Sample records for advanced polymer matrix

  1. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  2. Mean-Field Models of Structure and Dispersion of Polymer-nanoparticle Mixtures

    DTIC Science & Technology

    2010-07-29

    out of the seminal descriptions of the wetting and dewetting of polymer melts on polymer brushes advanced by Leibler and coworkers.118,119 Explicitly...using scaling ideas and strong segregation theory calculations they delineated the regions where the matrix polymer wets or dewets the brush. In the...Explicitly, when dewetting of the melt chains is expected ( dry brush). In other words, situations involving long matrix polymers and/or densely grafted

  3. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  4. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  5. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  6. High Performance Composites. "Designed" Materials for the New Millennium. 2nd Module in a Series on Advanced Materials. Resources in Technology.

    ERIC Educational Resources Information Center

    Jacobs, James A.

    1994-01-01

    This learning module on composites such as polymer matrix, metal matrix, ceramic matrix, particulate, and laminar includes a design brief giving context, objectives, evaluation, student outcomes, and quiz. (SK)

  7. Experimental characterization of nonlinear, rate-dependent behavior in advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to support materials selection for the next-generation supersonic civilian-passenger transport aircraft, a study has been undertaken to evaluate the material stress/strain relationships needed to describe advanced polymer matrix composites under conditions of high load and elevated temperature. As part of this effort, this paper describes the materials testing which was performed to investigate the viscoplastic behavior of graphite/thermoplastic and graphite/bismaleimide composites. Test procedures, results and data-reduction schemes which were developed for generating material constants for tension and compression loading, over a range of useful temperatures, are explained.

  8. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  9. Bismaleimides and related maleimido polymers as matrix resins

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.; Fohlen, G. M.

    1985-01-01

    Significant processing and property improvements can be achieved by copolymerization of state-of-the-art bisimides with various vinyl stilbazole derivatives to give both fire resistance and high-temperature properties from hot-melt compositions. Significant improvement in mechanical properties is achieved through these modifications, which may make these new matrix resins ideal candidates for fireworthy secondary graphite composite structures. Phosphorous modifications of maleimido polymers through phosphonate structure and tricyclophosphazene derivatives provide families of new matrix resins for short-time applications in severe thermo-oxidative environments. With further research these may provide matrix resins for long-term thermo-oxidative stability of advanced composites at temperatures up to 400 to 500 C.

  10. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  11. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  12. International SAMPE Symposium and Exhibition, 35th, Anaheim, CA, Apr. 2-5, 1990, Proceedings. Books 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janicki, G.; Bailey, V.; Schjelderup, H.

    The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.

  13. Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda

    1998-01-01

    Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.

  14. Survey of inorganic polymers. [for composite matrix resins

    NASA Technical Reports Server (NTRS)

    Gerber, A. H.; Mcinerney, E. F.

    1979-01-01

    A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics.

  15. Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers.

    PubMed

    Wang, Zongyu; Lu, Zhao; Mahoney, Clare; Yan, Jiajun; Ferebee, Rachel; Luo, Danli; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2017-03-01

    Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.

  16. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  17. Advancing Renewable Materials by Light and X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akpalu, Yvonne A

    With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have completed systematic study of the influence of cooling rate [Xie et al, J. Appl. Poly. Sci., 2008] and nanofiller [Xie et al, Polymer 2009] characteristics on model bionanocomposites. Structure-property relationships for a model bionanocomposites system were investigated. These results yielded new fundamental knowledge that supports the discovery of cost-effective manufacturing technologies for a family of promising polyhydroxyalkanoates (PHAs) polyesters, with the potential to replace polyethylene and polypropylene (see Noda letter). Our results show that simple two-phase composite models do not account for the data. Although improvementmore » of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Instead, improvement depends on the molecular weight of the polymer matrix and unknown filler-matrix interactions.« less

  18. Enhanced health monitoring of fibrous composites with aligned carbon nanotube networks and electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Tallman, T.; Semperlotti, F.; Wang, K. W.

    2012-04-01

    The high strength to weight ratio of fibrous composites such as glass-fiber reinforced polymers (GFRP) makes them prominent structural materials. However, their laminar nature is susceptible to delamination failure the onset of which traditional structural health monitoring (SHM) techniques cannot reliably and accurately detect. Carbon nano-tubes (CNT) have been recently used to tailor the electrical conductivity of polymer based materials that otherwise behave as insulators. The occurrence of damage in the polymer matrix produces localized changes in conductivity which can be tracked using electrical impedance tomography (EIT). This paper explores combining advances in composite manufacturing with EIT to develop a SHM technique that exploits anisotropic conductance monitoring for enhanced delamination and matrix crack detection.

  19. Study of piezoelectric filler on the properties of PZT-PVDF composites

    NASA Astrophysics Data System (ADS)

    Matei, Alina; Å¢ucureanu, Vasilica; Vlǎzan, Paulina; Cernica, Ileana; Popescu, Marian; RomaniÅ£an, Cosmin

    2017-12-01

    The ability to obtain composites with desired functionalities is based on advanced knowledge of the processes synthesis and of the structure of piezoceramic materials, as well the incorporation of different fillers in selected polymer matrix. Polyvinylidene fluoride (PVDF) is a fluorinated polymer with excellent mechanical and electric properties, which it was chosen as matrix due to their applications in a wide range of industrial fields [1-4]. The present paper focuses on the development of composites based on PZT particles as filler obtained by conventional methods and PVDF as polymer matrix. The synthesis of PVDF-PZT composites was obtained by dispersing the ceramic powders in a solution of PVDF in N-methyl-pyrrolidone (NMP) under mechanical mixing and ultrasonication, until a homogenous mixture is obtained. The properties of the piezoceramic fillers before and after embedding into the polymeric matrix were investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy and X-ray diffraction. In the FTIR spectra, appear a large number of absorption bands which are exclusive of the phases from PVDF matrix confirming the total embedding of PZT filler into matrix. Also, the XRD pattern of the composites has confirmed the presence of crystalline phases of PVDF and the ceramic phase of PZT. The SEM results showed a good distribution of fillers in the matrix.

  20. Crosslink Density and Molecular Weight Effects on the Viscoelastic Response of a Glassy High-Performance Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.

  1. High Temperature Epoxy Nanocomposites for Aerospace Applications

    DTIC Science & Technology

    2009-06-10

    thermal stability (~430°C) can be used for formulation of next generation aerospace nanocomposite matrix materials. 10 Publications: 1. J. Langat ...Properties Evaluation of Thermally Stable Layered Organosilicate Nanocomposites, Polymers for Advanced Technology, 18, 574(2007). 3. J. Langat , M...Properties in Polymer Nanocomposites, edited by Dr. Sergei Nazarenko (MRS Fall Meeting Symposium KK Proceedings) Boston, MA 2008 (in print). 5. J. Langat

  2. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose lectin-binding- analysis has been suggested as a suitable approach to image glycoconjugates within the polymer matrix of biofilm communities. More recently synchrotron radiation is increasingly recognized as a powerful tool for studying biological samples. Hard X-ray excitation can be used to map elemental composition whereas IR imaging allows examination of biological macromolecules. A further technique called soft X-ray scanning transmission microscopy (STXM) has the advantage of both techniques and may be employed to detect elements as well as biomolecules. Using the appropriate spectra, near edge X-ray absorption fine structure (NEXAFS) microscopy allows quantitative chemical mapping at 50 nm resolution. In this presentation the applicability of LSM and STXM will be demonstrated using several examples of different environmental biofilm systems. The techniques in combination provide a new view of complex microbial communities and their interaction with the environment. These advanced imaging techniques offer the possibility to study the spatial structure of cellular and polymeric compounds in biofilms as well as biofilm microhabitats, biofilm functionality and biofilm processes.

  3. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  4. Corrosive effect of environmental change on selected properties of polymer composites

    NASA Astrophysics Data System (ADS)

    Markovičová, L.; Zatkalíková, V.

    2017-11-01

    The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. The present article deals with monitoring the changes in the mechanical properties of composites with polymer matrix. The composite was formed from the PA matrix and glass fibers (GF). The composite contains 10, 20 and 30 % of glass fibers. The mechanical properties were evaluated on samples of the composite before and after UV radiation on the sample. Light microscopy was evaluated distribution of glass fibers in the polymer matrix and the presence of cracks caused by UV radiation.

  5. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets.

    PubMed

    Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah

    2016-08-01

    Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.

  6. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  7. A Proposal for the Establishment of a Center for Advanced Composite Materials Research

    DTIC Science & Technology

    1992-03-01

    materials. We were able to synthesize comb-shaped self-ordering polymers in which molecular teeth were functionalized at their termini. These chemical...layers were most likely transferred with phenolic functional groups exposed on the outer surface. For the fibers coated with polymer, contact angle...cured epoxy matrix. A striking result was observed, namely, the permanent birefringence obtained with coated fibers is 1.8 times greater than the one

  8. Effect of microstructure of nano- and micro-particle filled polymer composites on their tribo-mechanical performance

    NASA Astrophysics Data System (ADS)

    Devaprakasam, D.; Hatton, P. V.; Möbus, G.; Inkson, B. J.

    2008-08-01

    In this work we have investigated the influence of nanoscale and microscale structure on the tribo-mechanical performance and failure mechanisms of two biocompatible dental polymer composites, with different reinforcing particulates, using advanced microscopy techniques. Nano- and micro structural analysis reveals the shape, size and distribution of the particles in the composites. In the microparticle filled polymer composite (microcomposite), the particles are of irregular shape with sharp edges with non-uniform distribution in the matrix. However, in the nanoparticle filled composites (nanocomposite), filler particles are spherical in shape with uniform distribution in the matrix. From nanoindentation measurements, hardness and reduced modulus of the microcomposite were found to be heterogeneous. However, the hardness and reduced modulus of the nanocomposite were found to be homogeneous. The nanocomposite shows better tribo-mechanical performance compared to that of the microcomposite.

  9. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  10. Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2000-01-01

    The low density and the relative ease of shaping made polymers highly attractive materials and they are increasingly being chosen for aerospace applications. Polymer matrix composite materials significantly impacted the construction of high performance aircraft components and structures. In recent years, the resilience characteristics of polymers made them attractive to the emerging field of inflatable structures. Balloons were used to cushion the deployment of the Mars Pathfinder lander on July 4, 1997, paving the way for the recent large number of related initiatives. Inflatable structures are now being used to construct a rover, aerial vehicles, telescopes, radar antennas, and others. Some of these applications have reached space flight experiments, whereas others are now at advanced stages of development.

  11. Adaptive polymeric nanomaterials utilizing reversible covalent and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Neikirk, Colin

    Adaptive materials based on stimuli responsive and reversible bonding moieties are a rapidly developing area of materials research. Advances in supramolecular chemistry are now being adapted to novel molecular architectures including supramolecular polymers to allow small, reversible changes in molecular and nanoscale structure to affect large changes in macroscale properties. Meanwhile, dynamic covalent chemistry provides a complementary approach that will also play a role in the development of smart adaptive materials. In this thesis, we present several advances to the field of adaptive materials and also provide relevant insight to the areas of polymer nanocomposites and polymer nanoparticles. First, we have utilized the innate molecular recognition and binding capabilities of the quadruple hydrogen bonding group ureidopyrimidinone (UPy) to prepare supramolecular polymer nanocomposites based on supramolecular poly(caprolactone) which show improved mechanical properties, but also an increase in particle aggregation with nanoparticle UPy functionalization. We also present further insight into the relative effects of filler-filler, filler-matrix, and matrix-matrix interactions using a UPy side-chain functional poly(butyl acrylate). These nanocomposites have markedly different behavior depending on the amount of UPy sidechain functionality. Meanwhile, our investigations of reversible photo-response showed that coumarin functionality in polymer nanoparticles not only facilitates light mediated aggregation/dissociation behavior, but also provides a substantial overall reduction in particle size and improvement in nanoparticle stability for particles prepared by Flash NanoPrecipitation. Finally, we have combined these stimuli responsive motifs as a starting point for the development of multiresponsive adaptive materials. The synthesis of a library of multifunctional materials has provided a strong base for future research in this area, although our initial investigations were ultimately unsuccessful due to photodegradation of the UPy moiety in chloroform solution. This thesis has provided the Priestley lab with a solid base for the further investigation of the diverse applications and unsolved science of stimuli responsive adaptive materials.

  12. Self repairing composites for drone air vehicles

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    2015-04-01

    The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.

  13. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    PubMed

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  14. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  15. High aspect ratio template and method for producing same

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeff S. (Inventor); Weiss, James R. (Inventor); Fleurial, Jean-Pierre (Inventor); Kisor, Adam (Inventor); Tuszynski, Mark (Inventor); Stokols, Shula (Inventor); Holt, Todd Edward (Inventor); Welker, David James (Inventor); Breckon, Christopher David (Inventor)

    2010-01-01

    Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers.

  16. Lead selenide quantum dot polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

    2015-02-01

    Optical absorption and fluorescence properties of PbSe quantum dots (QDs) in an Angstrom Bond AB9093 epoxy polymer matrix to form a nanocomposite were investigated. To the authors’ knowledge, this is the first reported use of AB9093 as a QD matrix material and it was shown to out-perform the more common poly(methyl methacrylate) matrix in terms of preserving the optical properties of the QD, resulting in the first reported quantum yield (QY) for PbSe QDs in a polymer matrix, 26%. The 1-s first excitonic absorption peak of the QDs in a polymer matrix red shifted 65 nm in wavelength compared to QDs in a hexane solution, while the emission peak in the polymer matrix red shifted by 38 nm. The fluorescence QY dropped from 55% in hexane to 26% in the polymer matrix. A time resolved fluorescence study of the QDs showed single exponential lifetimes of 2.34 and 1.34 μs in toluene solution and the polymer matrix respectively.

  17. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  18. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lio, Wilber Yaote

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3)more » describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.« less

  19. Thiolated polymers as mucoadhesive drug delivery systems.

    PubMed

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  1. Water-Based Coating Simplifies Circuit Board Manufacturing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.

  2. Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures

    DTIC Science & Technology

    2010-01-01

    angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective

  3. Molecular Dynamics Simulations of Ion Transport and Mechanisms in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Ganesan, Venkat

    2015-03-01

    Using all atom molecular dynamics and trajectory-extending kinetic Monte Carlo simulations, we study the influence of Al2O3 nanoparticles on the transport properties of Li+ ions in polymer electrolytes consisting of polyethylene oxide (PEO) melt solvated with LiBF4 salt. We observe that the nanoparticles have a strong influence on polymer segmental dynamics which in turn correlates with the mobility of Li+ ions. Explicitly, polymer segmental relaxation times and Li+ ion residence times around polymer were found to increase with the addition of nanoparticles. We also observe that increasing short range repulsive interactions between nanoparticles and polymer membrane leads to increasing polymer dynamics and ion mobility. Overall, our simulation results suggest that nanoparticle induced changes in conformational and dynamic properties of the polymer influences the ion mobilities in polymer electrolytes and suggests possible directions for using such findings to improve the polymer matrix conductivity. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources that have contributed to the research.

  4. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  5. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2012-08-03

    is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation

  6. [Modern polymers in matrix tablets technology].

    PubMed

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  7. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    PubMed Central

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  8. A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers.

    DTIC Science & Technology

    1988-04-15

    physical properties of a polycarbosilane preceramic polymer as a function of temperature to derive synthesis methodology for SiC matrix composites , (2...investigate the role of interface modification in creating tough carbon fiber reinforced SiC matrix composites . RESEARCH PROGRESS Preceramic Polymer ...Classfication) A STUDY OF THE CRITICAL FACTORS CONTROLLING THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES FROM PRECERAMIC POLYMERS 12. PERSONAL AUTHOR(S

  9. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  10. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  11. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  12. Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.

    2009-01-01

    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.

  13. Multifunctional Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  14. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  15. Selective and Responsive Nanopore-Filled Membranes

    DTIC Science & Technology

    2011-03-14

    Materials Science and Engineering Poster Competition 15. Chen, H.; Elabd, Y.A. Ionic Liquid Polymers: Electrospinning and Solution Properties. Fall...hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project include (1) synthesizing stimuli...on polymer-polymer nanocomposites of hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project

  16. Customized ATP towpreg. [Automated Tow Placement

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  17. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  18. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  19. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  20. Nuclear Magnetic Resonance Used to Quantify the Effect of Pyrolysis Conditions on the Oxidative Stability of Silicon Oxycarbide Ceramics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This work was undertaken in support of the Low Cost Ceramic Composite Virtual Company, (LC^3), whose members include Northrop Grumman Corporation, AlliedSignal Inc., and Allison Advanced Development Company. LC^3 is a cost-shared effort funded by the Advanced Research Projects Agency (ARPA) and the LC^3 participants to develop a low-cost fabrication methodology for manufacturing ceramic matrix composite structural components. The program, which is being administered by the U.S. Air Force Wright Laboratory Materials Directorate, is focused on demonstrating a ceramic matrix composite turbine seal for a regional aircraft engine. This part is to be fabricated by resin transfer molding of a siloxane polymer into a fiber preform that will be transformed into a ceramic by pyrolytic conversion.

  1. A novel pH-responsive interpolyelectrolyte hydrogel complex for the oral delivery of levodopa. Part II: characterization and formulation of an IPEC-based tablet matrix.

    PubMed

    Ngwuluka, Ndidi C; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Khan, Riaz A; Pillay, Viness

    2015-03-01

    This study was undertaken in order to apply a synthesized interpolyelectrolyte complex (IPEC) of polymethacrylate and carboxymethylcellulose as a controlled release oral tablet matrix for the delivery of the model neuroactive drug levodopa. The IPEC (synthesized in Part I of this work) was characterized by techniques such as Fourier Transform Infra-Red (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), Advanced DSC (ADSC), and Scanning Electron Microscopy (SEM). The tablet matrices were formulated and characterized for their drug delivery properties and in vitro drug release. FTIR confirmed the interaction between the two polymers. The IPEC composite generated tablet matrices with a hardness ranging from 19.152-27.590 N/mm and a matrix resilience ranging between 42 and 46%. An IPEC of polymethacrylate and carboxymethylcellulose was indeed an improvement on the inherent properties of the native polymers providing a biomaterial with the ability to release poorly soluble drugs such as levodopa at a constant rate over a prolonged period of time. © 2014 Wiley Periodicals, Inc.

  2. Novel Precursor Approached for CMC Derived by Polymer Pyrolysis

    DTIC Science & Technology

    1994-02-15

    to remove signals from probe polymer materials. C. Pyrolysis Methods The conversion of polymeric PMVS to SiC -containing ceramic was studied by... Composite Fabrication Methods Ceramic matrix composites with different matrix compositions were fabricated using the Polymer Impregnation- Pyrolysis (PIP...Pyrolyzed composites were re- infiltrated with the appropriate polymer matrix source under vacuum, and cured in an autoclave under 100 psi overpressure of N2

  3. Emerging low-cost LED thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    2004-10-01

    As chip size and power levels continue to increase, thermal management, thermal stresses and cost have become key LED packaging issues. Until recently, low-coefficient-of-thermal-expansion (CTE) materials, which are needed to minimize thermal stresses, had thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. Copper, which has a higher thermal conductivity (400 W/m-K), also has a high CTE, which can cause severe thermal stresses. We now have over a dozen low-CTE materials with thermal conductivities ranging between 400 and 1700 W/m-K, and almost a score with thermal conductivities at least 50% greater than that of aluminum. Some of these materials are low cost. Others have the potential to be low cost in high volume production. Emphasizing low cost, this paper reviews traditional packaging materials and the six categories of advanced materials: polymer matrix-, metal matrix-, ceramic matrix-, and carbon matrix composites; monolithic carbonaceous materials; and metal-metal composites/alloys. Topics include properties, status, applications, cost and likely future directions of new advanced materials, including carbon nanotubes and inexpensive graphite nanoplatelets.

  4. Biochemical separations by continuous-bed chromatography.

    PubMed

    Tisch, T L; Frost, R; Liao, J L; Lam, W K; Remy, A; Scheinpflug, E; Siebert, C; Song, H; Stapleton, A

    1998-08-07

    Innovations in column-packing media for biomolecule purification have progressed from large spherical, porous polysaccharide beads to advanced polymeric supports. Continuous-bed technology is a radical new technology for chromatography based on the polymerization of advanced monomers and ionomers directly in the chromatographic column. The polymer chains form aggregates which coalesce into a dense, homogeneous network of interconnected nodules consisting of microparticles with an average diameter of 3000 A. The voids or channels between the nodules are large enough to permit a high hydrodynamic flow. Due to the high cross-linking of the polymer matrix, the surface of each nodule is nonporous yet the polymeric microparticles provide a very large surface area for high binding capacity. This paper will demonstrate the properties and advantages of using a continuous bed support for high resolution biomolecule separations at high flow-rates without sacrificing capacity.

  5. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  6. Wetting-Dewetting and Dispersion-Aggregation Transitions Are Distinct for Polymer Grafted Nanoparticles in Chemically Dissimilar Polymer Matrix.

    PubMed

    Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi

    2015-08-26

    Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.

  7. High aspect ratio template and method for producing same for central and peripheral nerve repair

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeff S. (Inventor); Chan, Christina (Inventor); Tuszynski, Mark Henry (Inventor); Mehrotra, Sumit (Inventor); Gros, Thomas (Inventor)

    2011-01-01

    Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility.

  8. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.

  9. Making molecular balloons in laser-induced explosive boiling of polymer solutions.

    PubMed

    Leveugle, Elodie; Sellinger, Aaron; Fitz-Gerald, James M; Zhigilei, Leonid V

    2007-05-25

    The effect of the dynamic molecular rearrangements leading to compositional segregation is revealed in coarse-grained molecular dynamics simulations of short pulse laser interaction with a polymer solution in a volatile matrix. An internal release of matrix vapor at the onset of the explosive boiling of the overheated liquid is capable of pushing polymer molecules to the outskirts of a transient bubble, forming a polymer-rich surface layer enclosing the volatile matrix material. The results explain unexpected "deflated balloon" structures observed in films deposited by the matrix-assisted pulsed laser evaporation technique.

  10. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  11. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  12. Self Healing Fibre-reinforced Polymer Composites: an Overview

    NASA Astrophysics Data System (ADS)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  13. Microstructure and Properties of Thermally Sprayed Functionally Graded Coatings for Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.

    2003-01-01

    The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.

  14. 1,2-diketones promoted degradation of poly(epsilon-caprolactone)

    NASA Astrophysics Data System (ADS)

    Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban; Janigova, Ivica; Mosnacek, Jaroslav

    2012-07-01

    Photochemical reactions of Benzil and Camphorquinone were used for modification of poly(ɛ-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decrease of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.

  15. Advancing Renewable Materials by Integrated Light and X-ray Scattering - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akpalu, Yvonne A.

    Polyhydroxyalkanotes (PHAs), a group of newly developed, commercially available biopolymers, and their composites have the potential to replace petroleum-based amorphous and semicrystalline polymers currently in use for consumer packaging, adhesives, and coating applications and to have significant advantages in medical applications such as tissue engineering. While the potential of PHAs is recognized in the literature and has even been realized in some cases, knowledge of these systems is decades behind that of synthetic polymers. Composites based on PHAs, furthermore, are just emerging in the research community. We argue that widespread adoption of nano-enhanced PHA materials can only be achieved throughmore » a proper characterization of the nanofiller morphology and its impact on the polymer matrix. Our goal is to build a robust understanding of the structure-processing relationships of PHAs to make it possible to achieve fundamental control over the final properties of these biopolymers and their bionanocomposites and to develop cost-effective manufacturing technologies for them. With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have performed a systematic study of the influence of cooling rate on the thermal properties and morphology of linear PHAs (PHB Mw = 690,000 g/mol; PHBV Mw = 407,000 g/mol, 8 mol % HV) and branched (PHBHx, Mw = 903, 000 g/mol, 7.2 mol % Hx) copolymers. Structure-property relations for silica/PHBHx nanocomposites were also investigated. Our studies show that simple two-phase composite models do not account for the molecular weight dependent enhancement in the modulus. Although improvement of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Since the mechanical properties of polymer nanocomposites can be affected by many factors, such as the interaction between particles and a polymer matrix, crystallinity of the polymer, spherulitic morphology, molecular weight of the polymer matrix, the PHA system studied can serve as a model system for determining the unique influence of particle characteristics on the morphology and mechanical properties of renewable polymer matrices. Motivated by our promising results, we have initiated a systematic morphology characterization studies on a series of branched PHA polymers to uncover conceptual models that predict reinforcement and toughening in renewable polymer nanocomposites as a function particle characteristics, molecular weight and polymer backbone structure. Thus how enhancement in the mechanical properties occurs in PHAs is the focus of our work. In March 2010, the PI discovered a process that will allow better control of particle dispersion in PHA matrices. A graduate student (Sandip Argekar) was added to the project to help test this discovery and the scale up potential for the low-cost manufacture of renewable polymer nanocomposite films. If successful, the PI and co-PI will submit an SBIR proposal to facilitate technology transfer of the discoveries under this award.« less

  16. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    PubMed

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles. © 2011 American Institute of Physics.

  17. Spectral properties of nanocomposites based on fluorine-containing polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Mel’nik, N. N.; Rakov, I. I.; Ivanov, V. E.; Simakin, A. V.; Gudkov, S. V.; Shafeev, G. A.

    2018-04-01

    The optical properties of nanocomposites of gold nanoparticles and fluorine-containing polymer have been studied. Gold nanoparticles were obtained by laser ablation of gold or terbium targets in organic solvents. The thus formed colloidal solutions were used to prepare nanocomposites of gold nanoparticles in polymer matrices of transparent and colorless fluorine-containing polymer. The polymer matrix is found to promote aggregation of nanoparticles of metal under study into elongated chains. In turn, metal nanoparticles influence on the polymer matrix. Gold nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents.

  18. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  19. Surface functionalization of metal organic frameworks for mixed matrix membranes

    DOEpatents

    Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.

    2017-03-21

    Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.

  20. Plastic scintillator with effective pulse shape discrimination for neutron and gamma detection

    DOEpatents

    Zaitseva, Natalia P.; Carman, M Leslie; Cherepy, Nerine; Glenn, Andrew M.; Hamel, Sebastien; Payne, Stephen A.; Rupert, Benjamin L.

    2016-04-12

    In one embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 5 wt % or more; wherein the scintillator material exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays. In another embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount greater than 10 wt %.

  1. Hybrid nanocomposites of 2D black phosphorus nanosheets encapsulated in PMMA polymer material: new platforms for advanced device fabrication

    NASA Astrophysics Data System (ADS)

    Telesio, Francesca; Passaglia, Elisa; Cicogna, Francesca; Costantino, Federica; Serrano-Ruiz, Manuel; Peruzzini, Maurizio; Heun, Stefan

    2018-07-01

    Hybrid materials, containing a 2D filler embedded in a polymeric matrix, are an interesting platform for several applications, because of the variety of properties that the filler can impart to the polymer matrix when dispersed at the nanoscale. Moreover, novel properties could arise from the interaction between the two. Mostly the bulk properties of these materials have been studied so far, especially focusing on how the filler changes the polymeric matrix properties. Here we propose a complete change of perspective by using the hybrid nanocomposite material as a platform suitable to engineer the properties of the filler and to exploit its potential in the fabrication of devices. As a proof of concept of the versatility and the potential of the new method, we applied this approach to prepare black phosphorus (bP) nanocomposites through its dispersion in poly (methyl methacrylate). bP is a very interesting 2D material, whose application have so far been limited by its high reactivity to oxygen and water. In this respect, we show that electronic-grade bP flakes, already embedded in a protecting matrix since their exfoliation from the bulk material, are endowed with significantly increased stability and can be further processed into devices without degrading their properties.

  2. Hybrid Nanocomposites of 2D Black Phosphorous Nanosheets Encapsulated in PMMA Polymer Material: New Platforms for Advanced Device Fabrication.

    PubMed

    Telesio, Francesca; Passaglia, Elisa; Cicogna, Francesca; Costantino, Federica; Serrano-Ruiz, Manuel; Peruzzini, Maurizio; Heun, Stefan

    2018-04-12

    Hybrid materials, containing a 2D filler embedded in a polymeric matrix, are an interesting platform for several applications, because of the variety of properties that the filler can impart to the polymer matrix when dispersed at the nanoscale. Moreover, novel properties could arise from the interaction between the two. Mostly the bulk properties of these materials have been studied so far, especially focusing on how the filler changes the polymeric matrix properties. Here we propose a complete change of perspective by using the hybrid nanocomposite material as a platform suitable to engineer the properties of the filler and to exploit its potential in the fabrication of devices. As a proof of concept of the versatility and potentiality of the new method, we applied this approach to prepare black phosphorus nanocomposites through its dispersion in poly (methyl methacrylate). Black phosphorus is a very interesting 2D material, whose application have so far been limited by its very high reactivity to oxygen and water. In this respect, we show that electronic-grade black phosphorus flakes, already embedded in a protecting matrix since their exfoliation from the bulk material, are endowed with significant increased stability, and can be further processed into devices without degrading their properties. Creative Commons Attribution license.

  3. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)

    2012-01-01

    A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.

  4. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-03-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  5. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  6. 1,2-diketones promoted degradation of poly(epsilon-caprolactone)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban

    2012-07-11

    Photochemical reactions of Benzil and Camphorquinone were used for modification of poly({epsilon}-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decreasemore » of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.« less

  7. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    PubMed

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  8. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  9. Development of controlled drug release systems based on thiolated polymers.

