Science.gov

Sample records for advanced portable life

  1. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  2. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  3. Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Waguespack, Glenn M.; Paul, Thomas H.; Conger, Bruce C.

    2008-01-01

    As part of NASA s initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet and return gases pass over the astronaut s body to be extracted at the astronaut s wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline. The HECS configurations incorporate the use of full contact masks or non-contact masks to reduce flow requirements within the PLSS ventilation subsystem. The primary scope of this study was to compare the alternatives based on mass and volume considerations; however other design issues were also briefly investigated. This paper summarizes the results of this sizing analysis task.

  4. Metal oxide regenerable carbon dioxide removal system for an advanced portable life support system

    NASA Technical Reports Server (NTRS)

    Nacheff, Maurena S.; Chang, Craig H.; Colombo, Gerald V.; Cusick, Robert J.

    1989-01-01

    The development of a CO2 removal system for an astronaut portable life support system to meet the EVA requirements for the Space Station is discussed, focusing on the factors important in the selection of the metal oxide absorbent for CO2 removal. Results from laboratory tests on metal oxide absorbent materials are given, including characterization studies and dynamic CO2 uptake and regeneration measurements. The preliminary design of the breadboard system to perform both the absorption and regeneration functions is presented.

  5. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  6. Shuttle/ISS EMU Failure History and the Impact on Advanced EMU Portable Life Support System (PLSS) Design

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2015-01-01

    As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.

  7. Proposed Schematics for an Advanced Development Lunar Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg

    2010-01-01

    The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.

  8. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  9. Advanced EMU Portable Life Support System (PLSS) and Shuttle/ISS EMU Schematics, a Comparison

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2012-01-01

    In order to be able to adapt to differing vehicle interfaces such as suitport and airlock, adjust to varying vehicle pressure schedules, tolerate lower quality working fluids, and adapt to differing suit architectures as dictated by a range of mission architectures, the next generation space suit requires more adaptability and robustness over that of the current Shuttle/ISS Extra-vehicular Mobility Unit (EMU). While some features have been added to facilitate interfaces to differing vehicle and suit architectures, the key performance gains have been made via incorporation of new technologies such as the variable pressure regulators, Rapid Cycle Amine swing-bed, and Suit Water Membrane Evaporator. This paper performs a comparison between the Shuttle/ISS EMU PLSS schematic and the Advanced EMU PLSS schematic complete with a discussion for each difference.

  10. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  11. Comparison of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    NASA Technical Reports Server (NTRS)

    Stonesifer, Greg T.; Chang, Craig H.; Cusick, Robert J.; Hart, Joan M.

    1991-01-01

    Metal-oxide absorbents (MOAs) have a demonstrated capability for removal of both metabolic CO2 and H2O from breathing atmospheres, simplifying portable life support system (PLSS) design and affording reversible operation for regeneration. Attention is presently given to the comparative performance levels obtained by silver-oxide-based and silver/zinc-oxide-based systems, which also proved to be longer-lasting than the silver oxide-absorber system. The silver/zinc system is found to substantially simplify the ventilation loop of a prospective Space Station Freedom PLSS.

  12. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  13. NASA Now: Life Science: Portable Life Support System

    NASA Video Gallery

    Spacesuit engineer Antja Chambers discusses the Portable Life Support System, a backpack the astronauts wear during spacewalks. It provides oxygen for the astronauts, protects them from the harsh c...

  14. Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe

    2004-01-01

    Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.

  15. A portable life support system for use in mines

    NASA Technical Reports Server (NTRS)

    Zeller, S. S.

    1972-01-01

    The portable life support system described in this paper represents a potential increase in the probability of survival for miners who are trapped underground by a fire or explosion. The habitability and life support capability of the prototype shelter have proved excellent. Development of survival chamber life support systems for wide use in coal mines is definitely within the capabilities of current technology.

  16. Advanced Cardiac Life Support.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  17. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  18. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  19. [Pediatric advanced life support].

