot plant with regard to conditioning techniques as well as to safeguards. Therefore, the PKA safeguards approach is expected to facilitate future industrial applications of the conditioning procedure. This cannot be satisfactorily implemented without advanced safeguards techniques. The level of development of the safeguards techniques varies. While advanced camera and seal systems are basically available, the other techniques and methods still require research and development. Feasibility studies and equipment development are geared to providing applicable safeguards techniques in time for commissioning of the PKA.

  20. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of shipment of irradiated reactor fuel or nuclear waste must contain the following... irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel...

  1. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  2. Plasma chamber testing of advanced photovoltaic solar array coupons

    NASA Astrophysics Data System (ADS)

    Hillard, G. Barry

    1994-05-01

    The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.

  3. Recent advances in solid polymer electrolyte fuel cell technology

    SciTech Connect

    Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

    1988-01-01

    With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

  4. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  5. Advances in Plasma Process Equipment Development using Plasma and Electromagnetics Modeling

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur

    2013-10-01

    Plasma processing is widely used in the semiconductor industry for thin film etching and deposition, modification of near-surface material, and cleaning. In particular, the challenges for plasma etching have increased as the critical feature dimensions for advanced semiconductor devices have decreased to 20 nm and below. Critical scaling limitations are increasingly driving the transition to 3D solutions such as multi-gate MOSFETs and 3D NAND structures. These structures create significant challenges for dielectric and conductor etching, especially given the high aspect ratio (HAR) of the features. Plasma etching equipment must therefore be capable of exacting profile control across the entire wafer for feature aspect ratios up to 80:1, high throughput, and exceptionally high selectivity. The multiple challenges for advanced 3D structures are addressed by Applied Material's plasma etching chambers by providing highly sophisticated control of ion energy, wafer temperature and plasma chemistry. Given the costs associated with such complex designs and reduced development time-scales, much of these design innovations have been enabled by utilizing advanced computational plasma modeling tools. We have expended considerable effort to develop 3-dimensional coupled plasma and electromagnetic modeling tools in recent years. In this work, we report on these modeling software and their application to plasma processing system design and evaluation of strategies for hardware and process improvement. Several of these examples deal with process uniformity, which is one of the major challenges facing plasma processing equipment design on large substrates. Three-dimensional plasma modeling is used to understand the sources of plasma non-uniformity, including the radio-frequency (RF) current path, and develop uniformity improvement techniques. Examples from coupled equipment and process models to investigate the dynamics of pulsed plasmas and their impact on plasma chemistry will

  6. Resistive wall mode stabilization by plasma rotation in advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Eriksson, G.

    1996-03-01

    By combining previous results of Betti and Freidberg [Phys. Rev. Lett. 74, 2949 (1995)] and Eriksson [Phys. Plasmas 2, 3095 (1995)], a fully analytical description is obtained for the stabilizing effect of toroidal plasma rotation in a large aspect ratio tokamak surrounded by a resistive wall. As in advanced tokamak configurations with a large fraction of bootstrap current, it is assumed that the current gradient near the plasma edge is large. This assumption enables an analytical analysis of external kink modes with low poloidal mode numbers. An expression is obtained, showing explicitly how the window of stable wall distances depends on the current profile.

  7. The Adoption of Advanced Fuel Cycle Technology Under a Single Repository Policy

    SciTech Connect

    Paul Wilson

    2009-11-02

    Develops the tools to investiage the hypothesis that the savings in repository space associated with the implementation of advanced nuclear fuel cycles can result in sufficient cost savings to offset the higher costs of those fuel cycles.

  8. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    SciTech Connect

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, the capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.

  9. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGES

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  10. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  11. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  12. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  13. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  14. Advanced fuel cells for transportation applications. Final report

    SciTech Connect

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  15. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    NASA Astrophysics Data System (ADS)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  16. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  17. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  18. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  19. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  20. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  1. Advanced Plasma Diagnostic Analysis using Neural Networks

    NASA Astrophysics Data System (ADS)

    Tritz, Kevin; Reinke, Matt

    2016-10-01

    Machine learning techniques, specifically neural networks (NN), are used with sufficient internal complexity to develop an empirically weighted relationship between a set of filtered X-ray emission measurements and the electron temperature (Te) profile for a specific class of discharges on NSTX. The NN response matrix is used to calculate the Te profile directly from the filtered X-ray diode measurements which extends the electron temperature time response from the 60Hz Thomson Scattering profile measurements to fast timescales (>10kHz) and greatly expands the applicability of Te profile information to fast plasma phenomena, such as ELM dynamics. This process can be improved by providing additional information which helps the neural network refine the relationship between Te and the corresponding X-ray emission. NN supplement limited measurements of a particular quantity using related measurements with higher time or spatial resolution. For example, the radiated power (Prad) determined using resistive foil bolometers is related to similar measurements using AXUV diode arrays through a complex and slowly time-evolving quantum efficiency curve in the VUV spectral region. Results from a NN trained using Alcator C-Mod resistive foil bolometry and AXUV diodes are presented, working towards hybrid Prad measurements with the quantitative accuracy of resistive foil bolometers and with the enhanced temporal and spatial resolution of the unfiltered AXUV diode arrays. Work supported by Department of Energy Grant #: DE-FG02-09ER55012.

  2. Efficiency of a hybrid-type plasma-assisted fuel reformation system

    SciTech Connect

    Matveev, I.B.; Serbin, S.I.; Lux, S.M.

    2008-12-15

    The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existing and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.

  3. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  4. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  5. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    SciTech Connect

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from

  6. Technology Advances in Support of Fusion Plasma Imaging Diagnostics

    NASA Astrophysics Data System (ADS)

    Jiang, Qi; Lai, Jiali; Hu, Fengqi; Li, Maijou; Chang, Yu-Ting; Domier, Calvin; Luhmann, Neville, Jr.

    2012-10-01

    Innovative technologies are under investigation in key areas to enhance the performance of microwave and millimeter-wave fusion plasma imaging diagnostics. Novel antenna and mixer configurations are being developed at increasingly higher frequencies, to facilitate the use of electron cyclotron emission imaging (ECEI) on high field (> 2.6 T) plasma devices. Low noise preamplifier-based imaging antenna arrays are being developed to increase the sensitivity and dynamic range of microwave imaging reflectometry (MIR) diagnostics for the localized measurement of turbulent density fluctuations. High power multi-frequency sources, fabricated using advanced CMOS technology, offer the promise of allowing MIR-based diagnostic instruments to image these density fluctuations in 2-D over an extended plasma volume in high performance tokamak plasmas. Details regarding each of these diagnostic development areas will be presented.

  7. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  8. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  9. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  10. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  11. TOPICAL REVIEW: Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Chan, V. S.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  12. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  13. Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint

    SciTech Connect

    Sparks, W.; Singer, M.

    2010-06-01

    This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

  14. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  15. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    SciTech Connect

    Blanchard, James; Butt, Darryl; Meyer, Mitchell; Xu, Peng

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  16. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Massimiliano, Fratoni; Greenberg, Harris; Howard, Rob L

    2011-01-01

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated

  17. Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011

    SciTech Connect

    Not Listed

    2011-11-01

    The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

  18. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  19. Saturated internal instabilities in advanced-tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Hua, M.-D.; Chapman, I. T.; Pinches, S. D.; Hastie, R. J.; MAST Team

    2010-06-01

    "Advanced tokamak" (AT) scenarios were developed with the aim of reaching steady-state operation in future potential tokamak fusion power plants. AT scenarios exhibit non-monotonic to flat safety factor profiles (q, a measure of the magnetic field line pitch), with the minimum q (qmin) slightly above an integer value (qs). However, it has been predicted that these q profiles are unstable to ideal magnetohydrodynamic instabilities as qmin approaches qs. These ideal instabilities, observed and diagnosed as such for the first time in MAST plasmas with AT-like q profiles, have far-reaching consequences like confinement degradation, flattening of the toroidal core rotation or enhanced fast ion losses. These observations motivate the stability analysis of advanced-tokamak plasmas, with a view to provide guidance for stability thresholds in AT scenarios. Additionally, the measured rotation damping is compared to the self-consistently calculated predictions from neoclassical toroidal viscosity theory.

  20. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  1. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  2. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  3. Advanced Plasma Propulsion for Human Missions to Jupiter

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Pearson, J. Boise

    1999-01-01

    This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.

  4. Advanced targets, diagnostics and applications of laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  5. Advanced plasma propulsion for human missions to Jupiter

    NASA Astrophysics Data System (ADS)

    Donahue, Benjamin B.; Pearson, J. Boise

    2000-01-01

    This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented. .

  6. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  7. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  8. Masters Study in Advanced Energy and Fuels Management

    SciTech Connect

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  9. Designing advanced alkaline polymer electrolytes for fuel cell applications.

    PubMed

    Pan, Jing; Chen, Chen; Zhuang, Lin; Lu, Juntao

    2012-03-20

    Although the polymer electrolyte fuel cell (PEFC) is a superior power source for electric vehicles, the high cost of this technology has served as the primary barrier to the large-scale commercialization. Over the last decade, researchers have pursued lower-cost next-generation materials for fuel cells, and alkaline polymer electrolytes (APEs) have emerged as an enabling material for platinum-free fuel cells. To fulfill the requirements of fuel cell applications, the APE must be as conductive and stable as its acidic counterpart, such as Nafion. This benchmark has proved challenging for APEs because the conductivity of OH(-) is intrinsically lower than that of H(+), and the stability of the cationic functional group in APEs, typically quaternary ammonia (-NR(3)(+)), is usually lower than that of the sulfonic functional group (-SO(3)(-)) in acidic polymer electrolytes. To improve the ionic conductivity, APEs are often designed to be of high ion-exchange capacity (IEC). This modification has caused unfavorable changes in the materials: these high IEC APEs absorb excessive amounts of water, leading to significant swelling and a decline in mechanical strength of the membrane. Cross-linking the polymer chains does not completely solve the problem because stable ionomer solutions would not be available for PEFC assembly. In this Account, we report our recent progress in the development of advanced APEs, which are highly resistant to swelling and show conductivities comparable with Nafion at typical temperatures for fuel-cell operation. We have proposed two strategies for improving the performance of APEs: self-cross-linking and self-aggregating designs. The self-cross-linking design builds on conventional cross-linking methods and works for APEs with high IEC. The self-aggregating design improves the effective mobility of OH(-) and boosts the ionic conductivity of APEs with low IEC. For APEs with high IEC, cross-linking is necessary to restrict the swelling of the

  10. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  11. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma

  12. Fuel economy screening study of advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  13. MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER

    SciTech Connect

    Rick J. Migliore

    2009-09-01

    The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

  14. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    SciTech Connect

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs.

  15. On-Going Comparison of Advanced Fuel Cycle Options

    SciTech Connect

    Piet, S.J.; Bennett, R.G.; Dixon, B.W.; Herring, J.S.; Shropshire, D.E.; Roth, M.; Smith, J.D.; Finck, P.; Hill, R.; Laidler, J.; Pasamehmetoglu, K.

    2004-10-03

    This paper summarizes the current comprehensive comparison of four major fuel cycle strategies: once-through, thermal recycle, thermal+fast recycle, fast recycle. It then proceeds to summarize comparison of the major technology options for the key elements of the fuel cycle that can implement each of the four strategies - separation processing, transmutation reactors, and fuels.

  16. Advanced turbine design for coal-fueled engines

    SciTech Connect

    Bornstein, N.S.

    1992-07-17

    The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

  17. Development of Advanced Fuel Cell System (Phase 4)

    NASA Technical Reports Server (NTRS)

    Meyer, A. P.; Bell, W. F.

    1976-01-01

    A multiple-task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. During Phase 4, the lowest stabilized degradation rate observed in all the testing completed during four phases of the program, 1 microvolt/hour, was demonstrated. This test continues after 5,000 hours of operation. The cell incorporates a PPf anode, a 90Au/10Pt cathode, a hybrid frame, and a Fybex matrix. These elements were developed under this program to extend cell life. The result demonstrated that the 80Au/20Pt cathode is as stable as a 90Au/10Pt cathode of twice the precious metal loading, was confirmed in full-scale cells. A hybrid frame two-cell plaque with dedicated flow fields and manifolds for all fluids was demonstrated to prevent the cell-to cell electrolyte transfer that limited the endurance of multicell plaques. At the conclusion of Phase 4, more than 90,900 hours of testing had been completed and twelve different cell designs had been evaluated. A technology base has been established which is ready for evaluation at the powerplant level.

  18. Advanced turbine design for coal-fueled engines

    NASA Astrophysics Data System (ADS)

    Bornstein, N. S.

    1992-07-01

    The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500 F (815 C), relatively innocuous salts. In this study it is found that at 1650 F (900 C) and above, calcium sulfate becomes an aggressive corrodent.

  19. Development of advanced fuel cell system, phase 3

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1975-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.

  20. Spherical fuel elements for advanced HTR manufacture and qualification by irradiation testing

    NASA Astrophysics Data System (ADS)

    Mehner, A.-W.; Heit, W.; Röllig, K.; Ragoss, H.; Müller, H.

    1990-04-01

    The reference fuel cycle for future pebble bed HTRs uses low enriched uranium fuel. The spherical fuel element for these HTRs is a 60 mm diameter sphere containing TRISO-coated particles with UO 2 kernels. Qualification of this fuel was performed by production and quality control experience, irradiation testing and accident simulation experiments. The results of the qualification programme fully support the new safety concepts of advanced HTR designs. Further work concentrates on consolidating performance data sets and on quantifying the endurance limits of reference fuel elements under normal and accident conditions.

  1. The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program

    SciTech Connect

    David Petti; Hans Gougar; Gary Bell

    2005-05-01

    The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

  2. Observation of Ion Cyclotron Heating in a Fast-flowing Plasma for an Advanced Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hatanaka, Motoi; Shibata, Masaki; Tobari, Hiroyuki; Hattori, Kunihiko; Inutake, Masaaki

    2004-11-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project in NASA, the combined system of the ion cyclotron heating and the magnetic nozzle is proposed to control a ratio of specific impulse to thrust at constant power. In order to establish the advanced plasma thruster, experiments of an ion heating and plasma acceleration by a magnetic nozzle are performed in a fast-flowing plasma in the HITOP device. A fast-flowing He plasma is produced by Magneto-Plasma-Dynamic Arcjet (MPDA) operated with an externally-applied magnetic field up to 1kG. RF waves with an ion cyclotron range of frequency (f=20-300kHz) is excited by a helically-wound antenna located downstream of the MPDA. Increases of an ion temperature and plasma stored energy measured by a diamagnetic coil clearly observed during the RF pulse. The heating efficiency is compared for various magnetic field configurations and strengths. There appears no indication of cyclotron resonance in a high density plasma where the ratio of ion cyclotron frequency to ion-ion collision one is below unity, because an ion-ion collisional effect is dominant. When the density becomes low and the ratio of ion cyclotron frequency to ion-ion collision one becomes high, features of ion cyclotron resonance are clearly appeared. The optimum magnetic field strength for the ion heating is slightly lower than that of the cyclotron resonance, which is caused by the Doppler effect due to the fast-flowing plasma. An ion energy distribution function is measured at a magnetic nozzle region by an electrostatic analyzer and increase of the parallel velocity is also observed.

  3. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  4. Development of Advanced Hydrocarbon Fuels at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bai, S. D.; Dumbacher, P.; Cole, J. W.

    2002-01-01

    This was a small-scale, hot-fire test series to make initial measurements of performance differences of five new liquid fuels relative to rocket propellant-1 (RP-1). The program was part of a high-energy-density materials development at Marshall Space Flight Center (MSFC), and the fuels tested were quadricyclane, 1-7 octodiyne, AFRL-1, biclopropylidene, and competitive impulse noncarcinogenic hypergol (CINCH) (di-methyl-aminoethyl-azide). All tests were conducted at MSFC. The first four fuels were provided by the U.S. Air Force Research Laboratory (AFRL), Edwards Air Force Base, CA. The U.S. Army, Redstone Arsenal, Huntsville, AL, provided the CINCH. The data recorded in all hot-fire tests were used to calculate specific impulse and characteristic exhaust velocity for each fuel, then compared to RP-1 at the same conditions. This was not an exhaustive study, comparing each fuel to RP-1 at an array of mixture ratios, nor did it include important fuel parameters, such as fuel handling or long-term storage. The test hardware was designed for liquid oxygen (lox)/RP-1, then modified for gaseous oxygen/RP-1 to avoid two-phase lox at very small flow rates. All fuels were tested using the same thruster/injector combination designed for RP-1. The results of this test will be used to determine which fuels will be tested in future test programs.

  5. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  6. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  7. An examination of the elastic structural response of the Advanced Neutron Source fuel plates

    SciTech Connect

    Swinson, W.F.; Luttrell, C.R.; Yahr, G.T.

    1994-09-01

    Procedures for evaluating the elastic structural response of the Advanced Neutron Source (ANS) fuel plates to coolant flow and to temperature variations are presented in this report. Calculations are made that predict the maximum deflection and the maximum stress for a representative plate from the upper and from the lower fuel elements.

  8. Advanced anodes for high-temperature fuel cells.

    PubMed

    Atkinson, A; Barnett, S; Gorte, R J; Irvine, J T S; McEvoy, A J; Mogensen, M; Singhal, S C; Vohs, J

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000 degrees C. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.

  9. Advances in Materials and System Technology for Portable Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.

    2007-01-01

    This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.

  10. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in

  11. Advanced PEFC development for fuel cell powered vehicles

    NASA Astrophysics Data System (ADS)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  12. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    SciTech Connect

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong; Dae, Dongsun; Whitehouse, Andrew I.