    PubMed

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  10. Studies on Relaxation Behavior of Corona Poled Aromatic Dipolar Molecules in a Polymer Matrix

    DTIC Science & Technology

    1990-08-03

    concentration upto 30 weight percent. Orientation As expected optically responsive molecules are randomly oriented in the polymer matrix although a small amount...INSERT Figure 4 The retention of SH intensity of the small molecule such as MNA was found to be very poor in the PMMA matrix while the larger rodlike...Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem. 24(2), 309 (1983). 16.- H. Ringsdorf and H. W. Schmidt. Makromol. Chem. 185, 1327 (1984). 17. S. Musikant

  11. A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers

    DTIC Science & Technology

    1990-12-15

    THE SYNTHESIS OF CERAMIC MATRIX COMPOSITES PE - 61102F FROM PRECERAMIC POLYMERS PR -9999 6. AUTHOR(S) TA - 99 J. R. Strife(l), J. P. Wesson(1 ), and H...stability at temperatures up to 15000 C. 14. SUBJECT TERMS 15. NUMBER OF PAGES 49 C- SiC composites vinylmethylsilane 16. PRICE CODE polymer precursor...vapor infiltration of fibrous preforms. More recently, the conversion of preceramic polymers as a matrix synthesis process is being considered. This

  12. Study of montmorillonite nanoparticles and electron beam irradiation interaction of ethylene vinyl acetate (EVA)/de-vulcanized waste rubber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.

    2018-05-01

    The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.

  13. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an experimental program carried out through a university grant with the Ohio State University, wherein tensile and shear deformation data were obtained for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. Tensile deformation data also were obtained over a variety of strain rates and fiber orientation angles for a representative polymer matrix composite composed using the polymer.

  14. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  15. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear moduli, and Poisson's ratios) from the numerical solutions of the RVEs undergone these three load tests. Validation of the obtained micro-scale mechanical properties will be performed using rule of mixture (ROM), 1st, and 2nd order of the mathematical model and experimental data.

  16. Interfacial crowding of nanoplatelets in co-continuous polymer blends: assembly, elasticity and structure of the interfacial nanoparticle network.

    PubMed

    Altobelli, R; Salzano de Luna, M; Filippone, G

    2017-09-27

    The sequence of events which leads to the interfacial crowding of plate-like nanoparticles in co-continuous polymer blends is investigated through a combination of morphological and rheological analyses. Very low amounts (∼0.2 vol%) of organo-modified clay are sufficient to suppress phase coarsening in a co-continuous polystyrene/poly(methyl methacrylate) blend, while lower particle loading allows for a tuning of the characteristic size of the polymer phases at the μm-scale. In any case, an interfacial network of nanoparticles eventually forms, which is driven by the preferred polymer-polymer interface. The elastic features and stress-bearing ability of this peculiar nanoparticle assembly are studied in detail by means of a descriptive two-phase viscoelastic model, which allows isolation of the contribution of the filler network. The role of the co-continuous matrix in driving the space arrangement of the nanoparticles is emphasized by means of comparative analysis with systems based on the same polymers and nanoparticles, but in which the matrix is either a pure polymer or a blend with drop-in-matrix morphology. The relaxation dynamics of the interfacial network was found not to depend on the matrix microstructure, which instead substantially affects the assembly of the nanoplatelets. When the host medium is co-continuous, the particles align along the preferred polymer-polymer interface, percolating at a very low amount (∼0.17 vol%) and prevalently interacting edge-to-edge. The stress bearing ability of such a network is much higher than that in the case of matrix based on a homogeneous polymer or a drop-in-matrix blend, but its elasticity shows low sensitivity to the filler content.

  17. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial applications. In this paper, we review key PMC, MMC, CCC, and CMC optomechanical system materials, including properties, advantages, disadvantages, applications and future developments. These topics are covered in more detail in SPIE short courses SC218 and SC1078.

  18. Chain Confinement in Electrospun Nanocomposites: using Thermal Analysis to Investigate Polymer-Filler Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Q Ma; B Mao; P Cebe

    2011-12-31

    We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO{sub 2} nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO{sub 2} powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of themore » crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.« less

  19. Towards highly stable polymer electronics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nikolka, Mark; Nasrallah, Iyad; Broch, Katharina; Sadhanala, Aditya; Hurhangee, Michael; McCulloch, Iain; Sirringhaus, Henning

    2016-11-01

    Due to their ease of processing, organic semiconductors are promising candidates for applications in high performance flexible displays and fast organic electronic circuitry. Recently, a lot of advances have been made on organic semiconductors exhibiting surprisingly high performance and carrier mobilities exceeding those of amorphous silicon. However, there remain significant concerns about their operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode (OLED) displays. Here, we report a novel technique for dramatically improving the operational stress stability, performance and uniformity of high mobility polymer field-effect transistors by the addition of specific small molecule additives to the polymer semiconductor film. We demonstrate for the first time polymer FETs that exhibit stable threshold voltages with threshold voltage shifts of less than 1V when subjected to a constant current operational stress for 1 day under conditions that are representative for applications in OLED active matrix displays. The approach constitutes in our view a technological breakthrough; it also makes the device characteristics independent of the atmosphere in which it is operated, causes a significant reduction in contact resistance and significantly improves device uniformity. We will discuss in detail the microscopic mechanism by which the molecular additives lead to this significant improvement in device performance and stability.

  20. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  1. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

    PubMed

    Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar

    2016-04-13

    Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.

  2. Formulation and Characterization of Solid Dispersion Prepared by Hot Melt Mixing: A Fast Screening Approach for Polymer Selection

    PubMed Central

    Enose, Arno A.; Dasan, Priya K.; Sivaramakrishnan, H.; Shah, Sanket M.

    2014-01-01

    Solid dispersion is molecular dispersion of drug in a polymer matrix which leads to improved solubility and hence better bioavailability. Solvent evaporation technique was employed to prepare films of different combinations of polymers, plasticizer, and a modal drug sulindac to narrow down on a few polymer-plasticizer-sulindac combinations. The sulindac-polymer-plasticizer combination that was stable with good film forming properties was processed by hot melt mixing, a technique close to hot melt extrusion, to predict its behavior in a hot melt extrusion process. Hot melt mixing is not a substitute to hot melt extrusion but is an aid in predicting the formation of molecularly dispersed form of a given set of drug-polymer-plasticizer combination in a hot melt extrusion process. The formulations were characterized by advanced techniques like optical microscopy, differential scanning calorimetry, hot stage microscopy, dynamic vapor sorption, and X-ray diffraction. Subsequently, the best drug-polymer-plasticizer combination obtained by hot melt mixing was subjected to hot melt extrusion process to validate the usefulness of hot melt mixing as a predictive tool in hot melt extrusion process. PMID:26556187

  3. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery.

    PubMed

    Rao, Shasha; Prestidge, Clive A

    2016-01-01

    A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.

  4. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  5. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    PubMed

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  6. A tough performance simultaneous semi-interpenetrating polymer network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1989-01-01

    A semi-interpenetrating polyimide (semi-IPN) network and methods for making and using the same are disclosed. The semi-IPN system comprises a high performance thermosetting polyimide having an acetylene-terminated group acting as a crosslinking site and a high performance linear thermoplastic polyimide. The polymer is made by combining low viscosity precursors and low molecular weight polymers of the thermosetting and thermoplastic polyimides and allowing them to react in the immediate presence of each other to form a simultaneous semi-interpenetrating polyimide network. Provided is a high temperature system having significantly improved processability and damage tolerance while maintaining excellent thermo-oxidative stability, mechanical properties and resistance to humidity, when compared with the commercial high temperature resin, Thermid 600. This material is particularly adapted for use as a molding, adhesive and advanced composite matrix for aerospace structural and electronic applications.

  7. Neoproteoglycans in tissue engineering.

    PubMed

    Weyers, Amanda; Linhardt, Robert J

    2013-05-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes. © 2013 The Authors Journal compilation © 2013 FEBS.

  8. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  9. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  10. Material properties of biofilms – key methods for understanding permeability and mechanics

    PubMed Central

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  11. Material properties of biofilms—a review of methods for understanding permeability and mechanics

    NASA Astrophysics Data System (ADS)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-02-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.

  12. Impact of polymers on the crystallization and phase transition kinetics of amorphous nifedipine during dissolution in aqueous media.

    PubMed

    Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S

    2014-10-06

    The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.

  13. Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2008-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a third component of micro-sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  14. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  15. Polymeric matrix materials for infrared metamaterials

    DOEpatents

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  16. Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Technical Report

    DTIC Science & Technology

    2018-04-01

    Technical Report ARWSB-TR-18025 Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Technical Report Lucas B...1. REPORT DATE (DD-MM-YYYY) April 2018 2. REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Hydraulic Testing of...Polymer Matrix Composite 102mm Tube Section Technical Report 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  17. Polymer and ceramic nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  18. Composites incorporated a conductive polymer nanofiber network

    DOEpatents

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  19. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    PubMed

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  20. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    DOE PAGES

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less

  1. Shock-loading response of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III

    1993-08-01

    Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less

  2. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  3. Photogeneration of heptacene in a polymer matrix.

    PubMed

    Mondal, Rajib; Shah, Bipin K; Neckers, Douglas C

    2006-08-02

    Heptacene (1) was generated by the photodecarbonylation of 7,16-dihydro-7,16-ethanoheptacene-19,20-dione (2) in a polymer matrix using a UV-LED lamp (395 +/- 25 nm). Compound 1 showed a long wavelength absorption band extending from 600 to 825 nm (lambdamax approximately 760 nm) and was found to be stable up to 4 h in the polymer matrix. However, irradiation of a solution of 2 in toluene produced only oxygen adducts.

  4. Effects of vacancy defects on the interfacial shear strength of carbon nanotube reinforced polymer composite.

    PubMed

    Chowdhury, Sanjib Chandra; Okabe, Tomonaga; Nishikawa, Masaaki

    2010-02-01

    We investigate the effects of the vacancy defects (i.e., missing atoms) in carbon nanotubes (CNTs) on the interfacial shear strength (ISS) of the CNT-polyethylene composite with the molecular dynamics simulation. In the simulation, the crystalline polyethylene matrix is set up in a hexagonal array with the polymer chains parallel to the CNT axis. Vacancy defects in the CNT are introduced by removing the corresponding atoms from the pristine CNT (i.e., CNT without any defect). Three patterns of vacancy defects with three different sizes are considered. Two types of interfaces, with and without cross-links between the CNT and the matrix are also considered here. Polyethylene chains are used as cross-links between the CNT and the matrix. The Brenner potential is used for the carbon-carbon interaction in the CNT, while the polymer is modeled by a united-atom potential. The nonbonded van der Waals interaction between the CNT and the polymer matrix and within the polymer matrix itself is modeled with the Lennard-Jones potential. To determine the ISS, we conduct the CNT pull-out from the polymer matrix and the ISS has been estimated with the change of total potential energy of the CNT-polymer system. The simulation results reveal that the vacancy defects significantly influence the ISS. Moreover, the simulation clarifies that CNT breakage occurs during the pull-out process for large size vacancy defect which ultimately reduces the reinforcement.

  5. The wettability and swelling of selected mucoadhesive polymers in simulated saliva and vaginal fluids.

    PubMed

    Rojewska, M; Olejniczak-Rabinek, M; Bartkowiak, A; Snela, A; Prochaska, K; Lulek, J

    2017-08-01

    The surface properties play a particularly important role in the mucoadhesive drug delivery systems. In these formulations, the adsorption of polymer matrix to mucous membrane is limited by the wetting and swelling process of the polymer structure. Hence, the performance of mucoadhesive drug delivery systems made of polymeric materials depends on multiple factors, such as contact angle, surface free energy and water absorption rate. The aim of our study was to analyze the effect of model saliva and vaginal fluids on the wetting properties of selected mucoadhesive (Carbopol 974P NF, Noveon AA-1, HEC) and film-forming (Kollidon VA 64) polymers as well as their blends at the weight ratio 1:1 and 1:1:1, prepared in the form of discs. Surface properties of the discs were determined by measurements of advancing contact angle on the surface of polymers and their blends using the sessile drop method. The surface energy was determined by the OWRK method. Additionally, the mass swelling factor and hydration percentage of examined polymers and their blends in simulated biological fluids were evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nanocellular foam with solid flame retardant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percentmore » flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.« less

  7. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition, degradation of the matrix and migration of nanoparticles to the surface was observed as well in the different types of SiO2 NP aged NC. Oppositely, compatibilized MWCNT (MWCNTMB) decreased the degradation of the polymer. Nevertheless, the nanomaterial migrated likewise to the surface during the ageing process. In order to evaluate the possible changes in the structure of nanomaterials due to the aging process, NM were extracted from the polymer by calcination. The nanomaterials extracted were analyzed by TGA, Fourier transform infrared spectroscopy (FT-IR), BET and TEM and its properties compared with calcinated raw NM. SiO2 hydrophilic nanoparticles were not affected by the aging process. However, both types of MWCNT were affected by the aging of the NC.

  8. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  9. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  10. High Thermal Conductivity Carbon Nanomaterials for Improved Thermal Management in Armament Composites

    DTIC Science & Technology

    2017-03-01

    polymer matrices. In addition to improving mechanical and electrical properties, these forms of carbon typically demonstrate high intrinsic thermal...conductivities, a property that could be useful in improving the thermal dissipation performance of polymer matrix composites. In this study, carbon...nanotubes, carbon nanofibers and graphene have been added to polymers and polymer matrix composites in order to study the effect on the thermal

  11. 78 FR 49780 - Notice of Intent To Grant Exclusive License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... ``Aerogel/Polymer Composite Materials;'' U.S. Patent No. 7,309,738; NASA Case No. KSC-12697 entitled ``Approach for Achieving Flame Retardancy While Retaining Physical Properties in a Compatible Polymer Matrix... Retaining Physical Properties in a Compatible Polymer Matrix;'' to AeroPlastic LP, having its principal...

  12. Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.

    2013-03-01

    In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.

  13. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  14. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  15. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  16. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    NASA Technical Reports Server (NTRS)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  17. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  18. Ceramic matrix and resin matrix composites - A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  19. Implementation of Fiber Substructuring Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2001-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.

  20. Exploratory studies of new avenues to achieve high electromechanical response and high dielectric constant in polymeric materials

    NASA Astrophysics Data System (ADS)

    Huang, Cheng

    High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented by in situ preparation. High dielectric constant copper phthalocyanine oligomer and conductive polyaniline oligomer were successfully bonded to polyurethane backbone to form fully functionalized nano-phase polymers. Improvement of dispersibility of oligomers in polymer matrix makes the system self-organize the nanocomposites possessing oligomer nanophase (below 30nm) within the fully functionalized polymers. The resulting nanophase polymers significantly enhance the interface effect, which through the exchange coupling raises the dielectric response markedly above that expected from simple mixing rules for dielectric composites. Consequently, these nano-phase polymers offer a high dielectric constant (a dielectric constant near 1,000 at 20 Hz), improve the breakdown field and mechanical properties, and exhibit high electromechanical response. A longitudinal strain of more than -14% can be induced under a much reduced field, 23 V/mum, with an elastic energy density of higher than 1 J/cm3. The elastic modulus is as high as 100MPa, and a transverse strain is 7% under the same field. (Abstract shortened by UMI.)

  1. Preparation And Evaluation Techniques of Porous Materials and Mixed Matrix Membranes for Targeted CO2 Separation Applications

    NASA Astrophysics Data System (ADS)

    Tessema, Tsemre Dingel Mesfin

    The use of porous sorbents for physisorptive capture of CO2 from gas mixtures has been deemed attractive due to the low energy penalty associated with recycling of such materials. Porous organic polymers (POPs) have emerged as promising candidates with potential in the treatment of pre- and post- fuel combustion processes to separate CO2 from gas mixtures. Concurrently, significant advances have been made in establishing calculation methods that evaluate the practicality of porous sorbents for targeted gas separation applications. However, these methods rely on single gas adsorption isotherms without accounting for the dynamic gas mixtures encountered in real-life applications. To this end, the design and application of a dynamic gas mixture breakthrough apparatus to assess the CO2 separation performance of a new class of heteroatom (N and O) doped porous carbons derived from a Pyrazole precursor from flue gas mixtures is presented. Here in, two new benzimidazole linked polymers (BILPs) have been designed and synthesized. These polymers display high surface while their imidazole functionality and microporous nature resulted in high CO2 uptakes and isosteric heat of adsorption (Qst). BILP-30 displayed very good selectivity for CO2 in flue gas while BILP-31 was superior in CO2 separation from landfill gas mixtures at 298 K and 1 bar. Additionally, a new POP incorporating a highly conjugated pyrene core into a polymer framework linked by azo-bonds is presented. Azo-Py displays a nanofibrous morphology induced by the pi-pi stacking of the electron rich pyrene core. Due to its high surface area and microporous nature, Azo-Py displays impressive CO2 uptakes at 298 K and 1 bar. Evaluation of the S value for CO2 separation of Azo-Py revealed competitive values for flue gas and landfill gas at 298 K and 1 bar. Finally, a highly cross-linked benzimidazole linked polymer, BILP-4, was successfully incorporated into MatrimidRTM polymer to form a series of new mixed matrix membranes. The surface functionality of BILP-4 was exploited to enhance the interaction with MatrimidRTM polymer matrix to produce robust MMMs which displayed significantly improved CO2 gas permeabilities and ideal selectivities for CO 2/N2.

  2. Recent advances in material science for developing enzyme electrodes.

    PubMed

    Sarma, Anil Kumar; Vatsyayan, Preety; Goswami, Pranab; Minteer, Shelley D

    2009-04-15

    The enzyme-modified electrode is the fundamental component of amperometric biosensors and biofuel cells. The selection of appropriate combinations of materials, such as: enzyme, electron transport mediator, binding and encapsulation materials, conductive support matrix and solid support, for construction of enzyme-modified electrodes governs the efficiency of the electrodes in terms of electron transfer kinetics, mass transport, stability, and reproducibility. This review investigates the varieties of materials that can be used for these purposes. Recent innovation in conductive electro-active polymers, functionalized polymers, biocompatible composite materials, composites of transition metal-based complexes and organometallic compounds, sol-gel and hydro-gel materials, nanomaterials, other nano-metal composites, and nano-metal oxides are reviewed and discussed here. In addition, the critical issues related to the construction of enzyme electrodes and their application for biosensor and biofuel cell applications are also highlighted in this article. Effort has been made to cover the recent literature on the advancement of materials sciences to develop enzyme electrodes and their potential applications for the construction of biosensors and biofuel cells.

  3. Enhancing the value of commodity polymers: Part 1. Structure-property relationships in composite materials based on maleated polypropylene/inorganic phosphate glasses. Part 2. New value-added applications for polyesters

    NASA Astrophysics Data System (ADS)

    Gupta, Mohit

    The first part of the thesis (Chapters 2 & 3) describes a new class of organic polymer/inorganic glass composite materials with property improvements that are impossible to achieve with classical polymer blends or composites. These materials exhibit good processability, superior mechanical performance, good thermal stability, and have excellent gas barrier properties. Low glass transition temperature phosphate glasses (Pglass) are used as inorganic fillers and slightly maleated polypropylene is used as the organic polymer matrix. The Pglass, which was dispersed as spherical droplets in the unoriented composites can be elongated into high aspect ratio platelets during the biaxial stretching process. Biaxially oriented films exhibited a brick wall type microstructure with highly aligned inorganic platelets in a ductile organic matrix and the oxygen barrier properties are significantly improved due to presence of Pglass platelets as impermeable inclusions. Mechanical properties of the biaxially oriented films showed significant improvements compared to neat polymer due to uniform dispersion of the Pglass platelets. Properly dispersed and aligned platelets have proven to be very effective for increasing the composite modulus. These developed materials therefore show promise to help fulfill the ever increasing demand for new advanced materials for a wide variety of advanced packaging applications because of their gas barrier properties, flexibility, transparency, mechanical strength and performance under humid conditions. The second part of the thesis (Chapters 4 & 5) describes new value-added applications for polyesters. Chapter 4 reports a novel process for the decolorization of green and blue colored PET bottle flakes using hydrogen peroxide. The decolorized flakes were characterized for color, intrinsic viscosity values. Decolorized flakes exhibited color values similar to those of colorless recycled PET and even though IV values decreased, bleached flakes still exhibit useful molecular weight. The consumption of H2O2 during the bleaching process was quantified by titrating the residual peroxide using a standard solution of potassium permanganate. Chapter 5 reports synthesis of ductile amorphous polymers which change their color as a function of mechanical deformation. Cyano--OPV moieties were covalently incorporated into the backbone of amorphous polyester PETG. The materials exhibit a significant color change upon compression consistent with efficient breakup of the dye aggregates upon deformation and therefore can be useful for technological applications that require smart coatings with integrated scratch detectors.

  4. Approaches to polymer-derived CMC matrices

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1992-01-01

    The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.

  5. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  6. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases

    PubMed Central

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-01-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites. PMID:27457056

  7. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    PubMed

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Polymer sol-gel composite inverse opal structures.

    PubMed

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  9. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  10. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO₂ Separation: A Review.

    PubMed

    Janakiram, Saravanan; Ahmadi, Mahdi; Dai, Zhongde; Ansaloni, Luca; Deng, Liyuan

    2018-05-14

    Membrane technology has the potential to be an eco-friendly and energy-saving solution for the separation of CO₂ from different gaseous streams due to the lower cost and the superior manufacturing features. However, the performances of membranes made of conventional polymers are limited by the trade-off between the permeability and selectivity. Improving the membrane performance through the addition of nanofillers within the polymer matrix offers a promising strategy to achieve superior separation performance. This review aims at providing a complete overview of the recent advances in nanocomposite membranes for enhanced CO₂ separation. Nanofillers of various dimensions and properties are categorized and effects of nature and morphology of the 0D to 2D nanofillers in the corresponding nanocomposite membranes of different polymeric matrixes are discussed with regard to the CO₂ permeation properties. Moreover, a comprehensive summary of the performance data of various nanocomposite membranes is presented. Finally, the advantages and challenges of various nanocomposite membranes are discussed and the future research and development opportunities are proposed.

  11. Erosion Resistant Coatings for Polymer Matrix Composites in Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Naik, Subhash K.; Horan, Richard; Miyoshi, Kazuhisa; Bowman, Cheryl; Ma, Kong; Leissler, George; Sinatra, Raymond; Cupp, Randall

    2003-01-01

    Polymer Matrix Composites (PMCs) offer lightweight and frequently low cost alternatives to other materials in many applications. High temperature PMCs are currently used in limited propulsion applications replacing metals. Yet in most cases, PMC propulsion applications are not in the direct engine flow path since particulate erosion degrades PMC component performance and therefore restricts their use in gas turbine engines. This paper compares two erosion resistant coatings (SANRES and SANPRES) on PMCs that are useful for both low and high temperature propulsion applications. Collaborating over a multi-year period, researchers at NASA Glenn Research Center, Allison Advanced Developed Company, and Rolls-Royce Corporation have optimized these coatings in terms of adhesion, surface roughness, and erosion resistance. Results are described for vigorous hot gas/particulate erosion rig and engine testing of uncoated and coated PMC fan bypass vanes from the AE 3007 regional jet gas turbine engine. Moreover, the structural durability of these coatings is described in long-term high cycle fatigue tests. Overall, both coatings performed well in all tests and will be considered for applications in both commercial and defense propulsion applications.

  12. Localized entrapment of green fluorescent protein within nanostructured polymer films

    NASA Astrophysics Data System (ADS)

    Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia

    2012-02-01

    Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.

  13. Aspects regarding the correlation between the physical-mechanical and tribological characteristics of composites materials reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2017-08-01

    The purpose of this paper is to highlight a number of factors that influence the physical-mechanical and tribological characteristics of sintered composite materials. Such factors are grouped generally in two categories: technological parameters (pressure compacting, sintering temperature, sintering duration, heat treatment) and the receipt of sintered composite materials. In this paper is presented a program of experiments developed both in composite materials sintered polymer matrix (non-metallic) and in the metal matrix (eg., Al) which was prepared in advance a methodology original production and research for this particular type of materials. The experiments have focused development and testing of a number of 14 polymer composite and 5 composite sintered Al base, in both situations armed with carbon fiber in various forms. Tribological tests followed the establishment of the coefficient of friction and wear rate of the sliding speed at the constant values (v = 7.2 mm/s) and the normal load (N = 8 daN) and for different orientations of the fibers to the direction of sliding: normal (N type), parallel (P) and antiparallel-perpendicular (AP type).

  14. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  15. Characterization of Nanostructured Polymer Films

    DTIC Science & Technology

    2014-12-23

    discovered that polymer films with exceptional thermal and kinetic stability could be formed by Matrix Assisted Pulsed Laser Evaporation ( MAPLE ) onto...thermal properties of amorphous polymer nanoglobules fabricated via Matrix-Assisted Pulsed Laser Deposition ( MAPLE ). We discovered that stability in... MAPLE , Glass Transition Temperature 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON

  16. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  17. Develop Roll-to-Roll Manufacturing Process of ZrO 2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pooran C.; Compton, Brett G.; Li, Jianlin

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO 2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO 2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  18. Aquatic polymers can drive pathogen transmission in coastal ecosystems

    PubMed Central

    Shapiro, Karen; Krusor, Colin; Mazzillo, Fernanda F. M.; Conrad, Patricia A.; Largier, John L.; Mazet, Jonna A. K.; Silver, Mary W.

    2014-01-01

    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff. PMID:25297861

  19. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  20. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Jolley, Scott T. (Inventor); Buhrow, Jerry W. (Inventor); Li, Wenyan (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  1. Advances in the manufacture of MIP nanoparticles.

    PubMed

    Poma, Alessandro; Turner, Anthony P F; Piletsky, Sergey A

    2010-12-01

    Molecularly imprinted polymers (MIPs) are prepared by creating a three-dimensional polymeric matrix around a template molecule. After the matrix is removed, complementary cavities with respect to shape and functional groups remain. MIPs have been produced for applications in in vitro diagnostics, therapeutics and separations. However, this promising technology still lacks widespread application because of issues related to large-scale production and optimization of the synthesis. Recent developments in the area of MIP nanoparticles might offer solutions to several problems associated with performance and application. This review discusses various approaches used in the preparation of MIP nanoparticles, focusing in particular on the issues associated with large-scale manufacture and implications for the performance of synthesized nanomaterials. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  3. Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications.

    PubMed

    Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M

    2014-11-01

    The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.

  4. Development of advanced polymer nanocomposite capacitors

    NASA Astrophysics Data System (ADS)

    Mendoza, Miguel

    The current development of modern electronics has driven the need for new series of energy storage devices with higher energy density and faster charge/discharge rate. Batteries and capacitors are two of the most widely used energy storage devices. Compared with batteries, capacitors have higher power density and significant higher charge/discharge rate. Therefore, high energy density capacitors play a significant role in modern electronic devices, power applications, space flight technologies, hybrid electric vehicles, portable defibrillators, and pulse power applications. Dielectric film capacitors represent an exceptional alternative for developing high energy density capacitors due to their high dielectric constants, outstanding breakdown voltages, and flexibility. The implementation of high aspect ratio dielectric inclusions such as nanowires into polymer capacitors could lead to further enhancement of its energy density. Therefore, this research effort is focused on the development of a new series of dielectric capacitors composed of nanowire reinforced polymer matrix composites. This concept of nanocomposite capacitors combines the extraordinary physical and chemical properties of the one-dimension (1D) nanoceramics and high dielectric strength of polymer matrices, leading to a capacitor with improved dielectric properties and energy density. Lead-free sodium niobate (NaNbO3) and lead-containing lead magnesium niobate-lead titanate (0.65PMN-0.35PT) nanowires were synthesized following hydrothermal and sol-gel approaches, respectively. The as-prepared nanowires were mixed with a polyvinylidene fluoride (PVDF) matrix using solution-casting method for nanocomposites fabrication. The dielectric constants and breakdown voltages of the NaNbO3/PVDF and 0.65PMN-0.35PT/PVDF nanocomposites were measured under different frequency ranges and temperatures in order to determine their maximum energy (J/cm3) and specific (J/g) densities. The electrical properties of the synthesized nanoceramics were compared with commercially available barium titanate (BaTiO3) and lead zirconate titanate Pb(ZrxTi1-x)O3 powders embedded into a PVDF matrix. The resulting dielectric film capacitors represent an excellent alternative energy storage device for future high energy density applications.

  5. E-beam-Cure Fabrication of Polymer Fiber/Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Hou, Tan-Hung; Saether, Erik; Glaessgen, Edward H.; Humes, Donald H.; Chang, Chie K.; Badavi, Francis F.; Kiefer, Rrichard L.; hide

    2004-01-01

    Aliphatic polymers were identified as optimum radiation polymeric shielding materials for building multifunctional structural elements. Conceptual damage-tolerant configurations of polyolefins have been proposed but many issues on the manufacture remain. In the present paper, we will investigate fabrication technologies with e-beam curing for inclusion of high-strength aliphatic polymer fibers into a highly cross-linked polyolefin matrix. A second stage of development is the fabrication methods for applying face sheets to aliphatic polymer closed-cell foams.