    PubMed

    Muguruma, Takashi

    2011-04-01

    Important changes or points of emphasis in the recommendations for pediatric advanced life support are as follows. In infants and children with no signs of life, healthcare providers should begin CPR unless they can definitely palpate a pulse within 10 seconds. New evidence documents the important role of ventilations in CPR for infants and children. Rescuers should provide conventional CPR for in-hospital and out-of-hospital pediatric cardiac arrests. The initial defibrillation energy dose of 2 to 4J/kg of either monophasic or biphasic waveform. Both cuffed and uncuffed tracheal tubes are acceptable for infants and children undergoing emergency intubation. Monitoring capnography/capnometry is recommended to confirm proper endotracheal tube position.

  20. Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kelly, Cody

    2014-01-01

    NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.

  1. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  2. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  3. A gas flow indicator for portable life support systems

    NASA Technical Reports Server (NTRS)

    Bass, R. L., III; Schroeder, E. C.

    1975-01-01

    A three-part program was conducted to develop a gas flow indicator (GFI) to monitor ventilation flow in a portable life support system. The first program phase identified concepts which could potentially meet the GFI requirements. In the second phase, a working breadboard GFI, based on the concept of a pressure sensing diaphragm-aneroid assembly connected to a venturi, was constructed and tested. Extensive testing of the breadboard GFI indicated that the design would meet all NASA requirements including eliminating problems experienced with the ventilation flow sensor used in the Apollo program. In the third program phase, an optimized GFI was designed by utilizing test data obtained on the breadboard unit. A prototype unit was constructed using prototype materials and fabrication techniques, and performance tests indicated that the prototype GFI met or exceeded all requirements.

  4. Development of a portable life support system and emergency life support pack

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The design, development, and fabrication of a feasibility model of a breathing bag life support system for extravehicular activity are discussed. The breathing vest and back pack portable life support system contains connectors which allow external water and gas supply. At a metabolic rate of 2000 BTU per hour, the two low pressure bottles provide 27 minutes of breathing gas for a total filled system weight of 30.5 pounds.

  5. Hollow fiber membrane systems for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1976-01-01

    The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.

  6. Lunar Portable Life Support System Heat Rejection Study

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Sompayrac,Robert G.; Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    Performing extravehicular activity (EVA) at various locations of the lunar surface presents thermal challenges that exceed those experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the space suit and reject heat loads generated by the crewmember and the PLSS equipment. The amount of cooling required varies based on the lunar location and terrain due to the heat transferred between the suit and its surroundings. A study has been completed which investigated the resources required to provide cooling under various lunar conditions, assuming three different thermal technology categories: 1. Spacesuit Water Membrane Evaporator (SWME) 2. Subcooled Phase Change Material (SPCM) 3. Radiators with and without heat pumps Results from the study are presented that show mass and power impacts on the cooling system as a function of the location and terrain on the lunar surface. Resources (cooling equipment mass and consumables) are greater at the equator and inside sunlit craters due to the additional heat loads on the cooling system. While radiator and SPCM technologies require minimal consumables, they come with carry-weight penalties and have limitations. A wider investigation is recommended to determine if these penalties and limitations are offset by the savings in consumables.

  7. Advances in Materials and System Technology for Portable Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.

    2007-01-01

    This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.

  8. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  9. Portable Life Support System 2.5 Fan Design and Development

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  10. 76 FR 19926 - Portable Bed Rails: Withdrawal of Advance Notice of Proposed Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ..., 65 FR 58968. On August 14, 2008, the Consumer Product Safety Improvement Act of 2008 (``CPSIA'') was... October 3, 2000 (65 FR 58968), we published an advance notice of proposed rulemaking (``ANPR''), which... COMMISSION 16 CFR Part 1500 Portable Bed Rails: Withdrawal of Advance Notice of Proposed Rulemaking...