    2015-07-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  13. Organic coal-water fuel: Problems and advances (Review)

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.

    2016-10-01

    The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas

  14. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  15. Advanced supersonic technology concept study: Hydrogen fueled configuration

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1974-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  16. The BWR advanced fuel design experience using Studsvik CMS

    SciTech Connect

    DiGiovine, A.S.; Gibbon, S.H.; Wiksell, G.

    1996-12-31

    The current trend within the nuclear industry is to maximize generation by extending cycle lengths and taking outages as infrequently as possible. As a result, many utilities have begun to use fuel designed to meet these more demanding requirements. These fuel designs are significantly more heterogeneous in mechanical and neutronic detail than prior designs. The question arises as to how existing in-core fuel management codes, such as Studsvik CMS perform in modeling cores containing these designs. While this issue pertains to both pressurized water reactors (PWRs) and boiling water reactors (BWRs), this summary focuses on BWR applications.

  17. 3-D THERMAL EVALUATIONS FOR a FUELED EXPERIMENT in the ADVANCED TEST REACTOR

    SciTech Connect

    Ambrosek, R.G.; Chang, G.S.; Utterbeck, D.J.

    2004-10-06

    The DOE Advanced Fuel Cycle Initiative and Generation IV reactor programs are developing new fuel types for use in the current Light Water Reactors and future advanced reactor concepts. The Advanced Gas Reactor program is planning to test fuel to be used in the Next Generation Nuclear Plant (NGNP) nuclear reactor. Preliminary information for assessing performance of the fuel will be obtained from irradiations performed in the Advanced Test Reactor large ''B'' experimental facility. A test configuration has been identified for demonstrating fuel types typical of gas cooled reactors or fast reactors that may play a role in closing the fuel cycle or increasing efficiency via high temperature operation Plans are to have 6 capsules, each containing 12 compacts, for the test configuration. Each capsule will have its own temperature control system. Passing a helium-neon gas through the void regions between the fuel compacts and the graphite carrier and between the graphite carrier and the capsule wall will control temperature. This design with three compacts per axial level was evaluated for thermal performance to ascertain the temperature distributions in the capsule and test specimens with heating rates that encompass the range of initial heat generation rates.

  18. 3-D Thermal Evaluations for a Fueled Experiment in the Advanced Test Reactor

    SciTech Connect

    Richard Ambrosek; Gray Chang; Debra Utterbeck

    2004-10-01

    The DOE Advanced Fuel Cycle Initiative and Generation IV reactor programs are developing new fuel types for use in the current Light Water Reactors and future advanced reactor concepts. The Advanced Gas Reactor program is planning to test fuel to be used in the Next Generation Nuclear Plant (NGNP) nuclear reactor. Preliminary information for assessing performance of the fuel will be obtained from irradiations performed in the Advanced Test Reactor large “B” experimental facility. A test configurations has been identified for demonstrating fuel types typical of gas cooled reactors or fast reactors that may play a role in closing the fuel cycle or increasing efficiency via high temperature operation Plans are to have 6 capsules, each containing 12 compacts, for the test configuration. Each capsule will have its own temperature control system. Passing a helium-neon gas through the void regions between the fuel compacts and the graphite carrier and between the graphite carrier and the capsule wall will control temperature. This design with three compacts per axial level was evaluated for thermal performance to ascertain the temperature distributions in the capsule and test specimens with heating rates that encompass the range of initial heat generation rates.

  19. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  20. Kinetic Studies of Plasma Chemical Fuel Oxidation in Nanosecond Pulsed Discharges by Single and Two Photon Laser Induced Fluorescence

    DTIC Science & Technology

    2013-07-01

    kHz repetition rate in fuel lean hydrogen, methane , ethylene, and propane-air plasmas at P = 100 Torr is compared to predictions from a plasma...hydrogen, methane , ethylene, and propane-air plasmas at P = 100 Torr is compared to predictions from a plasma-chemical fuel oxidation code. It is found...3.0, USC, and Konnov mechanisms. 3. Atomic Oxygen Measurements Atomic oxygen (O) production and decay is studied in the diffuse single filament

  1. Advanced and In Situ Analytical Methods for Solar Fuel Materials.

    PubMed

    Chan, Candace K; Tüysüz, Harun; Braun, Artur; Ranjan, Chinmoy; La Mantia, Fabio; Miller, Benjamin K; Zhang, Liuxian; Crozier, Peter A; Haber, Joel A; Gregoire, John M; Park, Hyun S; Batchellor, Adam S; Trotochaud, Lena; Boettcher, Shannon W

    2016-01-01

    In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

  2. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described.

  3. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    SciTech Connect

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A.; Fiorina, C.; Franceschini, F.

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  4. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  5. Plasma ARC/SCWO Sysems for Waste-to-Energy Applications Utilizing Milwaste Fuels

    DTIC Science & Technology

    2013-07-01

    AFRL-RX-WP-TR-2013-00213 PLASMA ARC/SCWO SYSTEMS FOR WASTE-TO- ENERGY APPLICATIONS UTILIZING MILWASTE FUELS Ralph H. Yates General...APPLICATIONS UTILIZING MILWASTE FUELS 5a. CONTRACT NUMBER FA8651-04-C-0158 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0909999F 6. AUTHOR(S...program was a research and development program aimed at developing a solid waste treatment technology to compliment General Atomics’ (GA’s) existing

  6. Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    SciTech Connect

    Galloway, Jack D.; Unal, Cetin; Matthews, Christopher

    2016-09-30

    Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely driver fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.

  7. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Edwards, Geoffrey W R; Priest, Nicholas D

    2014-11-01

    The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low

  8. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    SciTech Connect

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.; Backman, R.; Hupa, M.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral content can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.

  9. Advanced multiphysics coupling for LWR fuel performance analysis

    DOE PAGES

    Hales, J. D.; Tonks, M. R.; Gleicher, F. N.; ...

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics,more » particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is

  10. Advanced multiphysics coupling for LWR fuel performance analysis

    SciTech Connect

    Hales, J. D.; Tonks, M. R.; Gleicher, F. N.; Spencer, B. W.; Novascone, S. R.; Williamson, R. L.; Pastore, G.; Perez, D. M.

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics, particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use

  11. Simulations of beam-fueled supershot-like plasmas near ignition

    SciTech Connect

    Budny, R.V.; Grisham, L.; Jassby, D.L.; Manickam, J.; Mikkelsen, D.; McCune, D.; McGuire, K.M.; Scott, S.D.; Stotler, D.; Wieland, R.; Zarnstorff, M.C.; Zweben, S.J.; Sabbagh, S.A.

    1993-03-01

    Centrally peaked profiles would be advantageous for tokamak reactors since the pressure and the bootstrap current would be peaked in the regions of intense reactivity. We use the TRANSP plasma analysis code to investigate the feasibility of fueling with neutral beam injection. We show that for certain conditions, neutral beams with energies less than 120 keV can penetrate into the cores of plasmas that have a large thermonuclear yield and Q{sub DT} {approximately}10. This value of ODT is too small for an economical reactor if the neutral beam injection is the only fueling source. We give examples for several proposed compact prototype reactor designs.

  12. Simulations of beam-fueled supershot-like plasmas near ignition

    SciTech Connect

    Budny, R.V.; Grisham, L.; Jassby, D.L.; Manickam, J.; Mikkelsen, D.; McCune, D.; McGuire, K.M.; Scott, S.D.; Stotler, D.; Wieland, R.; Zarnstorff, M.C.; Zweben, S.J. . Plasma Physics Lab.); Sabbagh, S.A. )

    1993-03-01

    Centrally peaked profiles would be advantageous for tokamak reactors since the pressure and the bootstrap current would be peaked in the regions of intense reactivity. We use the TRANSP plasma analysis code to investigate the feasibility of fueling with neutral beam injection. We show that for certain conditions, neutral beams with energies less than 120 keV can penetrate into the cores of plasmas that have a large thermonuclear yield and Q[sub DT] [approximately]10. This value of ODT is too small for an economical reactor if the neutral beam injection is the only fueling source. We give examples for several proposed compact prototype reactor designs.

  13. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    SciTech Connect

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  14. Materials Requirements for Advanced Energy Systems - New Fuels. Volume 3: Materials Research Needs in Advanced Energy Systems Using New Fuels

    DTIC Science & Technology

    1974-07-01

    principal new fuel studied; hydrogen-derived fuels considere-d were ammonia, hydrazine, boranes, silanes, carbon monoxide, and methyl alcohol . The...support systems. analysis - None. Essential background for A-4 -pply policy decil ’oo,ts. ting •h- tion. H2 environment and 02 tfaterialq testing under...Depleted oil or gas H2, CO Porosity 01 formation. Grouting. None. None. reservoirs, aqui- gases, and Sfers, natural or Nl13 mined caverns. 1.2.1 Underwater

  15. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  16. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    PubMed

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  17. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  18. Development of TMI Logistic Fuel Solid Oxide Fuel Cell (SOFC) for Advanced Military Power Generation Systems

    DTIC Science & Technology

    2007-11-02

    Power generation systems based on the Technology Management, Inc. (TMI) solid oxide fuel cell (SOFC) are an optional modality for military...integrated system using TMI’s proprietary sulfur-tolerant planar solid oxide fuel cell (SOFC) and steam reformer, integrated into a compact unit which

  19. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  20. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  1. Advanced catalyst supports for PEM fuel cell cathodes

    SciTech Connect

    Du, Lei; Shao, Yuyan; Sun, Junming; Yin, Geping; Liu, Jun; Wang, Yong

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  2. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Jason Hales; Various

    2014-06-01

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  3. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.; Liu, Wenfeng; Hales, Jason; Stanek, Chris; Wirth, Brian D.

    2014-06-15

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  4. Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.

    SciTech Connect

    Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

    1999-06-10

    An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

  5. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  6. 'Radiotoxicity Index': An Inappropriate Discriminator for Advanced Fuel Cycle Technology Selection - 12276

    SciTech Connect

    Kessler, John; Sowder, Andrew; Apted, Michael; Kozak, Matthew; Nutt, Mark; Swift, Peter

    2012-07-01

    A radiotoxicity index (RI) is often used as a figure of merit for evaluating for evaluating the attractiveness of employing an advanced fuel cycle (i.e., a fuel cycle that uses some combination of separations and other reactor technologies, such as fast reactors), rather than continued use of the current 'once-through' fuel cycle. The RI is calculated by multiplying the amount of every radionuclide found in a waste form for some unit amount of waste times the drinking water dose conversion factor, DCF, for each radionuclide, then summing these together. Some argue that if the RI for an advanced fuel cycle is lower than the RI for a once-through fuel cycle, then implementation of the particular advanced fuel cycle has merit because it reduces the radiotoxicity of the waste. Use of an RI for justifying separations technologies and other components of advanced fuel cycles is not only inappropriate, but can be misleading with respect to judging benefits of advance fuel cycle options. The disposal system, through its use of multiple engineered and natural barriers to migration, eliminates most of the radionuclides contributing to the RI such that additional separations technologies will make little difference to peak dose rates. What must also be considered is the health/dose risk caused to workers and the public by the construction and operation of the separations facility itself. Thus, use of RI may lead to selection of separations technologies that may have a negligible effect on lowering the potential health risks associated with disposal, but will increase real worker and public health risks in the near term. The use of the radiotoxicity index (RI) as a figure of merit for justifying advanced fuel cycles involving separations technologies is not only inappropriate, but can be misleading with respect to judging benefits of advance fuel cycle options. The disposal system, through its use of multiple engineered and natural barriers to migration, eliminates most of the

  7. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  8. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  9. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  10. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  11. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  12. Safeguards and Non-proliferation Issues as Related to Advanced Fuel Cycle and Advanced Fast Reactor Development with Processing of Reactor Fuel

    SciTech Connect

    Rahmat Aryaeinejad; Jerry D. Cole; Mark W. Drigert; Dee E. Vaden

    2006-10-01

    The goal of this work is to establish basic data and techniques to enable safeguards appropriate to a new generation of nuclear power systems that will be based on fast spectrum reactors and mixed actinide fuels containing significant quantities of "minor" actinides, possibly due to reprocessing, and determination of what new radiation signatures and parameters need to be considered. The research effort focuses on several problems associated with the use of fuel having significantly different actinide inventories that current practice and on the development of innovative techniques using new radiation signatures and other parameters useful for safeguards and monitoring. In addition, the development of new distinctive radiation signatures as an aid in controlling proliferation of nuclear materials has parallel applications to support Gen-IV and current advanced fuel cycle initiative (AFCI) goals as well as the anticipated Global Nuclear Energy Partnership (GNEP).

  13. Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics

    DTIC Science & Technology

    2011-07-28

    nonequilibrium. For example, the plasma transport may transition between rarefied and continuum flow , requiring appropriate models for each case through...AFRL-AFOSR-UK-TR-2011-0023 Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics...2010 4. TITLE AND SUBTITLE Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics 5a

  14. Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Thery, J.; Martin, S.; Faucheux, V.; Le Van Jodin, L.; Truffier-Boutry, D.; Martinent, A.; Laurent, J.-Y.

    Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion ®. The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 μm Nafion ® layers was reached for 10 μm thick carboxylic membranes. Power outputs around 3 mW cm -2 were measured. We discuss the results regarding the gas barrier effect and the power outputs.

  15. Advanced thermally stable jet fuels. Technical progress report, July 1995--September 1995

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1995-10-01

    The Penn State program in advanced thermally stable jet engine fuels has five components: development of mechanisms of degradation and solids formation; quantitative measurement of growth of sub-micrometer-sized and micrometer particles suspended in fuels during thermal stresses; characterization of carbonaceous deposits by various instrumental and microscopic methods; elucidation of the role of additives in retarding the formation of carbonaceous solids; and assessment of the potential of producing high yields of cycloalkanes and hydroaromatics by direct coal liquefaction. Progress is described.

  16. Plasma technology for increase of operating high pressure fuel pump diesel engines

    NASA Astrophysics Data System (ADS)

    Solovev, R. Y.; Sharifullin, S. N.; Adigamov, N. R.

    2016-01-01

    This paper presents the results of a change in the service life of high pressure fuel pumps of diesel engines on the working surface of the plunger which a wear resistant dielectric plasma coatings based on silicon oxycarbonitride. Such coatings possess high wear resistance, chemical inertness and low friction.

  17. Advanced NaBH4/H2O2 Fuel Cell for Space Applications

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Kim, Kyu-Jung; Luo, Nie; Shrestha, Prajakti Joshi

    2009-03-01

    Fuel cells have played an important role in NASA's space program starting with the Gemini space program. However, improved fuel cell performance will be needed to enable demanding future missions. An advanced fuel cell (FC) using liquid fuel and oxidizer is being developed by U of IL/NPL team to provide air independence and to achieve higher power densities than normal H2/O2 fuel cells (Lou et al., 2008; Miley, 2007). Hydrogen peroxide (H2O2) is used in this FC directly at the cathode (Lou and Miley, 2004). Either of two types of reactant, namely a gas-phase hydrogen or an aqueous NaBH4 solution, is utilized as fuel at the anode. Experiments with both 10-W single cells and 500-W stacks demonstrate that the direct utilization of H2O2 and NaBH4 at the electrodes result in >30% higher voltage output compared to the ordinary H2/O2 FC (Miley, 2007). Further, the use of this combination of all liquid fuels provides—from an operational point of view—significant advantages (ease of storage, reduced pumping requirements, simplified heat removal). This design is inherently compact compared to other fuel cells that use gas phase reactants. This results in a high overall system (including fuel tanks, pumps and piping, waste heat radiator) power density. Further, work is in progress on a regenerative version which uses an electrical input, e.g. from power lines or a solar panel to regenerate reactants.

  18. Interatomic potentials for mixed oxide and advanced nuclear fuels

    SciTech Connect

    Tiwary, Pratyush; Walle, Axel van de; Jeon, Byoungseon; Groenbech-Jensen, Niels

    2011-03-01

    We extend our recently developed interatomic potentials for UO{sub 2} to the fuel system (U,Pu,Np)O{sub 2}. We do so by fitting against an extensive database of ab initio results as well as to experimental measurements. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We therefore expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies.

  19. Advances in the generation of a new emulsified fuel

    NASA Astrophysics Data System (ADS)

    Chávez, A.; Ramírez, M.; Medina, E.; Bolado, R.; Mora, J.

    2011-08-01

    The development of a new emulsified fuel is described, from the conceptual idea to the semi-industrial tests of the final product. The starting point was the necessity to lower the particulate matter (PM) emissions produced by the combustion of more than 200 MBD of heavy fuel oil (HFO) used for electric power conversion. The major component of HFO is a vacuum residue of the oil refining process mixed with light cycle oils to make it pumpable. An alternative to handle and burn the high viscosity residue (solid at room temperature) is by converting it in an oil-in-water emulsion. The best emulsions resulted of 70% residue in 30% water, Sauter Mean Diameter of 10-20 μm and a stability of more than 90 days. Spray burning tests of the emulsion against HFO in a semi-industrial 500 kW furnace showed a reduction in PM emissions of 24-36%.

  20. Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells

    PubMed Central

    Cosnier, Serge; Holzinger, Michael; Le Goff, Alan

    2014-01-01

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O2, H2O2) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications. PMID:25386555

  1. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    DTIC Science & Technology

    2001-02-01

    Blends,” 219th American Chemical Society Meeting , San Francisco, CA, March 26-30, 2000. 5. Naegeli, D.W. and Moses, C.A., “Effects of Fuel...used to optimize engine performance and lower exhaust emissions. Nevertheless, the diesel engine has yet to meet the very stringent emissions...diesel engine designed to meet 1994 emission standards using a catalytic converter. The tests showed that oxygenates reduced PM emissions by 6 to 7

  2. Improving the quality indicators fuel pump of plasma technology

    NASA Astrophysics Data System (ADS)

    Sharifullin, S. N.; Pirogova, A. S.