  6. Recent advances in polyaniline based biosensors.

    PubMed

    Dhand, Chetna; Das, Maumita; Datta, Monika; Malhotra, B D

    2011-02-15

    The present paper contains a detailed overview of recent advances relating to polyaniline (PANI) as a transducer material for biosensor applications. This conducting polymer provides enormous opportunities for binding biomolecules, tuning their bio-catalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Merging the specific nature of different biomolecules (enzymes, nucleic acids, antibodies, etc.) and the key properties of this modern conducting matrix, possible biosensor designs and their biosensing characteristics have been discussed. Efforts have been made to discuss and explore various characteristics of PANI responsible for direct electron transfer leading towards fabrication of mediator-less biosensors. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  8. Design and study of advanced photoresist materials: Positive tone photoresists with reduced environmental impact and materials for 157 nm lithography

    NASA Astrophysics Data System (ADS)

    Yamada, Shintaro

    Concern about using organic solvents in semiconductor manufacturing led us to consider a photoresist system that can be fully processed with aqueous media. A series of new polymers were designed and prepared that demonstrate fully aqueous processable positive tone imaging. Positive tone imaging requires two solubility switches, and this has been accomplished by two different methods. In both cases, a post application baking step was utilized to render the water soluble polymer insoluble in water, and photo-induced acid catalyzed reactions regenerated aqueous solubility only in the exposed areas. The first system is based on the reaction of vinyl ethers. When the film is baked after casting from water, the vinyl ethers incorporated into the photoresist react with acidic hydroxyl groups on the matrix polymer to form acetal cross-linkages. The acetal linkages of the exposed areas are hydrolyzed by photo-acids to create positive tone imaging with pure water development. Although these systems provided positive tone imaging and were successfully cast from and developed with pure water, there are some shortcomings to this design approach such as poor dry etch resistance and short shelf life. The second system was designed to address these shortcomings. Various polystyrene-based polymers bearing ammonium salts of malonic acid monoesters were prepared and studied. The ammonium salts render the styrenic polymers soluble in water. Upon baking, ammonia is volatilized, and the resulting malonic acid monoester undergoes decarboxylation that results in formation of a base insoluble polymer. Studies on the selection of acid labile ester protecting groups, kinetics of decarboxylation and imaging are presented. Lithography with 157 nm exposure is the most promising candidate for post-193 nm lithography, and this technology is expected to provide the resolution required for the next generation of microelectronic devices. Designing photoresists for 157 nm imaging is a challenge because air, water and even the simplest hydrocarbon polymers such as polyethylene absorb strongly at this wavelength. Incorporation of fluorine atoms into matrix polymers is the key to reducing their absorbance at 157 nm. Studies on the metal-catalyzed polymerization of fluorine-containing norbornene derivatives for this application are also presented.

  9. Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead Zirconatetitanate/Polymer Composites

    PubMed Central

    Li, Rui; Zhou, Jun; Liu, Hujun; Pei, Jianzhong

    2017-01-01

    Piezoelectric lead zirconatetitanate (PZT)/polymer composites were prepared by two typical polymer matrixes using the hot-press method. The micromorphology, microstructure, dielectric properties, and piezoelectric properties of the PZT/polymer composites were characterized and investigated. The results showed that when the condition of frequency is 103 Hz, the dielectric and piezoelectric properties of PZT/poly(vinylidene fluoride) were both better than that of PZT/polyvinyl chloride (PVC). When the volume fraction of PZT was 50%, PZT/PVDF prepared by the hot-press method had better comprehensive electric property. PMID:28805730

  10. The molecular basis of plant cell wall extension.

    PubMed

    Darley, C P; Forrester, A M; McQueen-Mason, S J

    2001-09-01

    In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

  11. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  12. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber

    2018-03-01

    Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.

  13. Biointerface dynamics--Multi scale modeling considerations.

    PubMed

    Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko

    2015-08-01

    Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Oriented nanofibers embedded in a polymer matrix

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  15. Laboratory for the Processing and Evaluation of Inorganic Matrix Composites

    DTIC Science & Technology

    1989-06-01

    preceramic polymers .’ Ceramic data (yield and elemental composition ) for the pyrolysis ... polymer matrix composites can feature apparent fracture energies as high as those of unreinforced metals (Ashby and Jones 1980). I I Fig. 1 SiC VLS...materials has pyrolysis of shaped bodies of such " preceramic " polymers . received much attention in recent years.’ This procedure The issues that are

  16. Symposium Review: Metal and Polymer Matrix Composites at MS&T 2013

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    This article reflects on the presentations made during the Metal and Polymer Matrix Composites symposium at Materials Science and Technology 2013 (MS&T'13) held in Montreal (Quebec, Canada) from October 27 to 31. The symposium had three sessions on metal matrix composites and one session on polymer matrix composites containing a total of 23 presentations. While the abstracts and full-text papers are available through databases, the discussion that took place during the symposium is often not captured in writing and gets immediately lost. We have tried to recap some of the discussion in this article and hope that it will supplement the information present in the proceedings. The strong themes in the symposium were porous composites, aluminum matrix composites, and nanocomposites. The development of processing methods was also of interest to the speakers and attendees.

  17. Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging.

    PubMed

    Kaunisto, Erik; Tajarobi, Farhad; Abrahmsen-Alami, Susanna; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders

    2013-03-12

    In this paper a new model describing drug release from a polymer matrix tablet is presented. The utilization of the model is described as a two step process where, initially, polymer parameters are obtained from a previously published pure polymer dissolution model. The results are then combined with drug parameters obtained from literature data in the new model to predict solvent and drug concentration profiles and polymer and drug release profiles. The modelling approach was applied to the case of a HPMC matrix highly loaded with mannitol (model drug). The results showed that the drug release rate can be successfully predicted, using the suggested modelling approach. However, the model was not able to accurately predict the polymer release profile, possibly due to the sparse amount of usable pure polymer dissolution data. In addition to the case study, a sensitivity analysis of model parameters relevant to drug release was performed. The analysis revealed important information that can be useful in the drug formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters)

    PubMed Central

    Johnson, Michelle L.; Uhrich, Kathryn E.

    2008-01-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

  19. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    PubMed

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  20. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  1. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  2. Recent Development of Nanomaterial-Doped Conductive Polymers

    NASA Astrophysics Data System (ADS)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  3. Crazing of nanocomposites with polymer-tethered nanoparticles

    DOE PAGES

    Meng, Dong; Kumar, Sanat K.; Ge, Ting; ...

    2016-09-07

    The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three key differences in the crazing behavior of a composite relative to the pure homopolymer matrix, namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibitsmore » void nucleation and leads to a higher yield stress. In the craze growth regime, the presence of “grafted chain” sections of ≈100 monomers alters the mechanical response of composite samples, giving rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. As a result, the dominant failure mechanism of composite samples depends strongly on the length of the grafted chains, with disentanglement being the dominant mechanism for short chains, while bond breaking is the failure mode for chain lengths >10N e, where N e is the entanglement length.« less

  4. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The maximum average matrix ligament thickness was 114 nm for a toughened polylactide nanoblend and correlated well with the theoretical prediction of the matrix ligament thickness. Fourier transform infrared spectroscopy and dynamic mechanical thermal analysis proved the crosslinking of the HBP phase in the PLA matrix. The crosslinked HBP was effective at hydroxyl (-OH) to anhydride molar ratios of: 2:1, 1:1 or 1:2. The glass transition temperature values of the crosslinked HBP phase at these molar ratios were observed to deviate from the predictions made by the Fox equation. The hydrophilic nature of the hyperbranched polymer was altered to hydrophobic by incorporation of polyanhydride crosslinker, as demonstrated by the increase in the contact angle with water. Rheological studies showed that there was a network formation in the PLA matrix after in-situ crosslinking of HBP. The HBP was found to reduce the melt viscosity of PLA dramatically and this effect was maintained even after its in-situ crosslinking in the PLA matrix. Finally, the current research unwraps the new opportunities provided by the unique physical and chemical properties of highly functional hyperbranched polymers in generating new nanostructured multiphase polymer systems with enhanced properties.

  5. Transparent oxygen and water vapor barriers for flexible electronics using semi-crystalline polymer matrix thin films

    NASA Astrophysics Data System (ADS)

    Sehgal, Akhil

    Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases to bond to, the ability of gases such as moisture and oxygen to penetrate through the films has decreased.

  6. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results compare reasonably well to experimental values, with some discrepancies. The discrepancies are at least partially caused by the method used to integrate the rate equations in the polymer constitutive model.

  7. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  8. Thermo-Mechanical Fatigue of Polymer Matrix Composites

    DTIC Science & Technology

    1994-10-01

    MATRIX COMPOSITES by L. H. Strait . - , 4- . [ : ’ . .. N ..::ii Technical Report No. TR 94-12 October 1994 94 11 3 002 Supported by: L.R. Hettche...mnechanical loading is an increasingly common service condition for polymer mnmx composite materials. Unfortunately, little or no information is available...regarding the behavior of polymer composites subject to this loading condition. The present thesis research program was undertaken to evaluate the effects

  9. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid).

    PubMed

    Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart

    2014-08-14

    A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.

  10. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  11. Synthesis and morphology of hydroxyapatite/polyethylene oxide nanocomposites with block copolymer compatibilized interfaces

    NASA Astrophysics Data System (ADS)

    Lee, Ji Hoon; Shofner, Meisha

    2012-02-01

    In order to exploit the promise of polymer nanocomposites, special consideration should be given to component interfaces during synthesis and processing. Previous results from this group have shown that nanoparticles clustered into larger structures consistent with their native shape when the polymer matrix crystallinity was high. Therefore in this research, the nanoparticles are disguised from a highly-crystalline polymer matrix by cloaking them with a matrix-compatible block copolymer. Specifically, spherical and needle-shaped hydroxyapatite nanoparticles were synthesized using a block copolymer templating method. The block copolymer used, polyethylene oxide-b-polymethacrylic acid, remained on the nanoparticle surface following synthesis with the polyethylene oxide block exposed. These nanoparticles were subsequently added to a polyethylene oxide matrix using solution processing. Characterization of the nanocomposites indicated that the copolymer coating prevented the nanoparticles from assembling into ordered clusters and that the matrix crystallinity was decreased at a nanoparticle spacing of approximately 100 nm.

  12. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  13. Ionic cross-linked polyether and silica gel mixed matrix membranes for CO 2 separation from flue gas

    DOE PAGES

    Sekizkardes, Ali K.; Zhou, Xu; Nulwala, Hunaid B.; ...

    2017-09-22

    Mixed matrix membranes (MMMs) were prepared by incorporating 10 wt%, 20 wt% and 30 wt% silica gel filler particles into novel ionic cross-linked polyether (IXPE) polymers. Porous silica gel has the advantage of high surface area that can increase the free volume and permeability in a polymer film while also being commercially available and low cost. The MMMs featured high chemical and thermal stability as well as a modest improvement in storage modulus. These features are due to the excellent interfacial interaction between silica gel filler particles and the polymer matrix. Increasing the loading of silica gel particles in MMMsmore » resulted in higher permeability up to 120 Barrer for CO 2, which is about 40% higher than the neat polymer matrix. Finally, most importantly, the MMMs maintained a very high CO 2/N 2 selectivity performance of around 41 for all particle loadings that were tested.« less

  14. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    PubMed

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Exopolysaccharide Matrix

    PubMed Central

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  16. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.

    PubMed

    Koo, H; Falsetta, M L; Klein, M I

    2013-12-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.

  17. Approach for achieving flame retardancy while retaining physical properties in a compatible polymer matrix

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor)

    2007-01-01

    The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends. Articles containing the polymer blends are also provided.

  18. Approach for achieving flame retardancy while retaining physical properties in a compatible polymer matrix

    NASA Technical Reports Server (NTRS)

    Smith, Trent M. (Inventor); Williams, Martha K. (Inventor)

    2011-01-01

    The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends. Articles containing the polymer blends are also provided.

  19. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA; Masakowski, Daniel D [Worcester, MA; Wong, Ching Ping [Duluth, GA; Luo, Shijian [Boise, ID

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  20. Effects of nanoscale aggregation on mechanical properties and local dynamics of precise acid- and ion-containing polymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert

    Acid- and ion-containing polymers have interchain interactions that alter polymer behavior at the nano, micro, and bulk length scales. Strong secondary-bonds act as thermo-reversible physical crosslinks between chains which drive self-assembly. Tuning theses interactions can modify bulk polymer properties including stiffness, toughness, melt viscosity, resilience, clarity, abrasion resistance and puncture resistance. Furthermore, understanding and improving the relevant factors that control transport properties would have vast implications on developing solid polymer electrolytes (SPEs) for technologically important applications including water desalination, ion exchange membranes and microelectronics. This thesis explores the structure - processing - morphology - property relationships of acid and ionic functionalized polymers. Improvements in synthetic techniques and advancements in characterization methods have enabled new studies of associating polymer systems. Synthesis of entangled, high molecular weight, linear polyethylene (PE) chains functionalized with interacting pendant groups (acidic or ionic) placed periodically along the polymer backbone represent a new class of associating polymers. These polymers with periodic distributions of acid groups are much more homogenous than the commercially available polymers. Previous studies of these polymers with greater structural homogeneity revealed great variety in morphologies of the nano-aggregated polar groups within the non-polar polymer matrix. This thesis correlated the morphologies with bulk properties through real-time X-ray scattering and tensile deformation at a range of temperatures and sample compositions. New, transient morphologies and hierarchical morphologies were observed which coincided with unusual tensile strain hardening. These results indicate that improvements in synthetic control of polymers can enhance physical properties such as tensile strain-hardening, through cooperative bonding between chains. The structural regularity of precise polyethylenes also enables robust comparisons between experiments and computer simulations. At pico- to nano-seconds time scales and length scales of polymer and aggregate dynamics, neutron scattering and molecular dynamics simulations were combined to extend the knowledge of the molecular-level aggregated polymer dynamics. These experiments provide a baseline for future studies of ion-conduction in associating polymer melts.

  1. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  2. Biocompatibility of Synthetic Poly(ester urethane)/Polyhedral Oligomeric Silsesquioxane Matrices with Embryonic Stem Cell Proliferation and Differentiation

    PubMed Central

    Guo, Yan-Lin; Wang, Wenshou; Otaigbe, Joshua U.

    2010-01-01

    Incorporation of polyhedral oligomeric silsesquioxanes (POSS) into poly (ester urethane)s (PEU) as a building block results in a PEU/POSS hybrid polymer with increased mechanical strength and thermostability. An attractive feature of the new polymer is that it forms a porous matrix when cast in the form of a thin film, making it potentially useful in tissue engineering. In this study, we present detailed microscopic analysis of the PEU/POSS matrix and demonstrate its biocompatibility with cell culture. The PEU/POSS polymer forms a continuous porous matrix with open pores and interconnected grooves. From SEM image analysis, it is calculated that there are about 950 pores per mm2 of the matrix area with pore size ranging from 1 to 15 μm in diameter. The area occupied by the pores represents approximately 7.6 % of matrix area. Using mouse embryonic stem cells (ESCs), we demonstrate that the PEU/POSS matrix provides excellent support for cell proliferation and differentiation. Under the cell culture condition optimized to maintain self-renewal, ESCs grown on a PEU/POSS matrix exhibit undifferentiated morphology, express pluripotency markers, and have similar growth rate to cells grown on gelatin. When induced for differentiation, ESCs underwent dramatic morphological change, characterized by the loss of clonogenecity and increased cell size with well-expanded cytoskeleton networks. Differentiated cells are able to form a continuous monolayer that is closely embedded on the matrix. The excellent compatibility between the PEU/POSS matrix and ESC proliferation/differentiation demonstrates the potential of using PEU/POSS polymers in future ESC-based tissue engineering. PMID:20213627

  3. Laminated Object Manufacturing-Based Design Ceramic Matrix Composites

    DTIC Science & Technology

    2001-04-01

    components for DoD applications. Program goals included the development of (1) a new LOM based design methodology for CMC, (2) optimized preceramic polymer ...3.1.1-20 3.1.1-12 Detail of LOM Composites Forming System w/ glass fiber/ polymer laminate................ 3.1.1-21 3.1.1-13...such as polymer matrix composites have faced similar barriers to implementation. These barriers have been overcome through the development of suitable

  4. Use of Li.sub.2[B.sub.12H.sub.12] salt to absorb water into polymers

    DOEpatents

    Eastwood, Eric A.; Bowen, III, Daniel E.

    2016-08-30

    Methods of adjusting the properties of a composition are provided. The compositions comprise a polymer-containing matrix and a filler comprising a hygroscopic salt. Preferred such salts comprise a cage compound selected from the group consisting of borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer.

  5. Properties of coatings on RFID p-Chips that support plasmonic fluorescence enhancement in bioassays

    PubMed Central

    Rich, Ryan; Li, Ji; Fudala, Rafal; Gryczynski, Zygmunt; Gryczynski, Ignacy; Mandecki, Wlodek

    2012-01-01

    Microtransponders (RFID p-Chips) derivatized with silver island film (SIF) have previously seen success as a platform for the quantification of low-abundance biomolecules in nucleic acid-based assays and immunoassays. In this study, we further characterized the morphology of the SIF as well as the polymer matrix enveloping it by scanning electron microscopy (SEM). The polymer was a two-layer silane-based matrix engulfing the p-Chip and SIF. Through a series of SEM and confocal fluorescence microscopy experiments we found the depth of the polymer matrix to be 1–2 µm. The radiative effects of the SIF/polymer layer were assessed by fluorescence lifetime imaging (FLIM) of p-Chips coated with the polymer to which a fluorophore (Alexa Fluor 555) was conjugated. FLIM images showed an 8.7-fold increase in fluorescence intensity and an increased rate of radiative decay, the latter of which is associated with improved photostability and both of which are linked to plasmonic enhancement by the SIF. Plasmonic enhancement was found to extend uniformly across the p-Chip and, interestingly, to a depth of about 1.2 µm. The substantial depth of enhancement suggests that the SIF/polymer layer constitutes a three-dimensional matrix that is accessible to solvent and small molecules such as fluorescent dyes. Finally, we confirmed that no surface-enhanced Raman scattering (SERS) is seen from the SIF/polymer combination. The analysis provides a possible mechanism by which the SIF/polymer-coated p-Chips allow a highly sensitive immunoassay and, as a result, leads to an improved bioassay platform. PMID:22960796

  6. High Temperature Polymeric Materials for Space Transportation Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Campbell, Sandi G.; Chuang, Kathy C.; Scheimann, Daniel A.; Mintz, Eric; Hylton, Donald; Veazie, David; Criss, James; Kollmansberg, Ron; Tsotsis, Tom

    2003-01-01

    High temperature polymer matrix composites are attractive materials for space transporation propulsion systems because of their low density and high specific strength. However, the relatively poor stability and processability of these materials can render them unsuitable for many of these applications. New polymeric materials have been developed under the Propulsion Research and Technology Program through the use of novel resin chemistry and nanotechnology. These new materials can significantly enhance the durability and weight and improve the processability and affordability of propulsion components for advanced space transportation systems.

  7. Recent Development of Flax Fibres and Their Reinforced Composites Based on Different Polymeric Matrices

    PubMed Central

    Zhu, Jinchun; Zhu, Huijun; Njuguna, James; Abhyankar, Hrushikesh

    2013-01-01

    This work describes flax fibre reinforced polymeric composites with recent developments. The properties of flax fibres, as well as advanced fibre treatments such as mercerization, silane treatment, acylation, peroxide treatment and coatings for the enhancement of flax/matrix incompatibility are presented. The characteristic properties and characterizations of flax composites on various polymers including polypropylene (PP) and polylactic acid, epoxy, bio-epoxy and bio-phenolic resin are discussed. A brief overview is also given on the recent nanotechnology applied in flax composites. PMID:28788383

  8. Advanced Photonic Hybrid Materials

    DTIC Science & Technology

    2015-07-01

    intensities); this has been done in liquid, but this study attempted a stable solid-state glass . The transmission spectra showed well-defined plasmon...were functionalized with an original silicon polymer  for  compatibilization with  the  sol‐gel medium. The  glass  materials  showed well defined...doping  concentration, were  observed  in the  glasses , proving that no or very small LSPR coupling effects occured. Spectroscopic Muller Matrix

  9. Effects of processing on the release profiles of matrix systems containing 5-aminosalicylic acid.

    PubMed

    Korbely, Anita; Kelemen, András; Kása, Péter; Pintye-Hódi, Klára

    2012-12-01

    The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6-19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0-13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54-56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer-Peppas model or the Hopfenberg model.

  10. Role of polymer matrix on photo-sensitivity of CdSe polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Tripathi, S. K.

    2018-04-01

    This paper reports the effect of three different polymer matrices (PVP, PMMA and PVK) and Ag doping on the photo-sensitivity of CdSe polymer nanocomposites. The results reveal that the photoconductivity is high for linear chain polymer nanocomposites as compared to aromatic ones with decreasing trend as: CdSe-PMMA > CdSe-PVP > CdSe-PVK. The large substituents or branches along the polymer backbone hinder the stacking sequences in CdSe-PVK nanocomposites resulting in lowest photoconductivity. On contrary, CdSe-PVK nanocomposite exhibit highest photosensitivity. The reason behind it is the low value of dark conductivity in CdSe-PVK nanocomposite and photoconductive PVK matrix. With Ag doping, no considerable effect on the value of photosensitivity has been observed. The obtained results indicate that the photo-conducting properties of these polymer nanocomposites can be tuned by using different polymer matrices.

  11. Selective Plasma Etching of Polymeric Substrates for Advanced Applications

    PubMed Central

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-01-01

    In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238

  12. Optical Spectroscopy of New Materials

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Arnold, James O. (Technical Monitor)

    1993-01-01

    Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.

  13. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  14. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    PubMed

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  15. Effect of surface preparation on the failure load of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite.

    PubMed

    Shimizu, Hiroshi; Tsue, Fumitake; Chen, Zhao-Xun; Takahashi, Yutaka

    2009-04-01

    The purpose of the present study was to evaluate the effect of surface preparation on the maximum fracture load value of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite. A polymer-monomer matrix was made by mixing urethane dimethacrylate and triethyleneglycol dimethacrylate at a ratio of 1:1 with camphorquinone and 2-dimethylaminoethyl methacrylate as a light initiator. The matrix was then polymerized in a disk-shaped silicone mold with a light-polymerizing unit. The flat surfaces of the polymer-monomer matrix disk were prepared in one of the following ways: (1) without preparation; (2) application of silane coupling agent; or (3) application of matrix liquid and prepolymerization. A highly filled composite material was applied and polymerized with a light-polymerizing unit. Additional test specimens made entirely of the polymer-monomer matrix were fabricated as references; the disk and cylinder were fabricated in one piece using a mold specially made for the present study (group 4). Half the specimens were thermocycled up to 10,000 times in water with a 1-minute dwell time at each temperature (5 degrees C and 55 degrees C). The maximum fracture load values were determined using a universal testing machine (n = 10). The maximum fracture loads for group 3 were significantly enhanced both before and after thermocycling, whereas the maximum fracture loads of group 2 were significantly enhanced before thermocycling (p < 0.05); however, the failure loads decreased for all groups after thermocycling (p < 0.05). All the specimens in groups 1 and 2 debonded during thermocycling. The failure load of group 3 was significantly lower than that of group 4 both before and after thermocycling (p < 0.05). Within the limitations of the current in vitro study, the application and prepolymerization of a mixed dimethacrylate resin liquid prior to the application of a highly filled composite was an effective surface preparation for the polymer-monomer matrix of a fiber-reinforced composite; however, the bond durability may be insufficient.

  16. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  17. Reflective article having a sacrificial cathodic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formedmore » from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.« less

  18. Solid-state radioluminescent compositions

    DOEpatents

    Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.

    1991-01-01

    A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

  19. The rheology and phase separation kinetics of mixed-matrix membrane dopes

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode Olaseni

    Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix enhance separation of gas mixtures based on the molecular size difference and/or adsorption properties of the component gases in the molecular sieve. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing, as compared to pure polymer membranes. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. Efficient large scale processing of hollow fibers by this method requires knowledge of two key process variables: the rheology and kinetics of phase separation of the MMM dopes. Predicting the rheological properties of MMM dopes is not trivial; the presence of particles significantly affects neat polymer membrane dopes. Therefore, the need exists to characterize and develop predictive capabilities for the rheology of MMM dopes. Furthermore, the kinetics of phase separation of polymer solutions is not well understood. In the case of MMM dopes, the kinetics of phase separation are further complicated by the presence of porous particles in a polymer solution. Thus, studies on the phase separation kinetics of polymer solutions and suspensions of zeolite particles in polymer solutions are essential. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In our research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions, it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations showed that the major origin of this discrepancy is the selective absorption of solvent molecules from the suspending polymer solution into the zeolite pores. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are greatly increased. A predictive model for the viscosity of porous zeolite suspensions incorporating a solvent absorption parameter, alpha, into the Krieger-Dougherty model was developed. We experimentally determined the solvent absorption parameter and our results are in good agreement with the theoretical pore volume of MFI particles. In addition, fundamental studies were conducted with spherical nonporous silica suspensions to elucidate the role of colloidal and hydrodynamic forces on the rheology of mixed-matrix membrane dopes. Also in this thesis, details of a novel microfluidic device for measuring the phase separation kinetics of membrane dopes are presented. We have used this device to quantify the phase separation kinetics (PSK) of polymer solutions and MMM dopes upon contact with an array of relevant nonsolvent. For the polymer solution, we found that PSK is governed by the micro-rheological and thermodynamic properties of the polymer solution and nonsolvent. For the MMM dopes, we found that the PSK may increase with increase in particles surface area due to surface diffusion enhancement. In addition, it was found that the dispersed particles alter the thermodynamic properties of the dope based on the hydrophilicity and porosity of the particle.

  20. Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly(amide-ester-imide) containing L-phenylalanine and L-tyrosine linkages

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh

    2013-12-01

    Amino acid functionalized multi-walled carbon nanotubes (f-MWCNTs)/poly(amide-ester-imide) (PAEI) composites were fabricated by solution mixing method. Proper functionalization and mixing strategy of MWCNTs provides the best opportunity for better distribution and bonding of nanoparticles to the polymer matrix. MWCNTs have been chemically modified with L-phenylalanine to improve their compatibility with L-phenylalanine based PAEI. Field emission scanning electron microscopy micrographs of composite revealed that f-MWCNTs made a good interaction with polymer chains by wrapping the polymer around them, and transmission electron microscopy results confirmed well dispersion with nano size of f-MWCNTs in the polymer matrix. In addition, thermal analysis showed good enhancement in thermal properties of composites compared to pure polymer. Thermal stability of the composites containing f-MWCNTs was enhanced due to their good dispersion and improved interfacial interaction between the amino acid based PAEI matrix and f-MWCNTs.

  1. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  2. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  3. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  5. The surface properties of carbon fibers and their adhesion to organic polymers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Drzal, L. T.

    1987-01-01

    The state of knowledge of the surface properties of carbon fibers is reviewed, with emphasis on fiber/matrix adhesion in carbon fiber reinforced plastics. Subjects treated include carbon fiber structure and chemistry, techniques for the study of the fiber surface, polymer/fiber bond strength and its measurement, variations in polymer properties in the interphase, and the influence of fiber matrix adhesion on composite mechanical properties. Critical issues are summarized and search recommendations are made.

  6. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.

    PubMed

    Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt

    2017-10-01

    Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-01

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  8. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  9. Corrigendum to “High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites” [Compos Struct 134 (2015) 132–141

    DOE PAGES

    Bai, Xiaoming; Bessa, Miguel A.; Melro, Antonio R.; ...

    2016-10-01

    The authors would like to inform that one of the modifications proposed in the article “High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites” [1] was found to be unnecessary: the paraboloid yield criterion is sufficient to describe the shear behavior of the epoxy matrix considered (Epoxy 3501-6). The authors recently noted that the experimental work [2] used to validate the pure matrix response considered engineering shear strain instead of its tensorial counter-part, which caused the apparent inconsistency with the paraboloid yield criterion. A recently proposed temperature dependency law for glassy polymers is evaluated herein, thusmore » better agreement with the experimental results for this epoxy is observed.« less

  10. Improved high temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Chang, G. E.; Powell, S. H.; Jones, R. J.

    1983-01-01

    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.

  11. Corrigendum to “High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites” [Compos Struct 134 (2015) 132–141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xiaoming; Bessa, Miguel A.; Melro, Antonio R.

    The authors would like to inform that one of the modifications proposed in the article “High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites” [1] was found to be unnecessary: the paraboloid yield criterion is sufficient to describe the shear behavior of the epoxy matrix considered (Epoxy 3501-6). The authors recently noted that the experimental work [2] used to validate the pure matrix response considered engineering shear strain instead of its tensorial counter-part, which caused the apparent inconsistency with the paraboloid yield criterion. A recently proposed temperature dependency law for glassy polymers is evaluated herein, thusmore » better agreement with the experimental results for this epoxy is observed.« less

  12. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam

    DOEpatents

    King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.

    2017-01-17

    A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

  13. A review on the cords & plies reinforcement of elastomeric polymer matrix

    NASA Astrophysics Data System (ADS)

    Mahmood, S. S.; Husin, H.; Mat-Shayuti, M. S.; Hassan, Z.

    2016-06-01

    Steel, polyester, nylon and rayon are the main materials of cords & plies that have been reinforced in the natural rubber to produce quality tyres but there is few research reported on cord and plies reinforcement in silicone rubber. Taking the innovation of tyres as inspiration, this review's first objective is to compile the comprehensive studies about the cords & plies reinforcement in elastomeric polymer matrix. The second objective is to gather information about silicone rubber that has a high potential as a matrix phase for cords and plies reinforcement. All the tests and findings are gathered and compiled in sections namely processing preparation, curing, physical and mechanical properties, and adhesion between cords-polymer.