  11. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level

  12. Advanced Life Support Project Plan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  13. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the

  14. Improved thermal storage material for portable life support systems

    NASA Technical Reports Server (NTRS)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  15. Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA

  16. Cost-effective advances in portable radioscopic NDT of composite materials

    NASA Astrophysics Data System (ADS)

    Hall, David O.

    1998-03-01

    Advances in radioscopic testing have occurred very recently with the availability of the ASTM radioscopic specifications and new equipment designs. Improvements in image quality and variable geometry portable x-ray systems lead the advances. Cost reductions are realized when these systems are utilized for immediate feedback for process control. Storage of as- built product images allows for future reference and additional processing of these digital images for failure analysis.

  17. Advanced materials for next generation NiMH portable, HEV and EV batteries

    SciTech Connect

    Ovshinsky, S.R.; Dhar, S.K.; Fetcenko, M.A.; Corrigan, D.A.; Reichman, B.; Young, K.; Fierro, C.; Venkatesan, S.; Gifford, P.; Koch, J.

    1998-07-01

    While Ovonic NiMH batteries are already in high volume commercial production for portable applications, advances in materials technology have enabled performance improvements in specific energy (100 Wh/kg), specific power (600-1000 W/kg), high temperature operation, charge retention, and voltage stability. Concurrent with technology advances, Ovonic NiMH batteries have established performance and commercial milestones in electric vehicles, hybrid electric vehicles, as well as scooter, motorcycle and bicycle applications. As important as these advances, significant manufacturing cost reductions have also occurred which allow continued growth of NiMH technology. In this paper, advances in performance, applications and cost reduction are discussed with particular emphasis on the improved proprietary metal hydride and nickel hydroxide materials that make such advances possible.

  18. Testing and Oxygen Assessment Results for a Next Generation Extravehicular Activity Portable Life Support System Fan

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Rivera, Fatonia L.; Martin, Devin

    2011-01-01

    NASA is designing a next generation Extravehicular Activity (EVA) Portable Life Support System (PLSS) for use in future surface exploration endeavors. To meet the new requirements for ventilation flow at nominal and buddy modes, a fan has been developed and tested. This paper summarizes the results of the performance and life cycle testing efforts conducted at the NASA Johnson Space Center. Additionally, oxygen compatibility assessment results from an evaluation conducted at White Sands Test Facility (WSTF) are provided, and lessons learned and future recommendations are outlined.

  19. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  20. Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Rivera, Fatonia L.

    2010-01-01

    NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.

  1. Advanced Trauma Life Support aboard RFA Argus.

    PubMed

    Greenslade, G L; Taylor, R H

    1992-01-01

    The Advanced Trauma Life Support (ATLS) system was adopted for casualty reception and resuscitation. ATLS permitted well-informed triage decisions to be made, coupled with appropriate initial, possibly life-saving, treatment. The training given on board has continued to benefit patients treated by ex-Argus staff in their peacetime roles.

  2. Advanced Trauma Life Support aboard RFA Argus.

    PubMed

    Greenslade, G L; Taylor, R H

    1992-01-01

    The Advanced Trauma Life Support (ATLS) system was adopted for casualty reception and resuscitation. ATLS permitted well-informed triage decisions to be made, coupled with appropriate initial, possibly life-saving, treatment. The training given on board has continued to benefit patients treated by ex-Argus staff in their peacetime roles. PMID:1453364