    2017-01-01

    It is shown that the product quality control is not only to control the process of its manufacture. To the product was in demand and the competitive need to search for new promising technologies for its production. One such technology is the plasma technology.

  3. Thermal management of advanced fuel cell power systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J.

    1990-01-01

    It is shown that fuel cell devices are particularly attractive for the high-efficiency, high-reliability space hardware necessary to support upcoming space missions. These low-temperature hydrogen-oxygen systems necessarily operate with two-phase water. In either PEMFCs (proton exchange membrane fuel cells) or AFCs (alkaline fuel cells), engineering design must be critically focused on both stack temperature control and on the relative humidity control necessary to sustain appropriate conductivity within the ionic conductor. Water must also be removed promptly from the hardware. Present designs for AFC space hardware accomplish thermal management through two coupled cooling loops, both driven by a heat transfer fluid, and involve a recirculation fan to remove water and heat from the stack. There appears to be a certain advantage in using product water for these purposes within PEM hardware, because in that case a single fluid can serve both to control stack temperature, operating simultaneously as a heat transfer medium and through evaporation, and to provide the gas-phase moisture levels necessary to set the ionic conductor at appropriate performance levels. Moreover, the humidification cooling process automatically follows current loads. This design may remove the necessity for recirculation gas fans, thus demonstrating the long-term reliability essential for future space power hardware.

  4. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  5. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  6. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  7. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  8. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy's program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research Development Center (Amax R D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  9. A Robust Compressible Flow Solver for Studies on Solar Fuel Production in Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Tadayon Mousavi, Samaneh; Koelman, Peter; Groen, Pieter Willem; van Dijk, Jan; Epg/ Applied Physics/ Eindhoven University Of Technology Team; Dutch InstituteFundamental Energy Research (Differ) Team

    2016-09-01

    n order to simulate the dissociation of CO2 with H2O admixture by microwave plasma for the production of solar fuels, we need a multicomponent solver that is able to capture the complex nature of the plasma by combining the chemistry, flow, and electromagnetic field. To achieve this goal, first we developed a robust finite volume compressible flow solver in C++. The solver is implemented in the framework of the PLASIMO software and will be used in complete plasma simulations later on. Due to the compressible nature of the solver, it can be used for simulation of dissociation of CO2 with H2O admixture by supersonic expansion in microwave plasmas. A spatially second order version of this solver is able to reveal the vortex flow structure of the plasmas. Capabilities of this solver are presented by benchmarking against well-established analytical and numerical test cases.

  10. Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover; John Maki; David Petti

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during

  11. Impact of advanced fuel cycles on uncertainty associated with geologic repositories

    SciTech Connect

    Rechard, Rob P.; Lee, Joon; Sutton, Mark; Greenberg, Harris R.; Robinson, Bruce A.; Nutt, W. Mark

    2013-07-01

    This paper provides a qualitative evaluation of the impact of advanced fuel cycles, particularly partition and transmutation of actinides, on the uncertainty associated with geologic disposal. Based on the discussion, advanced fuel cycles, will not materially alter (1) the repository performance (2) the spread in dose results around the mean (3) the modeling effort to include significant features, events, and processes in the performance assessment, or (4) the characterization of uncertainty associated with a geologic disposal system in the regulatory environment of the United States. (authors)

  12. Advanced Fuel Cycle Initiative - Projected Linear Heat Generation Rate and Burnup Calculations

    SciTech Connect

    Richard G. Ambrosek; Gray S. Chang; Debbie J. Utterbeck

    2005-02-01

    This report provides documentation of the physics analysis performed to determine the linear heat generation rate (LHGR) and burnup calculations for the Advanced Fuel Cycle Initiative (AFCI) tests, AFC-1D, AFC-1H, and AFC-1G. The AFC-1D and AFC-1H tests consists of low-fertile metallic fuel compositions and the AFC-1G test consists of non-fertile and low-fertile nitride compositions. These tests will be irradiated in the East Flux Trap (EFT) positions E1, E2, and E3, respectively, during Advanced Test Reactor (ATR) Cycle 135B.

  13. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  14. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  15. Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels

    NASA Astrophysics Data System (ADS)

    Takali, S.; Fabry, F.; Rohani, V.; Cauneau, F.; Fulcheri, L.

    2014-11-01

    Most thermal power plants need an auxiliary power source to (i) heat-up the boiler during start up phases before reaching autonomy power and (ii) sustain combustion at low load. This supplementary power is commonly provided with high LHV fossil fuel burners which increases operational expenses and disables the use of anti-pollutant filters. A Promising alternative is under development and consists in high temperature plasma assisted AC electro-burners. In this paper, the development of a new 100 kW three phase plasma torch with graphite electrodes is detailed. This plasma torch is working at atmospheric pressure with air as plasma gas and has three-phase power supply and working at 680 Hz. The nominal air flow rate is 60 Nm3.h-1 and the outlet gas temperature is above 2 500 K. At the beginning, graphite electrodes erosion by oxidizing medium was studied and controlling parameters were identified through parametric set of experiments and tuned for optimal electrodes life time. Then, a new 3-phase plasma torch design was modelled and simulated on ANSYS platform. The characteristics of the plasma flow and its interaction with the environing elements of the torch are detailed hereafter.

  16. ATF (Advanced Toroidal Facility) flux surfaces and related plasma effects

    SciTech Connect

    Colchin, R.J.; England, A.C.; Harris, J.H.; Hillis, D.L.; Jernigan, T.C.; Murakami, M.; Neilson, G.H.; Rome, J.A.; Saltmarsh, M.J.; Anderson, F.S.B.

    1989-01-01

    Flux surfaces in the Advanced Toroidal Facility (ATF) were mapped using an electron beam which was incident on a fluorescent screen. Islands were found at r/a greater than or equal to 0.6, indicating the existence of field errors. Failure of the island size to scale with magnetic field indicated that the islands were intrinsic to the coils. The source of the field errors was found to be uncompensated dipoles in the helical coil feeds. The electron temperature was observed to be very low in the vicinity of the islands. Modifications were made to the helical field buswork to eliminate the field errors, and the flux surfaces were again checked using an electron beam. Islands at r/a greater than or equal to 0.6 were found to be greatly reduced in size, with the residual island at /tau/ = 1/2 scaling to 1 cm at B = 1 T. Initial experiments indicate that the plasma operating space has been extended since the buswork modifications. 4 refs., 3 figs.

  17. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    SciTech Connect

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  18. System analyses on advanced nuclear fuel cycle and waste management

    NASA Astrophysics Data System (ADS)

    Cheon, Myeongguk

    To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of

  19. Liquid fuel reforming using microwave plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h-1 and the energy yield was 267 NL(H2) kWh-1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h-1 and 223 NL(H2) kWh-1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  20. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  1. Advanced Method to Estimate Fuel Slosh Simulation Parameters

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl

    2005-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the

  2. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  3. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  4. Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum

    NASA Astrophysics Data System (ADS)

    Delage, F.; Carmack, J.; Lee, C. B.; Mizuno, T.; Pelletier, M.; Somers, J.

    2013-10-01

    The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxide and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels.

  5. Advancements in the behavioral modeling of fuel elements and related structures

    SciTech Connect

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L.; ANATECH Research Corp., San Diego, CA; Royal Naval Coll., Greenwich )

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs.

  6. New advances in thermal plasma research. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.; Baugher, C. R.; Horwitz, J. L.

    1980-01-01

    Recent measurements obtained of the cold or thermal plasma of the earth's magnetosphere, which is believed to originate in the ionosphere, are reviewed. Consideration is given to the results of ATS 6 measurements which indicated unexpectedly high plasma temperatures and varied pitch-angle distributions, and the data from the low-energy plasma experiments on board GEOS 1 and 2 and ISEE 1, which were intended to clarify the ATS 6 results. These later measurements of ion composition, plasma energy and plasma distribution are noted to have confirmed earlier data and discovered new plasma components (D(+) or He(+2)), an intermixing of cold ionospheric plasma and hot magnetospheric plasma, the ordering of the plasma by the magnetic field rather than the ram direction in the outer magnetosphere, and wave phenomena. Questions remaining concerning the temperature and composition distributions of the plasmasphere and plasma trough, the relative densities of the cold and warmer components of the magnetosphere, plasma energization mechanisms, and the relative mix of the various plasma distributions are indicated.

  7. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  8. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  9. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  10. Fuel density, uranium enrichment, and performance studies for the Advanced Neutron Source reactor

    SciTech Connect

    Alston, E.E.; Gehin, J.C.; West, C.D.

    1994-06-01

    Consistent with the words of the budget request for the Advanced Neutron Source (ANS), DOE commissioned a study of the impact on performance of using medium- or low-enriched uranium (MEU or LEU) in the fuel of the reactor that generates the neutrons. In the course of the study, performance calculations for 19 different combinations of reactor core volume, fuel density and enrichment, power level, and other relevant parameters were carried out. Since then, another 14 cases have been analyzed at Oak Ridge to explore some of the more interesting and important configurations and to gain further insights into the tradeoffs between performance and enrichment. Furthermore, with the aid of the data from these additional cases, we have been able to correlate the most important performance parameters (peak thermal neutron flux in the reflector and core life) with reactor power, fuel density, and fuel enrichment. This enables us to investigate intermediate cases, or alternative cases that might be proposed by people within or outside the project, without the time and expense of doing completely new neutronics calculations for each new example. The main drivers of construction and operating costs are the reactor power level and the number of fuel plates to be fabricated each year; these quantities can be calculated from the correlations. The results show that the baseline two-element core design cannot be adapted to any practical fuel of greatly reduced enrichment without great performance penalties, but that a modification of the design, in which one additional fuel element is incorporated to provide extra volume for lower enrichment fuels, has the capability of using existing, or more advanced, fuel types to lower the uranium enrichment.

  11. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  12. Modeling and full-scale tests of vortex plasma-fuel systems for igniting high-ash power plant coal

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.; Karpenko, Yu. E.; Chernetskiy, M. Yu.; Dekterev, A. A.; Filimonov, S. A.

    2015-06-01

    The processes of supplying pulverized-coal fuel into a boiler equipped with plasma-fuel systems and its combustion in the furnace of this boiler are investigated. The results obtained from 3D modeling of conventional coal combustion processes and its firing with plasma-assisted activation of combustion in the furnace space are presented. The plasma-fuel system with air mixture supplied through a scroll is numerically investigated. The dependence of the swirled air mixture flow trajectory in the vortex plasma-fuel system on the scroll rotation angle is revealed, and the optimal rotation angle at which stable plasma-assisted ignition of pulverized coal flame is achieved is determined.

  13. Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility

    SciTech Connect

    Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

    1989-05-01

    The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

  14. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  15. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and

  16. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic

  17. Grouped actinide separation in advanced nuclear fuel cycles

    SciTech Connect

    Glatz, J.P.; Malmbeck, R.; Ougier, M.; Soucek, P.; Murakamin, T.; Tsukada, T.; Koyama, T.

    2013-07-01

    Aiming at cleaner waste streams (containing only the short-lived fission products) a partitioning and transmutation (P-T) scheme can significantly reduce the quantities of long-lived radionuclides consigned to waste. Many issues and options are being discussed and studied at present in view of selecting the optimal route. The choice is between individual treatment of the relevant elements and a grouped treatment of all actinides together. In the European Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), grouped separation options derived from an aqueous extraction or from a dry pyroprocessing route were extensively investigated. Successful demonstration tests for both systems have been carried out in the frame of this project. The aqueous process called GANEX (Grouped Actinide Extraction) is composed of 2 cycles, a first one to recover the major part of U followed by a co-extraction of Np, Pu, Am, and Cm altogether. The pyro-reprocessing primarily applicable to metallic fuels such as the U-Pu-Zr alloy originally developed by the Argonne National Laboratory (US) in the mid 1980s, has also been applied to the METAPHIX fuels containing up to 5% of minor actinides and 5% of lanthanides (e.g. U{sub 60}Pu{sub 20}-Zr{sub 10}Am{sub 2}Nd{sub 3.5}Y{sub 0.5}Ce{sub 0.5}Gd{sub 0.5}). A grouped actinide separation has been successfully carried out by electrorefining on solid Al cathodes. At present the recovery of the actinides from the alloy formed with Al upon electrodeposition is under investigation, because an efficient P-T cycle requires multiple re-fabrication and re-irradiation. (authors)

  18. Large orbit magnetic confinement systems for advanced fusion fuels

    SciTech Connect

    Rostoker, N.

    1992-01-01

    The objective of the grant/contract was to illuminate the problem of magnetic confinement for plasmas where the majority of ions have large gyro-orbits and do not obey adiabatic particle dynamics. The electrons are adiabatic. We considered a class of equilibria where large orbit ions dominate; the equilibria are rigorous solutions of the Vlasov/Maxwell equations. For a simple cse -- the infinitely long, low beta, rotating plasma a complete stability analysis was carried out. This problem was the basis of the first paper on finite Larmor radius stabilization. In that paper an expansion in {var epsilon} = {bar {alpha}}{sub i}/r{sub o} was carried out to the first significant order beyond MHD. In this report the same problem is solved to all orders in {var epsilon}. While this case is of limited applicability to experiments it is rigorous and without approximations, so that it can be used to verify approximations to be developed for more complex and useful cases. The application of the results to date to small fusion reactors is described in the second paper which was written after the termination of the contract, but is based in part on material developed during the contract period.

  19. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    NASA Astrophysics Data System (ADS)

    Vorona, N. A.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.; Khomyakov, Yu. S.

    2015-12-01

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  20. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    SciTech Connect

    Vorona, N. A.; Gavrikov, A. V. Samokhin, A. A.; Smirnov, V. P.; Khomyakov, Yu. S.

    2015-12-15

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  1. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  2. Advanced coal-fueled gas turbine systems reference system definition update

    SciTech Connect

    Not Available

    1991-09-01

    The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

  3. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  4. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  5. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  6. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  7. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    SciTech Connect

    Gerdes, Kirk; Richards, George

    2014-04-16

    The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental

  8. Influence of Dupree diffusivity on the occurrence scattering time advance in turbulent plasmas

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-12-15

    The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. The occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.

  9. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    SciTech Connect

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  10. Task 4 -- Conversion to a coal-fueled advanced turbine system (CFATS)

    SciTech Connect

    1996-04-15

    Solar is developing the technologies for a highly efficient, recuperated, Advanced Turbine System (ATS) that is aimed at the dispersed power generation market. With ultra-low-emissions in mind the primary fuel selected for this engine system is natural gas. Although this gas fired ATS (GFATS) will primarily employ natural gas the use of other fuels particular those derived from coal and renewable resources cannot be overlooked. The enabling technologies necessary to direct fire coal in gas turbines were developed during the 1980`s. This Solar development co-sponsored by the US Department of Energy (DOE) resulted in the testing of a full size coal-water-slurry fired combustion system. In parallel with this program the DOE funded the development of integrated gasification combined cycle systems (IGCC). This report describes the limitations of the Solar ATs (recuperated engine) and how these lead to a recommended series of modifications that will allow the use of these alternate fuels. Three approaches have been considered: direct-fired combustion using either a slagging combustor, or a pressurized fluidized bed (PFBC), externally or indirectly fired approaches using pulverized fuel, and external gasification of the fuel with subsequent direct combustion of the secondary fuel. Each of these approaches requires substantial hardware and system modifications for efficient fuel utilization. The integration issues are discussed in the sections below and a recommended approach for gasification is presented.

  11. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    SciTech Connect

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.; Jamison, R. K.; Nef, E. C.; Nigg, D. W.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  12. Fuel Distribution Estimate via Spin Period to Precession Period Ratio for the Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    DeHart, Russell; Smith, Eric; Lakin, John

    2015-01-01

    The spin period to precession period ratio of a non-axisymmetric spin-stabilized spacecraft, the Advanced Composition Explorer (ACE), was used to estimate the remaining mass and distribution of fuel within its propulsion system. This analysis was undertaken once telemetry suggested that two of the four fuel tanks had no propellant remaining, contrary to pre-launch expectations of the propulsion system performance. Numerical integration of possible fuel distributions was used to calculate moments of inertia for the spinning spacecraft. A Fast Fourier Transform (FFT) of output from a dynamics simulation was employed to relate calculated moments of inertia to spin and precession periods. The resulting modeled ratios were compared to the actual spin period to precession period ratio derived from the effect of post-maneuver nutation angle on sun sensor measurements. A Monte Carlo search was performed to tune free parameters using the observed spin period to precession period ratio over the life of the mission. This novel analysis of spin and precession periods indicates that at the time of launch, propellant was distributed unevenly between the two pairs of fuel tanks, with one pair having approximately 20% more propellant than the other pair. Furthermore, it indicates the pair of the tanks with less fuel expelled all of its propellant by 2014 and that approximately 46 kg of propellant remains in the other two tanks, an amount that closely matches the operational fuel accounting estimate. Keywords: Fuel Distribution, Moments of Inertia, Precession, Spin, Nutation

  13. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    SciTech Connect

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  14. Impact of fuel properties on advanced power systems

    SciTech Connect

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G.

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  15. Development of advanced kocite electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Welsh, L. S.; Leyerle, R. W.; Scarlata, D. S.; Vanek, M. A.