  14. Manipulating polymers and composites from the nanoscopic to microscopic length scales

    NASA Astrophysics Data System (ADS)

    Gupta, Suresh

    2008-10-01

    This thesis focuses on the manipulation of polymers and composites on length scales ranging from the nanoscopic to microscopic. In particular, on the microscopic length scale electric fields were used to produce instabilities at the air surface and at polymer interfaces that lead to novel three dimensional structures and patterns. On the nanoscopic length scale, the interaction of ligands attached to nanoparticles and polymer matrix were used to induce self-assembly processes that, in turn, lead to systems that self-heal, self-corral, or are patterned. For manipulation at the micron length scale, electrohydrodynamic instabilities were used in trilayer system composed of a layer of poly(methyl methacrylate) (PMMA), a second layer of polystyrene (PS) and a third layer of air. Dewetting of the polymer at the substrate at the polymer/polymer interface under an applied electric field was used to generate novel three dimensional structures. Also, electrohydrodynamic instabilities were used to pattern thin polymer films in conjunction with ultrasonic vibrations and patterned upper electrodes. Self-assembly processes involving polymers and nanoparticles offer a unique means of generating pattern materials or materials that self heal. Simple polymer/nanoparticle composites were investigated. Here, in the absence of interactions between the poly(ethylene oxide) ligands attached to the nanoparticles and PMMA polymer matrix, the opportunity to generate self-healing systems was opened. The size of the nanoparticle was varied and the effect on diffusion of nanoparticle in the polymer matrix was studied. CdSe nanorods were also assembled on a substrate templated with or guided by microphase separated diblock copolymers. The nanorods were incorporated in the diblock copolymer thin films by spin coating the co-solution of nanorods and polymer, surface adsorption of nanorods on to the patterned diblock copolymer films and surface reconstruction of PS/PMMA diblock copolymer thin film. Further, the interactions between the PMMA polymer matrix and the tri n-octyl phosphine oxide ligands attached to an anisotropic nanoparticle, i.e. nanorods, were used to influence the dispersion of the nanorods in the polymer. This led to a novel assembly, termed self-corralling where under an applied electric field highly oriented, highly ordered arrays of nanorods form. Further, self corralling of nanorods was directed by chemically patterned substrates.

  15. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer.

    PubMed

    Yang, Wenlan; Li, Xuchun; Pan, Bingcai; Lv, Lu; Zhang, Weiming

    2013-09-01

    Effluent organic matter (EfOM) is a complex matrix of organic substance mainly from bio-treated sewage effluent and is considered as the main constraint to further advanced treatment. Here a recyclable aminated hyper-cross-linked polymeric adsorbent (NDA-802) featured with aminated functional groups, large specific surface area, and sufficient micropore region was synthesized for effective removal of EfOM from the bio-treated coking wastewater (BTCW), and its removal characteristics was investigated. It was found that hydrophobic fraction was the main constituent (64.8% of DOC) in EfOM of BTCW, and the hydrophobic-neutral fraction had the highest SUVA level (7.06 L mg(-1) m(-1)), which were significantly different from that in the domestic wastewater. Column adsorption experiments showed that NDA-802 exhibited much higher removal efficiency of EfOM than other polymeric adsorbents D-301, XAD-4, and XAD-7, and the efficiency could be readily sustained according to continuous 28-cycle batch adsorption-regeneration experiments. Moreover, dissolved organic matter (DOM) fractionation and excitation-emission matrix (EEM) fluorescence spectroscopy study indicated that NDA-802 showed attractive adsorption preference as well as high removal efficiency of hydrophobic and aromatic compounds. Possibly ascribed to the presence of functional aminated groups, relatively large specific surface area and micropore region of the unique polymer, NDA-802 possesses high and sustained efficiency for the removal of EfOM, and provides a potential alternative for the advanced treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Bio-Based Nanocomposites: An Alternative to Traditional Composites

    ERIC Educational Resources Information Center

    Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri

    2009-01-01

    Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…

  17. Outgassing and dimensional changes of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    A thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites is described. Experimental results derived from a 'control' sample are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples.

  18. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  19. Mechanically Strong Aerogels Formed by Templated Growth of Polymer Cross- Linkers on Inorganic Nanoparticles

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Fabrizio, Eve F.; Johnston, Chris; Meador, Maryann

    2004-01-01

    In the search for materials with better mechanical, thermal, and electrical properties, it is becoming evident that oftentimes dispersing ceramic nanoparticles in plastics improves performance. Along these lines, chemical bonding (both covalent and noncovalent) between a filler and a polymer improves their compatibility, and thus enhances certain properties of the polymeric matrix above and beyond what is accomplished by simple doping with the filler. When a similarly sized dopant and matrix are used, elementary building blocks may also have certain distinct advantages (e.g., in catalysis). In this context, researchers at the NASA Glenn Research Center reasoned that in the extreme case, where the dopant and the matrix (e.g., a filler and a polymer) are not only sized similarly, but their relative amounts are comparable, the relative roles of the dopant and matrix can be reversed. Then, if the "filler," or a certain form thereof, possesses desirable properties of its own, such properties could be magnified by cross-linking with a polymer. We at Glenn have identified silica as such a filler in its lowest-density form, namely the silica aerogel.

  20. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    NASA Astrophysics Data System (ADS)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  1. Mixed Matrix Membranes of Boron Icosahedron and Polymers of Intrinsic Microporosity (PIM-1) for Gas Separation

    PubMed Central

    Khan, Muntazim Munir; Shishatskiy, Sergey; Filiz, Volkan

    2018-01-01

    This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K2B12H12) as inorganic particles (IPs). The effect of IP loading on the gas separation performance of these MMMs was investigated by varying the IP content (2.5, 5, 10 and 20 wt %) in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests and sorption measurement. The PIM1/K2B12H12 MMMs show good dispersion of the IPs (from 2.5 to 10 wt %) in the polymer matrix. The gas permeability of PIM1/K2B12H12 MMMs increases as the loading of IPs increases (up to 10 wt %) without sacrificing permselectivity. The sorption isotherm in PIM-1 and PIM1/K2B12H12 MMMs demonstrate typical dual-mode sorption behaviors for the gases CO2 and CH4. PMID:29301312

  2. A bio-material: mechanical behaviour of LDPE-Al2O3-TiO2

    NASA Astrophysics Data System (ADS)

    Dhabale, R.; Jatti, V. S.

    2016-09-01

    Polymer composites are prominent candidate for polymeric bio-composites due to its low cost, high strength and ease of manufacturing. However, they suffer from low mechanical properties such as high wear rate and low hardness. In view of this, present study focuses on the synthesis of hybrid bio polymer matrix composites using low density polyethylene as matrix material with reinforcing material namely, alumina and titanium oxide. The samples were fabricated as per ASTM standard by varying the percentage of reinforcing particles using injection moulding machine. Various tests namely, tensile, flexural, impact, hardness, wear, SEM and corrosion were conducted on the prepared samples. On the basis of the experimental results, it can be concluded that injection moulding process can fabricate defect free cast samples. Polymer matrix composites of 70%LDPE +10% TiO2 +20% Al2O3 composition is biocompatible and a good candidate for biomaterial. Thus based on the inference of this study the above polymer matrix composite is suitable for orthopaedic applications and can be applied on hard and soft tissues of implantable materials in a human body.

  3. Controlled nucleation and growth of CdS nanoparticles in a polymer matrix.

    PubMed

    Di Luccio, Tiziana; Laera, Anna Maria; Tapfer, Leander; Kempter, Susanne; Kraus, Robert; Nickel, Bert

    2006-06-29

    In-situ synchrotron X-ray diffraction (XRD) was used to monitor the thermal decomposition (thermolysis) of Cd thiolates precursors embedded in a polymer matrix and the nucleation of CdS nanoparticles. A thiolate precursor/polymer solid foil was heated to 300 degrees C in the X-ray diffraction setup of beamline W1.1 at Hasylab, and the diffraction curves were each recorded at 10 degrees C. At temperatures above 240 degrees C, the precursor decomposition is complete and CdS nanoparticles grow within the polymer matrix forming a nanocomposite with interesting optical properties. The nanoparticle structural properties (size and crystal structure) depend on the annealing temperature. Transmission electron microscopy (TEM) and photoluminescence (PL) analyses were used to characterize the nanoparticles. A possible mechanism driving the structural transformation of the precursor is inferred from the diffraction features arising at the different temperatures.

  4. Effect of monomer composition of polymer matrix on flexural properties of glass fibre-reinforced orthodontic archwire.

    PubMed

    Ohtonen, J; Vallittu, P K; Lassila, L V J

    2013-02-01

    To compare force levels obtained from glass fibre-reinforced composite (FRC) archwires. Specifically, FRC wires were compared with polymer matrices having different dimethacrylate monomer compositions. FRC material (E-glass provided by Stick Tech Ltd, Turku, Finland) with continuous unidirectional glass fibres and four different types of dimethacrylate monomer compositions for the resin matrix were tested. Cross-sectionally round FRC archwires fitting into the 0.3 mm slot of a bracket were divided into 16 groups with six specimens in each group. Glass fibres were impregnated by the manufacturer, and they were initially light-cured by hand light-curing unit or additionally post-cured in light-curing oven. The FRC archwire specimens were tested at 37°C according to a three-point bending test in dry and wet conditions using a span length of 10 mm and a crosshead speed of 1.0 mm/minute. The wires were loaded until final failure. The data were statistically analysed using analysis of variance (ANOVA). The dry FRC archwire specimens revealed higher load values than water stored ones, regardless of the polymer matrix. A majority of the FRC archwires showed higher load values after being post-cured. ANOVA revealed that the polymer matrix, curing method, and water storage had a significant effect (P < 0.05) on the flexural behaviour of the FRC archwire. Polymer matrix composition, curing method, and water storage affected the flexural properties and thus, force level and working range which could be obtained from the FRC archwire.

  5. Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H NMR and MRI methods.

    PubMed

    Baumgartner, Sasa; Lahajnar, Gojmir; Sepe, Ana; Kristl, Julijana

    2005-02-01

    Many pharmaceutical tablets are based on hydrophilic polymers, which, after exposure to water, form a gel layer around the tablet that limits the dissolution and diffusion of the drug and provides a mechanism for controlled drug release. Our aim was to determine the thickness of the swollen gel layer of matrix tablets and to develop a method for calculating the polymer concentration profile across the gel layer. MR imaging has been used to investigate the in situ swelling behaviour of cellulose ether matrix tablets and NMR spectroscopy experiments were performed on homogeneous hydrogels with known polymer concentration. The MRI results show that the thickest gel layer was observed for hydroxyethylcellulose tablets, followed by definitely thinner but almost equal gel layer for hydroxypropylcellulose and hydroxypropylmethylcellulose of both molecular weights. The water proton NMR relaxation parameters were combined with the MRI data to obtain a quantitative description of the swelling process on the basis of the concentrations and mobilities of water and polymer as functions of time and distance. The different concentration profiles observed after the same swelling time are the consequence of the different polymer characteristics. The procedure developed here could be used as a general method for calculating polymer concentration profiles on other similar polymeric systems.

  6. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage.

    PubMed

    Kaleemullah, M; Jiyauddin, K; Thiban, E; Rasha, S; Al-Dhalli, S; Budiasih, S; Gamal, O E; Fadli, A; Eddy, Y

    2017-07-01

    Currently, the use of natural gums and mucilage is of increasing importance in pharmaceutical formulations as valuable drug excipient. Natural plant-based materials are economic, free of side effects, biocompatible and biodegradable. Therefore, Ketoprofen matrix tablets were formulated by employing Hibiscus rosa-sinensis leaves mucilage as natural polymer and HPMC (K100M) as a synthetic polymer to sustain the drug release from matrix system. Direct compression method was used to develop sustained released matrix tablets. The formulated matrix tablets were evaluated in terms of physical appearance, weight variation, thickness, diameter, hardness, friability and in vitro drug release. The difference between the natural and synthetic polymers was investigated concurrently. Matrix tablets developed from each formulation passed all standard physical evaluation tests. The dissolution studies of formulated tablets revealed sustained drug release up to 24 h compared to the reference drug Apo Keto® SR tablets. The dissolution data later were fitted into kinetic models such as zero order equation, first order equation, Higuchi equation, Hixson Crowell equation and Korsmeyer-Peppas equation to study the release of drugs from each formulation. The best formulations were selected based on the similarity factor ( f 2 ) value of 50% and more. Through the research, it is found that by increasing the polymers concentration, the rate of drug release decreased for both natural and synthetic polymers. The best formulation was found to be F3 which contained 40% Hibiscus rosa-sinensis mucilage polymer and showed comparable dissolution profile to the reference drug with f 2 value of 78.03%. The release kinetics of this formulation has shown to follow non-Fickian type which involved both diffusion and erosion mechanism. Additionally, the statistical results indicated that there was no significant difference (p > 0.05) between the F3 and reference drug in terms of MDT and T50% with p-values of 1.00 and 0.995 respectively.

  7. Synthesis, Biodegradability, and Biocompatibility of Lysine Diisocyanate–Glucose Polymers

    PubMed Central

    ZHANG, JIAN-YING; BECKMAN, ERIC J.; HU, JING; YANG, GUO-GUANG; AGARWAL, SUDHA; HOLLINGER, JEFFREY O.

    2016-01-01

    The success of a tissue-engineering application depends on the use of suitable biomaterials that degrade in a timely manner and induce the least immunogenicity in the host. With this purpose in mind, we have attempted to synthesize a novel nontoxic biodegradable lysine diisocyanate (LDI)-and glucose-based polymer via polymerization of highly purified LDI with glucose and its subsequent hydration to form a spongy matrix. The LDI–glucose polymer was degradable in aqueous solutions at 37, 22, and 4°C, and yielded lysine and glucose as breakdown products. The degradation products of the LDI–glucose polymer did not significantly affect the pH of the solution. The physical properties of the polymer were found to be adequate for supporting cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSCs) attached to the polymer matrix, remained viable on its surface, and formed multilayered confluent cultures with retention of their phenotype over a period of 2 to 4 weeks. These observations suggest that the LDI–glucose polymer and its degradation products were nontoxic in vitro. Further examination in vivo over 8 weeks revealed that subcutaneous implantation of hydrated matrix degraded in vivo three times faster than in vitro. The implanted polymer was not immunogenic and did not induce antibody responses in the host. Histological analysis of the implanted polymer showed that LDI–glucose polymer induced a minimal foreign body reaction, with formation of a capsule around the degrading polymer. The results suggest that biodegradable peptide-based polymers can be synthesized, and may potentially find their way into biomedical applications because of their biodegradability and biocompatibility. PMID:12459056

  8. Freeze Casting for Assembling Bioinspired Structural Materials.

    PubMed

    Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P

    2017-12-01

    Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites.

    NASA Astrophysics Data System (ADS)

    K, Kanimozhi; Sethuraman, K.; V, Selvaraj; Alagar, Muthukaruppan

    2014-09-01

    Abstract Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix.

  10. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites

    PubMed Central

    Kanimozhi, K.; Sethuraman, K.; Selvaraj, V.; Alagar, M.

    2014-01-01

    Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix. PMID:25279372

  11. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  12. Metals handbook. Volume 12: Fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    ASM International has published this handbook in response to the growing interest in the science of fractography, the result of improved methods of preparing specimens, advances in photographic techniques and equipment, refinement of the scanning electron microscope, and the introduction of quantitative fractography. The book covers all aspects of fracture examination and interpretation, including electron and quantitative fractography. The text is accompanied by line drawings, graphs, and photographic illustrations of fracture surfaces and microstructural features. Articles explain and illustrate the principal modes of fracture and the effects of loading history, environment, and materials quality on fracture appearance. An atlas ofmore » fractographs constitutes the second half of the volume and contains more than 1300 fractographs, including a collection of ferrous and nonferrous alloy parts. Supplemental illustrations of failed metal-matrix composites, resin-matrix composites, polymers, and electronic materials are provided.« less

  13. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I - LaRC-RP40

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Morgan, Cassandra D.

    1988-01-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin.

  14. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I. LaRC-RP40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, R.H.; Morgan, C.D.

    1988-10-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin. 16 references.

  15. Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime; Gerberich, William; Francis, Lorraine

    2000-03-01

    In an effort to lower the percolation threshold of carbon black-filled polymer composites, various polymer microstructures were examined. Composites were prepared using polyvinyl acetate (PVAc) latex, PVAc water-dispersible powder and polyvinylpyrrolidone (PVP) solution as the matrix starting material. Composites prepared using the particulate microstructures showed a significantly lowered percolation threshold relative to an equivalently prepared composite using the PVP solution. The PVAc latex-based composites has a percolation threshold of 3 volthe PVP solution-based composite yielded a percolation threshold near 15 voloccupied by polymer particles, the particulate matrix-based composites create a segregated CB network at low filler concentration.

  16. A Review on Grafting of Biofibers for Biocomposites

    PubMed Central

    Wei, Liqing; McDonald, Armando G.

    2016-01-01

    A recent increase in the use of biofibers as low-cost and renewable reinforcement for the polymer biocomposites has been seen globally. Biofibers are classified into: lignocellulosic fibers (i.e., cellulose, wood and natural fibers), nanocellulose (i.e., cellulose nanocrystals and cellulose nanofibrils), and bacterial cellulose, while polymer matrix materials can be petroleum based or bio-based. Green biocomposites can be produced using both biobased fibers and polymers. Incompatibility between the hydrophilic biofibers and hydrophobic polymer matrix can cause performance failure of resulting biocomposites. Diverse efforts have focused on the modification of biofibers in order to improve the performances of biocomposites. “Grafting” copolymerization strategy can render the advantages of biofiber and impart polymer properties onto it and the performance of biocomposites can be tuned through changing grafting parameters. This review presents a short overview of various “grafting” methods which can be directly or potentially employed to enhance the interaction between biofibers and a polymer matrix for biocomposites. Major grafting techniques, including ring opening polymerization, grafting via coupling agent and free radical induced grafting, have been discussed. Improved properties such as mechanical, thermal, and water resistance have provided grafted biocomposites with new opportunities for applications in specific industries. PMID:28773429

  17. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas [Denver, CO; Raffaelle, Ryne P [Honeoye Falls, NY; Landi, Brian J [Rochester, NY; Heben, Michael J [Denver, CO

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  18. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate.

    PubMed

    Gonzalez Novoa, Gelsys Ananay; Heinämäki, Jyrki; Mirza, Sabir; Antikainen, Osmo; Colarte, Antonio Iraizoz; Paz, Alberto Suzarte; Yliruusi, Jouko

    2005-02-01

    Solid-state compatibility and in vitro dissolution of direct-compressed sustained-release matrices of polyvinylacetate (PVAc) and polyvinylpyrrolidone (PVP) containing ibuprofen as a model drug were studied. Polyvinylalcohol (PVA) was used as an alternative water-soluble polymer to PVP. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) were used for characterizing solid-state polymer-polymer and drug-polymer interactions. The mechanical treatment for preparing physical mixtures of polyvinyl polymers and the drug (i.e. simple blending or stressed cogrinding) was shown not to affect the physical state of the drug and the polymers. With the drug-polymer mixtures the endothermic effect due to drug melting was always evident, but a considerable modification of the melting point of the drug in physical binary mixtures (drug:PVP) was observed, suggesting some interaction between the two. On the other hand, the lack of a significant shift of the melting endothermic peak of the drug in physical tertiary drug-polymer mixtures revealed no evidence of solid-state interaction between the drug and the present polymers. Sustained-release dissolution profiles were achieved from the direct-compressed matrices made from powder mixtures of the drug and PVAc combined with PVP, and the proportion of PVAc in the mixture clearly altered the drug release profiles in vitro. The drug release from the present matrix systems is controlled by both diffusion of the drug through the hydrate matrix and the erosion of the matrix itself.

  19. Engineered Polymers for Advanced Drug Delivery

    PubMed Central

    Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam

    2009-01-01

    Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434

  20. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage

    NASA Astrophysics Data System (ADS)

    Rothenfluh, Dominique A.; Bermudez, Harry; O'Neil, Conlin P.; Hubbell, Jeffrey A.

    2008-03-01

    The extracellular matrix of dense, avascular tissues presents a barrier to entry for polymer-based therapeutics, such as drugs encapsulated within polymeric particles. Here, we present an approach by which polymer nanoparticles, sufficiently small to enter the matrix of the targeted tissue, here articular cartilage, are further modified with a biomolecular ligand for matrix binding. This combination of ultrasmall size and biomolecular binding converts the matrix from a barrier into a reservoir, resisting rapid release of the nanoparticles and clearance from the tissue site. Phage display of a peptide library was used to discover appropriate targeting ligands by biopanning on denuded cartilage. The ligand WYRGRL was selected in 94 of 96 clones sequenced after five rounds of biopanning and was demonstrated to bind to collagen II α1. Peptide-functionalized nanoparticles targeted articular cartilage up to 72-fold more than nanoparticles displaying a scrambled peptide sequence following intra-articular injection in the mouse.

  1. High rate deposition system for metal-cluster/SiO x C y H z -polymer nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Peter, T.; Rehders, S.; Schürmann, U.; Strunskus, T.; Zaporojtchenko, V.; Faupel, F.

    2013-06-01

    A system for deposition of nanocomposite materials consisting of a SiO x C y H z -polymer matrix and Ag nanoclusters is presented. Ag nanoclusters with sizes between 2 and 20 nm are produced in a gas aggregation cluster source and are deposited through a focused beam at a high rate. This cluster source is presented in detail and the characteristics of the produced nanoclusters are shown. Simultaneously, a SiO x C y H z -polymer matrix is grown from the precursor hexamethyldisiloxane in an RF plasma. The beam of clusters is deposited into the growing polymer, forming the composite material. This process allows the rapid deposition of composite material with varying metal nanocluster concentrations and properties. Since the cluster generation is separated from the matrix growth, the properties of both can be controlled independently. In this study, we present two types of nanocomposite samples, in the first the Ag nanoclusters are homogeneously distributed in the matrix, in the second type the Ag nanoclusters form a layer which is covered by the matrix. These samples are investigated using transmission electron micrography to determine the morphology. Furthermore, the optical properties are probed using optical transmission spectroscopy and the plasmonic resonance behavior is discussed.

  2. Study of drug release and tablet characteristics of silicone adhesive matrix tablets.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2012-11-01

    Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. High-performance 193-nm photoresist materials based on ROMA polymers: sub-90-nm contact hole application with resist reflow

    NASA Astrophysics Data System (ADS)

    Joo, Hyun S.; Seo, Dong C.; Kim, Chang M.; Lim, Young T.; Cho, Seong D.; Lee, Jong B.; Song, Ji Y.; Kim, Kyoung M.; Park, Joo H.; Jung, Jae Chang; Shin, Ki S.; Bok, Cheol Kyu; Moon, Seung C.

    2004-05-01

    There are numerous methods being explored by lithographers to achieve the patterning of sub-90nm contact hole features. Regarding optical impact on contact imaging, various optical extension techniques such as assist features, focus drilling, phase shift masks, and off-axis illumination are being employed to improve the aerial image. One possible option for improving of the process window in contact hole patterning is resist reflow. We have already reported the resist using a ring opened polymer of maleic anhydride unit(ROMA) during the past two years in this conference. It has several good properties such as UV transmittance, PED stability, solubility and storage stability. The resist using ROMA polymer as a matrix resin showed a good lithographic performance at C/H pattern and one of the best characteristics in a ROMA polymer is the property of thermal shrinkage. It has a specific glass transition temperature(Tg) each polymers, so they made a applying of resist reflow technique to print sub-90nm C/H possible. Recently, we have researched about advanced ROMA polymer(ROMA II), which is composed of cycloolefine derivatives with existing ROMA type polymer(ROMA I), for dry etch resistance increasing, high resolution, and good thermal shrinkage property. In this paper, we will present the structure, thermal shrinkage properties, Tg control, material properties for ROMA II polymer and will show characteristics, the lithographic performance for iso and dense C/H applications of the resist using ROMA II polymer. In addition, we will discuss resist reflow data gained at C/H profile of sub-90nm sizes, which has good process window.

  4. Vascularization and tissue infiltration of a biodegradable polyurethane matrix

    PubMed Central

    Ganta, Sudhakar R.; Piesco, Nicholas P.; Long, Ping; Gassner, Robert; Motta, Luis F.; Papworth, Glenn D.; Stolz, Donna B.; Watkins, Simon C.; Agarwal, Sudha

    2016-01-01

    Urethanes are frequently used in biomedical applications because of their excellent biocompatibility. However, their use has been limited to bioresistant polyurethanes. The aim of this study was to develop a nontoxic biodegradable polyurethane and to test its potential for tissue compatibility. A matrix was synthesized with pentane diisocyanate (PDI) as a hard segment and sucrose as a hydroxyl group donor to obtain a microtextured spongy urethane matrix. The matrix was biodegradable in an aqueous solution at 37°C in vitro as well as in vivo. The polymer was mechanically stable at body temperatures and exhibited a glass transition temperature (Tg) of 67°C. The porosity of the polymer network was between 10 and 2000 µm, with the majority of pores between 100 and 300 µm in diameter. This porosity was found to be adequate to support the adherence and proliferation of bone-marrow stromal cells (BMSC) and chondrocytes in vitro. The degradation products of the polymer were nontoxic to cells in vitro. Subdermal implants of the PDI–sucrose matrix did not exhibit toxicity in vivo and did not induce an acute inflammatory response in the host. However, some foreign-body giant cells did accumulate around the polymer and in its pores, suggesting its degradation is facilitated by hydrolysis as well as by giant cells. More important, subdermal implants of the polymer allowed marked infiltration of vascular and connective tissue, suggesting the free flow of fluids and nutrients in the implants. Because of the flexibility of the mechanical strength that can be obtained in urethanes and because of the ease with which a porous microtexture can be achieved, this matrix may be useful in many tissue-engineering applications. PMID:12522810

  5. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design.

    PubMed

    Zhang, Xiaolei; Wu, Yan; Pan, Zongyou; Sun, Heng; Wang, Junjuan; Yu, Dongsheng; Zhu, Shouan; Dai, Jun; Chen, Yishan; Tian, Naifeng; Heng, Boon Chin; Coen, Noelle D; Xu, Huazi; Ouyang, Hongwei

    2016-09-15

    Poly (lactic-co-glycolic acid) (PLGA) and poly-l-lactate acid (PLLA) are biodegradable polymers widely utilized as scaffold materials for cartilage tissue engineering. Their acid degradation products have been widely recognized as being detrimental to cell function. However, the biological effects of lactate, rather than lactic acid, on chondrocytes have never been investigated. This is the major focus of this study. The amounts of lactate and the pH value (acid) of the PLGA and PLLA degradation medium were measured. The effects of PLGA and PLLA degradation medium, as well as different lactate concentrations and timing of exposure on chondrocytes proliferation and cartilage-specific matrix synthesis were investigated by various techniques including global gene expression profiling and gene knockdown experiments. It was shown that PLGA and PLLA degradation medium differentially regulated chondrocyte proliferation and matrix synthesis. Acidic pH caused by lactate inhibited chondrocyte proliferation and matrix synthesis. The effect of lactate on chondrocyte matrix synthesis was both time and dose dependent. A lactate concentration of 100mM and exposure duration of 8h significantly enhanced matrix synthesis. Lactate could also inhibit expression of cartilage matrix degradation genes in osteoarthritic chondrocytes, such as the major aggrecanase ADAMTS5, whilst promoting matrix synthesis simultaneously. Pulsed addition of lactate was shown to be more efficient in promoting COL2A1 expression. Global gene expression data and gene knock down experiments demonstrated that lactate promote matrix synthesis through up-regulation of HIF1A. These observed differential biological effects of lactate on chondrocytes would have implications for the future design of polymeric cartilage scaffolds. Lactic acid is a widely used substrate for polymers synthesis, PLGA and PLLA in particular. Although physical and biological modifications have been made on these polymers to make them be better cartilage scaffolds, little concern has been given on the biological effect of lactic acid, the main degradation product of these polymers, on chondrocytes. Our finding illustrates the differential biological function of lactate and acid on chondrocytes matrix synthesis. These results can facilitate future design of lactate polymers-based cartilage scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  7. Polymer/clay/wood nanocomposites: The effect of incorporation of nanoclay into the wood/polymer composites

    NASA Astrophysics Data System (ADS)

    Hetzer, Max E.

    Thermoplastic composites play an important role in our society. The uses of these composites range from cookware to components for the space shuttle. In recent years, researchers at Toyota developed numerous methods of preparation for composites made from olefins and inorganic fillers such as clay and calcium carbonate. Wood fibers have been used as reinforcing filler in polymer matrices for the past several decades. The advantages of using wood fibers as reinforcing fillers are: the low cost of the fibers (or flour), low density, and resistance to breakage. The disadvantage of using wood as a filler is the thermal instability of wood above 200 °C. The majority of thermoplastics exhibit melting points between 160 and 220 °C, which is in the range of thermal decomposition of wood. Nanoclay was first successfully used as a filler in polyolefin materials by the Toyota research team in early 90s. It was found that the addition of a small amount (< 5 wt.%) of nanoclay increased the mechanical properties of a Nylon-6 matrix dramatically. Since Nylon-6 is a hydrophilic material no compatibilizer was necessary to exfoliate the nanoclay. The use of compatibilizers such as maleic modified polyethylenes (MAPEs) is necessary upon addition of nanoclay to a hydrophobic polyolefin systems such polyethylene (PE) or polypropylene (PP). Few researchers have attempted to reinforce the polymer matrix via the use of the nanoclay for use as a matrix in wood/polymer composites. High molecular weight and low molecular weight MAPEs have been used to enhance the bonding between the nanoclay and the polymer matrix as well as between the wood flour and the polymer matrix. The effects of combinations of the high and low molecular weight MAPEs on the mechanical and thermal properties of polymer/clay nanocomposites (PCNs) and of wood/polymer/clay composites (WPCs) were investigated. The effects of adding nanoclay to wood/polymer systems on the mechanical and thermal properties of the composites were also investigated. A model based on the Halpin-Tsai model was developed that predicts the (Young's) modulus-temperature relationship of the composites based on discontinuous fillers. It was found that the molecular weight of the compatibilizer significantly affects the exfoliation/dispersion of the nanoclay within the polymer matrix. A compatibilizer containing a high Mw fraction based on high density polyethylene (HDPE) and a low Mw fraction based on linear low density polyethylene (LLDPE) was found to be the most effective at enhancing the thermal and mechanical properties of PCNs and WPCs. A compatibilizer containing greater than 60 wt.% high Mw fraction resulted in a 30% increase of the modulus and a 15°C increase of the heat deflection temperature (HDT). The addition of the nanoclay had a detrimental effect on the moduli of PCNs and WPCs when a low Mw compatibilizer based on LLDPE was used. The moduli of these composites increased with increasing high Mw content of the compatibilizer and increasing nanoclay content. The addition of the nanoclay to wood/polymer composites resulted in an increased modulus of elasticity and HDT of these composites. The developed model quantitatively predicts the modulus-temperature relationship of the fiber containing composites. It was found that the modulus of the composites varies linearly with temperature and was highly dependent on the exfoliation of the nanoclay within the polymer matrix.