  3. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  4. Space Suit Portable Life Support System (PLSS) 2.0 Human-in-the-Loop (HITL) Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    The space suit Portable Life Support System (PLSS) 2.0 represents the second integrated prototype developed and tested to mature a design that uses advanced technologies to reduce consumables, improve robustness, and provide additional capabilities over the current state of the art. PLSS 2.0 was developed in 2012, with extensive functional evaluations and system performance testing through mid-2014. In late 2014, PLSS 2.0 was integrated with the Mark III space suit in an ambient laboratory environment to facilitate manned testing, designated PLSS 2.0 Human-in-the-Loop (HITL) testing, in which the PLSS prototype performed the primary life support functions, including suit pressure regulation, ventilation, carbon dioxide control, and cooling of the test subject and PLSS avionics. The intent of this testing was to obtain subjective test subject feedback regarding qualitative aspects of PLSS 2.0 performance such as thermal comfort, sounds, smells, and suit pressure fluctuations due to the cycling carbon dioxide removal system, as well as to collect PLSS performance data over a range of human metabolic rates from 500-3000 Btu/hr. Between October 27 and December 18, 2014, nineteen two-hour simulated EVA test points were conducted in which suited test subjects walked on a treadmill to achieve a target metabolic rate. Six test subjects simulated nominal and emergency EVA conditions with varied test parameters including metabolic rate profile, carbon dioxide removal control mode, cooling water temperature, and Liquid Cooling and Ventilation Garment (state of the art or prototype). The nineteen test points achieved more than 60 hours of test time, with 36 hours accounting for simulated EVA time. The PLSS 2.0 test article performed nominally throughout the test series, confirming design intentions for the advanced PLSS. Test subjects' subjective feedback provided valuable insight into thermal comfort and perceptions of suit pressure fluctuations that will influence future

  5. Recent advances in emergency life support.

    PubMed

    Dries, David J; Sample, Mary Anne

    2002-03-01

    With additional international input, recent changes in emergency life support are reflected in updated guidelines for Advanced Cardiac Life Support (ACLS) from the American Heart Association and new technology in the arena of vascular access and emergency airway management. These changes will expand nurses' ability to provide advanced levels of care, even in the prehospital situation, and represent a more rigorous evidence-based approach than ever before. As early morbidity and mortality in emergency situations are frequently associated with complications associated with airway management and vascular access, recent development in these areas are reviewed along with evolution in ACLS guidelines. PMID:11818257

  6. The embodiment design of the heat rejection system for the portable life support system

    NASA Technical Reports Server (NTRS)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  7. Requirements and Sizing Investigation for Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn

    2010-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  8. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  9. Advanced Stirling Radioisotope Generator Life Certification Plan

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Zampino, Edward

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  10. Performance and Safety of an Integrated Portable Extracorporeal Life Support System for Adults

    PubMed Central

    Alwardt, Cory M.; Wilson, Donald S.; Alore, Michelle L.; Lanza, Louis A.; DeValeria, Patrick A.; Pajaro, Octavio E.

    2015-01-01

    Abstract: Extracorporeal membrane oxygenation (ECMO) is indicated when conventional measures fail to support a patient during cardiac or respiratory failure. Due to the complicated nature of ECMO, patients often require transport to a tertiary care center. This study retrospectively compared the performance of the Cardiohelp™ (Maquet) life support system with a previously used ECMO circuit when transporting adult patients on venoarterial ECMO between facilities. Two ECMO circuits were compared for performance: 1) the Cardiohelp™ (Maquet) life support system and 2) the “standard” circuit consisting of a Thoratec CentriMag centrifugal pump, Maquet Quadrox-D oxygenator, and a Terumo CDI-500 in-line blood gas analyzer. After analyzing data from 16 patients (eight patients supported with each ECMO system), no differences in patient demographics, percentage of patients successfully weaned from ECMO, percentage of patients surviving to discharge, duration supported on the initial ECMO system, or total duration of ECMO were noted. No patient deaths were related to circuit failure or circuit disruptions in either group. Analysis of the performance of the ECMO circuits and the resulting patient status showed few significant differences between ECMO groups (Cardiohelp™ vs. standard circuit) and time points (the first 8 hours vs. a 24-hour time point). The statistically significant differences were not concerning in terms of appropriate medical support or patient safety. Of interest, the transmembrane pressure was significantly lower for the Cardiohelp™ module vs. the standard oxygenator during the first 8 hours (20.1 [5.3] vs. 37.1 [7.1] mmHg; p < .001) and at 24 hours (21.3 [3.8] vs. 34.8 [7.9] mmHg; p = .001). The Cardiohelp™ portable life support system provides safe and reliable support for adult patients on ECMO during interhospital patient transport as compared to the standard circuit. PMID:26390678