    1981-01-01

    These improved electrocatalysts should demonstrate a larger initial catalytic metal surface area, and a better catalytic metal surface area retention during fuel cell operation than present state-of-the-art phosphoric acid electrocatalysts. Kocite electrocatalysts impregnated with platinum and platinum-vanadium alloys were tested. The Kocite electrocatalysts were aged in electrodes potentiostated in H3PO4 half cells, and were then analyzed for catalytic metals surface area retention. Compared with the state-of-the-art platinum electrocatalysts, as represented by a standard Kocite electrocatalyst, the Kocite electrocatalysts impregnated by the techniques used in this study have a better initial platinum surface area. This initial surface area difference appeared to be maintained when the catalysts are aged at 700 mV, but was not maintained when the catalysts were aged at 800 mV. Variations of the alumina substrate and of the post-treatment of the leached Kocite catalyst support did not produce any catalysts with better platinum surface area retention than the standard catalyst. Alloying of vanadium with the platinum did produce Kocite electrocatalysts which maintained their alloy surface area better than the standard catalyst maintained its platinum surface area.

  16. An advanced deterministic method for spent fuel criticality safety analysis

    SciTech Connect

    DeHart, M.D.

    1998-01-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  17. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  18. Advanced turbine design for coal-fueled engines

    SciTech Connect

    Wagner, J.H.; Johnson, B.V.

    1993-04-01

    The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

  19. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  20. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  1. Nitrogen plasma-implanted titanium as bipolar plates in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Kwok, Dixon T. K.; Liu, Dongan; Li, Zhuguo; Cai, Xun; Chu, Paul K.

    Nitrogen plasma immersion ion implantation (PIII), a non-line-of-sight surface treatment technique suitable for bipolar plates in polymer electrolyte membrane fuel cells, is conducted at low and high temperature to improve the corrosion resistance and conductivity of titanium sheets. X-ray photoelectron spectroscopy (XPS) shows that high-temperature (HT) nitrogen PIII produces a thick oxy-nitride layer on the titanium surface. This layer which provides good corrosion resistance and high electrical conductivity as verified by electrochemical tests, inductively coupled plasma optical emission spectroscopy, and interfacial contact resistance (ICR) measurements renders the materials suitable for polymer electrolyte membrane fuel cells. In comparison, the low-temperature (LT) PIII titanium sample exhibits poorer corrosion resistance and electrical conductivity than the untreated titanium control.

  2. Advanced Fuel Development and Fuel Combustion Delivery Order 0007: Abatement of Soot from Military Gas Turbine Engines via Fuel Additives

    DTIC Science & Technology

    2006-08-01

    studies with liquid fuels were undertaken. In addition to ethanol and DME, cyclohexanone was studied because it was a component in a commercial... cyclohexanone appeared to have the potential to remove six carbons from pathways to soot formation. It was studied in the various experimental test rigs to...effective in reducing soot was determined to be composed to nitro-alkanes, cyclohexanone , toluene, and dichloroethane. The latter two compounds are

  3. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  4. Advanced Kinetic-Based Modeling Applied to Plasma and Neutral Flows

    DTIC Science & Technology

    2012-09-01

    Advanced Kinetic-Based Modeling Applied to Plasma and Neutral Flows Briefers: Andrew Ketsdever Sergey Gimelshein PIs: Andrew Ketsdever...number. 1. REPORT DATE SEP 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Advanced Kinetic-Based Modeling ...magnetic field in opposite direction of applied field Extreme pressure tends to drive plasma out of discharge chamber Difficulties in modeling FRCs High

  5. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  6. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  7. Advanced alternate planar geometry solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells (SOFC) as high performance, high efficiency energy conversion devices is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes. A novel design concept was investigated which allows for the following: improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/sq cm at 0.4V/cell with an area specific resistance of 1 Ohm-sq cm/cell. Improvements in manifolding are expected to provide much higher performance.

  8. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  9. The JRC-ITU approach to the safety of advanced nuclear fuel cycles

    SciTech Connect

    Fanghaenel, T.; Rondinella, V.V.; Somers, J.; Konings, R.; Erdmann, N.; Uffelen, P. van; Glatz, J.P.

    2013-07-01

    The JRC-ITU safety studies of advanced fuels and cycles adopt two main axes. First the full exploitation of still available and highly relevant knowledge and samples from past fuel preparation and irradiation campaigns (complementing the limited number of ongoing programmes). Secondly, the shift of focus from simple property measurement towards the understanding of basic mechanisms determining property evolution and behaviour of fuel compounds during normal, off-normal and accident conditions. The final objective of the second axis is the determination of predictive tools applicable to systems and conditions different from those from which they were derived. State of the art experimental facilities, extensive networks of partnerships and collaboration with other organizations worldwide, and a developing programme for training and education are essential in this approach. This strategy has been implemented through various programs and projects. The SUPERFACT programme constitutes the main body of existing knowledge on the behavior in-pile of MOX fuel containing minor actinides. It encompassed all steps of a closed fuel cycle. Another international project investigating the safety of a closed cycle is METAPHIX. In this case a U-Pu19-Zr10 metal alloy containing Np, Am and Cm constitutes the fuel. 9 test pins have been prepared and irradiated. In addition to the PIE (Post Irradiation Examination), pyrometallurgical separation of the irradiated fuel has been performed, to demonstrate all the steps of a multiple recycling closed cycle and characterize their safety relevant aspects. Basic studies like thermodynamic fuel properties, fuel-cladding-coolant interactions have also been carried out at JRC-ITU.

  10. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H Irradiation Report

    SciTech Connect

    Debra J. Utterbeck; Gray Chang

    2005-09-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. These experiments are high burnup analogs to previously irradiated experiments and are to be irradiated to = 20 atom % burnup. Results of the evaluations show that AFC-1D will remain in the ATR for approximately 100 additional effective full power days (EFPDs), and AFC-1G and AFC-1H for approximately 300 additional EFPDs in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.

  11. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO

  12. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect

    Rich Chartrand

    2011-08-31

    reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  13. Assessment of sulfur removal processes for advanced fuel cell systems

    SciTech Connect

    Lorton, G.A.

    1980-01-01

    This study consisted of a technical evaluation and economic comparison of sulfur removal processes for integration into a coal gasification-molten carbonate (CGMC) fuel cell power plant. Initially, the performance characteristics of potential sulfur removal processes were evaluated and screened for conformance to the conditions and requirements expected in commercial CGMC power plants. Four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen-blown and air-blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas (1 ppMv or 25 ppMv). The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed for the essentially complete removal of sulfur compounds. The impact on the overall plant performance was also determined. The total capital requirement for sulfur removal schemes ranged from $59.4/kW to $84.8/kW for the oxygen-blown cases and from $89.5/kW to $133/kW for the air-blown cases. The O and M costs for sulfur removal for 70% plant capacity factor ranged from 0.82 mills/kWh to 2.76 mills/kWh for the oxygen-blown cases and from 1.77 mills/kWh to 4.88 mills/kWh for the air-blown cases. The Selexol process benefitted the most from the addition of COS hydrolysis pretreatment.

  14. Follow-up fuel plate stability experiments and analyses for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1993-11-01

    The reactor for the planned Advanced Neutron Source uses closely spaced plates cooled by heavy water flowing through narrow channels. Two sets of tests were performed on the upper and lower fuel plates for the structural response of the fuel plates to the required high coolant flow velocities. This report contains the data from the second round of tests. Results and conclusions from all of the tests are also included in this report. The tests were done using light water on full-scale epoxy models, and through model theory, the results were related to the prototype plates, which are aluminum-clad aluminum/uranium silicide involute-shaped plates.

  15. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are

  16. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  17. A structured architecture for advanced plasma control experiments

    SciTech Connect

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented.

  18. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  19. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  20. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  1. Compatibility of Fuels and Radicals Found in Plasma Jets for Improved Premixed Combustion

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yohji; Shimotani, Kouhei; Shuzenji, Kiyotaka; Kakami, Akira; Tachibana, Takeshi

    We examined the compatibility of radicals contained in plasma jets to fuels through ignition and combustion tests for dimethyl ether (DME)/air and methane (CH4)/air mixtures with oxygen (O2) and nitrogen (N2) as the plasma torch feedstocks. The experiment showed that the DME/air mixture was ignited/combusted with less plasma jet (P.J.) power than the CH4/air mixture and that the O2 P.J. is more effective than the N2 P.J., with a more distinct difference in effectiveness for the CH4/air mixture in contrast to the DME/air mixture. Plasma jets with fewer feedstock flow rates were more effective, presumably due to the greater amount of radical production under the conditions tested. Numerical estimation on the amount of radicals and ignition delay time demonstrates that the superiority of the O2 P.J. is not necessarily only due to the effectiveness of the O radicals, but also due to the fact they were produced easier and with less power, and that the effect and behavior according to amount is different for fuels. This is most likely because they depend on the reaction mechanism of each mixture, all of which match well with the experimental results.

  2. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  3. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  4. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  5. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE PAGES

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  6. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    SciTech Connect

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried out to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.

  7. Advances and problems in plasma-optical mass-separation

    SciTech Connect

    Bardakov, V. M.; Ivanov, S. D.; Strokin, N. A.

    2014-03-15

    This paper presents a short review of plasma-optical mass-separation and defines the fields for its possible application. During theoretical studies, numerical simulations, and experiments, the effect of the azimuthator finite size and of the vacuum conditions on the mass separator characteristics was revealed, as well as the quality of different-mass ion separation. The problems, solving which may lead to a successful end of the mass-separation plasma-optical technique implementation, were specified.

  8. Recent advances in spectroscopy of strongly correlated plasmas

    NASA Astrophysics Data System (ADS)

    Leboucher-Dalimier, E.; Sauvan, P.; Gauthier, P.; Angelo, P.; Derfoul, H.; Alexiou, S.; Poquerusse, A.; Ceccotti, T.; Calisti, A.

    1998-09-01

    The Quasimolecular Model using a Two Centre basis to describe the electronic emitting structure gives an alternative treatment of line broadening in dense and hot plasmas. Two codes are developed: IDEFIX for the radiative properties, QMSPECTRA (postprocessed to the first one) for the spectral line shapes. The observability of dense plasma effects (PPS, asymmetries and satellite features) in spectroscopic measurements is analysed within the proposed model and taking care of the eventual integrations over density gradients.

  9. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  10. Space dusty plasmas: recent developments, advances, and unsolved problems

    NASA Astrophysics Data System (ADS)

    Popel, Sergey; Zelenyi, Lev

    2016-07-01

    The area of space dusty plasma research is a vibrant subfield of plasma physics that belongs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, and atmospheric science. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust at the Moon, etc. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. The present review covers the main aspects of the area of space dusty plasma research. Emphasis is given to the description of dusty plasmas at the Moon which is important from the viewpoint of the future lunar missions and lunar observatory. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, "Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a).

  11. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  12. Dusty (complex) plasmas: recent developments, advances, and unsolved problems

    NASA Astrophysics Data System (ADS)

    Popel, Sergey

    The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be

  13. Advancing the understanding of plasma transport in mid-size stellarators

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams

    2017-01-01

    The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.

  14. Advanced spent fuel conditioning process (ACP) progress with respect to remote operation and maintenance

    SciTech Connect

    Lee, Hyo Jik; Lee, Jong Kwang; Park, Byung Suk; Yoon, Ji Sup

    2007-07-01

    Korea Atomic Energy Research Institute (KAERI) has been developing an Advanced Spent Fuel Conditioning Process (ACP) to reduce the volume of spent fuel, and the construction of the ACP facility (ACPF) for a demonstration of its technical feasibility has been completed. In 2006 two inactive demonstrations were performed with simulated fuels in the ACPF. Accompanied by process equipment performance tests, its remote operability and maintainability were also tested during that time. Procedures for remote operation tasks are well addressed in this study and evaluated thoroughly. Also, remote maintenance and repair tasks are addressed regarding some important modules with a high priority order. The above remote handling test's results provided a lot of information such as items to be revised to improve the efficiency of the remote handling tasks. This paper deals with the current status of ACP and the progress of remote handling of ACPF. (authors)

  15. From fields to fuels: recent advances in the microbial production of biofuels.

    PubMed

    Kung, Yan; Runguphan, Weerawat; Keasling, Jay D

    2012-11-16

    Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.

  16. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  17. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  18. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  19. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    SciTech Connect

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  20. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  2. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  3. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  4. Fabrication and Comparison of Fuels for Advanced Gas Reactor Irradiation Tests

    SciTech Connect

    Jeffrey Phillips; Charles Barnes; John Hunn

    2010-10-01

    As part of the program to demonstrate TRISO-coated fuel for the Next Generation Nuclear Plant, a series of irradiation tests of Advanced Gas Reactor (AGR) fuel are being performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 until November 2009. Development of AGR-1 fuel sought to replicate the properties of German TRISO-coated particles. No particle failures were seen in the nearly 3-year irradiation to a burn up of 19%. The AGR-1 particles were coated in a two-inch diameter coater. Following fabrication of AGR-1 fuel, process improvements and changes were made in each of the fabrication processes. Changes in the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a six-inch diameter coater using a change size about twenty-one times that of the two-inch diameter coater used to coat AGR-1 particles. Changes were also made in the compacting process, including increasing the temperature and pressure of pressing and using a different type of press. Irradiation of AGR-2 fuel began in late spring 2010. Properties of AGR-2 fuel compare favorably with AGR-1 and historic German fuel. Kernels are more homogeneous in shape, chemistry and density. TRISO-particle sphericity, layer thickness standard deviations, and defect fractions are also comparable. In a sample of 317,000 particles from deconsolidated AGR-2 compacts, 3 exposed kernels were found in a leach test. No SiC defects were found in a sample of 250,000 deconsolidated particles, and no IPyC defects in a sample of 64,000 particles. The primary difference in properties between AGR-1 and AGR-2 compacts is that AGR-2 compacts have a higher matrix density, 1.6 g/cm3 compared to about 1.3 g/cm3 for AGR-1 compacts. Based on

  5. Transport and micro-instability analysis of JET H-mode plasma during pellet fueling

    NASA Astrophysics Data System (ADS)

    Klaywittaphat, P.; Onjun, T.

    2017-02-01

    Transport and micro-instability analysis in a JET H-mode plasma discharge 53212 during the pellet fueling operation is carried out using the BALDUR integrated predictive modeling code with a combination of the NCLASS neoclassical transport model and an anomalous core transport model (either Mixed B/gB or MMM95 model). In this work, the evolution of plasma current, plasma density and temperature profiles is carried out and, consequently, the plasma’s behaviors during the pellet operation can be observed. The NGS pellet model with the Grad-B drift effect included is used to describe pellet ablation and its behaviors when a pellet is launched into hot plasma. The simulation shows that after each pellet enters the plasma, there is a strong perturbation on the plasma causing a sudden change of both thermal and particle profiles, as well as the thermal and particle transports. For the simulation using MMM95 transport model, the change of both thermal and particle transports during pellet injection are found to be dominated by the transport due to the resistive ballooning modes due to the increase of collisionality and resistivity near the plasma edge. For the simulation based on mixed B/gB transport model, it is found that the change of transport during the pellet injection is dominated by the Bohm term. Micro-instability analysis of the plasma during the time of pellet operation is also carried out for the simulations based on MMM95 transport model. It is found that the ion temperature gradient mode is destabilized due to an increase of temperature gradient in the pellet effective region, while the trapped electron mode is stabilized due to an increase of collisionality in that region.

  6. Advanced Fuel Quality Assurance Standards Based on Thermal Testing and Chemometric Modeling

    DTIC Science & Technology

    2015-10-05

    Briefing Charts 3. DATES COVERED (From - To) 15 September 2015 - 05 October 2015 4. TITLE AND SUBTITLE Advanced Fuel Quality Assurance Standards Based...ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NO. Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd. Edwards AFB...CA 93524-7680 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory

  7. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    SciTech Connect

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  8. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  9. Selective Plasma Etching of Polymeric Substrates for Advanced Applications.

    PubMed

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-06-07

    In today's nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a "zoo" of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance.

  10. Selective Plasma Etching of Polymeric Substrates for Advanced Applications

    PubMed Central

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-01-01

    In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238

  11. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE PAGES

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  12. Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications

    SciTech Connect

    Leal, David A.; Leal-Quiros, E.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar

    2006-12-04

    Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.

  13. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation.

    PubMed

    Pratt, V C; Watanabe, S; Bruera, E; Mackey, J; Clandinin, M T; Baracos, V E; Field, C J

    2002-12-02

    Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12+/-1 g day(-1)) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of >5% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (<30% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils.

  14. High Power Ion Heating in Helium and Hydrogen Plasmas for Advanced Plasma Thrusters

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hagiwara, Tatsuya; Domon, Masakazu; Taguchi, Takahiro

    High power ion cyclotron resonance heating is performed in a fast-flowing plasma operated with hydrogen and helium gases. Ion heating is clearly observed in hydrogen plasma as well as in helium plasma. The resonance region of magnetic field is broader and wave absorption efficiency is higher in hydrogen plasma than those in helium plasma. The thermal energy of the heated ions is converted to the kinetic energy of the exhaust plume by passing through a diverging magnetic nozzle set in a downstream region. In the magnetic nozzle energy conversion occurred as keeping the magnetic moment constant, but some discrepancy was observed in larger gradient of magnetic field. The kinetic energy of the exhaust plume is successfully controlled by an input power of radio-frequency wave, which is one of the key technologies for the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) type plasma thruster.

  15. Advanced properties of extended plasmas for efficient high-order harmonic generation

    SciTech Connect

    Ganeev, R. A.; Suzuki, M.; Kuroda, H.

    2014-05-15

    We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasma jets.