  8. Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kokkada Ravindranath, Pruthul

    The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence of the bias/over wrapping angle of the MWNT sheets on the carbon fiber was also studied. The predicted compressive strength from the MD results and the multiscale approach for baseline Epoxy case was shown to be in good relation with the experimental results for Epon-862. On adding MWNTs to the epoxy system, a significant improvement in the compressive strength of the PMC was observed. Further, the effect of bias angle of MWNT wrapped over carbon fiber was compared for 0°, 45° and 90°. This is further verified by making use of the Halpin-Tsai.

  9. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries.

    PubMed

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-02-07

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.

  10. Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon Fiber/Matrix Interface (Postprint)

    DTIC Science & Technology

    2015-11-09

    Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. Structure and Energetics of Ligand Binding to Proteins: Escherichia Coli Dihydrofolate...available at DOI: 10.1021/acsami.5b08591 14. ABSTRACT (Maximum 200 words) The rapid heating of carbon-fiber-reinforced polymer matrix composites leads ...polymer matrix composites leads to complex thermophysical interactions which not only are dependent on the thermal properties of the constituents and

  11. Enhancing Thermal Conductive Performance of Vertically Aligned Carbon Nanotube Array Composite by Pre-Annealing Treatment.

    PubMed

    Wang, Miao; Chen, Hong-Yuan; Xing, Ya-Juan; Wei, Han-Xing; Li, Qiang; Chen, Ming-Hai; Li, Qing-Wen; Xuan, Yi-Min

    2015-04-01

    Vertically aligned carbon nanotube (VACNT) array/polymer composite has already been recognized as a promising candidate for advanced thermal pad in thermal management of high-power electronic devices. However, the thermal conductive performance of this composite was limited by the quality of CNTs arrays. In this study, pre-annealing treatment was used to purify CNT arrays and improve thermal conductive performance of VACNT arrays/silicone composite. The thermal conductivity of the composite was enhanced by 34.52% and the thermal interface resistance was also reduced by 65.94% at a pre-annealing temperature of 490 °C for 5 min. The annealing process could remove some amorphous carbon and open the tips of CNTs. As a result, the interfacial compatibility in composite between carbon nanotube and polymer matrix was improved. The cyclic compression and tension performance of VACNT/S160 composite was investigated for further application.

  12. Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  13. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-07-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00569a

  14. Compositions containing borane or carborane cage compounds and related applications

    DOEpatents

    Bowen, III, Daniel E; Eastwood, Eric A

    2013-05-28

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  15. Magnetic nanofiber composite materials and devices using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xing; Zhou, Ziyao

    2017-04-11

    A nonreciprocal device is described. It includes a housing, a waveguide layer and at least one layer of magnetic nanofiber composite. The magnetic nanofiber composite layer is made up of a polymer base layer, a dielectric matrix comprising magnetic nanofibers. The nanofibers have a high aspect ratio and wherein said dielectric matrix is embedded in the polymer base layer.

  16. Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix

    USDA-ARS?s Scientific Manuscript database

    Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torq...

  17. Compositions containing borane or carborane cage compounds and related applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, III, Daniel E; Eastwood, Eric A

    2014-11-11

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  18. Compositions containing borane or carborane cage compounds and related applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, III, Daniel E.; Eastwood, Eric A.

    2015-09-15

    Compositions comprising a polymer-containing matrix and a filler comprising a cage compound selected from borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer. Methods of making and applications for using such compositions are also disclosed.

  19. Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate.

    PubMed

    Barankova, Eva; Pradeep, Neelakanda; Peinemann, Klaus-Viktor

    2013-10-21

    A thin, dense, compact and hydrogen selective ZIF-8 membrane was synthesized on a polymer/metal oxide mixed-matrix support by a secondary seeding method. The new concept of incorporating ZnO particles into the support and PDMS coating of the ZIF-8 layer is introduced to improve the preparation of ZIF-polymer composite membranes.

  20. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  1. Adsorption of copolymers at polymer/air and polymer/solid interfaces

    NASA Astrophysics Data System (ADS)

    Oslanec, Robert

    Using mainly low-energy forward recoil spectrometry (LE-FRES) and neutron reflectivity (NR), copolymer behavior at polymer/air and polymer/solid interfaces is investigated. For a miscible blend of poly(styrene-ran-acrylonitrile) copolymers, the volume fraction profile of the copolymer with lower acrylonitrile content is flat near the surface in contrast to mean field predictions. Including copolymer polydispersity into a self consistent mean field (SCMF) model does not account for this profile shape. LE-FRES and NR is also used to study poly(deuterated styrene-block-methyl-methacrylate) (dPS-b-PMMA) adsorption from a polymer matrix to a silicon oxide substrate. The interfacial excess, zsp*, layer thickness, L, and layer-matrix width, w, depend strongly on the number of matrix segments, P, for P 2N, the matrix chains are repelled from the adsorbed layer and the layer characteristics become independent of P. An SCMF model of block copolymer adsorption is developed. SCMF predictions are in qualitative agreement with the experimental behavior of zsp*, L, and w as a function of P. Using this model, the interaction energy of the MMA block with the oxide substrate is found to be -8ksb{B}T. In a subsequent experiment, the matrix/dPS interaction is made increasingly unfavorable by increasing the 4-bromostyrene mole fraction, x, in a poly(styrene-ran-4-bromostyrene) (PBrsbxS) matrix. Whereas experiments show that zsp* slightly decreases as x increases, the SCMF model predicts that zsp* should increase as the matrix becomes more unfavorable. Upon including a small matrix attraction for the substrate, the SCMF model shows that zsp* decreases with x because of competition between PBrsbxS and dPS-b-PMMA for adsorbing sites. In thin film dewetting experiments on silicon oxide, the addition of dPS-b-PMMA to PS coatings acts to slow hole growth and prevent holes from impinging. Dewetting studies show that longer dPS-b-PMMA chains are more effective stabilizing agents than shorter ones and that 3 volume percent dPS-b-PMMA is the optimum additive concentration for this system. For a dPS-b-PMMA:PS blend, atomic force microscopy of the hole floor reveals mounds of residual polymer and a modulated contact line where the rim meets the substrate.

  2. Microcracking, microcrack-induced delamination, and longitudinal splitting of advanced composite structures

    NASA Technical Reports Server (NTRS)

    Nairn, John A.

    1992-01-01

    A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.

  3. Assessment of Cable Aging Equipment, Status of Acquired Materials, and Experimental Matrix at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Westman, Matthew P.; Zwoster, Andy

    2015-03-30

    The need for increased understanding of the aging and degradation behavior for polymer components of nuclear power plant electrical cables is described in this report. The highest priority materials for study and the resources available at PNNL for these studies are also described. The anticipated outcomes of the PNNL work described are : improved understanding of appropriate accelerated aging conditions, improved knowledge of correlation between observable aging indicators and cable condition in support of advanced non-destructive evaluation methods, and practical knowledge of condition-based cable lifetime prediction.

  4. [Advances in the research of application of hydrogels in three-dimensional bioprinting].

    PubMed

    Yang, J; Zhao, Y; Li, H H; Zhu, S H

    2016-08-20

    Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges.

  5. Nanoscale Mobility of Aqueous Polyacrylic Acid in Dental Restorative Cements.

    PubMed

    Berg, Marcella C; Benetti, Ana R; Telling, Mark T F; Seydel, Tilo; Yu, Dehong; Daemen, Luke L; Bordallo, Heloisa N

    2018-03-28

    Hydrogen dynamics in a time range from hundreds of femtoseconds to nanoseconds can be directly analyzed using neutron spectroscopy, where information on the inelastic and quasi-elastic scattering, hereafter INS and QENS, can be obtained. In this study, we applied these techniques to understand how the nanoscale mobility of the aqueous solution of polyacrylic acid (PAA) used in conventional glass ionomer cements (GICs) changes under confinement. Combining the spectroscopic analysis with calorimetric results, we were able to separate distinct motions within both the liquid and the GICs. The QENS analysis revealed that the self-diffusion translational motion identified in the liquid is also visible in the GIC. However, as a result of the formation of the cement matrix and its setting, both translational diffusion and residence time differed from the PAA solution. When comparing the local diffusion obtained for the selected GIC, the only noticeable difference was observed for the slow dynamics associated with the polymer chain. Additionally, over short-term aging, progressive water binding to the polymer chain occurred in one of the investigated GICs. Finally, a considerable change in the density of the GIC without progressive water binding indicates an increased polymer cross-linking. Taken together, our results suggest that accurate and deep understanding of polymer-water binding, polymer cross-linking, as well as material density changes occurring during the maturation process of GIC are necessary for the development of advanced dental restorative materials.

  6. Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping

    DTIC Science & Technology

    2012-03-01

    undesired PMA attached to microbubble surface. Figure 1: One-pot polymer -lipid microbubbles. (a) Synthesis of thiolated poly(acrylic acid) with...Award Number: W81XWH-11-1-0215 TITLE: Multifunctional Polymer Microbubbles for Advanced Sentinel...February 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b

  7. Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions.

    PubMed

    Chandran, Sivasurender; Saw, Shibu; Kandar, A K; Dasgupta, C; Sprung, M; Basu, J K

    2015-08-28

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP:PS size ratios, ξ = 0.14 and 2.76 (where, ξ = Mg/Mm, Mg and Mm being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with ξ = 0.14 could be modeled reasonably well, while the structure of blends with ξ = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with ξ = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with ξ = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well.

  8. Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets.

    PubMed

    Hussain, Talib; Saeed, Tariq; Mumtaz, Ahmad M; Javaid, Zeeshan; Abbas, Khizar; Awais, Azeema; Idrees, Hafiz Arfat

    2013-01-01

    Gliclazide is an oral hypoglycemic agent, indicated in non insulin dependent diabetes mellitus and in patients with diabetic retinopathy. It has good tolerability and is a short acting sulfonyl urea that requires large dose to maintain the blood glucose level. So development of a sustained release formulation of gliclazide (GLZ) is required for better patient compliance. This study was conducted to assess the effects of different drug polymer ratios on the release profile of gliclazide from the matrix. Oral matrix tablets of gliclazide were prepared by hot melt method, using pure and blended mixture of glyceryl monostearate (GMS) and stearic acid (SA) in different ratios. In vitro release pattern was studied for 8 h in phosphate buffer media (pH 7.4). Different kinetic models including zero order, first order, Higuchi and Peppas were applied to evaluate drug release behavior. Drug excipient compatibility was evaluated by scanning with DSC and FTIR. Higuchi model was found the most appropriate model for describing the release profile of GLZ and non-Fickian release was found predominant mechanism of drug release. The release of drug from the matrix was greatly controlled by GMS while SA appeared to facilitate the release of drug from matrix tablets. FTIR results showed no chemical interaction between drug and the polymers, and DSC results indicated amorphous state of GLZ and polymers without significant complex formation. The results indicate that matrix tablets of gliclazide using glyceryl monostearate and stearic acid showed marked sustained release properties.

  9. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  10. Properties and Residual Stresses in Angle-Ply Polymer Matrix Composites

    DTIC Science & Technology

    1982-03-01

    AMMRC TR 82-12 PROPERTIES AND RES l DUAL STRESSES IN ANGLE-PLY POLYMER MATR l X COMPOSITES March 1982 ABDEL A. FAHMY,, HARVEY A. WEST, and MARK...m D.e. Enl.r.d) PROPERTIES AND RESIDUAL STRESSES I N ANGLE-PLY F i n a l Report POLYMER MATRIX COMPOSITES REPORTDOCUMENTATlON PAGE I 7. AUTHOR...SUPPLEMENTARV NOTES L 19. KEY WORDS (Comclrm. m r.r.r. wd. 11 ner..sw and idenllfy by blocb nmb-r) Composites Thermal expansion Epoxy l a m i n a t e s

  11. Electrically conducting polymers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  12. Raw materials for wood-polymer composites.

    Treesearch

    Craig Clemons

    2008-01-01

    To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...

  13. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics

    PubMed Central

    Yu, Kilho; Park, Byoungwook; Kim, Geunjin; Kim, Chang-Hyun; Park, Sungjun; Kim, Jehan; Jung, Suhyun; Jeong, Soyeong; Kwon, Sooncheol; Kang, Hongkyu; Kim, Junghwan; Yoon, Myung-Han; Lee, Kwanghee

    2016-01-01

    Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes. PMID:27911774

  14. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  15. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  16. Thermoset molecular composites

    DOEpatents

    Benicewicz, Brian C.; Douglas, Elliot P.; Hjelm, Jr., Rex P.

    1996-01-01

    A polymeric composition including a liquid crystalline polymer and a thermosettable liquid crystalline monomer matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms and a polymeric composition including a liquid crystalline polymer and a liquid crystalline thermoset matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms are disclosed.

  17. Fluorescent Water Soluble Polymers for Isozyme-Selective Interactions with Matrix Metalloproteinase-9

    PubMed Central

    Dutta, Rinku; Scott, Michael D.; Haldar, Manas K.; Ganguly, Bratati; Srivastava, D. K.; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Matrix metalloproteinases (MMPs) are overexpressed in various pathological conditions, including various cancers. Although these isozymes have similar active sites, the patterns of exposed amino acids on their surfaces are different. Herein, we report the synthesis and molecular interactions of two water-soluble, fluorescent polymers which demonstrate selective interactions with MMP-9 compared to MMP-7 and -10. PMID:21367603

  18. A study on mechanical properties of PBT nano-composites reinforced with microwave functionalized MWCNTs

    NASA Astrophysics Data System (ADS)

    Deshpande, Revati; Naik, Garima; Chopra, Swamini; Deshmukh, Kavita A.; Deshmukh, Abhay D.; Peshwe, D. R.

    2018-04-01

    Polybutylene Terephthalate (PBT) is a synthetic thermoplastic polymer with fast crystallization rate; and is extensively used in many automobile applications where it is prone to continuous wear. Carbon Nanotubes (CNTs) as reinforcements are most ideal and promising reinforcement in enhancing mechanical properties of polymers. Owing to strong van der Waals’ interaction between the nanotubes; they tend to aggregate. To overcome this behavior, CNTs are generally functionalized in acid solutions to help stabilize the dispersion and allow interaction with polymer matrix. Thus, the present study focuses on the effect of reinforcing microwave-functionalized CNTs on the mechanical and tribological properties of PBT polymer matrix. The homogenous dispersion of CNTs in PBT matrix was successfully achieved by functionalizing the CNTs. DSC and XRD analysis confirms better crystallization and reduced crystallite size due to improved nucleation. Apart; an increase in the hardness and MFI value was also noted, which again hinted towards improved dispersion. However, the reduction in tensile strength and % elongation indicated embrittlement of the PBT matrix after addition of functionalized CNTs. Furthermore, the peeling and scuffing phenomenon observed for virgin PBT, during sliding wear, was suppressed after CNT addition.

  19. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites.

    PubMed

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D; Hill, Curtis W; Brewer, Jeffrey C; Tucker, Dennis S; Cheng, Z-Y

    2016-10-21

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu 3 Ti 4 O 12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10 -1 ). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.

  20. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-10-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10-1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.

  1. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    PubMed Central

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-01-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184

  2. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    PubMed

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and cell behavior work in a dynamic feedback loop to drive tissue development, and discusses opportunities for improved design of mechanical environments that are conducive to tissue development. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  4. Environmental durability of polymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, G.R.; Chawalwala, A.J.

    1996-12-31

    Over the past two decades, polymer concrete has increasingly been used for a number of applications including piping, machine bases, chemically resistant flooring, and bridge overlays. Currently, the use of polymer concrete as a wear surface for polymeric composite bridge decks is being investigated. Polymer concrete is a particulate composite comprised of mineral aggregate bound by a polymeric matrix. Such materials possess significantly higher mechanical properties than Portland cement concrete. However, the mechanical characteristics and environmental durability of polymer concrete are influenced by a number of factors. Among these are the selection of aggregate and resin, surface treatment, and curemore » conditions. In this work the influence of matrix selection and cure history on the environmental durability of polymer concrete was investigated. Particular attention was given to the effects of water on composite properties and to the mechanisms by which degradation occurs. The basalt-based polymer concrete systems investigated were susceptible to attack by water. Furthermore, results suggest that property loss associated with water exposure was primarily a result of interfacial weakening.« less

  5. Nanoparticle-assisted high photoconductive gain in polymer/fullerene matrix

    PubMed Central

    Chen, Hsiang-Yu; Lo, Michael K. F.; Yang, Guanwen; Monbouquette, Harold G.; Yang, Yang

    2014-01-01

    Polymer/inorganic nanocrystal composites1–10 offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility11 and distribution of nanocrystals (NCs) in polymer matrices. Here, a high photoconductive gain has been achieved by blending cadmium telluride (CdTe) nanoparticles (NPs) into a polymer/fullerene matrix followed by a solvent annealing12 process. The NP surface capping ligand, N-phenyl-N’-methyldithiocarbamate, renders the NPs highly soluble in the polymer blend thereby enabling high nanocrystal loadings. An external quantum efficiency (EQE) as high as ~8000% (at 350nm) is reached at −4.5V. Hole-dominant devices coupled with AFM images are studied to uncover the probable mechanism. We observe a higher concentration of CdTe NPs is located near the cathode/polymer interface. These NPs with trapped electrons assist hole injection into the polymer under reverse bias, which contributes to greater than 100% EQE. PMID:18772915

  6. Polymer-Cement Composites with Self-Healing Ability for Geothermal and Fossil Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, M. Ian; Nguyen, Manh-Thuong; Rod, Kenton A.

    Sealing of wellbores in geothermal and tight oil/gas reservoirs by filling the annulus with cement is a well-established practice. Failure of the cement as a result of physical and/or chemical stress is a common problem with serious environmental and financial consequences. Numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This work reports on a novel polymer-cement composite with remarkable self-healing ability that maintains the required properties of typical wellbore cements and may be stable at most geothermal temperatures.more » We combine for the first time experimental analysis of physical and chemical properties with density functional theory simulations to evaluate cement performance. The thermal stability and mechanical strength are attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. Self-healing was demonstrated by sealing fractures with 0.3–0.5 mm apertures, 2 orders of magnitude larger than typical wellbore fractures. This polymer-cement composite represents a major advance in wellbore cementing that could improve the environmental safety and economics of enhanced geothermal energy and tight oil/gas production.« less

  7. Bio-Inspired Fluoro-polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites.

    PubMed

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-03-01

    Rapid evolution of energy storage devices expedites the development of high-energy-density materials with excellent flexibility and easy processing. The search for such materials has triggered the development of high-dielectric-constant (high-k) polymer nanocomposites. However, the enhancement of k usually suffers from sharp reduction of breakdown strength, which is detrimental to substantial increase of energy storage capability. Herein, the combination of bio-inspired fluoro-polydopamine functionalized BaTiO 3 nanowires (NWs) and a fluoropolymer matrix offers a new thought to prepare polymer nanocomposites. The elaborate functionalization of BaTiO 3 NWs with fluoro-polydopamine has guaranteed both the increase of k and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. The nanocomposite with 5 vol % functionalized BaTiO 3 NWs discharges an ultrahigh energy density of 12.87 J cm -3 at a relatively low electric field of 480 MV m -1 , more than three and a half times that of biaxial-oriented polypropylene (BOPP, 3.56 J cm -3 at 600 MV m -1 ). This superior energy storage capability seems to rival or exceed some reported advanced nanoceramics-based materials at 500 MV m -1 . This new strategy permits insights into the construction of polymer nanocomposites with high energy storage capability.

  8. 4D printing of a self-morphing polymer driven by a swellable guest medium.

    PubMed

    Su, Jheng-Wun; Tao, Xiang; Deng, Heng; Zhang, Cheng; Jiang, Shan; Lin, Yuyi; Lin, Jian

    2018-01-31

    There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics. This need motivates an emerging four-dimensional (4D) printing technology, by which printed 3D structures consisting of active materials can transform their configurations over time in response to stimuli. Despite the ubiquity of active materials in performing self-morphing processes, their potential for 4D printing has not been fully explored to date. In this study, we demonstrate 4D printing of a commercial polymer, SU-8, which has not been reported to date in this field. The working principle is based on a self-morphing process of the printed SU-8 structures through spatial control of the swelling medium inside the polymer matrix by a modified process. To understand the self-morphing behavior, fundamental studies on the effect of the geometries including contours and filling patterns were carried out. A soft electronic device as an actuator was demonstrated to realize an application of this programmable polymer using the 3D printing technology. These studies provide a new paradigm for application of SU-8 in 4D printing, paving a new route to the exploration of more potential candidates by this demonstrated strategy.

  9. Sustained release of antimicrobial drugs from polyvinylalcohol and gum arabica blend matrix.

    PubMed

    Kushwaha, V; Bhowmick, A; Behera, B K; Ray, A R

    1998-03-01

    Synthetic polymers are widely used in biomedical applications. Polymer blends have recently paved their way in this field. An attempt to prepare blend of synthetic polymer polyvinylalcohol and natural macromolecule gum arabica is made in this paper. Characterization of these blends by NMR, DSC and viscoelastic studies reveal preparation of a blend composition with synergistic properties. The blend composition with synergistic properties was used to release various antimicrobial drugs. The duration and release of the drug depends on the amount of drug loaded in the matrix and solubility of the drug in the matrix and release medium. The advantage of this system is that the release kinetics of the drug from the system can be tailored by adjusting plasticizer, homopolymer and crosslinker composition depending on the drug to be released.

  10. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    PubMed

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  12. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  13. Nanofiber Based Optical Sensors for Oxygen Determination

    NASA Astrophysics Data System (ADS)

    Xue, Ruipeng

    Oxygen sensors based on luminescent quenching of nanofibers were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition metal complexes are embedded into a polymer 'core' while a synthetic biocompatible polymer provides a protective 'shell.' Various matrix polymers and luminescent probes were studied in terms of their sensitivity, linear calibration, reversibility, response time, stability and probe-matrix interactions. Due to the small size and high surface area of these nanofibers, all samples showed rapid response and a highly linear response to oxygen. The sensitivity and photostability of the sensors were controlled by the identity of both the probe molecule and the polymer matrix. Such nanofiber sensor forms are particularly suitable in biological applications due to the fact that they do not consume oxygen, are biocompatible and biomimetic and can be easily incorporated into cell culture. Applications of these fibers in cancer cell research, wound healing, breath analysis and waste water treatment were explored.

  14. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.

    PubMed

    Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee

    2015-11-18

    Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.

    PubMed

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-28

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  16. Elaboration, structural and optical investigations of ZnO/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Moussa, S.; Namouchi, F.; Guermazi, H.

    2015-07-01

    Hybrid nanocomposites were elaborated by incorporating ZnO nanoparticles into a transparent epoxy polymer matrix, using the direct dispersion method. The effect of the nanoparticles on the structural and optical properties of the polymer matrix was investigated using Fourier transform infrared (FTIR), Raman and UV-Visible spectroscopies. Nanocomposites FTIR spectra showed a variation of band intensities attributed to nanoparticles agglomeration within the polymer. The UV-Visible measurements showed a redshift on the band gap energy of the nanocomposites differently from neat epoxy resin, caused by interactions between ZnO NPs and polymer chains. Raman spectra confirm these interactions and the formation of hydrogen bonds in the nanocomposites. The UV-Visible transmittance spectra revealed that addition of a very low concentration (0.2wt%) of ZnO nanoparticles to a transparent epoxy matrix would maintain high visible-light transparency. The decrease of transmittance with increasing ZnO percentage is due to light scattering which originates from the agglomeration of nanoparticles in the matrix, the mismatch between the refractive index of ZnO and that of the epoxy matrix, and the increase of the surface roughness of the nanocomposite with increasing ZnO addition. Moreover, the UV-vis absorption spectra revealed that adding more than 1wt% ZnO leads to the improvement of the UV shielding properties of the nanocomposites. These results prove that the elaborated ZnO/epoxy nanocomposites can be used as UV shielding materials.

  17. Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping

    DTIC Science & Technology

    2012-06-01

    of thiolated poly(acrylic acid) with fluorescein attached. (b) Bright field image of large bubbles stabilized by polymer and phospholipid...Page 1 of 6 AD_________________ Award Number: W81XWH-11-1-0215 TITLE:   Multifunctional Polymer Microbubbles for Advanced... Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b. GRANT NUMBER W81XWH-11-1-0215   5c. PROGRAM ELEMENT NUMBER 6

  18. Self-healing in single and multiple fiber(s) reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Woldesenbet, E.

    2010-06-01

    You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  19. Development of new and improved polymer matrix resin systems, phase 1

    NASA Technical Reports Server (NTRS)

    Hsu, M. S.

    1983-01-01

    Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.

  20. Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.

    2015-09-01

    Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.

  1. Surface and interfacial properties of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1991-01-01

    The adhesion strength of AS4 fibers to thermoplastic polymers was determined. The specific polymers were polycarbonate, polyphenylene oxide, polyetherimide, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate-polysiloxan copolymer. Data are also included for polysulfone. It was recognized at the outset that an absolute measure of the fiber matrix adhesion would be difficult. However, it is feasible to determine the fiber bond strengths to the thermoplastics relative to the bond strengths of the same fibers to epoxy polymers. It was anticipated, and in fact realized, that the adhesion of AS4 to the thermoplastic polymers was relatively low. Therefore, further objectives of the study were to identify means of increasing fiber/matrix adhesion and to try to determine why the adhesion of AS4 to thermoplastics is significantly less than to epoxy polymers.

  2. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    NASA Astrophysics Data System (ADS)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

  3. Detection of the relatively slow-growing Propionibacterium acnes in seven matrices of blood components and advanced therapeutical medicinal products.

    PubMed

    Arlt, Nicole; Rothe, Remo; Juretzek, Thomas; Peltroche, Heidrun; Tonn, Torsten; Moog, Rainer

    2017-06-01

    Relatively slow-growing bacteria like Propionibacterium acnes represent a challenge for quality control investigations in sterility release testing of blood components and advanced therapeutic medicinal products (ATMPs). A convenient validation with 7 matrices was performed using buffy coat, stem cells, islet cells, natural killer cells, red blood cells, platelets and plasma in the microbial detection system Bact/Alert ® 3D incubator. All matrix samples were spiked twofold with Propionibacterium acnes with approximately 50 colony forming units (CFUs) per bottle in iAST and iNST culture bottles for 14days using a multishot bioball. Additionally, the stem cell preparations were also incubated in iFAplus and iFNplus culture bottles, which include neutralizing polymers. The Bact/Alert ® 3D-System detected Propionibacterium acnes in anaerobic culture bottles in buffy coat [3.3 d (=positive signal day to detection as mean value)], red blood cells [3.2 d], platelets [3.3], plasma [3.7 d], natural killer cells [3.3 d] and islet cells [4.9 d], resp. No growth of Propionibacterium was found in autologous stem cells using iAST and iNST culture bottles. However, Propionibacterium was safely detected in the iFNplus culture bottle with polymers in the stem cell matrix. A successful validation of media was performed. Our study shows that Bact/Alert ® 3D-System safely detects the relatively slow-growing bacterium Propionibacterium acnes in different matrices in a practical way except stem cells. Using the iFNplus culture bottle for stem cell products positive signals were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mechanical Behavior of a Hi-Nicalon(tm)/SiC Composite Having a Polycarbosilane Derived Matrix

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.

    1999-01-01

    Polymer infiltration of a rigidized preform, followed by pyrolysis to convert the polymer to a ceramic, potentially offers a lower cost alternative to CVD. It also offers more moderate temperature requirements than melt infiltration approaches, which should minimize potential fiber damage during processing. However, polymer infiltration and pyrolysis results in a more microcracked matrix. Preliminary mechanical property characterization, including elevated temperature (1204 C) tensile, 500 h stress rupture behavior and low cycle fatigue, was conducted on Hi-Nicalon (TM)/Si-C-(O) composites having a dual layer BN/SiC interface and a matrix derived by impregnation and pyrolysis of allylhydridopolycarbosilane (AHPCS). Microstructural evaluation of failure surfaces and of polished transverse and longitudinal cross sections of the failed specimens was used to identify predominant failure mechanisms. In stress rupture testing at 1093 C, the failure was interface dominated, while at 1204 C in both stress rupture and two hour hold/fatigue tests failure was matrix dominated, resulting in specimen delamination.

  5. Sputter-Coated Microparticle Additives for Tailored Optical Properties

    DTIC Science & Technology

    2016-09-01

    hour at best). The microspheres coated in this work will be incorporated into a polymer matrix for composite and large-area coating applications...demonstrated, they will be incorporated into a polymer matrix for further testing. 15. SUBJECT TERMS fluidized bed, thin film, microparticles, coating...films of metals, ceramics , and multilayered materials.1 This is a practical method for the batch production of microparticles with tailored optical

  6. Predictive Design of Interfacial Functionality in Polymer Matrix Composites

    DTIC Science & Technology

    2017-05-24

    structural design criteria. Due to the poor accessibility of interfaces by experimental means, little is known about the molecular definition, defect...is designed to allow for concurrent light scattering measurements, which establishes a unique experimental resource. We were able to leverage this...AFRL-AFOSR-VA-TR-2017-0103 Predictive Design of Interfacial Functionality in Polymer Matrix Composites John Kieffer UNIVERSITY OF MICHIGAN 503

  7. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    NASA Astrophysics Data System (ADS)

    Knowles, Kyler Reser

    Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to alter the physical, volumetric, and mechanical properties of the glassy networks. Chain rigidity was found to directly control deformation mechanisms, which were related to the yielding behavior of the epoxy network series. The unique benefit to our approach is the ability to separate the role of rigidity - an intramolecular parameter - from intermolecular phenomena which otherwise influence network properties.