  11. Hollow fiber membranes for advanced life support systems. [permeable capillaries for medical filtration

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1977-01-01

    This paper describes an investigation of the practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing. Breadboard hardware has been manufactured and tested, and the physical properties of the three hollow fiber membrane assemblies applicable to use aboard future spacecraft have been characterized.

  12. MIRRORCLE-type tabletop/portable SR sources for advanced applications

    NASA Astrophysics Data System (ADS)

    Yamada, Hironari

    2007-03-01

    MIRRORCLE is a tabletop/portable synchrotron light source. It generates 10 mW order far infrared, watt order EUV/soft X-ray, and brilliant hard X-rays in 10 to 1000 keV range. MIRRORCLE is also a synchrotron that can generate directly monochromatic X-ray beam. MIRRORCLE is a medical diagnostics system similar to a X-ray tube radiology, but is very different in its fine spatial resolution and coherence of X-ray. A difference in the material density instead of in the atomic number is distinguished by the phase contrast method, due to its highly coherent beam. MIRRORCLE is a non-destructive testing system for more than 10cm thick heavy constructions with 10-μm order fine spatial resolution. MIRRORCLE is an EUV lithography source, a laboratory size protein crystallography system, as well as a X-ray microscope. We discuss advanced features of this multi-functional light source MIRRORCLE.

  13. Advances in field-portable ion trap GC/MS instrumentation

    NASA Astrophysics Data System (ADS)

    Diken, Eric G.; Arno, Josep; Skvorc, Ed; Manning, David; Andersson, Greger; Judge, Kevin; Fredeen, Ken; Sadowski, Charles; Oliphant, Joseph L.; Lammert, Stephen A.; Jones, Jeffrey L.; Waite, Randall W.; Grant, Chad; Lee, Edgar D.

    2012-06-01

    The rapid and accurate detection and identification of chemical warfare agents and toxic industrial chemicals can be critical to the protection of military and civilian personnel. The use of gas chromatography (GC) - mass spectrometry (MS) can provide both the sensitivity and selectivity required to identify unknown chemicals in complex (i.e. real-world) environments. While most widely used as a laboratory-based technique, recent advances in GC, MS, and sampling technologies have led to the development of a hand-portable GC/MS system that is more practical for field-based analyses. The unique toroidal ion trap mass spectrometer (TMS) used in this instrument has multiple benefits related to size, weight, start-up time, ruggedness, and power consumption. Sample separation is achieved in record time (~ 3 minutes) and with high resolution using a state-of-the-art high-performance low-thermal-mass GC column. In addition to providing a system overview highlighting its most important features, the presentation will focus on the chromatographic and mass spectral performance of the system. Results from exhaustive performance testing of the new instrument will be introduced to validate its unique robustness and ability to identify targeted and unknown chemicals.

  14. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  15. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  16. Flexible Foam Protection Materials for Constellation Space Suit Element Portable Life Support Subsystem Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  17. Walking in simulated Martian gravity: influence of the portable life support system's design on dynamic stability.

    PubMed

    Scott-Pandorf, Melissa M; O'Connor, Daniel P; Layne, Charles S; Josić, Kresimir; Kurz, Max J