  16. Solid oxide fuel cell processing using plasma arc spray deposition techniques. Final report

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  17. Solid oxide fuel cell processing using plasma arc spray deposition techniques

    SciTech Connect

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  18. Center for Advanced Power and Energy Research (CAPEC)

    DTIC Science & Technology

    2015-01-01

    University structured through a cooperative research agreement. Our organizational focuses include: 1. Modeling of plasma physics 2. Modeling fuel cells 3...Testing new innovation and ideas for advanced fuel cells 4. Development of energy related issue for micro air vehicles (MAVs). 15. SUBJECT TERMS plasma ...1 2 Plasma Modeling

  19. Zirconium carbonitride pellets by internal sol gel and spark plasma sintering as inert matrix fuel material

    NASA Astrophysics Data System (ADS)

    Hedberg, Marcus; Cologna, Marco; Cambriani, Andrea; Somers, Joseph; Ekberg, Christian

    2016-10-01

    Inert matrix fuel is a fuel type where the fissile material is blended with a solid diluent material. In this work zirconium carbonitride microspheres have been produced by internal sol gel technique, followed by carbothermal reduction. Material nitride purities in the produced materials ranged from Zr(N0.45C0.55) to Zr(N0.74C0.26) as determined by X-ray diffraction and application of Vegard's law. The zirconium carbonitride microspheres have been pelletized by spark plasma sintering (SPS) and by conventional cold pressing and sintering. In all SPS experiments cohesive pellets were formed. Maximum final density reached by SPS at 1700 °C was 87% theoretical density (TD) compared to 53% TD in conventional sintering at 1700 °C. Pore sizes in all the produced pellets were in the μm scale and no density gradients could be observed by computer tomography.

  20. 76 FR 80832 - Fire Pots and Gel Fuel; Advance Notice of Proposed Rulemaking; Request for Comments and Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... COMMISSION 16 CFR Part Chapter II Fire Pots and Gel Fuel; Advance Notice of Proposed Rulemaking; Request for....regulations.gov . FOR FURTHER INFORMATION CONTACT: Rohit Khanna, Fire Program Area Team Leader, Office of... firepots and gel fuel are used together, they can present serious burn and fire hazards. Firepots and...

  1. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  2. Investigation of novel electrolyte systems for advanced metal/air batteries and fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Hui

    It is a worldwide challenge to develop advanced green power sources for modern portable devices, transportation and stationary power generation. Metal/air batteries and fuel cells clearly stand out in view of their high specific energy, high energy efficiency and environment-friendliness. Advanced metal/air batteries based on metal ion conductors and proton exchange membrane (PEM) fuel cells operated at elevated temperatures (>120°C) can circumvent the limitations of current technologies and bring considerable advantages. The key is to develop suitable electrolytes to enable these new technologies. In this thesis research, investigation of novel electrolytes systems for advanced metal/air batteries and PEM fuel cells is conducted. Novel polymer gel electrolyte systems, [metal salt/ionic liquid/polymer] and [metal salt/liquid polyether/polymer] are prepared. Such systems contain no volatile solvents, conduct metal ions (Li+ or Zn 2+) with high ionic conductivity, possess wide electrochemical stability windows, and exhibit wide operating temperature ranges. They promise to enable non-aqueous, all-solid-state, thin-film Li/air batteries and Zn/air batteries. They are advantageous for application in other battery systems as well, such as rechargeable lithium and lithium ion batteries. In the case of proton exchange membranes, polymer gel electrolyte systems [acid/ionic liquid/polymer] are prepared. Especially, H3PO4/PMIH2PO 4/PBI is demonstrated as prospective proton exchange membranes for PEM fuel cells operating at elevated temperatures. Comprehensive electrochemical characterization, thermal analysis (TGA and DSC) and spectroscopy analysis (NMR and FTIR) are carried out to investigate these novel electrolyte systems and their ion transport mechanisms. The design and synthesis of novel ionic liquids and electrolyte systems based on them for advantageous application in various electrochemical power sources are highlighted in this work.

  3. Design and verification of shielding for the advanced spent fuel conditioning process facility.

    PubMed

    Cho, I J; Kook, D H; Kwon, K C; Lee, E P; Choung, W M; You, G S

    2008-05-01

    An Advanced spent fuel Conditioning Process Facility (ACPF) has recently been constructed by a modification of previously unused cells. ACPF is a hot cell with two rooms located in the basement of the Irradiated Materials Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute. This is for demonstrating the advanced spent fuel conditioning process being proposed in Korea, which is an electrolytic reduction process of spent oxide fuels into a metallic form. The ACPF was designed with a more than 90 cm thick high density concrete shield wall to handle 1.38 PBq (37,430 Ci) of radioactive materials with dose rates lower than 10 muSv h in the operational areas (7,000 zone) and 150 muSv h in the service areas (8,000 zone). In Monte Carlo calculations with a design basis source inventory, the results for the bounding wall showed a maximum of 3 muSv h dose rate at an exterior surface of the ACPF for gamma radiation and 0.76 muSv h for neutrons. All the bounding structures of the ACPF were investigated to check on the shielding performance of the facility to ensure the radiation safety of the facility. A test was performed with a 2.96 TBq (80 Ci) 60Co source unit and the test results were compared with the calculation results. A few failure points were discovered and carefully fixed to meet the design criteria. After fixing the problems, the failure points were rechecked and the safety of the shielding structures was confirmed. In conclusion, it was confirmed that all the investigated parts of the ACPF passed the shielding safety limits by using this program and the ACPF is ready to fulfill its tasks for the advanced spent fuel conditioning process.

  4. Evaluation of the advanced mixed-oxide fuel test FO-2 irradiated in the FFTF (Fast Flux Test Facility)

    SciTech Connect

    Burley Gilpin, L.L.; Chastain, S.A.; Baker, R.B.

    1989-01-01

    The advanced mixed-oxide (UO{sub 2}-PuO{sub 2}) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF) is undergoing postirradiation examination. This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of 12 different types. Two L (annular) fuel pins, GF02L04 (FFTF and transient tested) and GF02L09 (FFTF only), were destructively examined. Evaluation of the FO-2 fuel pins and assembly shows the excellent and predictable performance of the mixed-oxide fuels with HT9 structural material. This, combined with the robust behavior of the pins in transient tests, and the continued excellent performance of the CDE indicate this is a superior fuel system for liquid-metal reactors. It offers greatly reduced deformation during irradiation, while maintaining good operating characteristics.

  5. Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming.

    PubMed

    Laha, T; Liu, Y; Agarwal, A

    2007-02-01

    Free standing structures of hypereutectic aluminum-23 wt% silicon nanocomposite with multiwalled carbon nanotubes (MWCNT) reinforcement have been successfully fabricated by two different thermal spraying technique viz Plasma Spray Forming (PSF) and High Velocity Oxy-Fuel (HVOF) Spray Forming. Comparative microstructural and mechanical property evaluation of the two thermally spray formed nanocomposites has been carried out. Presence of nanosized grains in the Al-Si alloy matrix and physically intact and undamaged carbon nanotubes were observed in both the nanocomposites. Excellent interfacial bonding between Al alloy matrix and MWCNT was observed. The elastic modulus and hardness of HVOF sprayed nanocomposite is found to be higher than PSF sprayed composites.

  6. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  7. Recent advances in hardware and software are to improve spent fuel measurements

    SciTech Connect

    Staples, P.; Beddingfield, D. H.; Lestone, J. P.; Pelowitz, D. G.; Bytchkov, M.; Starovich, Z.; Harizanov, I.; Luna-Vellejo, J.; Lavender, C.

    2001-01-01

    Vast quantities of spent fuel are available for safeguard measurements, primarily in Commonwealth of Independent States (CIS) of the former Soviet Union. This spent fuel, much of which consists of long-cooling-time material, is going to become less unique in the world safeguards arena as reprocessing projects or permanent repositories continue to be delayed or postponed. The long cooling time of many of the spent fuel assemblies being prepared for intermediate term storage in the CIS countries promotes the possibility of increased accuracy in spent fuel assays. This improvement is made possible through the process of decay of the Curium isotopes and of fission products. An important point to consider for the future that could advance safeguards measurements for reverification and inspection would be to determine what safeguards requirements should be imposed upon this 'new' class of spent fuel, Improvements in measurement capability will obviously affect the safeguards requirements. What most significantly enables this progress in spent fuel measurements is the improvement in computer processing power and software enhancements leading to user-friendly Graphical User Interfaces (GUT's). The software used for these projects significantly reduces the IAEA inspector's time expenditure for both learning and operating computer and data acquisition systems, At the same time, by standardizing the spent fuel measurements, it is possible to increase reproducibility and reliability of the measurement data. Hardware systems will be described which take advantage of the increased computer control available to enable more complex measurement scenarios. A specific example of this is the active regulation of a spent fuel neutron coincident counter's {sup 3}He tubes high voltage, and subsequent scaling of measurement results to maintain a calibration for direct assay of the plutonium content of Fast Breeder Reactor spent fuel. The plutonium content has been successfully determined

  8. Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; White, S.; Patton, B.; Thio, Y. C. F.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.; Hopkins, R.

    2003-01-01

    This paper describes the engineering of several vehicles designed for a crewed mission to the Jovian satellite Callisto. Each subsystem is discussed in detail. Mission and trajectory analysis for each mission concept is described. Crew support components are also described. Vehicles were developed using both fission powered magneto plasma dynamic (MPD) thrusters and magnetized target fusion (MTF) propulsion systems. Conclusions were drawn regarding the usefulness of these propulsion systems for crewed exploration of the outer solar system.

  9. Advanced modeling techniques in application to plasma pulse treatment

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. F.; Pashchenko, F. F.

    2016-06-01

    Different approaches considered for simulation of plasma pulse treatment process. The assumption of a significant non-linearity of processes in the treatment of oil wells has been confirmed. Method of functional transformations and fuzzy logic methods suggested for construction of a mathematical model. It is shown, that models, based on fuzzy logic are able to provide a satisfactory accuracy of simulation and prediction of non-linear processes observed.

  10. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  11. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  12. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    NASA Astrophysics Data System (ADS)

    1994-05-01

    This project has successfully advanced the technology for MSOFC's for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-sq cm per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  13. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Hickman, Robert; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Next-generation, regeneratively cooled rocket engines require materials that can meet high temperatures while resisting the corrosive oxidation-reduction reaction of combustion known as blanching, the main cause of engine failure. A project was initiated at NASA-Marshal Space Flight Center (MSFC) to combine three existing technologies to build and demonstrate an advanced liquid rocket engine combustion chamber that would provide a 100 mission life. Technology developed in microgravity research to build cartridges for space furnaces was utilized to vacuum plasma spray (VPS) a functional gradient coating on the hot wall of the combustion liner as one continuous operation, eliminating any bondline between the coating and the liner. The coating was NiCrAlY, developed previously as durable protective coatings on space shuttle high pressure fuel turbopump (HPFTP) turbine blades. A thermal model showed that 0.03 in. NiCrAlY applied to the hot wall of the combustion liner would reduce the hot wall temperature 200 F, a 20% reduction, for longer life. Cu-8Cr-4Nb alloy, which was developed by NASA-Glenn Research Center (GRC), and which possesses excellent high temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability, was utilized as the liner material in place of NARloy-Z. The Cu-8Cr-4Nb material exhibits better mechanical properties at 650 C (1200 F) than NARloy-Z does at 538 C (1000 F). VPS formed Cu-8Cr-4Nb combustion chamber liners with a protective NiCrAlY functional gradient coating have been hot fire tested, successfully demonstrating a durable coating for the first time. Hot fire tests along with tensile and low cycle fatigue properties of the VPS formed combustion chamber liners and witness panel specimens are discussed.

  14. Fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas. Topical report February 1994--February 1995

    SciTech Connect

    1995-02-01

    Experiments were made on use of H and CH plasmas for converting waste materials and heavy oils to H-rich transportation fuels. Batch and continuous experiments were conducted with an industrial microwave generator and a commercial microwave oven. A continuously circulating reactor was constructed for conducting experiments on flowing oils. Experiments on decomposition of scrap tires showed that microwave plasmas can be used to decompose scrap tires into potentially useful liquid products. In a batch experiment using a commercial microwave oven, about 20% of the tire was converted to liquid products in about 9 minutes. Methane was decomposed in a microwave plasma to yield a liquid products composed of various compound types; GC/MS analyses identified unsaturated compounds including benzene, toluene, ethyl benzene, methyl and ethyl naphthalene, small amounts of larger aromatic rings, and olefinic compounds. Experiments on a crude oil in a continuously flowing reactor showed that distillate materials are produced using H and CH plasmas. Also, the recycle oils had an overall carbon aromaticity lower than that of starting feed material, indicating that some hydrogenation and methanation had taken place in the recycle oils.

  15. Evaluation of Computed Tomography of Mock Uranium Fuel Rods at the Advanced Photon Source

    DOE PAGES

    Hunter, James F.; Brown, Donald William; Okuniewski, Maria

    2015-06-01

    This study discusses a multi-year effort to evaluate the utility of computed tomography at the Advanced Photon Source (APS) as a tool for non-destructive evaluation of uranium based fuel rods. The majority of the data presented is on mock material made with depleted uranium which mimics the x-ray attenuation characteristics of fuel rods while allowing for simpler handling. A range of data is presented including full thickness (5mm diameter) fuel rodlets, reduced thickness (1.8mm) sintering test samples, and pre/post irradiation samples (< 1mm thick). These data were taken on both a white beam (bending magnet) beamline and a high energy,more » monochromatic beamline. This data shows the utility of a synchrotron type source in the evealuation of manufacturing defects (pre-irradiation) and lays out the case for in situ CT of fuel pellet sintering. Finally, in addition data is shown from small post-irradiation samples and a case is made for post-irradiation CT of larger samples.« less

  16. Evaluation of Computed Tomography of Mock Uranium Fuel Rods at the Advanced Photon Source

    SciTech Connect

    Hunter, James F.; Brown, Donald William; Okuniewski, Maria

    2015-06-01

    This study discusses a multi-year effort to evaluate the utility of computed tomography at the Advanced Photon Source (APS) as a tool for non-destructive evaluation of uranium based fuel rods. The majority of the data presented is on mock material made with depleted uranium which mimics the x-ray attenuation characteristics of fuel rods while allowing for simpler handling. A range of data is presented including full thickness (5mm diameter) fuel rodlets, reduced thickness (1.8mm) sintering test samples, and pre/post irradiation samples (< 1mm thick). These data were taken on both a white beam (bending magnet) beamline and a high energy, monochromatic beamline. This data shows the utility of a synchrotron type source in the evealuation of manufacturing defects (pre-irradiation) and lays out the case for in situ CT of fuel pellet sintering. Finally, in addition data is shown from small post-irradiation samples and a case is made for post-irradiation CT of larger samples.

  17. Incorporation of a risk analysis approach for the nuclear fuel cycle advanced transparency framework.

    SciTech Connect

    Mendez, Carmen Margarita; York, David L.; Inoue, Naoko; Kitabata, Takuya; Vugrin, Eric D.; Vugrin, Kay White; Rochau, Gary Eugene; Cleary, Virginia D.

    2007-05-01

    Proliferation resistance features that reduce the likelihood of diversion of nuclear materials from the civilian nuclear power fuel cycle are critical for a global nuclear future. A framework that monitors process information continuously can demonstrate the ability to resist proliferation by measuring and reducing diversion risk, thus ensuring the legitimate use of the nuclear fuel cycle. The automation of new nuclear facilities requiring minimal manual operation makes this possible by generating instantaneous system state data that can be used to track and measure the status of the process and material at any given time. Sandia National Laboratories (SNL) and the Japan Atomic Energy Agency (JAEA) are working in cooperation to develop an advanced transparency framework capable of assessing diversion risk in support of overall plant transparency. The ''diversion risk'' quantifies the probability and consequence of a host nation diverting nuclear materials from a civilian fuel cycle facility. This document introduces the details of the diversion risk quantification approach to be demonstrated in the fuel handling training model of the MONJU Fast Reactor.

  18. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    SciTech Connect

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  19. TransAtlas: A U.S. Map of Fuels and Vehicles Data from the Alternative Fuels and Advanced Vehicles (AFDC)

    DOE Data Explorer

    Data stored in the Alternative Fuels and Advanced Vehicles Data Center (AFDC) can provide insight to policymakers, entrepreneurs, fuel users, and other parties interested in reducing petroleum consumption. The National Renewable Energy Laboratory analyzes transportation-related data and identifies trends related to alternative fuels and vehicles. These analyses are posted in the AFDC as technical reports and Excel spreadsheets that can be manipulated by outside users. To provide the most robust collection of information possible, this section also includes links to data analyses from outside the AFDC. These sources are noted in each file. There are also interactive map applications and some PDF documents.

  20. Plasma mRNA as liquid biopsy predicts chemo-sensitivity in advanced gastric cancer patients.

    PubMed

    Shen, Jie; Kong, Weiwei; Wu, Yuanna; Ren, Haozhen; Wei, Jia; Yang, Yang; Yang, Yan; Yu, Lixia; Guan, Wenxian; Liu, Baorui

    2017-01-01

    Predictive biomarkers based individualized chemotherapy can improve efficacy. However, for those advanced patients, it may be impossible to obtain the tissues from operation. Tissues from biopsy may not be always enough for gene detection. Thus, biomarker from blood could be a non-invasive and useful tool to provide real-time information in the procedure of treatment. To further understand the role of plasma mRNA in chemo-efficiency prediction, several mRNA expression levels were assessed in plasma and paired tumor tissues from 133 locally advanced gastric cancer patients (stage III), and mRNA levels were correlated with chemosensitivity to docetaxel, pemetrexed, platinum, and irinotecan. mRNA expression level in 64 advanced gastric cancer patients (stage IV) was also examined (55 in test group, and 9 in control), and chemotherapy in the test group were given according to the plasma gene detection. As a result, in the 133 patients with locally advanced gastric cancer (Stage III), correlations were observed between the mRNA expression of plasma/tumor BRCA1 levels and docetaxel sensitivity (P<0.001), plasma/tumor TS and pemetrexed sensitivity (P<0.001), plasma/tumor BRCA1 and platinum sensitivity (plasma, P=0.016; tumor, P<0.001), and plasma/tumor TOPO1 and irinotecan sensitivity (plasma, P=0.015; tumor, P=0.011). Among another 64 patients with advanced cancer (Stage IV), the median OS of test group was 15.5m (95% CI=10.1 to 20.9m), the PFS was 9.1m (95% CI=8.0 to 10.2m), which were significant longer than the control (P=0.047 for OS, P=0.038 for PFS). The mortality risk was higher in the control than patients treated according to the plasma gene detection (HR in the control=2.34, 95% CI=0.93 to 5.88, P=0.071). Plasma mRNA as liquid biopsy could be ideal recourse for examination to predict chemo-sensitivity in gastric cancer.