  8. Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Turner, Travis L. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2017-01-01

    Provided is an electrically activated shape memory polymer composite capable of thermal shape reformation using electric power to heat the composite through its matrix glass transition temperature. The composite includes an adaptable polymer matrix component using a diglycidyl ether resin, at least one substantially well-dispersed conductive or magnetic nano-filler component, and at least one elastic, laminated layer. Also provided are methods of preparing the composite and methods of activating the composite. A shape reformation of the composite is triggered by applying an electric field at DC and/or at a frequency above about 1.mu.Hz for a sufficient time.

  9. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  10. Analysis of Carbon Nanotube Pull-out from a Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Harik, V. M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Molecular dynamics (MD) simulations of carbon nanotube (NT) pull-out from a polymer matrix are carried out. As the NT pull-out develops in the simulation, variations in the displacement and velocities of the NT are monitored. The existence of a carbon-ring-based period in NT sliding during pull-out is identified. Linear trends in the NT velocity-force relation are observed and used to estimate an effective viscosity coefficient for interfacial sliding at the NT/polymer interface. As a result, the entire process of NT pull-out is characterized by an interfacial friction model that is based on a critical pull-out force, and an analog of Newton's friction law used to describe the NT/polymer interfacial sliding.

  11. Ammonium nitrate-polymer glasses: a new concept for phase and thermal stabilization of ammonium nitrate.

    PubMed

    Lang, Anthony J; Vyazovkin, Sergey

    2008-09-11

    Dissolving of ammonium nitrate in highly polar polymers such as poly(vinylpyrrolidone) and/or poly(acrylamide) can result in the formation of single-phase glassy solid materials, in which NH 4 (+) and NO 3 (-) are separated through an ion-dipole interaction with the polymer matrix. Below the glass transition temperature of the polymer matrix the resulting materials remain phase and thermally stable as demonstrated through the absence of decomposition as well as the solid-solid transitions and melting of ammonium nitrate. The structure of the materials is explored by Fourier transform infrared spectroscopy and density functional calculations. Differential scanning calorimetry, thermogravimetry, and isoconversional kinetic analysis are applied to characterize the thermal behavior of the materials.

  12. Elasticity Dominated Surface Segregation of Small Molecules in Polymer Mixtures

    NASA Astrophysics Data System (ADS)

    Krawczyk, Jarosław; Croce, Salvatore; McLeish, T. C. B.; Chakrabarti, Buddhapriya

    2016-05-01

    We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. A wetting transition, observed for high values of the miscibility parameter can be prevented by increasing the matrix rigidity. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubberlike materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.

  13. Polyimide molding powder, coating, adhesive, and matrix resin

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1992-01-01

    The invention is a polyimide prepared from 3,4'-oxydianiline (3,4'-ODA) and 4,4'-oxydiphthalic anhydride (ODPA), in 2-methoxyethyl ether (diglyme). The polymer was prepared in ultra high molecular weight and in a controlled molecular weight form which has a 2.5 percent offset in stoichiometry (excess diamine) with a 5.0 percent level of phthalic anhydride as an endcap. This controlled molecular weight form allows for greatly improved processing of the polymer for moldings, adhesive bonding, and composite fabrication. The higher molecular weight version affords tougher films and coatings. The overall polymer structure groups in the dianhydride, the diamine, and a metal linkage in the diamine affords adequate flow properties for making this polymer useful as a molding powder, adhesive, and matrix resin.

  14. Aerospace materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornheim, M.A.

    1991-04-01

    A comprehensive evaluation is made of the development trends in high performance advanced aerospace structural materials applications. It is noted that the anticipated predominance of thermoplastic composite-matrix polymers in the F-22/F-23 ATF propotypes has not materialized, due both to their high materials and processing costs and the emergence of a more tractable high operating temperature thermoset, BMI, whose toughness characteristics are of the order of those associated with thermoplastics. No more than 15 percent of F-22 weight is thermoplastics; the F-23 use of such resins is nill. Throughout the advanced nonmetallics industry, reduced DOD procurements have come to represent slowmore » growth and the prospect of consolidation. Also, such lightweight Al-based metallics as the Al-Li alloys have posed a major market-share challenge to polymeric composites, as in the case of the C-17 airlifter's 6,269 lbs of such Al-Li alloys as 2090, largely in cargo floor and ramp bulkhead structures. The EFA fighter makes frequent use of SPF-DB Ti alloys in combat damage-critical components. Metal-matrix composites employing titanium aluminide matrices will be extensively used in the X-30 hypersonic aircraft program.« less

  15. A two-step strategy to visually identify molecularly imprinted polymers for tagged proteins.

    PubMed

    Brandis, Alexander; Partouche, Eran; Yechezkel, Tamar; Salitra, Yoseph; Shkoulev, Vladimir; Scherz, Avigdor; Grynszpan, Flavio

    2017-08-01

    A practical and relatively simple method to identify molecularly imprinted polymers capable of binding proteins via the molecular tagging (epitope-like) approach has been developed. In our two-step method, we first challenge a previously obtained anti-tag molecularly imprinted polymer with a small molecule including the said tag of choice (a biotin derivative as shown here or other) connected to a linker bound to a second biotin moiety. An avidin molecule partially decorated with fluorescent labels is then allowed to bind the available biotin derivative associated with the polymer matrix. At the end of this simple process, and after washing off all the low-affinity binding molecules from the polymer matrix, only suitable molecularly imprinted polymers binding avidin through its previously acquired small molecule tag (or epitope-like probe, in a general case) will remain fluorescent. For confirmation, we tested the selective performance of the anti-biotin molecularly imprinted polymer binding it to biotinylated alkaline phosphatase. Residual chemical activity of the enzyme on the molecularly imprinted polymer solid support was observed. In all cases, the corresponding nonimprinted polymer controls were inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites

    NASA Technical Reports Server (NTRS)

    Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.

    2014-01-01

    Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.

  17. Polymer Nanocomposite Films: Dispersion of Polymer Grafted Nanorods and Optical Properties

    NASA Astrophysics Data System (ADS)

    Composto, Russell

    2013-03-01

    The thermodynamic factors that affect the dispersion of polymer-brush grafted gold nanorods (NR) in polymer matrix films have been studied by experiment and theory. When brush and matrix have a favorable interaction, such as poly(ethylene oxide) (PEO)-NR/ poly(methyl methacrylate) (PMMA) and polystyrene (PS)-NR / poly(2,6-dimethyl-p-phenylene oxide) (PPO), nanorods are uniformly dispersed. For PEO-NRs in PMMA, the NRs are regularly spaced and well dispersed, independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), namely P/N. As the NR volume fraction increases, the local orientation of the nanorods increases, whereas the macroscopic orientation remains isotropic. When the brush and matrix are similar (i.e., PS-NR / PS and PEO-NR / PEO), the nanorods randomly disperse for P/N < 2 (i.e., wet brush), but align side-by-side in aggregates for P/N > 2. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that surface plasmon coupling leads to a blue shift in the longitudinal surface plasmon resonance (LSPR) as P/N increases. For P/N > 2, self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations indicate that nanorod aggregation is caused by depletion-attraction forces. Starting with a dry brush system, namely, a PS matrix where P/N = 30, these attractive forces can be mediated by adding a compatibilizing agent (e.g., PPO) that drives the NRs to disperse. Finally, dry and wet brush behavior is observed for NR aspect ratios varying from 2.5 to 7. However, compared at the same volume fraction, long rods for the dry case exhibit much better local order than lower aspect ratio nanorods, suggesting that long rods may exhibit nematic-like ordering at higher loadings. NSF Polymer and CEMRI Programs.

  18. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    PubMed

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Thermoresponsive N-alkoxyalkylacrylamide polymers as a sieving matrix for high-resolution DNA separations on a microfluidic chip

    PubMed Central

    Root, Brian E.; Hammock, Mallory L.; Barron, Annelise E.

    2012-01-01

    In recent years, there has been an increasing demand for a wide range of DNA separations that require the development of materials to meet the needs of high resolution and high throughput. Here, we demonstrate the use of thermoresponsive N-alkoxyalkylacrylamide polymers as a sieving matrix for DNA separations on a microfluidic chip. The viscosities of the N-alkoxyalkylacrylamide polymers are more than an order of magnitude lower than that of a linear polyacrylamide of corresponding molecular weight, allowing rapid loading of the microchip. At 25 °C, N-alkoxyalkylacrylamide polymers can provide improved DNA separations compared to LPA in terms of reduced separation time and increased separation efficiency, particularly for the larger DNA fragments. The improved separation efficiency in N-alkoxyalkylacrylamide polymers is attributed to the peak widths increasing only slightly with DNA fragment size, while the peak widths increase appreciably above 150 bp using an LPA matrix. Upon elevating the temperature to 50 °C, the increase in viscosity of the N-alkoxyalkylacrylamide solutions is dependent upon their overall degree of hydrophobicity. The most hydrophobic polymers exhibit an LCST below 50 °C, undergoing a coil-to-globule transition followed by chain aggregation. DNA separation efficiency at 50 °C therefore decreases significantly with increasing hydrophobic character of the polymers, and no separations were possible with solutions with an LCST below 50 °C. The work reported here demonstrates the potential for this class of polymer to be used for applications such as PCR product and RFLP sizing, and provides insight into the effect of polymer hydrophobicity on DNA separations. PMID:19053065

  20. Inhibition of MMP-13 with modified polymer particles

    NASA Astrophysics Data System (ADS)

    Tran, Hai; Bratlie, Kaitlin M.

    2016-06-01

    Matrix metalloproteinases (MMPs) are proteases that destroy the extracellular matrix and have important roles in the foreign body response, wound healing, and disease. Of particular importance is the chronic wound environment in which MMP activity is increased, resulting in destruction of the de novo extracellular matrix. One potential treatment of these wounds would be to use dressings that are capable of inhibiting MMP activity. In this study, we examined the effect of seven polymer modifiers (2-amino-3-guanidinopropionic acid, arginine, carnitine, citrulline, creatine, 3-guanidino propionic acid, and Nw-nitro-L-arginine) on MMP-13 activity. MMP-13 is a collagenase that is present in chronic wounds and is zinc dependent. Our results showed that these polymer modifiers were able to inhibit MMP-13 activity to varying degrees. The mechanism of inhibition appears to be binding zinc to the modifiers.

  1. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    DOEpatents

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  2. Measurement Of Molecular Mobilities Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Tsay, Fun-Dow

    1989-01-01

    New molecular-probe technique used to measure molecular mobility of polymer. Method based on use of time-resolved electron-spin resonance (ESR) spectroscopy to monitor decay of transient nutation amplitudes from photoexcited triplet states of probe molecules with which polymer is doped. The higher molecular mobility of polymer matrix, the faster nutation amplitudes of the probe molecules decay.

  3. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    USDA-ARS?s Scientific Manuscript database

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  4. Drug Release Kinetics and Front Movement in Matrix Tablets Containing Diltiazem or Metoprolol/λ-Carrageenan Complexes

    PubMed Central

    Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla

    2014-01-01

    In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer. PMID:25045689

  5. Drug release kinetics and front movement in matrix tablets containing diltiazem or metoprolol/λ-carrageenan complexes.

    PubMed

    Bettini, Ruggero; Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla

    2014-01-01

    In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.

  6. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    PubMed

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    PubMed

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    NASA Technical Reports Server (NTRS)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  9. Tailorable drug capacity of dexamethasone-loaded conducting polymer matrix

    NASA Astrophysics Data System (ADS)

    Krukiewicz, K.

    2018-05-01

    The unique properties of conducting polymers, which are in the same time biocompatible and electrically responsive materials, make them perfect candidates for controlled drug release systems. In this study, the electrically-triggered controlled release system based on dexamethasone-loaded poly (3, 4-ethylenedioxypyrrole) (PEDOP) matrix is described. It is shown that the electropolymerization conditions can facilitate or suppress the formation of PEDOP/Dex matrix, as well as they can have the effect on its electrochemical performance. The release experiments performed in three different modes show that the drug capacity of PEDOP matrix increases with the increase in Dex concentration in the step of matrix synthesis, and higher Dex concentrations make it easier to control the amount of Dex released in an electrically-triggered mode. These results confirm the importance of the careful optimization of immobilization conditions to maximize drug capacity of matrix and maintain its electrochemical properties.

  10. Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.

  11. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar (registered trademark)-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2013-03-01

    of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber

  12. Molecular-Level Computational Investigation of Mechanical Transverse Behavior of p-Phenylene Terephthalamide (PPTA) Fibers

    DTIC Science & Technology

    2013-01-01

    fabricated today are based on polymer matrix composites containing Kevlarw KM2 reinforcements , the present work will deal with generic PPTA fibers . In...Multi-length scale enriched continuum-level material model for Kevlarw- fiber reinforced polymer-matrix composites”, Journal of Materials...mechanical transverse behavior of p-phenylene terephthalamide (PPTA) fibers Purpose – A series of all-atom molecular-level computational analyses is

  13. Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis.

    PubMed

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Sarwar, Afsheen; Dilshad, Muhammad Rizwan; Shafeeq, Amir; Zahid Butt, Muhammad Taqi; Jamil, Tahir

    2015-11-05

    In this study pristine multi-walled carbon nanotubes (MWCNTs) were surface engineered (SE) in strong acidic medium by oxidation purification method to form SE-MWCNT. Five different amount of SE-MWCNT ranging from 0.1 to 0.5 wt% were thoroughly and uniformly dispersed in cellulose acetate/polyethylene glycol (CA/PEG400) polymer matrix during synthesis of membrane by dissolution casting method. The structural analysis, surface morphology and roughness was carried out by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively, which showed that the dispersed SE-MWCNT was substantially tethered in CA/PEG400 polymer matrix membrane. The thermogravimetric analysis (TGA) of membranes also suggested some improvement in thermal properties with the addition of SE-MWCNT. Finally, the performance of these membranes was assessed for suitability in drinking water treatment. The permeation flux and salt rejection were determined by using indigenously fabricated reverse osmosis pilot plant with 1000 ppm NaCl feed solution. The results showed that the tethered SE-MWCNT/CA/PEG400 polymer matrix membrane, with strong SE-MWCNTs/polymer matrix interaction, improved the salt rejection performance of the membrane with the salt rejection of 99.8% for the highest content of SE-MWCNT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion.

    PubMed

    Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel

    2014-08-01

    A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles

    DOE PAGES

    Liu, Siqi; Senses, Erkan; Jiao, Yang; ...

    2016-04-15

    Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less

  16. Metallized Nanotube Polymer Composite (MNPC) and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Lowther, Sharon E. (Inventor); Lillehei, Peter T. (Inventor); Park, Cheol (Inventor); Taylor, Larry (Inventor); Kang, Jin Ho (Inventor); Nazem, Negin (Inventor); Kim, Jae-Woo (Inventor); Sauti, Godfrey (Inventor)

    2017-01-01

    A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.

  17. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship

    PubMed Central

    Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.

    2013-01-01

    Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290

  18. Dispersion and Mechanical Properties of Carbon Nanotube/Polymer Composites via Melt Compounding

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Cohen, Robert

    2003-03-01

    This work is focused on the fabrication of carbon nanotube/ polymer composites via melt compounding. The main objective of this work is to realize the outstanding properties of carbon nanotubes (high modulus, high thermal and electrical conductivity, elastic buckling) at the macroscopic level by blending carbon nanotubes into a polymer matrix. The challenge lies in dispersing these one dimensional nanoparticles in the polymer matrix. Dispersion of the nanotubes in the composites is analyzed via transmission and scanning electron microscopy. Mechanical properties as well as electrical and thermal conductivity are measured as a function of nanotube loading, orientation, and extrusion conditions. Multi-wall nanotube loadings in the range of 1 and 10 wtconcave-downward departures from the linear stress-strain behavior of the unmodified polymer below 5observations are discussed in the context of possible deformation mechanisms for the nanotube composites.

  19. Preceramic Polymers for Use as Fiber Coatings

    NASA Technical Reports Server (NTRS)

    Heimann, P. J.; Hurwitz, F. I.; Wheeler, D.; Eldridge, J.; Baranwal, R.; Dickerson, R.

    1996-01-01

    Polymeric precursors to Si-C-O, SI-B-N and Si-C were evaluated for use as ceramic interfaces in ceramic matrix composites. Use of the preceramic polymers allows for easy dip coating of fibers from dilute solutions of a polymer, which are then pyrolyzed to obtain the ceramic. SCS-0 fibers (Textron Specialty Materials, Lowell, MA) were coated with polymers from three systems: polysilsesquioxanes, polyborosilazanes and polycarbosilanes. The polysilsesquioxane systems were shown to produce either silicon oxycarbide or silicon oxynitride, depending on the pyrolysis conditions, and demonstrated some promise in an RBSN (reaction-bonded silicon nitride) matrix model system. Polyborosilazanes were shown, in studies of bulk polymers, to give rise to oxidation resistant Si-B-N ceramics which remain amorphous to temperatures of 1600 C, and should therefore provide a low modulus interface. Polycarbosilanes produce amorphous carbon-rich Si-C materials which have demonstrated oxidation resistance.

  20. Highly conductive composites for fuel cell flow field plates and bipolar plates

    DOEpatents

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  1. Heat resistant substrates and battery separators made therefrom

    NASA Technical Reports Server (NTRS)

    Langer, Alois (Inventor); Scala, Luciano C. (Inventor); Ruffing, Charles R. (Inventor)

    1976-01-01

    A flexible substrate having a caustic resistant support and at least one membrane comprising a solid polymeric matrix containing a network of interconnected pores and interdispersed inorganic filler particles with a ratio of filler: polymer in the polymeric matrix of between about 1:1 to 5:1, is made by coating at least one side of the support with a filler:coating formulation mixture of inorganic filler particles and a caustic resistant, water insoluble polymer dissolved in an organic solvent, and removing the solvent from the mixture to provide a porous network within the polymeric matrix.

  2. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  3. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  4. Carbon Dots as Fillers Inducing Healing/Self-Healing and Anticorrosion Properties in Polymers.

    PubMed

    Zhu, Cheng; Fu, Yijun; Liu, Changan; Liu, Yang; Hu, Lulu; Liu, Juan; Bello, Igor; Li, Hao; Liu, Naiyun; Guo, Sijie; Huang, Hui; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-08-01

    Self-healing is the way by which nature repairs damage and prolongs the life of bio entities. A variety of practical applications require self-healing materials in general and self-healing polymers in particular. Different (complex) methods provide the rebonding of broken bonds, suppressing crack, or local damage propagation. Here, a simple, versatile, and cost-effective methodology is reported for initiating healing in bulk polymers and self-healing and anticorrosion properties in polymer coatings: introduction of carbon dots (CDs), 5 nm sized carbon nanocrystallites, into the polymer matrix forming a composite. The CDs are blended into polymethacrylate, polyurethane, and other common polymers. The healing/self-healing process is initiated by interfacial bonding (covalent, hydrogen, and van der Waals bonding) between the CDs and the polymer matrix and can be optimized by modifying the functional groups which terminate the CDs. The healing properties of the bulk polymer-CD composites are evaluated by comparing the tensile strength of pristine (bulk and coatings) composites to those of fractured composites that are healed and by following the self-healing of scratches intentionally introduced to polymer-CD composite coatings. The composite coatings not only possess self-healing properties but also have superior anticorrosion properties compared to those of the pure polymer coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE PAGES

    Miller, Brad; Imel, Adam E.; Holley, Wade; ...

    2015-11-12

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  6. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Brad; Imel, Adam E.; Holley, Wade

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  7. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  8. Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix

    PubMed Central

    Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda

    2014-01-01

    Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593

  9. Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations.

    PubMed

    Khani, Shaghayegh; Jamali, Safa; Boromand, Arman; Hore, Michael J A; Maia, Joao

    2015-09-14

    Self-assembly of nanoparticles in polymer matrices is an interesting and growing subject in the field of nanoscience and technology. We report herein on modelling studies of the self-assembly and phase behavior of nanorods in a homopolymer matrix, with the specific goal of evaluating the role of deterministic entropic and enthalpic factors that control the aggregation/dispersion in such systems. Grafting polymer brushes from the nanorods is one approach to control/impact their self-assembly capabilities within a polymer matrix. From an energetic point of view, miscible interactions between the brush and the matrix are required for achieving a better dispersibility; however, grafting density and brush length are the two important parameters in dictating the morphology. Unlike in previous computational studies, the present Dissipative Particle Dynamics (DPD) simulation framework is able to both predict dispersion or aggregation of nanorods and determine the self-assembled structure, allowing for the determination of a phase diagram, which takes all of these factors into account. Three types of morphologies are predicted: dispersion, aggregation and partial aggregation. Moreover, favorable enthalpic interactions between the brush and the matrix are found to be essential for expanding the window for achieving a well-dispersed morphology. A three-dimensional phase diagram is mapped on which all the afore-mentioned parameters are taken into account. Additionally, in the case of immiscibility between brushes and the matrix, simulations predict the formation of some new and tunable structures.

  10. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications.

    PubMed

    Godara, A; Raabe, D; Green, S

    2007-03-01

    The effect of sterilization on the structural integrity of the thermoplastic matrix composite polyetheretherketone (PEEK) reinforced with carbon fibers (CF) is investigated by nanoindentation and nanoscratch tests. The use of the material as a medical implant grade requires a detailed understanding of the micromechanical properties which primarily define its in vivo behavior. Sterilization is a mandatory process for such materials used in medical applications like bone implants. The steam and gamma radiation sterilization processes employed in this study are at sufficient levels to affect the micromechanical properties of some polymer materials, particularly in the interphase region between the polymer matrix and the reinforcing fibers. Nanoindentation and nanoscratch tests are used in this work to reveal local gradients in the hardness and the elastic properties of the interphase regions. Both methods help to explore microscopic changes in the hardness, reduced stiffness and scratch resistance in the interphase region and in the bulk polymer matrix due to the different sterilization processes employed. The results reveal that neither steam nor gamma radiation sterilization entails significant changes of the reduced elastic modulus, hardness or coefficient of friction in the bulk polymer matrix. However, minor material changes of the PEEK matrix were observed in the interphase region. Of the two sterilization methods used, the steam treatment has a more significant influence on these small changes in this region and appears to increase slightly the thickness of the interphase zone.

  11. Morphological and mechanical characterization of composite bone cement containing polymethylmethacrylate matrix functionalized with trimethoxysilyl and bioactive glass.

    PubMed

    Puska, Mervi; Moritz, Niko; Aho, Allan J; Vallittu, Pekka K

    2016-06-01

    Medical polymers of biostable nature (e.g. polymethylmetacrylate, PMMA) are widely used in various clinical applications. In this study, novel PMMA-based composite bone cement was prepared. Bioactive glass (BAG) particulate filler (30wt%) was added to enhance potentially the integration of bone to the cement. The polymer matrix was functionalized with trimethoxysilyl to achieve an interfacial bond between the matrix and the fillers of BAG. The amount of trimethoxysilyl in the monomer system varied from 0 to 75wt%. The effects of dry and wet (simulated body fluid, SBF at +37°C for 5 weeks) conditions were investigated. In total, 20 groups of specimens were prepared. The specimens were subjected to a destructive mechanical test in compression. Scanning electron microscopy (SEM) and micro-computed tomography (micro-CT) were used to study the surface and the three-dimensional morphology of the specimens. The results of the study indicated that the addition of trimethoxysilyl groups led to the formation of a hybrid polymer matrix which, in lower amounts (<10wt% of total weight), did not significantly affect the compression properties. However, when the specimens stored in dry and wet conditions were compared, the water sorption increased the compression strength (~5-10MPa per test group). At the same time, the water sorption also caused an evident porous structure formation for the specimens containing BAG and siloxane formation in the hybrid polymer matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    NASA Astrophysics Data System (ADS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-03-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV-Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  13. Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structure

    NASA Technical Reports Server (NTRS)

    Harris, C. E.

    2001-01-01

    This viewgraph presentation gives an assessment of the state-of-the-art in the design and manufacturing of large component structures, including details on the use of continuous fiber reinforced polymer matrix composites (CFRP) in commercial and military aircraft and in space launch vehicles. Project risk mitigation plans must include a building-block test approach to structural design development, manufacturing process scale-up development tests, and pre-flight ground tests to verify structural integrity. The potential benefits of composite structures justifies NASA's investment in developing the technology. Advanced composite structures technology is enabling to virtually every Aero-Space Technology Enterprise Goal.

  14. Using Polymeric Materials to Control Stem Cell Behavior for Tissue Regeneration

    PubMed Central

    Zhang, Nianli; Kohn, David H.

    2017-01-01

    Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ substitute is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self renew and differentiate into neurogenic, osteogenic, chondrogenic, myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell-polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. PMID:22457178

  15. Application of Hydrogels in Heart Valve Tissue Engineering

    PubMed Central

    Zhang, Xing; Xu, Bin; Puperi, Daniel S.; Wu, Yan; West, Jennifer L.; Grande-Allen, K. Jane

    2015-01-01

    With an increasing number of patients requiring valve replacement, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity, but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve. PMID:25955010

  16. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats

    PubMed Central

    Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan

    2017-01-01

    In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688

  17. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-01-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e

  18. Antioxidant functionalized polymer capsules to prevent oxidative stress.

    PubMed

    Larrañaga, Aitor; Isa, Isma Liza Mohd; Patil, Vaibhav; Thamboo, Sagana; Lomora, Mihai; Fernández-Yague, Marc A; Sarasua, Jose-Ramon; Palivan, Cornelia G; Pandit, Abhay

    2018-02-01

    Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i.e., hydroxyl radicals and hydrogen peroxide) and modulate extracellular matrix activity in an in vitro inflammation model of nucleus pulposus. The present work represents accordingly, an important advance in the development and application of polymer capsules with antioxidant properties for the treatment of oxidative stress, which is applicable for multiple inflammatory disease targets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  20. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  1. Geometry in Biomimetic Network: Double Gyroid to Pseudo-Single Gyroid in Nanohybrid Materials

    NASA Astrophysics Data System (ADS)

    Hsueh, Han-Yu; Ho, Rong-Ming; Hung, Yu-Chueh; Ling, Yi-Chun; Hasegawa, Hirokazu

    2013-03-01

    Biological systems have developed delicately arranged micro- and architectures to produce striking optical effects since millions of years ago. Inspired by the textures of butterfly wings with single gyroid (SG) structure, herein, we aim to fabricate biocompatible and robust materials with SG-like structure in nanometer size so as to give new materials with unprecedented optical properties for applications. Biommicking from the biological photonic structures of butterfly wings, a double gyroid (DG) structure in nanometer size is obtained from the self-assembly of polystyrene-b-poly(L-lactide) (PS-PLLA). To acquire robust backbone networks, inorganic networks in polymer matrix are fabricated by using the hydrolyzed PS-PLLA with DG structure as a template for sol-gel reaction. Owing to the soft polymer matrix, two co-continuous inorganic networks embedded in the polymer matrix can be rearranged by thermal annealing at temperature above the glass transition of the polymer. Consequently, the rearrangement of these inorganic networks leads the formation of SG-like structure possessing unique nanohybrids with ordered texture. This unique nanomaterials with SG-like structure is referred as a pseudo-SG (p-SG) nanohybrids.

  2. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  3. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  4. Assembly of P3HT/CdSe nanowire networks in an insulating polymer host.

    PubMed

    Heo, Kyuyoung; Miesch, Caroline; Na, Jun-Hee; Emrick, Todd; Hayward, Ryan C

    2018-06-27

    Nanoparticles may act as compatibilizing agents for blending of immiscible polymers, leading to changes in blend morphology through a variety of mechanisms including interfacial adsorption, aggregation, and nucleation of polymer crystals. Herein, we report an approach to define highly structured donor/acceptor networks based on poly(3-hexylthiophene) (P3HT) and CdSe quantum dots (QDs) by demixing from an insulating polystyrene (PS) matrix. The incorporation of QDs led to laterally phase-separated co-continuous structures with sub-micrometer dimensions, and promoted crystallization of P3HT, yielding highly interconnected P3HT/QD hybrid nanowires embedded in the polymer matrix. These nanohybrid materials formed by controlling phase separation, interfacial activity, and crystallization within ternary donor/acceptor/insulator blends, offer attractive morphologies for potential use in optoelectronics.

  5. A review of mechanical and tribological behaviour of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  6. Residual thermal stresses in composites for dimensionally stable spacecraft applications

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Tompkins, Stephen S.; Funk, Joan G.

    1992-01-01

    An overview of NASA LaRC's research on thermal residual stresses and their effect on the dimensional stability of carbon fiber reinforced polymer-matrix composites is presented. The data show that thermal residual stresses can induce damage in polymer matrix composites and significantly affect the dimensional stability of these composites by causing permanent residual strains and changes in CTE. The magnitude of these stresses is primarily controlled by the laminate configuration and the applied temperature change. The damage caused by thermal residual stresses initiates at the fiber/matrix interface and micromechanics level analyses are needed to accurately predict it. An increased understanding of fiber/matrix interface interactions appears to be the best approach for improving a composite's resistance to thermally induced damage.

  7. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  8. Advanced functional polymers for regenerative and therapeutic dentistry.