    2009-09-01

    With human exploration of the moon and Mars on the horizon, research considerations for space suit redesign have surfaced. The portable life support system (PLSS) used in conjunction with the space suit during the Apollo missions may have influenced the dynamic balance of the gait pattern. This investigation explored potential issues with the PLSS design that may arise during the Mars exploration. A better understanding of how the location of the PLSS load influences the dynamic stability of the gait pattern may provide insight, such that space missions may have more productive missions with a smaller risk of injury and damaging equipment while falling. We explored the influence the PLSS load position had on the dynamic stability of the walking pattern. While walking, participants wore a device built to simulate possible PLSS load configurations. Floquet and Lyapunov analysis techniques were used to quantify the dynamic stability of the gait pattern. The dynamic stability of the gait pattern was influenced by the position of load. PLSS loads that are placed high and forward on the torso resulted in less dynamically stable walking patterns than loads placed evenly and low on the torso. Furthermore, the kinematic results demonstrated that all joints of the lower extremity may be important for adjusting to different load placements and maintaining dynamic stability. Space scientists and engineers may want to consider PLSS designs that distribute loads evenly and low, and space suit designs that will not limit the sagittal plane range of motion at the lower extremity joints.

  18. Alisse : Advanced life support system evaluator

    NASA Astrophysics Data System (ADS)

    Brunet, Jean; Gerbi, Olivier; André, Philippe; Davin, Elisabeth; Avezuela Rodriguez, Raul; Carbonero, Fernando; Soumalainen, Emilia; Lasseur, Christophe

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require such an amount of life support consumables (e.g. food, water and oxygen) that direct supply or re-supply from Earth is not an option anymore. Regenerative Life Support Systems are therefore necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. The architecture of an Environmental Controlled Life Support System widely depends on the mission scenario. Even for a given mission scenario, different architectures could be envisaged which need to be evaluated and compared with appropriate tools. As these evaluation and comparison, based on the single criterion of Equivalent System Mass, was not considered com-prehensive enough, ESA is developing a multi-criteria evaluation tool: ALISSE (Advanced Life Support System Evaluator). The main objective of ALISSE, and of the work presented here, is the definition and implemen-tation of a metrics system, addressing the complexity of any ECLSS along its Life Cycle phases. A multi-dimensional and multi-criteria (i.e. mass, energy, efficiency, risk to human, reliability, crew time, sustainability, life cycle cost) approach is proposed through the development of a computing support platform. Each criterion being interrelated with the others, a model based system approach is used. ALISSE is expected to provide significant inputs to the ESA Concurrent Design Facility and, as a consequence, to be a highly valuable tool for decision process linked to any manned space mission. Full contact detail for the contact author : Jean Brunet Sherpa Engineering General Manager Phone : 0033(0)608097480 j.brunet@sherpa-eng.com

  19. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  20. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Potassium bifluoride/water solution investigations. [for portable life support systems

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1977-01-01

    A series of investigations was conducted to characterize the physical properties of potassium bifluoride and water solutions for use as the fusible heat sink material in a regenerable portable life support system.

  1. Nanomaterials for Advanced Life Support in Advanced Life Support in Space systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Moloney, Padraig; Yowell, Leonard

    2006-01-01

    A viewgraph presentation describing nanomaterial research at NASA Johnson Space Center with a focus on advanced life support in space systems is shown. The topics include: 1) Introduction; 2) Research and accomplishments in Carbon Dioxide Removal; 3) Research and Accomplishments in Water Purification; and 4) Next Steps

  2. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  3. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Rasky, Daniel J. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have led to the following approach. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are considered to be exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is defined after many trade-offs. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, SVM/[ESM + function (TRL)], with appropriate weighting and scaling. The total value is given by SVM. Cost is represented by higher ESM and lower TRL. The paper provides a detailed description and example application of a suggested System Value Metric and an overall ALS system metric.

  4. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have reached a consensus. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is then set accordingly. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, [SVM + TRL]/ESM, with appropriate weighting and scaling. The total value is the sum of SVM and TRL. Cost is represented by ESM. The paper provides a detailed description and example application of the suggested System Value Metric.

  5. Advanced Life Support Technologies and Scenarios

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  6. Power Management for Space Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2001-01-01

    Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.