  1. Plasma mRNA as liquid biopsy predicts chemo-sensitivity in advanced gastric cancer patients

    PubMed Central

    Shen, Jie; Kong, Weiwei; Wu, Yuanna; Ren, Haozhen; Wei, Jia; Yang, Yang; Yang, Yan; Yu, Lixia; Guan, Wenxian; Liu, Baorui

    2017-01-01

    Predictive biomarkers based individualized chemotherapy can improve efficacy. However, for those advanced patients, it may be impossible to obtain the tissues from operation. Tissues from biopsy may not be always enough for gene detection. Thus, biomarker from blood could be a non-invasive and useful tool to provide real-time information in the procedure of treatment. To further understand the role of plasma mRNA in chemo-efficiency prediction, several mRNA expression levels were assessed in plasma and paired tumor tissues from 133 locally advanced gastric cancer patients (stage III), and mRNA levels were correlated with chemosensitivity to docetaxel, pemetrexed, platinum, and irinotecan. mRNA expression level in 64 advanced gastric cancer patients (stage IV) was also examined (55 in test group, and 9 in control), and chemotherapy in the test group were given according to the plasma gene detection. As a result, in the 133 patients with locally advanced gastric cancer (Stage III), correlations were observed between the mRNA expression of plasma/tumor BRCA1 levels and docetaxel sensitivity (P<0.001), plasma/tumor TS and pemetrexed sensitivity (P<0.001), plasma/tumor BRCA1 and platinum sensitivity (plasma, P=0.016; tumor, P<0.001), and plasma/tumor TOPO1 and irinotecan sensitivity (plasma, P=0.015; tumor, P=0.011). Among another 64 patients with advanced cancer (Stage IV), the median OS of test group was 15.5m (95% CI=10.1 to 20.9m), the PFS was 9.1m (95% CI=8.0 to 10.2m), which were significant longer than the control (P=0.047 for OS, P=0.038 for PFS). The mortality risk was higher in the control than patients treated according to the plasma gene detection (HR in the control=2.34, 95% CI=0.93 to 5.88, P=0.071). Plasma mRNA as liquid biopsy could be ideal recourse for examination to predict chemo-sensitivity in gastric cancer.

  2. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  3. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1993-05-01

    The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays of involute-shaped fuel plates that will be cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported. The tests were conducted using full-scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as functions of the flow velocity are examined. Comparisons with mathematical models are noted.

  4. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  5. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Researcha)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Chung, J.

    2010-10-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  6. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    SciTech Connect

    Dale M. Meade

    2004-10-21

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

  7. Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer

    PubMed Central

    Holten-Andersen, M N; Murphy, G; Nielsen, H J; Pedersen, A N; Christensen, I J; Høyer-Hansen, G; Brünner, N; Stephens, R W

    1999-01-01

    A kinetic enzyme-linked immunosorbent assay (ELISA) for plasma tissue inhibitor of metalloproteinase (TIMP)-1 was developed in order to examine the potential diagnostic and prognostic value of TIMP-1 measurements in cancer patients. The ELISA enabled specific detection of total TIMP-1 in EDTA, citrate and heparin plasma. The assay was rigorously tested and requirements of sensitivity, specificity, stability and good recovery were fulfilled. TIMP-1 levels measured in citrate plasma (mean 69.2 ± 13.1 μg l−1) correlated with TIMP-1 measured in EDTA plasma (mean 73.5 ± 14.2 μg l−1) from the same individuals in a set of 100 healthy blood donors (Spearman's rho = 0.62, P < 0.0001). The mean level of TIMP-1 in EDTA plasma from 143 patients with Dukes' stage D colorectal cancer was 240 ± 145 μg l−1 and a Mann–Whitney test demonstrated a highly significant difference between TIMP-1 levels in healthy blood donors and colorectal cancer patients (P < 0.0001). Similar findings were obtained for 19 patients with advanced breast cancer (mean 292 ± 331 μg l−1). The results show that TIMP-1 is readily measured in plasma samples by ELISA and that increased levels of TIMP-1 are found in patients with advanced cancer. It is proposed that plasma measurements of TIMP-1 may have value in the management of cancer patients. © 1999 Cancer Research Campaign PMID:10408859

  8. Advancements toward matter-antimatter pair plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stanja, J.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C.; Vohburger, S.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2015-11-01

    APEX/PAX (A Positron Electron Experiment/Positron Accumulation Experiment) has as its overarching goal the creation and magnetic confinement of a laboratory electron-positron pair plasma, thereby enabling experimental investigations of a topic that has already been the subject of hundreds of analytical and computational studies. This goal involves several interdependent challenges: design and construction of a suitable magnetic confinement device, access to a sufficient number of sufficiently cool positrons, and refinement of methods for the transfer of the positrons (and an equal number of electrons) into the device. The latest results of the subprojects addressing these challenges will be summarized here. Highlights include efficient (40 percent) injection of the NEPOMUC (Neutron-Inducted Positron Source Munich) positron beam into the confinement region of a dipole magnetic field, characterization of the beam at energies from 5 eV to 1 keV, and hour-long electron plasma confinement in a high-field (2.3 Telsa) Penning-Malmberg trap. on behalf of the APEX/PAX team and collaborators.

  9. UNCERTAINTY QUANTIFICATION OF CALCULATED TEMPERATURES FOR ADVANCED GAS REACTOR FUEL IRRADIATION EXPERIMENTS

    SciTech Connect

    Pham, Binh Thi-Cam; Hawkes, Grant Lynn; Einerson, Jeffrey James

    2015-08-01

    This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technology Research and Development program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR tests, the results of the numerical simulations are used in combination with statistical analysis methods to improve qualification of measured data. The temperature simulation data for AGR tests are also used for validation of the fission product transport and fuel performance simulation models. These crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. To quantify the uncertainty of AGR calculated temperatures, this study identifies and analyzes ABAQUS model parameters of potential importance to the AGR predicted fuel temperatures. The selection of input parameters for uncertainty quantification of the AGR calculated temperatures is based on the ranking of their influences on variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. Propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of AGR calculated temperatures. Expert judgment is used as the basis to specify the uncertainty range for selected input parameters. The input uncertainties are dynamic accounting for the effect of unplanned events and changes in thermal properties of capsule components over extended exposure to high temperature and fast neutron irradiation. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using experimental design, analysis of pairwise interactions of model parameters was performed to establish

  10. Advances in petascale kinetic plasma simulation with VPIC and Roadrunner

    SciTech Connect

    Bowers, Kevin J; Albright, Brian J; Yin, Lin; Daughton, William S; Roytershteyn, Vadim; Kwan, Thomas J T

    2009-01-01

    VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration and modeling reconnection in magnetic confinement fusion experiments.

  11. Impact of ion cyclotron wall conditioning on fuel removal from plasma-facing components at TEXTOR

    NASA Astrophysics Data System (ADS)

    Carrasco, A. G.; Möller, S.; Petersson, P.; Ivanova, D.; Kreter, A.; Rubel, M.; Wauters, T.

    2014-04-01

    Ion cyclotron wall conditioning (ICWC) is based on low temperature and low density plasmas produced and sustained by ion cyclotron resonance (ICR) pulses in reactive or noble gases. The technique is being developed for ITER. It is tested in tokamaks in the presence of toroidal magnetic field (0.2-3.8 T) and heating power of the order of 105 W. ICWC with hydrogen, deuterium and oxygen-helium mixture was studied in the TEXTOR tokamak. The exposed samples were pre-characterized limiter tiles mounted on specially designed probes. The objectives were to assess the reduction of deuterium content, the uniformity of the reduction and the retention of seeded oxygen. For the last objective oxygen-18 was used as a marker. ICWC in hydrogen caused a drop of deuterium content in the tile by a factor of more than 2: from 4.5 × 1018 to 1.9 × 1018 D cm-2. A decrease of the fuel content by approximately 25% was achieved by the ICWC in oxygen, while no reduction of the fuel content was measured after exposure to discharges in deuterium. These are the first data ever obtained showing quantitatively the local decrease of deuterium in wall components treated by ICWC in a tokamak. The oxygen retention in the tiles exposed to ICWC with oxygen-helium was analyzed for different orientations and radial positions with respect to plasma. An average retention of 1.38 × 1016 18O cm-2 was measured. A maximum of the retention, 4.4 × 1016 18O cm-2, was identified on a sample surface near the plasma edge. The correlation with the gas inlet and antennae location has been studied.

  12. Ion Heating Experiments in a Supersonic Plasma Flow for an Advanced Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hosokawa, Yohei; Hatanaka, Motoi; Yagai, Tsuyoshi; Tobari, Hiroyuki; Hattori, Kunihiko; Inutake, Masaaki

    2003-10-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project in NASA, the combined system of the ion cyclotron heating and the magnetic nozzle is proposed to control a ratio od specific impulse to thrust at constant power. By now, few attempt of a direct ion heating for fast flowing plasma by waves has been done. Ion heating in a fast flowing plasma might be difficult because of the short transit time for ions to pass through a heating region only once and the modification of ion cyclotron resonance due to the effect of Doppler shift. Ion heating experiments are performed in a fast flowing plasma produced by Magneto-Plasma-Dynamic Arcjet (MPDA) operated with an externally-applied magnetic field. RF waves with an ion cyclotron range of frequency is excited by a pair of loop antennas or a helical antenna. An increase of plasma stored energy measured by a diamagnetic loop coil is observed when the waves are excited with various azimuthal mode numbers in several magnetic nozzle configurations. It is most effective to heat ions to excite the waves with an azimuthal mode number of m=±1. Dispersion relations of the propagating wave are obtained and compared with theoretical ones.

  13. The Development of a Solid Fuel Plasma Source for the High Power Helicon

    NASA Astrophysics Data System (ADS)

    Johnson, Ian; Winglee, Robert; Roberson, Race

    2012-10-01

    The high power helicon (HPH) is a compact plasma source that generates downstream densities of 10^18 m-3 and directed ion energies greater than 50 eV. To date most of the work on helicons have involved gas fed systems. The problem with gas propellant is that it's expensive to store and the slow propagation through control valves makes it poorly suited for pulsed systems. In order to address both issues a solid propellant helicon using the same technology as pulsed plasma thrusters (PPTs) is being developed. A current pulse ablates a layer of Teflon, creating a plume of roughly 10% plasma and 90% neutrals. PPT electron densities on the order of 10^19 m-3 were measured 20 cm downstream of the Teflon surface when fired at 43 J. The thruster is estimated to ablate 100 μg of propellant per pulse. PPTs are known for their compact nature but the presence of a large neutral cloud reduces the overall ISP and efficiency of the system. The HPH system provides greater than 90% ionization of all ablated material and yields an extremely high ISP thruster with high power and neutral efficiency. Initial testing of the solid fuel HPH has shown comparable results to similar configurations with gas propellant while opening up the opportunity to have very discrete pulses without long ramp-up times.

  14. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    SciTech Connect

    Santi, Peter A; Demuth, Scott F; Klasky, Kristen L; Lee, Haeok; Miller, Michael C; Sprinkle, James K; Tobin, Stephen J; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  15. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    SciTech Connect

    Amirov, R. Kh. Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  16. Experimental Study of an Advanced Plasma Thruster using ICRF Heating and Magnetic Nozzle Acceleration.

    NASA Astrophysics Data System (ADS)

    Ando, Akira

    2005-10-01

    Electric propulsion (EP) systems utilize plasma technologies and have been developed for years as one of the most promising space propulsion approaches. It is urgently required to develop high-power plasma thrusters for human expeditions to Mars and future space exploration missions. The advanced thruster is demanded to control thrust and specific impulse by adjusting the exhaust plasma density and velocity. In the VASIMR project, a combined system of efficient ion cyclotron heating and optimized magnetic nozzle design is proposed to control the ratio of specific impulse to thrust at constant power[1]. In this system a flowing plasma is heated by ICRF (ion cyclotron range of frequency) waves and the plasma thermal energy is converted to flow energy in a diverging magnetic field nozzle. We have recently performed the first demonstration of ion cyclotron resonance heating and acceleration in a magnetic nozzle by using a fast-flowing plasma with Mach number of nearly unity. Highly ionized plasma is produced by Magneto-Plasma-Dynamic thruster (MPDT). When RF power is launched by a helically-wound antenna, electromagnetic ion cyclotron waves are excited, and plasma thermal energy and ion temperature drastically increase (nearly ten-fold rise) during the RF pulse. The value of resonance magnetic field is affected by the Doppler shift due to the fast-flowing plasma. Dependences of heating efficiency on both plasma density and input RF power will be presented. Ion acceleration along the field line is also observed in a diverging magnetic field nozzle. Perpendicular component (to the magnetic field) of ion energy decreases, whereas parallel component increases along the diverging magnetic field.[1] F.R. Chang Diaz, ``The VASIMR Engine,'' AIAA 2004-0149. AIAA conf. (Reno,2004); Bulletin of APS (46th APS-DPP), NM2A-3, 2004.

  17. Performance of the fissionTPC and the Potential to Advance the Thorium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2014-09-01

    The NIFFTE fission Time Projection Chamber (fissionTPC) is a powerful tool that is being developed to take precision measurements of neutron-induced fission cross sections of transuranic elements. During the last run at the Los Alamos Neutron Science Center (LANSCE) the fully instrumented TPC took data for the first time. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow cross section systematics to be controlled at the level of 1%. The fissionTPC performance from this run will be shared. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors including the abundance of thorium verses uranium, minimizing radioactive waste, improved reactor safety, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium fueled nuclear reactors will also be discussed.

  18. Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Ticianelli, E. A.; Derouin, C. R.; Redondo, A.

    1987-01-01

    The Gemini Space program demonstrated the first major application of fuel cell systems. Solid polymer electrolyte fuel cells were used as auxiliary power sources in the spacecraft. There has been considerable progress in this technology since then, particularly with the substitution of Nafion for the polystyrene sulfonate membrane as the electrolyte. Until recently the performance was good only with high platinum loading (4 mg/sq cm) electrodes. Methods are presented to advance the technology by (1) use of low platinum loading (0.35 mg/sq cm) electrodes; (2) optimization of anode/membrane/cathode interfaces by hot pressing; (3) pressurization of reactant gases, which is most important when air is used as cathodic reactant; and (4) adequate humidification of reactant gases to overcome the water management problem. The high performance of the fuel cell with the low loading of platinum appears to be due to the extension of the three dimensional reaction zone by introduction of a proton conductor, Nafion. This was confirmed by cyclic voltammetry.

  19. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  20. Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig

    SciTech Connect

    Galica, M.A.

    1994-02-01

    This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

  1. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    SciTech Connect

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  2. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    NASA Astrophysics Data System (ADS)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several

  3. Advanced Functional Thin Films Prepared by Plasma CVD

    NASA Astrophysics Data System (ADS)

    Takai, Osamu

    1998-10-01

    Recently water repellency has been required for many types of substrate (e.g. glass, plastics, fibers, ceramics and metals) in various industrial fields. This paper reports on the preparation of highly water-repellent thin films by plasma CVD (PCVD). We have prepared transparent water-repellent thin films at low substrate temperatures by two types of PCVD, rf PCVD and microwave PCVD, using fluoro-alkyl silanes (FASs) as source gases. Silicon oxide thin films contained fluoro-alkyl functions were deposited onto glass and plastics, and realized the excellent water repellency like polytetrafluoroetylene (PTFE) and the high transparency like glass. Increasing the deposition pressure we have formed ultra water-repellent (contact angle for a water drop of over about 150 degrees) thin films by microwave PCVD using a multiple gas mixture of tetramethylsilane (TMS), (heptadecafluoro-1,1,2,2-tetrahydro-decyl)-1-trimethoxysilane (FAS-17) and argon. Ultra water-repellency appears at higher total pressures over 40 Pa because the surface becomes rough due to the growth of large particles. The color of these ultra water-repellent films is slightly white because of the scattering of light by the large particles. Recently we have also deposited transparent ultra water-repellent thin films at low substrate temperatures by microwave PCVD using organosilicon compounds without fluorine as source gases. We evaluated water repellency, optical transmittance, surface morphology and chemical composition of the deposited films. At the suitable substrate position the deposited film gave the contact angle of about 150 degrees and the transmittance of over 80 visible region for a coated glass (thickness was about 1 micron). The control of the surface morphology of the deposited films is most important to obtain the transparent ultra water-repellent films.