    PubMed

    Lai, W-F; Oka, K; Jung, H-S

    2015-07-01

    Use of ceramics and polymers continues to dominate clinical procedures in modern dentistry. Polymers have provided the basis for adhesives, tissue void fillers, and artificial replacements for whole teeth. They have been remarkably effective in the clinic at restoration of major dental functions after damage or loss of teeth. With the rapid development of polymer science, dental materials science has significantly lagged behind in harnessing these advanced polymer products. What they offer is new and unique properties superior to traditional polymers and crucially a range of properties that more closely match natural biomaterials. Therefore, we should pursue more vigorously the benefits of advanced polymers in dentistry. In this review, we highlight how the latest generation of advanced polymers will enhance the application of materials in the dental clinic using numerous promising examples. Polymers have a broad range of applications in modern dentistry. Some major applications are to construct frameworks that mimic the precise structure of tissues, to restore tooth organ function, and to deliver bioactive agents to influence cell behavior from the inside. The future of polymers in dentistry must include all these new enhancements to increase biological and clinical effectiveness beyond what can be achieved with traditional biomaterials. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Proceedings of ARO Workshop Biostructures as Composite Materials, Held in Cleveland, Ohio on October 23-25, 1989

    DTIC Science & Technology

    1990-03-01

    16 43 J. Kardos, Washington University 18. Processing and Properties of Natural Ceramic Polymer3 C om...superior and novel I bulk materials including numerous polymers, ceramics and metallic alloys, but also designing structures both on micro and macro...both critical and non critical applications. Similar but less spectacular progress I has been made in the case of metal matrix and ceramic matrix

  10. Processable high temperature resistant polymer matrix materials

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1975-01-01

    A review is presented of studies conducted with addition-cured polyimides, giving particular attention to an improved method involving in situ polymerization of monomer reactants (PMR) on the surface of the reinforcing fibers. The studies show that the PMR approach provides a powerful method for fabricating high performance polymer matrix composites. Significant advantages of the PMR approach are related to the superior high temperature properties of the obtained material, lower cost, greater safety, and processing versatility.

  11. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  12. Superhydrophilic poly (styrene co acrylonitrile)-ZnO nanocomposite surfaces for UV shielding and self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Singh, Rajender; Sharma, Ramesh; Barman, P. B.; Sharma, Dheeraj

    2017-11-01

    UV shielding based super hydrophilic material is developed in the present formulation by in situ emulsion polymerization of poly (styrene-acrylonitrile) with ZnO nanoparticles. The ESI-MS technique confirms the structure of polymer nanocomposite by their mass fragments. The XRD study confirms the presence of ZnO phase in polymer matrix. PSAN/ZnO nanocomposite leads to give effective UV shielding (upto 375 nm) and visible luminescence with ZnO content in polymer matrix. The FESEM and TEM studies confirm the symmetrical, controlled growth of PNs. The incorporation of ZnO nanofillers into PSAN matrix lead to restructuring the PNs surfaces into superhydrophilic surfaces in water contact angle (WCA) from 70° to 10°. We believe our synthesized PSAN/ZnO nanocomposite could be potential as UV shielding, luminescent and super hydrophilic nature based materials in related commercial applications.

  13. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Calignano, Flaviana; Fontana, Marco; Pirri, Fabrizio; Roppolo, Ignazio

    2016-07-19

    Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP) system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs) in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites.

  14. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  15. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is predicted to out-perform nanotubes. In the last few years, work has been done by researchers to study bulk mechanical properties of graphene platelets in polymer matrix. This thesis reports the extensive improvements observed in fatigue resistance and fracture toughness of epoxy using graphene platelet as a filler in very small quantities. Though significant property improvements like 75% increase in fracture toughness and 25-fold increase in fatigue resistance were observed for graphene epoxy nano-composites, the toughening mechanisms could not be delineated without thermo-mechanical and micro-mechanical tests. In this work, the bulk mechanical properties of graphene platelet-polymer nano-composites are studied and presented and the toughness mechanisms are identified by fractography, differential scanning calorimetry, and Raman spectroscopy; and then compared to predictions by theoretical models. Strong adherence to the matrix was found to be the key mechanism responsible for the effective reinforcement provided by graphene to the polymer. The strong graphene platelet-matrix interface also leads to extensive crack deflection, which was observed to be the major toughening mechanism in the nano-composite. In this thesis, the bulk mechanical property results are complemented by in-depth characterization of filler-polymer interfacial interactions and interphase formation using a battery of techniques including Raman spectroscopy and atomic force microscopy. Theoretical and empirical models proposed by Faber & Evans and Pezzotti were critically studied and applied. Pezzotti's model was found to corroborate well with experimental results and provided insight into enhancement mechanisms and explains the mechanisms underpinning the toughness loss at high graphene platelet weight fraction. The thesis provides conclusive evidences for the superiority of graphene as a filler for reinforcing polymer matrices. In conclusion, the thesis presents a thorough investigation of one- and two-dimensional carbon nanomaterials as fillers for high-performance polymer nano-composites. The extensive studies performed on graphene provide a strong foundation for graphene as a potential candidate for reinforcing polymers. The superior performance of graphene as a filler is attributed to graphene's high specific surface area, two-dimensional sheet geometry, strong filler-matrix adhesion and the outstanding mechanical properties of the sp2 carbon-bonding network in graphene. The improved mechanical properties of the graphene-polymer nano-composites, concurrent with the cost-effective production are both vital requirements of the industry in adoption of high strength-to-weight ratio polymer composites for various structural applications.

  16. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites.

    PubMed

    Zhou, Li; He, Benzhao; Huang, Jiachang

    2013-09-21

    A facile and green approach for the synthesis of amphibious fluorescent carbon dots (CDs) from natural polysaccharide is reported. Light-emitting polymer nanocomposites with excellent optical performance can be easily prepared by incorporation of the amphibious CDs into the polymer matrix.

  17. Morphological, mechanical properties and biodegradability of biocomposite thermoplastic starch and polycaprolactone reinforced with sisal fibers

    USDA-ARS?s Scientific Manuscript database

    The incorporation of fibers as reinforcements in polymer composites has increased due to their renewability, low cost and biodegradability. In this study, sisal fibers were added to a polymer matrix of thermoplastic starch and polycaprolactone, both biodegradable polymers. Sisal fibers (5% and 10%) ...

  18. The tracer diffusion coefficient of soft nanoparticles in a linear polymer matrix

    DOE PAGES

    Imel, Adam E.; Rostom, Sahar; Holley, Wade; ...

    2017-03-09

    The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and are often difficult to determine experimentally. To address this shortcoming, we have developed a novel method to determine the tracer diffusion coefficient of soft polystyrene nanoparticles in a linear polystyrene matrix. Monitoring the interdiffusion of soft nanoparticles into a linear polystyrene matrix provides the mutual diffusion coefficient of this system, from which the tracer diffusion coefficient of the soft nanoparticle can be determined using the slow mode theory. Utilizing this protocol, the role of nanoparticle molecular weight and rigidity on its tracer diffusion coefficient is provided. These resultsmore » demonstrate that the diffusive behavior of these soft nanoparticles differ from that of star polymers, which is surprising since our recent studies suggest that the nanoparticle interacts with a linear polymer similarly to that of a star polymer. It appears that these deformable nanoparticles mostly closely mimic the diffusive behavior of fractal macromolecular architectures or microgels, where the transport of the nanoparticle relies on the cooperative motion of neighboring linear chains. Finally, the less cross-linked, and thus more deformable, nanoparticles diffuse faster than the more highly crosslinked nanoparticles, presumably because the increased deformability allows the nanoparticle to distort and fit into available space.« less

  19. Using quantitative magnetic resonance methods to understand better the gel-layer formation on polymer-matrix tablets.

    PubMed

    Mikac, Urša; Kristl, Julijana; Baumgartner, Saša

    2011-05-01

    Magnetic resonance imaging is a powerful, non-invasive technique that can help improve our understanding of the hydrogel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on drug release. In this paper, the authors review the NMR and MRI investigations of hydrophilic, swellable polymers published since 1994. The review covers NMR studies on the properties of water and drugs within hydrated polymers. In addition, MRI studies using techniques for determining the different moving-front positions within the swollen tablets, the polymer concentration profiles across them, the influence of the incorporated drug, and so on, are presented. Some complementary methods are also briefly presented and discussed. Using MRI, the formation of a hydrogel along with simultaneous determination of the drug's position within it can be observed non-invasively. However, the MRI parameters can influence the signal's intensity and therefore they need to be considered carefully in order to prevent any misinterpretation of the results. MRI makes possible an in situ investigation of swollen-matrix tablets and provides valuable information that can lead, when combined with other techniques, to a better understanding of polymeric systems and a more effective development of optimal dosage forms.

  20. The effect of the molecular orientation on the release of antimicrobial substances from uniaxially drawn polymer matrixes.

    PubMed

    Iconomopoulou, S M; Voyiatzis, G A

    2005-03-21

    A new method of controlled release of low molecular weight biocides incorporated in polymer matrixes is described. The molecular orientation of uniaxially drawn biocide doped polymer films is suggested as a significant parameter for controlled release monitoring. Triclosan, a well-established widespread antibacterial agent, has been incorporated into high density polyethylene (HDPE) films that have been subsequently uniaxially drawn at different draw ratios. The molecular orientation developed was estimated utilizing polarized mu-Raman spectra. Biocide incorporated polymer films, drawn at different draw ratios, have been immersed in ethanol-water solutions (EtOH) and in physiological saline. The release of Triclosan out of the polymer matrix was probed with UV-Vis absorption spectroscopy for a period of time up to 15 months. In all cases, although the film surface of the drawn samples exposed to the liquid solution was higher than the undrawn one, the relevant release rate from the drawn specimens was lower than the non-stretched samples depending on the molecular orientation developed during the drawing process. A note is made of the fact that no significant molecular orientation relaxation of the polyethylene films has been observed even after such a long time of immersion of the drawn films in the liquid solutions.

  1. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  2. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    NASA Astrophysics Data System (ADS)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  3. Flexible manipulation of microfluids using optically regulated adsorption/desorption of hydrophobic materials.

    PubMed

    Nagai, Hidenori; Irie, Takashi; Takahashi, Junko; Wakida, Shin-ichi

    2007-04-15

    To realize highly integrated micro total analysis systems (microTAS), a simply controlled miniaturized valve should be utilized on microfluidic device. In this paper, we describe the application of photo-induced super-hydrophilicity of titanium dioxide (TiO2) to microfluidic manipulation. In addition, we found a new phenomenon for reversibly converting the surface wettability using a polydimethylsiloxane (PDMS) matrix and the photocatalytic properties of TiO2. While PDMS polymer was irradiated with UV, it was confirmed that hydrophobic material was released from the polymer to air. Several prepolymers were identified as the hydrophobic material with a gas chromatograph and mass spectrometer (GC/MS). Here, we successfully demonstrated the flexible manipulation of microfluid in a branched microchannel using the reversible wettability as micro opto-switching valve (MOS/V). The simultaneous control of MOS/Vs was also demonstrated on a 256-MOS/V integrated disk. The MOS/V promises to be one of the most effective flow switching valves for advanced applications in highly integrated micro/nano fluidics.

  4. Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils

    NASA Astrophysics Data System (ADS)

    Dat Nguyen, Tien; Kim, Taeseung; Han, Hyoseung; Shin, Hyun Yeong; Nguyen, Canh Toan; Phung, Hoa; Ryeol Choi, Hyouk

    2018-01-01

    Carbon Microcoils (CMCs) is a 3D helical micro structure grown via a chemical vapor deposition process. It is noted that composites in which CMCs are embedded in polymer matrixes, called CMC sheets, experience a drastic change of electrical impedance depending on the proximity and contact of external objects. In this paper, a dual functional sensor, that is, tactile and proximity sensor fabricated with CMC/silicone composite is presented to demonstrate the advanced characteristics of CMCs sheets. Characteristics of sensor responses depending on CMC compositions are investigated and optimal conditions are determined. The candidates of polymer matrices are also investigated. As the results, the CMC sheet consisting of Ecoflex 30, CMC 30 {{wt}} % , and multiwall carbon nanotubes 1 {{wt}} % shows the most appropriate tactile sensing characteristics with more than 1 mm of thickness. The proximity sensing capability is the maximum when the 1.5 {{wt}} % CMC content is mixed with Dragon skin 30 silicone substrate. Finally, multiple target objects are recognized with the results and their feasibilities are experimentally validated.

  5. All-fiber optoelectronic sensor with Bragg gratings for in-situ cure monitoring

    NASA Astrophysics Data System (ADS)

    Cusano, Andrea; Breglio, Giovanni; Cutolo, Antonello; Calabro, Antonio M.; Giordano, Michele; Nicolais, Luigi, II

    2000-08-01

    Real-time, in situ monitoring for quality control of the polymer cure process is of high interest, since thermoset polymer-matrix composite are widely used in large industrial areas: aeronautical, aerospace, automotive and civil due to their low cost/low weight features. However, their final properties are strongly dependence on the processing parameters, such as temperature and pressure sequence. The key-point for advanced composite materials is the possibility to have distributed and simultaneous monitoring of chemoreological and physical properties during the cure process. To this aim, we have developed and tested an optoelectronic fiber optic sensor based on the Fresnel principle able to monitor the variations of the refractive index due to the cure process of an epoxy based resin. Experimental results have been obtained on sensor capability to monitor the cure kinetics by assuming the refractive index as reaction co-ordinate. The integration with in-fiber Bragg grating in order to measure the local temperature has been discussed and tested.

  6. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.

    PubMed

    Chawla, Raj; Sharma, Sumit

    2018-03-18

    Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.

  7. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    PubMed

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Cyclodextrin modified hydrogels of PVP/PEG for sustained drug release.

    PubMed

    Nielsen, Anne Louise; Madsen, Flemming; Larsen, Kim Lambertsen

    2009-02-01

    Hydrogels are water swollen networks of polymers and especially hydrogels consisting of poly vinylpyrrolidone/poly ethyleneglycol-dimethacrylate (PVP/PEG-DMA) blends show promising wound care properties. Enhanced functionality of the hydrogels can be achieved by incorporating drugs and other substances that may assist wound healing into the gel matrix. Controlling the release of active compounds from the hydrogels may be possible by carefully modifying the polymer matrix. For this purpose, cyclodextrins (CD) were grafted to the polymer matrix in 4-5 w/w% in an attempt to retard the release of water-soluble drugs. Ibuprofenate (IBU) was chosen as model drug and loaded in IBU/CD ratios of 0.6, 1.2, and 2.5. Vinyl derivatives of alpha-, beta- and gamma-CD were produced, added to the prepolymer blend and cured by UV-light. During this curing process the CD derivatives were covalently incorporated into the hydrogel matrix. The modified hydrogels were loaded with ibuprofenate by swelling. The release of the model drug from CD modified hydrogels show that especially covalently bonded beta-cyclodextrin can change both the release rate and the release profile of ibuprofen.

  9. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    PubMed

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of hydrostatic stresses. An important discovery in the course of this work was that the hydrostatic stress effects varied during the loading process, which needed to be accounted for within the constitutive equations. The model is characterized primarily by shear data, with tensile data used to characterize the hydrostatic stress effects.

  11. Effect of thermal cycling on flexural properties of carbon-graphite fiber-reinforced polymers.

    PubMed

    Segerström, Susanna; Ruyter, I Eystein

    2009-07-01

    To determine flexural strength and modulus after water storage and thermal cycling of carbon-graphite fiber-reinforced (CGFR) polymers based on poly(methyl methacrylate) and a copolymer matrix, and to examine adhesion between fiber and matrix by scanning electron microscopy (SEM). Solvent cleaned carbon-graphite (CG) braided tubes of fibers were treated with a sizing resin. The resin mixture of the matrix was reinforced with 24, 36, 47 and 58wt% (20, 29, 38 and 47vol.%) CG-fibers. After heat polymerization the specimens were kept for 90 days in water and thereafter hydrothermally cycled (12,000 cycles, 5/55 degrees C). Mechanical properties were evaluated by three-point bend testing. After thermal cycling, the adhesion between fibers and matrix was evaluated by SEM. Hydrothermal cycling did not decrease flexural strength of the CGFR polymers with 24 and 36wt% fiber loadings; flexural strength values after thermocycling were 244.8 (+/-32.33)MPa for 24wt% and 441.3 (+/-68.96)MPa for 36wt%. Flexural strength values after thermal cycling were not further increased after increasing the fiber load to 47 (459.2 (+/-45.32)MPa) and 58wt% (310.4 (+/-52.79)MPa). SEM revealed good adhesion between fibers and matrix for all fiber loadings examined. The combination of the fiber treatment and resin matrix described resulted in good adhesion between CG-fibers and matrix. The flexural values for fiber loadings up to 36wt% appear promising for prosthodontic applications such as implant-retained prostheses.

  12. DNA Sequencing Using capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linkedmore » polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of individual components from the sequencing reaction and then developed a protocol to reduce the deleterious salts. We demonstrated a robust method for achieving long read length DNA sequencing. Continuing our advances, we next demonstrated the achievement of over 1000 bases in less than one hour with a base calling accuracy of between 98 and 99%. In this work, we implemented energy transfer dyes which allowed for cleaner differentiation of the 4 dye labeled terminal nucleotides. In addition, we developed improved base calling software to help read sequencing when the separation was only minimal as occurs at long read lengths. Another critical parameter we studied was column temperature. We demonstrated that read lengths improved as the column temperature was increased from room temperature to 60 C or 70 C. The higher temperature relaxed the DNA chains under the influence of the high electric field.« less

  13. Joint Strength Control at the Fiber/Matrix Interface during the Production of Polymer Composite Materials Reinforced with High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2010-06-01

    The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.

  14. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    PubMed

    Guner, Selen N Gurbuz; Dericioglu, Arcan F

    2016-12-05

    Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.

  15. Outside-the-(Cavity-prep)-Box Thinking

    PubMed Central

    Thompson, V.P.; Watson, T.F.; Marshall, G.W.; Blackman, B.R.K.; Stansbury, J.W.; Schadler, L.S.; Pearson, R.A.; Libanori, R.

    2013-01-01

    Direct placement restorative materials must interface with tooth structures that are often compromised by caries or trauma. The material must seal the interface while providing sufficient strength and wear resistance to assure function of the tooth for, ideally, the lifetime of the patient. Needed are direct restorative materials that are less technique-sensitive than current resin-based composite systems while having improved properties. The ideal material could be successfully used in areas of the world with limited infrastructure. Advances in our understanding of the interface between the restoration adhesive system and the stages of carious dentin can be used to promote remineralization. Application of fracture mechanics to adhesion at the tooth-restoration interface can provide insights for improvement. Research in polymer systems suggests alternatives to current composite resin matrix systems to overcome technique sensitivity, while advances in nano- and mesoparticle reinforcement and alignment in composite systems can increase material strength, toughness, and wear resistance, foreshadowing dental application. PMID:24129814

  16. Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite

    NASA Astrophysics Data System (ADS)

    Sagar, Sadia; Iqbal, Nadeem; Maqsood, Asghari

    2013-06-01

    The dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes (F-MWCNT) incorporated into the polydimethylsiloxane (PDMS) were evaluated to determine their potential in the field of electronic materials. Carboxylic functionalization of the pristine multi walled carbon tubes (Ps-MWCNT) was confirmed through Fourier transform infrared spectroscopy, X-ray diffraction patterns for both Ps-MWCNTs and F-MWCNTs elaborated that crystalline behavior did not change with carboxylic moieties. Thermogravimetric and differential thermal analyses were performed to elucidate the thermal stability with increasing weight % addition of F-MWCNTs in the polymer matrix. Crystallization/glass transition / melting temperatures were evaluated using differential scanning calorimeter and it was observed that glass transition and crystallization temperatures were diminished while temperatures of first and second melting transitions were progressed with increasing F-MWCNT concentration in the PDMS matrix. Scanning electron microscopy and energy dispersive x-ray spectroscopy were carried out to confirm the morphology, functionalization, and uniform dispersion of F-MWCNTs in the polymer matrix. Electrical resistivity at temperature range (100-300°C), dielectric loss (tanδ) and dielectric parameters (epsilon/ epsilon//) were measured in the frequency range (1MHz-3GHz). The measured data simulate that the aforementioned properties were influenced by increasing filler contents in the polymer matrix because of the high polarization of conductive F-MWCNTs at the reinforcement/polymer interface.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Siqi; Senses, Erkan; Jiao, Yang

    Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less

  18. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  19. Application of Analytic Hierarchy Process (AHP) in the analysis of the fuel efficiency in the automobile industry with the utilization of Natural Fiber Polymer Composites (NFPC)

    NASA Astrophysics Data System (ADS)

    Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.

    2017-04-01

    A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.

  20. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions.

    PubMed

    Phan, Duc C; Goodwin, David G; Frank, Benjamin P; Bouwer, Edward J; Fairbrother, D Howard

    2018-10-15

    The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradation rates. At the end of consumer use, CNT/PNCs will encounter diverse communities of microorganisms in landfills, surface waters, and wastewater treatment plants. To explore CNT/PNC biodegradation under realistic environmental conditions, the effect of multi-wall CNT (MWCNT) incorporation on the biodegradation of polyhydroxyalkanoates (PHA) was investigated using a mixed culture of microorganisms from wastewater. Relative to unfilled PHA (0% w/w), the MWCNT loading (0.5-10% w/w) had no statistically significant effect on the rate of PHA matrix biodegradation. Independent of the MWCNT loading, the extent of CNT/PNC mass remaining closely corresponded to the initial mass of CNTs in the matrix suggesting a lack of CNT release. CNT/PNC biodegradation was complete in approximately 20 days and resulted in the formation of a compressed CNT mat that retained the shape of the initial CNT/PNC. This study suggests that although CNTs have been shown to be cytotoxic towards a range of different microorganisms, this does not necessarily impact the biodegradation of the surrounding polymer matrix in mixed culture, particularly in situations where the polymer type and/or microbial population favor rapid polymer biodegradation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcmanus, H.L.; Chamis, C.C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) ismore » presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.« less

  2. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    PubMed

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Structural modifications of polymethacrylates: impact on thermal behavior and release characteristics of glassy solid solutions.

    PubMed

    Claeys, Bart; De Coen, Ruben; De Geest, Bruno G; de la Rosa, Victor R; Hoogenboom, Richard; Carleer, Robert; Adriaensens, Peter; Remon, Jean Paul; Vervaet, Chris

    2013-11-01

    Polymethacrylates such as Eudragit® polymers are well established as drug delivery matrix. Here, we synthesize several Eudragit E PO (n-butyl-, dimethylaminoethyl-, methyl-methacrylate-terpolymer) analogues via free radical polymerization. These polymers are processed via hot melt extrusion, followed by injection molding and evaluated as carriers to produce immediate release solid solution tablets. Three chemical modifications increased the glass transition temperature of the polymer: (a) substitution of n-butyl by t-butyl groups, (b) reduction of the dimethylaminoethyl methacrylate (DMAEMA) content, and (c) incorporation of a bulky isobornyl repeating unit. These structural modifications revealed the possibility to increase the mechanical stability of the tablets via altering the polymer Tg without influencing the drug release characteristics and glassy solid solution forming properties. The presence of DMAEMA units proved to be crucial with respect to API/polymer interaction (essential in creating glassy solid solutions) and drug release characteristics. Moreover, these chemical modifications accentuate the need for a more rational design of (methacrylate) polymer matrix excipients for drug formulation via hot melt extrusion and injection molding. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo

    2016-04-08

    Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Gel polymer electrolyte for lithium-ion batteries comprising cyclic carbonate moieties

    NASA Astrophysics Data System (ADS)

    Tillmann, S. D.; Isken, P.; Lex-Balducci, A.

    2014-12-01

    A polymer system based on oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and cyclic carbonate methacrylate (CCMA) was chosen as matrix to realize high-performance gel polymer electrolytes due to the fact that both monomers are able to interact with the liquid electrolyte, thus, retaining it inside the matrix. Additionally, OEGMA enables high flexibility, while CCMA provides mechanical stability. The polymer displays a high thermal stability up to 200 °C and a glass transition temperature below room temperature (5 °C) allowing an easy handling of the obtained films. By immobilizing the liquid electrolyte 1 M LiPF6 in EC:DMC 1:1 w:w in the polymer host a gel polymer electrolyte with a high conductivity of 2.3 mS cm-1 at 25 °C and a stable cycling behavior with high capacities and efficiencies in Li(Ni1/3Co1/3Mn1/3)O2 (NCM)/graphite full cells is obtained. The investigated gel polymer electrolyte is identified as promising electrolyte for lithium-ion batteries, because it combines good electrochemical properties comparable to that of liquid electrolytes with the safety advantage that no leakage of the flammable electrolyte solvents can occur.

  6. Controlling the Degradation of Bioresorbable Polymers

    NASA Astrophysics Data System (ADS)

    Moritz, Istvan; Crowley, Brian; Brundage, Elizabeth; Rende, Deniz; Ozisik, Rahmi

    Bioresorbable polymers play a vital role in the development of implantable materials that are used in surgical procedures, controlled drug delivery systems; and tissue engineering scaffolds. The half-life of common bioresorbable polymers ranges from 3 to over 12 months and slow bioresorption rates of these polymers restrict their use to a limited set of applications. The use of embedded enzymes was previously proposed to control the degradation rate of bioresorbable polymers, and was shown to decrease average degradation time to about 0.5 months. In this study, electromagnetic actuation of iron oxide magnetic nanoparticles embedded in an encapsulant polymer, poly(ethyleneoxide), PEO, was employed to initiate enzyme assisted degradation of bioresorbable polymer poly(caprolactone), PCL. Results indicate that the internal temperature of iron oxide magnetic nanoparticle doped PEO samples can be increased via an alternating magnetic field, and temperature increase depends strongly on nanoparticle concentration and magnetic field parameters. The temperature achieved is sufficient to relax the PEO matrix and to enable the diffusion of enzymes from PEO to a surrounding PCL matrix. Current studies are directed at measuring the degradation rate of PCL due to the diffused enzyme. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  7. Nanocrystal-polymer nanocomposite electrochromic device

    DOEpatents

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  8. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa

    2007-10-08

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopymore » measurements.« less

  9. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2016-10-06

    As synthetic membrane materials, polymers with intrinsic microporosity (PIMs) have demonstrated unprecedented permeation and molecular-separation properties. Here, we report the swelling characteristics of submicron-thick supported films of spirobisindane-based PIMs, PIM-1 and PIM-6FDA-OH, for six organic solvents and water using in situ spectroscopic ellipsometry. Surprisingly, PIMs swell significantly in most organic solvents, with swelling factors (SF = h swollen /h dry ) as high as 2.5. This leads to the loss of the ultrarigid character of the polymer and produces equilibrated liquid-like swollen films. Filling of the excess frozen-in fractional free volume with liquid was discovered next to swelling-induced polymer matrix dilation. Water hardly swells the polymer matrix, but it penetrates into the intrinsic microporous structure. This study is the first to provide fundamental swelling data for PIMs, leading to better comprehension of their permeation properties. Such an understanding is indispensable for applications such as solvent filtration, natural-gas separation, and ion retention in flow batteries.

  10. The optical and electrical properties of graphene oxide with water-soluble conjugated polymer composites by radiation.

    PubMed

    Jungo, Seung Tae; Oh, Seung-Hwan; Kim, Hyun Bin; Jeun, Joon-Pyo; Lee, Bum-Jae; Kang, Phil-Hyun

    2013-11-01

    In order to overcome the difficulty of dispersion and low conductivity in composite containing graphene, graphene oxide (GO) has been used instead of neat graphene. And the GO treated by radiation, could give improved conductivity of the GO-containing polymer composite. In this study, fluorene based water-soluble conjugated polymer (WPF-6-oxy-F) was introduced in GO solution to investigate the change of optical and electrical properties through radiation process. UV-Vis absorption of irradiated WPF-6-oxy-F-GO composite was red shifted and I(D)/I(G) ratio of Raman spectra decreased. XPS analysis showed that C-N bonds was formed after the irradiation and confirmed the increased bonds between the GO and the water-soluble conjugated polymer matrix. From the AFM and XPS analysis, it was found that the water-soluble conjugated polymer matrix was stacked between the modified GO in the morphology of irradiated WPF-6-oxy-F-GO composite was increased after gamma ray irradiation up to 10(-2) S/cm.

  11. Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    2007-01-01

    A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.

  12. Polymer-grafted gold nanorods in polymer thin films: Dispersion and plasmonic coupling

    NASA Astrophysics Data System (ADS)

    Hore, Michael-Jon Ainsley

    This dissertation describes complementary experimental and theoretical studies to deter- mine the thermodynamic factors that affect the dispersion of polymer-grafted Au nanorods within polymer thin films. Au nanorods exhibit a uniform dispersion with a regular spacing for favorable brush / matrix interactions, such as poly(ethylene glycol) (PEG)-Au / poly(methyl methacrylate) (PMMA) and polystyrene (PS)-Au / poly(2,6-dimethyl-p-phenylene oxide) (PPO). For PEG-Au / PMMA, the nanorods are locally oriented and their dispersion is independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), α = P/N, whereas for chemically similar brush / matrix combinations, such as PS-Au / PS and PEG-Au / poly(ethylene oxide) (PEO), nanorods are randomly dispersed for α 2. For aggregated systems (α > 2), nanorods are found primarily within aggregates containing side-by-side aligned nanorods with a spacing that scales with N. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that coupling between surface plasmons within the aggregates leads to a blue shift in the optical absorption as α increases, indicating the sensitivity of spectroscopy for determining nanorod dispersion in polymer nanocomposite films. Self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations show that the aggregation of nanorods for α > 2 can be attributed to depletion-attraction forces caused by autophobic dewetting of the brush and matrix. Finally, miscible blends of PS and PPO are investigated as a route to control depletion-attraction interactions between PS-Au nanorods. Initially, nanorods aggregate in matrices having 50 vol. % PPO and then gradually disperse as PPO becomes the majority component. The brush and matrix density profiles, determined by SCFT, show that PPO segregates into the PS brush, and acts as a compatibilizer, which improves dispersion. As dispersion improves, coupling between surface plasmons is reduced, leading to a red shift in the optical absorption. The outcome of these systematic structure-property-modeling studies is the ability to control nanorod dispersion, orientation, and optical absorption by manipulating brush/matrix interactions and entropic depletion-attraction forces.

  13. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    PubMed

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  14. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile.