  4. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy ( 15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  5. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G, and AFC-1H End of FY-07 Irradiation Report

    SciTech Connect

    Debra J Utterbeck; Gray S Chang; Misit A Lillo

    2007-09-01

    The purpose of the U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), is to develop and demonstrate the technologies needed to transmute the long-lived transuranic isotopes contained in spent nuclear fuel into shorter-lived fission products. Success in this undertaking could potentially dramatically decrease the volume of material requiring disposal with attendant reductions in long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is investigation of irradiation/transmutation effects on actinide-bearing metallic fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Goals of this initiative include addressing the limited irradiation performance data available on metallic fuels with high concentrations of Pu, Np and Am, as are envisioned for use as actinide transmutation fuels. The AFC-1 irradiation experiments of transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. The metallic fuel experiments and nitride experiment are high burnup analogs to previously irradiated experiments and are to be irradiated to = 40 at.% burnup.

  6. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  7. Metal-ceramic/ceramic nanostructured layered composites for solid oxide fuel cells by spark plasma sintering.

    PubMed

    Bezdorozhev, Oleksii; Borodianska, Hanna; Sakka, Yoshio; Vasylkiv, Oleg

    2014-06-01

    In this work, bi-layered Fe-Ni-Co-YSZ/YSZ nanostructured composites for solid oxide fuel cells were obtained using the spark plasma sintering (SPS) technique. The microstructures of the anode and electrolyte were controlled by optimization of SPS consolidation parameters. The resulting bilayers have a full dense YSZ electrolyte and porous Fe-Ni-Co/YSZ anode as well as crack-free and well-bonded anode/electrolyte interface. On the other hand, SPS under non-optimized processing parameters cannot yield the desired results. The high resistance to thermal stresses of the fabricated half-cells was achieved with Fe-Ni-Co/YSZ anode. The developed anode showed higher thermal compatibility with YSZ electrolyte than usual Ni/YSZ cermet. Thus, with the successful combination of SPS parameters and anode material, we have obtained bi-layers for SOFCs with required microstructure and thermal compatibility.

  8. The plasma membrane flattens out to fuel cell surface growth during Drosophila cellularization

    PubMed Central

    Figard, Lauren; Xu, Heng; Garcia, Hernan G.; Golding, Ido; Sokac, Anna Marie

    2014-01-01

    Summary Cell shape change demands cell surface growth, but how growth is fueled and choreographed is still debated. Here, we use cellularization, the first complete cytokinetic event in Drosophila embryos, to show that cleavage furrow ingression is kinetically coupled to the loss of surface microvilli. We modulate furrow kinetics with RNAi against the Rho1-GTPase regulator slam, and show that furrow ingression controls the rate of microvillar depletion. Finally, we directly track microvillar membrane and see it move along the cell surface and into ingressing furrows, independent of endocytosis. Together, our results demonstrate that the kinetics of the ingressing furrow regulate the utilization of a microvillar membrane reservoir. Since the membrane of the furrow and microvilli are contiguous, we suggest that ingression drives unfolding of the microvilli and incorporation of microvillar membrane into the furrow. We conclude that plasma membrane folding/unfolding can contribute to the cell shape changes that promote embryonic morphogenesis. PMID:24316147

  9. Plasma Impedance Spectrum Analyzer (PISA): an advanced impedance probe for measuring plasma density and other parameters

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Pfaff, R. F.; Uribe, P.; Burchill, J.

    2006-12-01

    High-accuracy, high-cadence measurements of ionospheric electron density between 100 and a few x 106 / cc and electron temperature from 200 K to a few thousand K are of critical importance for understanding conductivity, Joule heating rates, and instability growth rates. We present results from the development of an impedance probe at NASA GSFC and show its strengths relative to other measurement techniques. Complementary measurement techniques such as Langmuir Probes, while providing extremely high measurement cadence, suffer from uncertainties in calibration, surface contamination effects, and wake/sheath effects. Impedance Probes function by measuring the phase shift between the voltage on a long antenna and the current flowing from the antenna into the plasma as a function of frequency. At frequencies for which the phase shift is zero, a plasma resonance is assumed to exist. These resonances depend on a variety of plasma parameters, including the electron density, electron temperature, and magnetic field strength, as well as the antenna geometry, angle between the antenna and the magnetic field, and sheath / Debye length effects, but do not depend on the surface properties of the antenna. Previous impedance probe designs which "lock" onto the upper hybrid resonance are susceptible to losing lock in low-density environments. Information about other resonances, including the series resonance (which strongly depends on temperature) and other resonances which may occur near the upper hybrid, confounding its identification, are typically not transmitted. The novel features of the GSFC Impedance Probe (PISA) include: 1) A white noise generator that stimulates a wide range of frequencies simultaneously, allowing the instrument to send down the entire impedance frequency spectrum every few milliseconds. This allows identification of all resonance frequencies, including the series resonance which depends on temperature. 2) DC bias voltage stepping to bring the antenna

  10. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    PubMed Central

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5–3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  11. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  12. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  13. Perspective of laser-induced plasma ignition of hydrocarbon fuel in Scramjet engine

    NASA Astrophysics Data System (ADS)

    Yang, Leichao; Li, Xiaohui; Liang, Jianhan; Yu, Xin; Li, Xipeng

    2016-01-01

    Laser-induced plasma ignition of an ethylene fuelled cavity was successfully conducted in a model scramjet engine combustor. The ethylene was injected 10mm upstream of cavity flameholder from 3 orifices 60 degree inclined relative to freestream direction. The 1064nm laser beam, from a Q-switched Nd:YAG laser source running at 3Hz and 200mJ per pulse, was focused into cavity for ignition. High speed photography was used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation were all recorded and ensuing stable supersonic combustion was established in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upwards as the entrainment of circulation flow in cavity. The flame is then stretched from leading edge to trailing edge to fully fill the entire cavity. Eventually, a stable combustion is achieved roughly 900μs after the laser pulse. The results show promising potentials for practical application. The perspective of laser-induced plasma ignition of hydrocarbon fuel in scramjet engine is outlined.

  14. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark; Howard, Robert

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  15. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation

  16. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up.

  17. Descriptions of a linear device developed for research on advanced plasma imaging and dynamics.

    PubMed

    Chung, J; Lee, K D; Seo, D C; Nam, Y U; Ko, W H; Lee, J H; Choi, M C

    2009-10-01

    The research on advanced plasma imaging and dynamics (RAPID) device is a newly developed linear electron cyclotron resonance (ECR) plasma device. It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. A 6 kW 2.45 GHz magnetron is used to produce steady-state ECR plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). The cylindrical stainless steel vacuum chamber is 300 mm in diameter and 750 mm in length and has eight radial and ten axial ports including 6-in. and 8-in. viewing windows for heating and diagnostics. Experimental observation of ECR plasma heating has been recently carried out during the initial plasma operation. The main diagnostic systems including a 94 GHz heterodyne interferometer, a high-resolution 25 channel one-dimensional array spectrometer, a single channel survey spectrometer, and an electric probe have been also prepared. The RAPID device is a flexible simulator for the understanding of tokamak edge plasma physics and new diagnostic system development. In this work, we describe the RAPID device and initial operation results.

  18. Descriptions of a linear device developed for research on advanced plasma imaging and dynamics

    SciTech Connect

    Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Ko, W. H.; Lee, J. H.; Choi, M. C.

    2009-10-15

    The research on advanced plasma imaging and dynamics (RAPID) device is a newly developed linear electron cyclotron resonance (ECR) plasma device. It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. A 6 kW 2.45 GHz magnetron is used to produce steady-state ECR plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). The cylindrical stainless steel vacuum chamber is 300 mm in diameter and 750 mm in length and has eight radial and ten axial ports including 6-in. and 8-in. viewing windows for heating and diagnostics. Experimental observation of ECR plasma heating has been recently carried out during the initial plasma operation. The main diagnostic systems including a 94 GHz heterodyne interferometer, a high-resolution 25 channel one-dimensional array spectrometer, a single channel survey spectrometer, and an electric probe have been also prepared. The RAPID device is a flexible simulator for the understanding of tokamak edge plasma physics and new diagnostic system development. In this work, we describe the RAPID device and initial operation results.

  19. Application of advanced plasma technology to energy materials and environmental problems

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akira

    2015-04-01

    Advanced plasma system has been proposed for various energy materials and for its application to environmental problems. The gas tunnel type plasma device developed by the author exhibits high energy density and also high efficiency. Regarding the application to thermal processing, one example is the plasma spraying of ceramics such as Al2O3 and ZrO2 as thermal barrier coatings (TBCs). The performances of these ceramic coatings are superior to conventional ones, namely, the properties such as the mechanical and chemical properties, thermal behavior and high temperature oxidation resistance of the alumina/zirconia thermal barrier coatings (TBCs) have been clarified and discussed. The ZrO2 composite coating has a possibility for the development of high functionally graded TBC. The results showed that the alumina/zirconia composite system exhibited an improvement of mechanical properties and oxidation resistance. Another application of gas tunnel type plasma to a functional material is the surface modification of metals. TiN films were formed in a short time of 5 s on Ti and its alloy. Also, thick TiN coatings were easily obtained by gas tunnel type plasma reactive spraying on any metals. Regarding the application to the environmental problems, the decomposition of CO2 gas is also introduced by applying the gas tunnel type plasma system.

  20. The Advanced Petroleum-Based Fuels Program DECSE and APBF Overview

    SciTech Connect

    2000-04-11

    The following topics are summarized: Role of fuel blends in controlling engine-out emissions; Effect of fuels and lubricants on emission control devices; and Effect of fuels and lubricants on vehicle emissions and operations.

  1. Profile control of advanced tokamak plasmas in view of continuous operation

    NASA Astrophysics Data System (ADS)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  2. Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)

    SciTech Connect

    Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok

    2007-07-01

    A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)

  3. Advanced thermally stable jet fuels. Technical progress report, August 1992--October 1992

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.; Bortiatynski, J.; Burgess, C.; Dutta, R.; Gergova, K.; Lai, W.C.; Li, J.; McKinney, D.; Parfitt, D.; Peng, Y.; Sanghani, P.; Yoon, E.

    1993-02-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five borad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and miocrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Pyrolysis of four isomers of butylbenzene was investigated in static microautoclave reactors at 450{degrees}C under 0.69 MPa of UHP N{sub 2}. Thee rates of disappearance of substrates were found to depend upon the bonding energy of C{alpha}-C{beta} bond in the side chain in the initial period of pyrolysis reactions. Possible catalytic effects of metal surfaces on thermal degradation and deposit formation at temperatures >400{degrees}C have been studied. Carbon deposition depends on the composition of the metal surfaces, and also depends on the chemical compositions of the reactants. Thermal stressing of JP-8 was conducted in the presence of alumina, carbonaceous deposits recovered from earlier stressing experiments, activated carbon, carbon black, and graphite. The addition of different solid carbons during thermal stressing leads to different reaction mechanisms. {sup 13}C NMR spectroscopy, along with {sup 13}C-labeling techniques, have been used to examine the thermal stability of a jet fuel sample mixed with 5% benzyl alcohol. Several heterometallic complexes consisting of two transition metals and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous and Pittsburgh No. 8 bituminous coals.

  4. Advanced thermally stable jet fuels. Technical progress report, April 1993--June 1993

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1993-10-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Some of our accomplishments and findings are: The product distribution and reaction mechanisms for pyrolysis of alkylcyclohexanes at 450{degree}C have been investigated in detail. In this report we present results of pyrolysis of cyclohexane and a variety of alkylcyclohexanes in nitrogen atmospheres, along with pseudo-first order rate constants, and possible reaction mechanisms for the origin of major pyrolysis products are presented. Addition of PX-21 activated carbon effectively stops the formation of carbonaceous solids on reactor walls during thermal stressing of JPTS. A review of physical and chemical interactions in supercritical fluids has been completed. Work has begun on thermal stability studies of a second generation of fuel additives, 1,2,3,4-tetrahydro-l-naphthol, 9,10-phenanthrenediol, phthalan, and 1,2-benzenedimethanol, and with careful selection of the feedstock, it is possible to achieve 85--95% conversion of coal to liquids, with 40--50% of the dichloromethane-soluble products being naphthalenes. (Further hydrogenation of the naphthalenes should produce the desired highly stable decalins.)

  5. THERMODYNAMIC AND KINETIC MODELING OF ADVANCED NUCLEAR FUELS - FINAL LDRD-ER REPORT

    SciTech Connect

    Turchi, P

    2011-11-28

    This project enhanced our theoretical capabilities geared towards establishing the basic science of a high-throughput protocol for the development of advanced nuclear fuel that should couple modern computational materials modeling and simulation tools, fabrication and characterization capabilities, and targeted high throughput performance testing experiments. The successful conclusion of this ER project allowed us to upgrade state-of-the-art modeling codes, and apply these modeling tools to ab initio energetics and thermodynamic assessments of phase diagrams of various mixtures of actinide alloys, propose a tool for optimizing composition of complex alloys for specific properties, predict diffusion behavior in diffusion couples made of actinide and transition metals, include one new equation in the LLNL phase-field AMPE code, and predict microstructure evolution during alloy coring. In FY11, despite limited funding, the team also initiated an experimental activity, with collaboration from Texas A&M University by preparing samples of nuclear fuels in bulk forms and for diffusion couple studies and metallic matrices, and performing preliminary characterization.

  6. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  7. Advanced fuel cell development. Progress Report, April-June 1980. [LiAlO/sub 2/

    SciTech Connect

    Pierce, R.D.; Arons, R.M.; Dusek, J.T.; Fraioli, A.V.; Kucera, G.H.; Poeppel, R.B.; Sim, J.W.; Smith, J.L.

    1980-11-01

    Advanced fuel cell research and development activities at Argonne National Laboratory (ANL) during the period April-June 1980 are described. These efforts have been directed toward understanding and improving components of molten carbonate fuel cells and have included operation of a 10-cm square cell. Studies have continued on the development of electrolyte structures (LiAlO/sub 2/ and Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/). This effort is being concentrated on the preparation of sintered LiAl0/sub 2/ as electrolyte support. Tape casting is presently under investigation as a method for producing green bodies to be sintered; this technique may be an improvement over cold pressing, which was used in the past to produce green bodies. The transition temperature for the ..beta..- to ..gamma..-LiAlO/sub 2/ allotropic transformation is being determined using differential thermal analysis. Work is continuing on the development of preoxidized, prelithiated NiO cathodes. Two techniques, one of which is simpler than the other, have been developed to fabricate plates of Li/sub 0/ /sub 05/Ni/sub 0/ /sub 95/O. In addition, electroless nickel plating is being investigated as a means of providing corrosion protection to structural hardware. To improve its cell testing capability, ANL has constructed a device for improved resistance measurements by the current-interruption technique.

  8. Study on recriticality of fuel debris during hypothetical severe accidents in the Advanced Neutron Source reactor

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.; Shin, S.T.

    1995-09-01

    A study has been performed to measure the potential of recriticality during hypothetical severe accident in Advanced Neutron Source (ANS). For the lumped debris configuration in the Reactor Coolant System (RCS), as found in the previous study, recriticality potential may be very low. However, if fuel debris is dispersed and mixed with heavy water in RCS, recriticality potential has been predicted to be substantial depending on thermal-hydraulic conditions surrounding fuel debris mixture. The recriticality potential in RCS is substantially reduced for the three element core design with 50% enrichment. Also, as observed in the previous study, strong dependencies of k{sub eff} on key thermal hydraulic parameters are shown. Light water contamination is shown to provide a positive reactivity, and void formation due to boiling of mixed water provides enough negative reactivity and to bring the system down to subcritical. For criticality potential in the subpile room, the lumped debris configuration does not pose a concern. Dispersed configuration in light water pool of the subpile room is also unlikely to result in criticality. However, if the debris is dispersed in the pool that is mixed with heavy water, the results indicate that a substantial potential exists for the debris to reach the criticality. However, if prompt recriticality disperses the debris completely in the subpile room pool, subsequent recriticality may be prevented since neutron leakage effects become large enough.

  9. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

    PubMed

    Highfield, James

    2015-04-15

    In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.

  10. Advanced oxidation processes for wastewater treatment using a plasma/ozone combination system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Kamiya, Yu; Saeki, Ryo; Tachibana, Kosuke; Yasuoka, Koichi

    2014-10-01

    Advanced oxidation process (AOP) using OH radicals is a promising method for the decomposition of persistent organic compounds in wastewater. Although many types of plasma reactors have been developed for the AOP, they are unsuitable for the complete decomposition of highly concentrated organic compounds. The reason for the incomplete decomposition is that OH radicals, particularly at a high density, recombine among themselves to form hydrogen peroxide. We have developed a combination plasma reactor in which ozone gas is fed, so that the generated hydrogen peroxide is re-converted to OH radicals. Pulsed plasmas generated within oxygen bubbles supply not only OH radicals but also hydrogen peroxide into wastewater. The total organic carbon (TOC) of the wastewater was more than 1 gTOC/L. The TOC values decreased linearly with time, and the persistent compounds which could not be decomposed by ozone were completely mineralized within 8 h of operation.

  11. Advances in experimental spectroscopy of Z-pinch plasmas and applications

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Safronova, A. S.; Safronova, U. I.; Shrestha, I.; Weller, M. E.; Osborne, G. C.; Shlyaptseva, V. V.; Wilcox, P. G.; Stafford, A.

    2012-06-01

    Recent advances in experimental work on plasma spectroscopy of Z-pinches are presented. The results of experiments on the 1.7 MA Z-pinch Zebra generator at UNR with wire arrays of various configurations and X-pinches are overviewed. A full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such plasmas together with theoretical support from relativistic atomic structure and non-LTE kinetic codes used in the analysis are discussed. The use of a variety of wire materials in a broad range from Al to W provided an excellent opportunity to observe and study specific atomic and plasma spectroscopy features. In addition, the applications of such features to fusion and astrophysics will be considered.