    PubMed

    Newton, A M J; Lakshmanan, Prabakaran

    2014-04-01

    The study was designed to investigate the in vitro dissolution profile and compression characteristics of colon targeted matrix tablets prepared with HPMC E15 LV in combination with pectin and Chitosan. The matrix tablets were subjected to two dissolution models in various simulated fluids such as pH 1.2, 6, 6.8, 7.2, 5.5. The fluctuations in colonic pH conditions during IBD (inflammatory bowel disease) and the nature of less fluid content in the colon may limit the expected drug release in the polysaccharide-based matrices when used alone. The Hydrophilic hydroxyl propyl methylcellulose ether premium polymer (HPMC E15 LV) of low viscosity grade was used in the formulation design, which made an excellent modification in physical and compression characteristics of the granules. The release studies indicated that the prepared matrices could control the drug release until the dosage form reaches the colon and the addition HPMC E15 LV showed the desirable changes in the dissolution profile by its hydrophilic nature since the colon is known for its less fluid content. The hydrophilic HPMC E15 LV allowed the colonic fluids to enter into the matrix and confirmed the drug release at the target site from a poorly water soluble polymer such as Chitosan and also from water soluble Pectin. The dramatic changes occurred in the drug release profile and physicochemical characteristics of the Pectin, Chitosan matrix tablets when a premium polymer HPMC E15 LV added in the formulation design in the optimized concentration. Various drug release mechanisms used for the examination of drug release characteristics. Drug release followed the combined mechanism of diffusion, erosion, swelling and polymer entanglement. In recent decade, IBD attracts many patents in novel treatment methods by using novel drug delivery systems.

  15. Polymeric membrane systems of potential use for battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  16. Molecular engineering of polymer actuators for biomedical and industrial use

    NASA Astrophysics Data System (ADS)

    Banister, Mark; Eichorst, Rebecca; Gurr, Amy; Schweitzer, Georgette; Geronov, Yordan; Rao, Pavalli; McGrath, Dominic

    2012-04-01

    Five key materials engineering components and how each component impacted the working performance of a polymer actuator material are investigated. In our research we investigated the change of actuation performance that occurred with each change we made to the material. We investigated polymer crosslink density, polymer chain length, polymer gelation, type and density of reactive units, as well as the addition of binders to the polymer matrix. All five play a significant role and need to be addressed at the molecular level to optimize a polymer gel for use as a practical actuator material for biomedical and industrial use.

  17. Polymer-based materials to be used as the active element in microsensors: a scanning force microscopy study

    PubMed

    Porter; Eastman; Pace; Bradley

    2000-09-01

    Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.

  18. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  19. Effects of Temperature and Steam Environment on Fatigue Behavior of Three SIC/SIC Ceramic Matrix Composites

    DTIC Science & Technology

    2008-09-01

    Infiltration (CVI), Chemical Vapor Deposition (CVD) and polymer impregnation/ pyrolysis (PIP) [5:20, 32]. The SiC fibers currently... composite was infiltrated with a mixture of polymer , filler particles and solvent. During pyrolysis under nitrogen at temperatures > 1000 °C, the...using polymer infiltration and pyrolysis (PIP) method. Polymer infiltration and pyrolysis processing method allows near-net-shape molding and

  20. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  1. Dynamics in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel

    2015-03-01

    Since nanoparticles are increasingly being added to polymers to impart mechanical and functional properties, we are exploring how nanoparticles impact polymer dynamics with a focus on the diffusion coefficients. In high molecular weight polymer melts, chain diffusion is well described by the reptation model. Motion proceeds as a snake-like diffusion of the chain as a whole, along the contour of a tube that mimics the role of physical entanglements, or topological constraints, with other chains. In polymer nanocomposites there are additional constraints due to the dispersed nanoparticles in the polymer matrix. Chain motion can be altered by nanoparticle size, shape , aspect ratio, surface area, loading and the nature of the interactions between the nanoparticles and the polymer matrix. We have observed a minimum in the diffusion coefficient as a function of nanoparticle concentration when the nanoparticles are rod-like and a collapse of the diffusion coefficient onto a master curve when the nanoparticles are spherical. We are simulating the dynamics using molecular and dissipative particle simulations in order to provide physical insight into the local structure and dynamics, and have also carried out highly coarse grained Monte Carlo simulations of entangled polymers to explore how reptation is affected by the presence of larger scale obstacles. We acknowledge support from the NSF/EPSRC Materials World Network Program.

  2. Fixation of tritium in a highly stable polymer form

    DOEpatents

    Steinberg, Meyer; Colombo, Peter; Pruzansky, Jacob

    1977-01-01

    A method for the fixation of tritium comprising reacting tritiated water with calcium carbide to produce calcium hydroxide and tritiated acetylene, polymerizing the acetylene, and then incorporating the polymer in a solidifying matrix.

  3. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  4. Polymer-ceramic nanocomposites for applications in the bone surgery

    NASA Astrophysics Data System (ADS)

    Stodolak, E.; Gadomska, K.; Lacz, A.; Bogun, M.

    2009-01-01

    The subject of this work was preparation and investigation of properties of a nanocomposite material based on polymer matrix modified with nanometric silica particles (SiO2). The composite matrix consisted of resorbable P(L/DL)LA polymer with certified biocompatibility. Nanometric silica was introduced into the matrix by means of ultrasonic homogenisation and/or mechanical stirring. The silica was introduced directly e.g. as nanoparticles or inside calcium alginate fibres which contained 3 wt.% of amorphous SiO2. Proper dispersion of nano-filliers was confirmed by means of thermal analysis (TG/DTA, DSC). It was observed, that the presence of inorganic nanoparticles influenced several surface parameters of the nanocomposites i.e. hydrophility (a decrease of surface energy) and topography (both in micro- and nano-scale). Additionally, the nanocomposites exhibited enhanced mechanical properties (Young's modulus, tensile strength) compared to the pure polymer. The nanocomposites were bioactive materials (SBF/3 days/37oC). Biological tests (MTT test) showed a good viability of human osteoblasts (hFOB 1.19) in contact with the nanocomposites surface. Results of preliminary biological tests carried out with the use of mother cells extracted from human bone marrow showed that the nanocomposites may provide differenation of bone cells.

  5. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Pusheng; Asher, Sanford A.

    1999-01-01

    The separation of macromolecules such as polymers and DNA by means of electrophoresis, gel permeation chromatography or filtration exploits size-dependent differences in the time it takes for the molecules to migrate through a random porous network. Transport through the gel matrices, which usually consist of full swollen crosslinked polymers, depends on the relative size of the macromolecule compared with the pore radius. Sufficiently small molecules are thought to adopt an approximately spherical conformation when diffusing through the gel matrix, whereas larger ones are forced to migrate in a snake-like fashion. Molecules of intermediate size, however, can get temporarily trapped in the largest pores of the matrix, where the molecule can extend and thus maximize its conformational entropy. This `entropic trapping' is thought to increase the dependence of diffusion rate on molecular size. Here we report the direct experimental verification of this phenomenon. Bragg diffraction from a hydrogel containing a periodic array of monodisperse water voids confirms that polymers of different weights partition between the hydrogel matrix and the water voids according to the predictions of the entropic trapping theory. Our approach might also lead to the design of improved separation media based on entropic trapping.

  6. Ballistic Performance of Alimina/S-2 Glass-Reinforced Polymer-Matrix Composite Hybrid Lightweight Armor Against Armor Piercing (AP) and Non-AP Projectiles

    DTIC Science & Technology

    2007-01-01

    and a phenolic -resin based polymeric matrix. Such armor panels offer superior protection against fragmented ballistic threats when compared to...database does not contain a material model for the HJ1 composite but provides a model for a Kevlar Fiber Reinforced Polymer (KFRP) containing 53 vol... phenolic resin and epoxy yield stresses and then with a ratio of the S-2 glass and aramid fibers volume fractions. To test the validity of the

  7. Magnetic modulation of release of macromolecules from polymers.

    PubMed Central

    Hsieh, D S; Langer, R; Folkman, J

    1981-01-01

    Sustained-release systems were made by incorporating bovine serum albumin and magnetic steel beads in an ethylene-vinyl acetate copolymer matrix. When exposed to aqueous medium, the polymer matrix released the albumin slowly and continuously. Application of an oscillating magnetic field increased the release rate by as much as 100%. Intervals of 6-hr periods of magnetic exposure and nonexposure were alternated over a 5-day period, resulting in corresponding increases and decreases in release and establishing a pattern of modulated sustained release. Images PMID:6940193

  8. Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties (Postprint)

    DTIC Science & Technology

    2013-07-01

    numerically modeled. The composite under investigation was a 10 layer T300 carbon/ SiC composite in which carbon fabric was impregnated using a polymer ...fraction. (3) Melt Infiltrated in situ BN SiC / SiC composite comprising a stochiometric SiC (Sylramic™) fiber, with an in situ boron nitride treatment...SiNC composite is listed in Table 4. Polymer derived SiC and SiNC matrix material do not ex- hibit a major change in their elastic properties at

  9. Thermal-vacuum response of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.

  10. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets.

    PubMed

    Ullah, Majeed; Ullah, Hanif; Murtaza, Ghulam; Mahmood, Qaisar; Hussain, Izhar

    2015-01-01

    The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted.

  11. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets

    PubMed Central

    Ullah, Majeed; Ullah, Hanif; Mahmood, Qaisar; Hussain, Izhar

    2015-01-01

    The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted. PMID:26380301

  12. Matrix-assisted laser desorption/ionization mass spectrometric analysis of poly(3,4-ethylenedioxythiophene) in solid-state dye-sensitized solar cells: comparison of in situ photoelectrochemical polymerization in aqueous micellar and organic media.

    PubMed

    Zhang, Jinbao; Ellis, Hanna; Yang, Lei; Johansson, Erik M J; Boschloo, Gerrit; Vlachopoulos, Nick; Hagfeldt, Anders; Bergquist, Jonas; Shevchenko, Denys

    2015-04-07

    Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.

  13. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.

    2018-04-01

    Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

  14. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    NASA Astrophysics Data System (ADS)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  15. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.

    2018-06-01

    Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

  16. Correlating PMC-MMC Bonded Joint 3D FEA with Test

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy; Rodini, Benjamin; Chen, Wayne C.; Flom, Yury A.; Posey, Alan J.

    2005-01-01

    A viewgraph presentation on the correlation of Polymer Matrix Composites (PMC) and Metal Matrix Composites (MMC) bonded joints using three dimensional finite element analyses with materials tests is shown.

  17. Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Takele, H.; Schürmann, U.; Greve, H.; Paretkar, D.; Zaporojtchenko, V.; Faupel, F.

    2006-02-01

    Nanocomposite films containing Au nanoparticles embedded in a polymer matrix were prepared by vapour phase co-deposition of Au and polymers (Teflon AF and Poly(α -methylstyrene)) in high vacuum. The microstructure of the composite materials as well as metal content strongly depend on the condensation coefficient of the Au atoms, the deposition rates of the components, the substrate temperature, and the type of polymer matrix. The condensation coefficient, which varies between 0.03 and 1, was determined from energy dispersive X-ray spectrometer (EDX) and surface profilometry. It is shown that the microstructure of nanocomposites (size, size distribution, and interparticle separation of metal clusters), which was determined by transmission electron microscopy, can be controlled by the deposition parameters and the choice of polymer matrix. The optical absorption in the visible region due to the particle plasmon resonance has a strong dependence on the metal filling factor. The correlation between the microstructure of nanocomposites and optical properties, studied using UV-Vis spectroscopy, was also established. Further more, the electrical properties of the composites were studied as a function of the metal volume fraction. It was observed that the nanocomposite films exhibit a percolation threshold at a metal volume fraction of 0.43 and 0.20 for gold nanoclusters in Teflon AF and Poly(α-methylstyrene), respectively.

  18. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  19. Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.

  20. In-situ measurement of thermoset resin degree of cure using embedded fiber optic

    NASA Astrophysics Data System (ADS)

    Breglio, Giovanni; Cusano, Andrea; Cutolo, Antonello; Calabro, Antonio M.; Cantoni, Stefania; Di Vita, Gandolfo; Buonocore, Vincenzo; Giordano, Michele; Nicolais, Luigi, II

    1999-12-01

    In this work, a fiber optic sensor based on Fresnel principle is presented. It is used to monitor the variations of the refractive index due to the cure process of an epoxy based resin. These materials are widely used in polymer- matrix composites. The process of thermoset matrix based composite involves mass and heat transfer coupled with irreversible chemical reactions inducing physical changes: the transformation of a fluid resin into a rubber and then into a solid glass. To improve the quality and the reliability of these materials key points are the cure monitoring and the optimization of the manufacturing process. To this aim, the fiber optic embedded sensor has been designed, developed and tested. Preliminary results on sensor capability to monitor the cure kinetics are shown. Correlation between the sensor output and conversion advancement has been proposed following the Lorentz-Lorenz law. Isothermal data form the sensor have been compared with calorimetric analysis of an epoxy based resin.

  1. Bioactivity of CaSiO3/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO3 powder.

    PubMed

    Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira

    2007-05-01

    Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only

  2. Bioactivity of CaSiO3/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO3 powder.

    PubMed

    Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira

    2007-08-01

    Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot-pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only < or =0.4 vol%, it is concluded that this preparation method is very effective in generating bioactivity in polymer-matrix composites by loading with only very small amounts of ceramic powder.

  3. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  4. Formulation and evaluation of controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum

    PubMed Central

    Arora, Gurpreet; Malik, Karan; Singh, Inderbir; Arora, Sandeep; Rana, Vikas

    2011-01-01

    The aim of study was to prepare controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum as natural polymer. Tablets were formulated by direct compression technology employing the natural polymer in different concentrations (5, 10, 15 and 20% w/w). The prepared batches were evaluated for drug assay, diameter, thickness, hardness and tensile strength, swelling index, mucoadhesive strength (using texture analyzer) and subjected to in vitro drug release studies. Real-time stability studies were also conducted on prepared batches. In vitro drug release data were fitted in various release kinetic models for studying the mechanism of drug release. Tensile strength was found to increase from 0.808 ± 0.098 to 1.527 ± 0.10 mN/cm2 and mucoadhesive strength increased from 13.673 ± 1.542 to 40.378 ± 2.345 N, with an increase in the polymer concentration from 5 to 20% (A1 to A4). Swelling index was reported to increase with both increase in the concentration of gum and the time duration. The in vitro drug release decreased from 97.76 to 83.4% (A1 to A4) with the increase in polymer concentration. The drug release from the matrix tablets was found to follow zero-order and Higuchi models, indicating the matrix-forming potential of natural polymer. The value of n was found to be between 0.5221 and 0.8992, indicating the involvement of more than one drug release mechanism from the formulation and possibly the combination of both diffusion and erosion. These research findings clearly indicate the potential of S. plebeian gum to be used as binder, release retardant and mucoadhesive natural material in tablet formulations. PMID:22171313

  5. Successful entrapment of carbon dots within flexible free-standing transparent mesoporous organic-inorganic silica hybrid films for photonic applications

    NASA Astrophysics Data System (ADS)

    Vassilakopoulou, Anastasia; Georgakilas, Vasilios; Vainos, Nikolaos; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of Carbon dots (CDs) into a polymer-silica hybrid matrix, formed as free standing transparent flexible films, is presented. The composite's synthesis, characterization, device application and properties -mechanical, thermal and optical- are being provided and discussed. CDs of 3 nm mean size with strong photoluminescence are embedded into a silica matrix during the sol-gel procedure, using tetraethyl orthosilicate as the precursor and F127 triblock copolymer as the structure directing agent under acidic conditions. The final hybrid nanostructure forms free standing transparent films that show high flexibility and long term stable CDs luminescence indicating the protective character of the hybrid matrix. It is crucial that the photoluminescence of the hybrid's CDs is not seriously affected after thermal treatment at 550 °C for 30 min. Moreover, the herein reported hybrid is demonstrated to be suitable for the fabrication of advanced photonic structures using soft lithography processes due to its low shrinkage and distortion upon drying, both attributable to its porosity. Finally, it is reported that addition of F127 ethanolic solution in aqueous solution of CDs induces a blue-shift of their photoluminescence.

  6. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Treesearch

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  7. An investigation of adhesive/adherend and fiber/matrix interactions. Part A: Surface characterization of titanium dioxide, titantium and titanium 6% Al to 4% V powders: Interaction with water, hydrogen chloride and polymers

    NASA Technical Reports Server (NTRS)

    Siriwardane, R. V.; Wightman, J. P.

    1982-01-01

    The titanium dioxide surface is discussed. Polymer adhesive are also discussed. Titanium powders are considered. Characterization techniques are also considered. Interactions with polymers, water vapor, and HCl are reported. Adsorbents are characterized.

  8. Selection of polymer binders and fabrication of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.

    1993-01-01

    The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.

  9. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  10. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W. (Inventor); Gordon, Keith L. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor); Siochi, Emilie J. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  11. Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2017-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  12. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  13. Biopolymers and supramolecular polymers as biomaterials for biomedical applications

    PubMed Central

    Freeman, Ronit; Boekhoven, Job; Dickerson, Matthew B.; Naik, Rajesh R.

    2015-01-01

    Protein- and peptide-based structural biopolymers are abundant building blocks of biological systems. Either in their natural forms, such as collagen, silk or fibronectin, or as related synthetic materials they can be used in various technologies. An emerging area is that of biomimetic materials inspired by protein-based biopolymers, which are made up of small molecules rather than macromolecules and can therefore be described as supramolecular polymers. These materials are very useful in biomedical applications because of their ability to imitate the extracellular matrix both in architecture and their capacity to signal cells. This article describes important features of the natural extracellular matrix and highlight how these features are being incorporated into biomaterials composed of biopolymers and supramolecular polymers. We particularly focus on the structures, properties, and functions of collagen, fibronectin, silk, and the supramolecular polymers inspired by them as biomaterials for regenerative medicine. PMID:26989295

  14. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Connell, John W. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Ounaies, Zoubeida (Inventor); Smith, Joseph G. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  15. Freestanding, heat resistant microporous film for use in energy storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekala, Richard W.; Cherukupalli, Srinivas; Waterhouse, Robert R.

    Preferred embodiments of a freestanding, heat resistant microporous polymer film (10) constructed for use in an energy storage device (70, 100) implements one or more of the following approaches to exhibit excellent high temperature mechanical and dimensional stability: incorporation into a porous polyolefin film of sufficiently high loading levels of inorganic or ceramic filler material (16) to maintain porosity (18) and achieve low thermal shrinkage; use of crosslinkable polyethylene to contribute to crosslinking the polymer matrix (14) in a highly inorganic material-filled polyolefin film; and heat treating or annealing of biaxially oriented, highly inorganic material-filled polyolefin film above the meltingmore » point temperature of the polymer matrix to reduce residual stress while maintaining high porosity. The freestanding, heat resistant microporous polymer film embodiments exhibit extremely low resistance, as evidenced by MacMullin numbers of less than 4.5.« less

  16. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    PubMed

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  17. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  18. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Watson, A. (Inventor); Ounales, Zoubeida (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor)

    2009-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T(sub g)) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted hy selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  19. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  20. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  1. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.

    PubMed

    Yao, Atsushi; Kobayashi, Kei; Nosaka, Shunta; Kimura, Kuniko; Yamada, Hirofumi

    2017-02-17

    Several researchers have recently demonstrated visualization of subsurface features with a nanometer-scale resolution using various imaging schemes based on atomic force microscopy. Since all these subsurface imaging techniques require excitation of the oscillation of the cantilever and/or sample surface, it has been difficult to identify a key imaging mechanism. Here we demonstrate visualization of Au nanoparticles buried 300 nm into a polymer matrix by measurement of the thermal noise spectrum of a microcantilever with a tip in contact to the polymer surface. We show that the subsurface Au nanoparticles are detected as the variation in the contact stiffness and damping reflecting the viscoelastic properties of the polymer surface. The variation in the contact stiffness well agrees with the effective stiffness of a simple one-dimensional model, which is consistent with the fact that the maximum depth range of the technique is far beyond the extent of the contact stress field.

  2. The water kinetics of superabsorbent polymers during cement hydration and internal curing visualized and studied by NMR.

    PubMed

    Snoeck, D; Pel, L; De Belie, N

    2017-08-25

    SuperAbsorbent Polymers (SAPs) can be applied as an admixture in cementitious materials. As the polymers are able to swell, they will absorb part of the mixing water and can then release that water back towards the cementitious matrix for internal curing. This is interesting in terms of autogenous shrinkage mitigation as the internal relative humidity is maintained. The mechanism is theoretically described by the Powers and Brownyard model, but the kinetics and water release still remain subject of detailed investigation. This paper uses Nuclear Magnetic Resonance (NMR) to study the release of water from the superabsorbent polymers towards the cementitious matrix during cement hydration. The release of water by the SAPs is monitored as a function of time and degree of hydration. The internal humidity is also monitored in time by means of sensitive relative-humidity sensors.

  3. Synthesis and characterization of HDPE/N-MWNT nanocomposite films.

    PubMed

    Chouit, Fairouz; Guellati, Ounassa; Boukhezar, Skander; Harat, Aicha; Guerioune, Mohamed; Badi, Nacer

    2014-01-01

    In this work, a series of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) with several weight percentages (0.1, 0.4, 0.8, and 1.0 wt.%) were synthesized by catalytic chemical vapor deposition (CCVD) technique. The N-MWCNTs were first characterized and then dispersed in high-density polyethylene (HDPE) polymer matrix to form a nanocomposite. The HDPE/N-MWCNT nanocomposite films were prepared by melt mixing and hot pressing; a good dispersion in the matrix and a good N-MWCNT-polymer interfacial adhesion have been verified by scanning electron microscopy (SEM). Raman spectroscopy measurements have been performed on prepared samples to confirm the presence and nature of N-MWNTs in HDPE matrix. The X-ray diffraction (XRD) analysis demonstrated that the crystalline structure of HDPE matrix was not affected by the incorporation of the N-MWNTs.

  4. Synthesis and characterization of HDPE/N-MWNT nanocomposite films

    PubMed Central

    2014-01-01

    In this work, a series of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) with several weight percentages (0.1, 0.4, 0.8, and 1.0 wt.%) were synthesized by catalytic chemical vapor deposition (CCVD) technique. The N-MWCNTs were first characterized and then dispersed in high-density polyethylene (HDPE) polymer matrix to form a nanocomposite. The HDPE/N-MWCNT nanocomposite films were prepared by melt mixing and hot pressing; a good dispersion in the matrix and a good N-MWCNT-polymer interfacial adhesion have been verified by scanning electron microscopy (SEM). Raman spectroscopy measurements have been performed on prepared samples to confirm the presence and nature of N-MWNTs in HDPE matrix. The X-ray diffraction (XRD) analysis demonstrated that the crystalline structure of HDPE matrix was not affected by the incorporation of the N-MWNTs. PMID:25024676

  5. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes.

    PubMed

    Li, Xueqin; Cheng, Youdong; Zhang, Haiyang; Wang, Shaofei; Jiang, Zhongyi; Guo, Ruili; Wu, Hong

    2015-03-11

    A novel multi-permselective mixed matrix membrane (MP-MMM) is developed by incorporating versatile fillers functionalized with ethylene oxide (EO) groups and an amine carrier into a polymer matrix. The as-prepared MP-MMMs can separate CO2 efficiently because of the simultaneous enhancement of diffusivity selectivity, solubility selectivity, and reactivity selectivity. To be specific, MP-MMMs were fabricated by incorporating polyethylene glycol- and polyethylenimine-functionalized graphene oxide nanosheets (PEG-PEI-GO) into a commercial low-cost Pebax matrix. The PEG-PEI-GO plays multiple roles in enhancing membrane performance. First, the high-aspect ratio GO nanosheets in a polymer matrix increase the length of the tortuous path of gas diffusion and generate a rigidified interface between the polymer matrix and fillers, enhancing the diffusivity selectivity. Second, PEG consisting of EO groups has excellent affinity for CO2 to enhance the solubility selectivity. Third, PEI with abundant primary, secondary, and tertiary amine groups reacts reversibly with CO2 to enhance reactivity selectivity. Thus, the as-prepared MP-MMMs exhibit excellent CO2 permeability and CO2/gas selectivity. The MP-MMM doped with 10 wt % PEG-PEI-GO displays optimal gas separation performance with a CO2 permeability of 1330 Barrer, a CO2/CH4 selectivity of 45, and a CO2/N2 selectivity of 120, surpassing the upper bound lines of the Robeson study of 2008 (1 Barrer = 10(-10) cm(3) (STP) cm(-2) s(-1) cm(-1) Hg).

  6. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  7. Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.

    2008-09-01

    Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.

  8. Modeling High-Pressure Gas-Polymer Sorpion Behavior Using the Sanchez-Lacombe Equation of State.

    DTIC Science & Technology

    1987-06-01

    The solubility of a gas in an amorphous or molten polymer is an important consideration in membrane and polymer processes . For instance, the efficacy...to a supercritical fluid during the impregnation process . Swelling the polymer effectively increases the diffusion coefficient of the heavy dopant by...dissolve the impurity, and then diffuse out of the swollen matrix thus removing the impurity. This supercritical fluid extraction process is somewhat

  9. Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul

    2014-04-01

    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowedmore » visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.« less

  10. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.

    PubMed

    Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František

    2016-03-16

    The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons.

    PubMed

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-12-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  12. Microtensile Test of AN Ordered-Reinforced Electrophoretic Polymer Matrix Composite Fabricated by Surface Micromachining

    NASA Astrophysics Data System (ADS)

    Yang, Zhuoqing; Wang, Hong; Zhang, Zhenjie; Ding, Guifu; Zhao, Xiaolin

    A novel ordered-reinforced microscale polymer matrix composite based on electrophoresis and surface micromachining technologies has been proposed in the present work. The braid angle, volume content and width of the reinforcement in the composite has been designed and simulated by ANSYS finite element software. Based on the simulation and optimization, the Ni fibers reinforced polymer matrix composite sample (3 mm length × 0.6 mm width × 0.04 mm thickness) was successfully fabricated utilizing the surface micromachining process. The fabricated samples were characterized by microtensile test on the dynamic mechanical analysis (DMA) equipment. It is indicated that the tested tensile strength and Young's modulus are 285 MPa and 6.8 GPa, respectively. In addition, the fracture section of the composite sample has been observed by scanning electron microscope (SEM) and the corresponding fracture process was also explained and analyzed in detail. The new presented composite is promising for hot embossing mold in microfluidic chip and several transducers used in accurately controlled biomedical systems.

  13. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures

    PubMed Central

    Fantino, Erika; Chiappone, Annalisa; Calignano, Flaviana; Fontana, Marco; Pirri, Fabrizio; Roppolo, Ignazio

    2016-01-01

    Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP) system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs) in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites. PMID:28773716

  14. Matrix polymer species have distinct effects on the mechanics of bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Kovach, Kristin; Davis-Fields, Megan; Gordon, Vernita

    2015-03-01

    Biofilms are aggregates of microorganisms embedded in a self-produced extracellular polymer matrix. The matrix confers protection to these microorganisms against mechanical and chemical stresses that they may experience in their environment. The bacterium Pseudomonas aeruginosa is widely used as a model biofilm-forming organism because it is an opportunistic human pathogen common in hospital-acquired infections, in chronic wounds, and in cystic fibrosis lung disease. P. aeruginosa strain PA01 forms biofilms that are primarily structured by the extracellular polysaccharides Pel and Psl. Using bulk rheological measurements, we show that these polysaccharides each play a unique role in the mechanical robustness of the biofilm. Psl increases the elastic storage modulus while Pel increases the ductility of the biofilm. Increased expression of either Psl or Pel increases the yield stress by about the same amount. Identifying the mechanism(s) by which these polymers contribute to the mechanical toughness of the biofilm could allow new approaches to effective biofilm clearance, by revealing targets for disruption that would weaken the biofilm.

  15. Computer Simulation of Spatial Arrangement and Connectivity of Particles in Three-Dimensional Microstructure: Application to Model Electrical Conductivity of Polymer Matrix Composite

    NASA Technical Reports Server (NTRS)

    Louis, P.; Gokhale, A. M.

    1996-01-01

    Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.

  16. Synthetic biodegradable functional polymers for tissue engineering: a brief review.

    PubMed

    BaoLin, Guo; Ma, Peter X

    2014-04-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.

  17. Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.

    2017-05-01

    We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.

  18. Confined Pattern-Directed Assembly of Polymer-Grafted Nanoparticles in a Phase Separating Blend with a Homopolymer Matrix.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir

    The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.

  19. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites.

    PubMed

    Yao, Yimin; Zhu, Xiaodong; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2018-03-21

    Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, previously reported polymer composites exhibit limited enhancement of thermal conductivity, even when highly loaded with thermally conductive fillers, because of the lack of efficient heat transfer pathways. Herein, we report vertically aligned and interconnected SiC nanowire (SiCNW) networks as efficient fillers for polymer composites, achieving significantly enhanced thermal conductivity. The SiCNW networks are produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to consolidate the nanowire junctions, exhibiting a hierarchical architecture in which honeycomb-like SiCNW layers are aligned. The composite obtained by infiltrating SiCNW networks with epoxy resin, at a relatively low SiCNW loading of 2.17 vol %, represents a high through-plane thermal conductivity (1.67 W m -1 K -1 ) compared to the pure matrix, which is equivalent to a significant enhancement of 406.6% per 1 vol % loading. The orderly SiCNW network which can act as a macroscopic expressway for phonon transport is believed to be the main contributor for the excellent thermal performance. This strategy provides insights for the design of high-performance composites with potential to be used in advanced thermal management materials.

  20. Oxygen plasma treatment and deposition of CN{sub x} on a fluorinated polymer matrix composite for improved erosion resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.

    2007-07-15

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN{sub x} coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN{sub x} was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relativemore » to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN{sub x} coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN{sub x} reduced the erosion rate by an order of magnitude for normally incident particles.« less

Top