  12. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2003-07-01

    -based fuels to achieve these burnups. Furthermore, thorium-based fuels could also be used as a strategy for reducing the amount of long-lived nuclides (including the minor actinides) and thus the radiotoxicity in spent nuclear fuel. Although the breeding of 233U is a concern, the presence of 232U and its daughter products (namely 208Tl) can aid in making this fuel self-protecting, and/or enough 238U can be added to denature the fissile uranium. From these calculations, it appears that thorium-based fuel for plutonium incineration is superior when compared to uranium-based fuel and should be considered as an alternative to traditional MOX in both current and future/advanced reactor designs.

  13. Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect

    S. B. Grover

    2007-05-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment

  14. Development of coupled SCALE4.2/GTRAN2 computational capability for advanced MOX fueled assembly designs

    SciTech Connect

    Vujic, J.; Greenspan, E.; Slater, Postma, T.; Casher, G.; Soares, I.; Leal, L.

    1995-05-01

    An advanced assembly code system that can efficiently and accurately analyze various designs (current and advanced) proposed for plutonium disposition is being developed by {open_quotes}marrying{close_quotes} two existing state-of-the-art methodologies-GTRAN2 and SCALE 4.2. The resulting code system, GT-SCALE, posses several unique characteristics: exact 2D representation of a complete fuel assembly, while preserving the heterogeniety of each of its pin cells; flexibility in the energy group structure, the present upper limit being 218 groups; a comprehensive cross-section library and material data base; and accurate burnup calculations. The resulting GT-SCALE is expected to be very useful for a wide variety of applications, including the analysis of very heterogeneous UO{sub 2} fueled LWR fuel assemblies; of hexagonal shaped fuel assemblies as of the Russian LWRs; of fuel assemblies for HTGRs; as well as for the analysis of criticality safety and for calculation of the source term of spent fuel.

  15. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Enayatullah, Mohammad; Appleby, A. John

    1989-01-01

    High power density fuel cell systems for defense and civilian applications are being developed. Taking into consideration the main causes for efficiency losses (activation, mass transport and ohmic overpotentials) the only fuel cell systems capable of achieving high power densities are the ones with alkaline and solid polymer electrolyte. High power densities (0.8 W/sq cm at 0.8 V and 1 A/sq cm with H2 and O2 as reactants), were already used in NASA's Apollo and Space Shuttle flights as auxiliary power sources. Even higher power densities (4 W/sq cm - i.e., 8 A sq cm at 0.5 V) were reported by the USAF/International Fuel Cells in advanced versions of the alkaline system. High power densities (approximately 1 watt/sq cm) in solid polymer electrolyte fuel cells with ten times lower platinum loading in the electrodes (i.e., 0.4 mg/sq cm) were attained. It is now possible to reach a cell potential of 0.620 V at a current density of 2 A/sq cm and at a temperature of 95 C and pressure of 4/5 atm with H2/O2 as reactants. The slope of the linear region of the potential-current density plot for this case is 0.15 ohm-sq cm. With H2/air as reactants and under the same operating conditions, mass transport limitations are encountered at current densities above 1.4 A/sq cm. Thus, the cell potential at 1 A/sq cm with H2/air as reactants is less than that with H2/O2 as reactants by 40 mV, which is the expected value based on electrode kinetics of the oxygen reduction reaction, and at 2 A/sq cm with H2/air as reactant is less than the corresponding value with H2/O2 as reactants by 250 mV, which is due to the considerably greater mass transport limitations in the former case.

  16. University Programs of the U.S. Advanced Fuel Cycle Initiative

    SciTech Connect

    Beller, D. E.

    2003-01-01

    As the Advanced Accelerator Applications (AAA) Program, which was initiated in fiscal year 2001 (FY01), grows and transitions to the Advanced Fuel Cycle (AFC) Program in FY03, research for its underlying science and technology will require an ever larger cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and even larger student populations. Because of the recognition of these current and increasing requirements, the DOE began a multi-year program to involve university faculty and students in various phases of these Projects to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. Herein I summarize the goals and accomplishments of the university programs that have supported the AAA and AFC Programs during FY02, including the involvement of 120 students at more than 30 universities in the U.S. and abroad. I also highlight contributions to academic research from LANL, which hosted students from and sponsored research at more than 18 universities by more than 50 students and 20 faculty members, investing about 10% of its AFC budget.

  17. The supersonic molecular beam injector as a reliable tool for plasma fueling and physics experiment on HL-2A.

    PubMed

    Chen, C Y; Yu, D L; Feng, B B; Yao, L H; Song, X M; Zang, L G; Gao, X Y; Yang, Q W; Duan, X R

    2016-09-01

    On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.

  18. The supersonic molecular beam injector as a reliable tool for plasma fueling and physics experiment on HL-2A

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Yu, D. L.; Feng, B. B.; Yao, L. H.; Song, X. M.; Zang, L. G.; Gao, X. Y.; Yang, Q. W.; Duan, X. R.

    2016-09-01

    On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.

  19. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  20. Development of Technologies for the Simultaneous Separation of Cesium and Strontium from Spent Nuclear Fuel as Part of an Advanced Fuel Cycle

    SciTech Connect

    Jack D. Law; R. Scott HErbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson; Terry A. Todd

    2005-04-01

    As part of the Advanced Fuel Cycle Initiative, two solvent extraction technologies are being developed to simultaneously separate cesium and strontium from dissolved spent nuclear fuel. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. Countercurrent flowsheets have been designed and tested on simulated and actual spent nuclear fuel feed streams with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance. A flowsheet for treatment of spent nuclear fuel is currently being developed.

  1. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H End of FY-06 Irradiation Report

    SciTech Connect

    Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and

    2006-09-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. The metallic fuel experiments and nitride experiment are high burnup analogs to previously irradiated experiments and are to be irradiated to = 40 at.% burnup and = 25 at.% burnup, respectively. Based on the results of the physics evaluations it has been determined that the AFC-1D experiment will remain in the ATR for approximately 4 additional cycles, the AFC-1G experiment for an additional 4-5 cycles, and the AFC-1H experiment for approximately 8 additional cycles, in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.

  2. Characterization of a linear device developed for research on advanced plasma imaging and dynamics.

    PubMed

    Chung, J; Lee, K D; Seo, D C; Nam, Y U; Choi, M C

    2010-10-01

    Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 °C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5×10(-8) Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.

  3. Characterization of a linear device developed for research on advanced plasma imaging and dynamics

    SciTech Connect

    Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Choi, M. C.

    2010-10-15

    Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 deg. C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5x10{sup -8} Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.

  4. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    SciTech Connect

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-06-15

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  5. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications.

    PubMed

    Wang, Qi; Wang, Xiangke; Chai, Zhifang; Hu, Wenping

    2013-12-07

    Carbon nanotubes (CNTs) and graphene, and materials based on these, are largely used in multidisciplinary fields. Many techniques have been put forward to synthesize them. Among all kinds of approaches, the low-temperature plasma approach is widely used due to its numerous advantages, such as highly distributed active species, reduced energy requirements, enhanced catalyst activation, shortened operation time and decreased environmental pollution. This tutorial review focuses on the recent development of plasma synthesis of CNTs and graphene based materials and their electrochemical application in fuel cells.

  6. Acquisition of Mechanically Assisted Spark Plasma Sintering System for Advanced Research and Education on Functionally Graded Hybrid Materials

    DTIC Science & Technology

    2012-03-14

    March 14, 2012 Final Progress Report September 15, 2010 - December 14, 2011 ACQUISITION OF MECHANICALLY ASSISTED SPARK PLASMA SINTERING SYSTEM FOR...Instrumentation Program (DURIP) Project titled, “Acquisition of Mechanically Assisted Spark Plasma Sintering System for Advanced Research and Education...at developing facilities for pressure-assisted fabrication of hybrid materials by spark plasma sintering (SPS) of metallic and ceramic powders to

  7. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.

    PubMed

    Lefebvre, Olivier; Tang, Zhe; Fung, Martin P H; Chua, Daniel H C; Chang, In Seop; Ng, How Y

    2012-01-15

    Microbial fuel cells (MFCs) could potentially be utilized for a variety of applications in the future from biosensors to wastewater treatment. However, the amount of costly platinum (Pt) used as a catalyst should be minimized via innovative deposition methods such as sputtering. In addition, alternative and low-cost catalysts, such as cobalt (Co), should be sought. In this study, ultra low Pt or Co cathodes (0.1 mg cm(-2)) were manufactured by plasma sputtering deposition and scanning electron micrographs revealed nano-clusters of metal catalyst in a porous structure favorable to the three-phase heterogeneous catalytic reaction. When operated in single-chamber air-cathode MFCs, sputtered-Co cathodes generated on average the same power as sputtered-Pt cathodes (0.27 mW cell(-1)) and only 27% less than conventional Pt-ink cathodes with a catalyst load 5 times higher (0.5 mg cm(-2)). Finally, microscopy and molecular analyses showed evidence of biocatalysis activity on metal-free cathodes.

  8. Methodology for the Weapons-Grade MOX Fuel Burnup Analysis in the Advanced Test Reactor

    SciTech Connect

    G. S. Chang

    2005-08-01

    A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2, and is therefore called the MCWO. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. MCWO is capable of handling a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) lobe powers, and irradiation time intervals. MCWO processes user input that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN-2, and data process module calculations are output in succession as MCWO executes. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN-2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN-2 back to MCNP in a repeated, cyclic fashion. The basic requirements of MCWO are a working MCNP input file and some additional input parameters; all interaction with ORIGEN-2 as well as other calculations are performed by CMO. This paper presents the MCWO-calculated results for the Reduced Enrichment Research and Test Reactor (RERTR) experiments RERTR-1 and RERTR-2 as well as the Weapons-Grade Mixed Oxide (WG-MOX) fuel testing in ATR. Calculations performed for the WG-MOX test irradiation, which is managed by the Oak Ridge National Laboratory (ORNL), supports the DOE Fissile Materials Disposition Program (FMDP). The MCWO-calculated results are compared with measured data.

  9. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges

    NASA Astrophysics Data System (ADS)

    Salvatores, M.; Palmiotti, G.

    2011-01-01

    If nuclear power becomes a sustainable source of energy, a safe, robust, and acceptable solution must be pursued for existing and projected inventories of high-activity, long-lived radioactive waste. Remarkable progress in the field of geological disposal has been made in the last two decades. Some countries have reached important milestones, and geological disposal (of spent fuel) is expected to start in 2020 in Finland and in 2022 in Sweden. In fact, the licensing of the geological repositories in both countries is now entering into its final phase. In France, disposal of intermediate-level waste (ILW) and vitrified high-level waste (HLW) is expected to start around 2025, according to the roadmap defined by an Act of Parliament in 2006. In this context, transmutation of part of the waste through use of advanced fuel cycles, probably feasible in the coming decades, can reduce the burden on the geological repository. This article presents the physical principle of transmutation and reviews several strategies of partitioning and transmutation (P&T). Many recent studies have demonstrated that the impact of P&T on geological disposal concepts is not overwhelmingly high. However, by reducing waste heat production, a more efficient utilization of repository space is likely. Moreover, even if radionuclide release from the waste to the environment and related calculated doses to the population are only partially reduced by P&T, it is important to point out that a clear reduction of the actinide inventory in the HLW definitely reduces risks arising from less probable evolutions of a repository (i.e., an increase of actinide mobility in certain geochemical situations and radiological impact by human intrusion).

  10. Enterprise SRS: Leveraging Ongoing Operations to Advance Nuclear Fuel Cycle Programs - 12579

    SciTech Connect

    Marra, J.E.; Griffin, J.C.; Murray, A.M.; Wilmarth, W.R.

    2012-07-01

    The international leadership in nuclear technology development and deployment long held by the United States has eroded due to the lack of clear national strategies for advanced reactor fuel cycle concepts and for nuclear materials management, as well as to the recent policy decision that halts work on the nuclear fuel repository at Yucca Mountain. Although no national consensus on strategy has yet been reached, a number of recent high-profile reviews and workshops have clearly highlighted a national need for robust research, development and deployment (RD and D) programs in key areas of nuclear technology, especially nuclear separations science and engineering. Collectively, these reviews and workshops provide a picture of the nuclear separations mission needs for three major program offices: Department of Energy Office of-Environmental Management), DOE Office of Nuclear Energy), and the National Nuclear Security Administration (NNSA). While the individual program needs differ significantly in detail and timing, they share common needs in two critical areas of RD and D: - The need for access to and use of multi-purpose engineering-scale demonstration test facilities that can support testing with radioactive material, and - The need for collaborative research enterprises that encompass government research organizations (i.e., national laboratories), commercial industry and the academic community. Such collaborative enterprises effectively integrate theory and modeling with the actual experimental work at all scales, as well as strengthen the technical foundation for research in critical areas. The arguments for engineering-scale collaborative research facilities are compelling. Processing history has shown that test programs and demonstrations conducted with actual nuclear materials are essential to program success. It is widely recognized, however, that such facilities are expensive to build and maintain; creating an imposing, if not prohibitive, financial burden

  11. Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells

    PubMed Central

    Show, Yoshiyuki; Ueno, Yutaro

    2017-01-01

    Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2. PMID:28336864

  12. Process Modeling Phase I Summary Report for the Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect

    Pannala, Sreekanth; Daw, C Stuart; Boyalakuntla, Dhanunjay S; FINNEY, Charles E A

    2006-09-01

    This report summarizes the results of preliminary work at Oak Ridge National Laboratory (ORNL) to demonstrate application of computational fluid dynamics modeling to the scale-up of a Fluidized Bed Chemical Vapor Deposition (FBCVD) process for nuclear fuels coating. Specifically, this work, referred to as Modeling Scale-Up Phase I, was conducted between January 1, 2006 and March 31, 2006 in support of the Advanced Gas Reactor (AGR) Program. The objective was to develop, demonstrate and "freeze" a version of ORNL's computational model of the TRI ISOtropic (TRISO) fuel-particle coating process that can be specifically used to assist coater scale-up activities as part of the production of AGR-2 fuel. The results in this report are intended to serve as input for making decisions about initiating additional FBCVD modeling work (referred to as Modeling Scale-Up Phase II) in support of AGR-2. The main computational tool used to implement the model is the general-purpose multiphase fluid-dynamics computer code known as MFIX (Multiphase Flow with Interphase eXchanges), which is documented in detail on the DOE-sponsored website http://www.mfix.org. Additional computational tools are also being developed by ORNL for post-processing MFIX output to efficiently summarize the important information generated by the coater simulations. The summarized information includes quantitative spatial and temporal measures (referred to as discriminating characteristics, or DCs) by which different coater designs and operating conditions can be compared and correlated with trends in product quality. The ORNL FBCVD modeling work is being conducted in conjunction with experimental coater studies at ORNL with natural uranium CO (NUCO) and surrogate fuel kernels. Data are also being obtained from ambient-temperature, spouted-bed characterization experiments at the University of Tennessee and theoretical studies of carbon and silicon carbide chemical vapor deposition kinetics at Iowa State

  13. Implications of Results from the Advanced Gas Reactor Fuel Development and Qualification Program on Licensing of Modular HTGRs

    SciTech Connect

    David Petti

    2001-10-01

    The high level of safety of modular high temperature gas-cooled reactor (HTGR) designs is achieved by passively maintaining core temperatures below fission product release thresholds under all envisioned accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude relative to other reactor types but is predicated on exceptionally high coated-particle fuel fabrication quality and excellent fuel performance under normal operation and accident conditions. The Advanced Gas Reactor Fuel Development and Qualification (AGR) Program decided to qualify for uranium oxide/uranium carbide (UCO) TRISO coated-particle fuel in an operating envelope that would bound both pebble bed and prismatic modular HTGR options. By using a mixture of uranium oxide and uranium carbide, the kernel composition is engineered to minimize CO formation and fuel kernel migration, which is key to maintain to fuel integrity at the higher burnups, temperatures, and temperature gradients anticipated in prismatic HTGRs. Fuel fabrication conducted at both laboratory and engineering scale has demonstrated the ability to fabricate high quality UCO TRISO fuel with very low defects. The first irradiation (AGR 1) exposed about 300,000 TRISO fuel particles to a peak burnup of 19.6% FIMA, a peak fast-neutron fluence of about 4.3 × 1025 n/m2, and a maximum time-averaged fuel temperature of about 1,200°C without a single particle failure. The very low release of key metallic fission products (except silver) measured in post-irradiation examination (PIE) confirms the excellent performance measured under irradiation. Very low releases have been measured in accident simulation heatup testing (''safety testing'') after hundreds of hours at 1600 and 1700°C and no particle failures (no noble gas release measured) have been observed. Even after hundreds of hours at 1800°C, the releases are still very low

  14. Development of an Advanced Fluid Mechanics Measurement Facility for Flame Studies of Neat Fuels, Jet Fuels, and their Surrogates

    DTIC Science & Technology

    2009-08-26

    through the use of hot - wire anemometry . Implementing a DPIV system in flames and achieving the level of accuracy of LDV is a challenge, particularly...temperature at the hot boundary for a given strain rate and fuel concentration in the fuel jet. Law and coworkers (e.g., Law et al. 1986; Law 1988... wired into a single USB LaVision PTU timing box to share a single LaVision acquisition license through partitioning of the dongle with a USB switch

  15. New Steady-State Quiescent High-Confinement Plasma in an Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, J. S.; Sun, Z.; Guo, H. Y.; Li, J. G.; Wan, B. N.; Wang, H. Q.; Ding, S. Y.; Xu, G. S.; Liang, Y. F.; Mansfield, D. K.; Maingi, R.; Zou, X. L.; Wang, L.; Ren, J.; Zuo, G. Z.; Zhang, L.; Duan, Y. M.; Shi, T. H.; Hu, L. Q.; East Team

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H -mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  16. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  17. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

  18. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-12-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  19. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-10-18

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  20. Recent Advances in Detailed Chemi