  7. Advances in shutter drive technology to enhance man-portable infrared cameras

    NASA Astrophysics Data System (ADS)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  8. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  9. Recent Advances of Portable Multi-Sensor Technique of Volcanic Plume Measurement

    NASA Astrophysics Data System (ADS)

    Shinohara, H.

    2005-12-01

    A technique has been developed to estimate chemical composition volcanic gases based on the measurement of volcanic plumes at distance from a source vent by the use of a portable multi-sensor system consisting a humidity sensor, an SO2 electrochemical sensor and a CO2 IR analyzer (Shinohara, 2005). Since volcanic plume is a mixture of the atmosphere and volcanic gases, the volcanic gas composition can be estimated by subtracting the atmospheric background from the plume data. This technique enabled us to estimate concentration ratios of major volcanic gas species (i.e., H2O, CO2 and SO2) without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Since the portable multi-sensor system was light (~ 5 kg) and small enough to carry in a medium size backpack, we could apply this technique to measure volcanic plumes at summit of various volcanoes including those which require us a tough climbing, such as Villarrica volcano, Chile. We further improved the sensor system and the measurements techniques, including application of LI-840 IR H2O and CO2 analyzer, H2S electrochemical sensor and H2 semi-conductor sensor. Application of the new LI-840 analyzer enabled us to measure H2O concentration in the plume with similar response time with CO2 concentration. The H2S electrochemical sensor of Komyo Co. has a chemical filter to removed SO2 to achieve a low sensitivity (0.1%) to SO2, and we can measure a high SO2/H2S ratio up to 1000. The semi-conductor sensor can measure H2 concentration in the range from the background level in the atmosphere (~0.5 ppm) to ~50 ppm. Response of the H2 sensor is slower (90% response time = ~90 sec) than other sensors in particular in low concentration range, and the measurement is still semi-quantitative with errors up to ±50%. The H2/H2O ratios are quite variable in volcanic gases ranging from less than 10-5 up to 10-1, and the ratio is largely controlled by temperature and pressure condition of the

  10. A portable system for noninvasive assessment of advanced glycation end-products using skin fluorescence and reflectance spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Y. K.; Zhu, L.; Zhang, L.; Zhang, G.; Liu, Y.; Wang, A.

    2012-07-01

    An optical system has been developed for noninvasive assessment of skin advanced glycation end-products (AGEs). The system comprises mainly a high-power ultraviolet light emitting diode (LED) as an excitation source, an LED array for the reflectance measurement, a trifurcated fiber-optic probe for light transmitting and receiving, and a compact spectrometer for light detecting. Both skin fluorescence of a subject and the reflectance spectrum of the same site can be obtained in a single measurement with the system. Demonstrative measurements with the system have been conducted. Results indicate that the measured reflectance spectrum can be used to compensate for the distortion of AGEs fluorescence, which is caused by skin absorption and scattering. The system is noninvasive, portable, easy to operate, and has potential applications for clinical diagnosis of AGE-related diseases, especially diabetes mellitus.

  11. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  12. Portable raman explosives detection

    SciTech Connect

    Moore, David Steven; Scharff, Robert J

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  13. A new data architecture for advancing life cycle assessment

    EPA Science Inventory

    IntroductionLife cycle assessment (LCA) has a technical architecture that limits data interoperability, transparency, and automated integration of external data. More advanced information technologies offer promise for increasing the ease with which information can be synthesized...

  14. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  15. Sensor Needs for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2000-01-01

    Sensors and feedback systems are critical to life support flight systems and life support systems research. New sensor capabilities can allow for new system architectures to be considered, and can facilitate dramatic improvements in system performance. This paper will describe three opportunities for biosensor researchers to develop sensors that will enable life support system improvements. The first opportunity relates to measuring physical, chemical, and biological parameters in the Space Station Water Processing System. Measuring pH, iodine, total organic carbon, microbiological activity, total dissolved solids, or conductivity with a safe, effective, stable, reliable microsensor could benefit the water processing system considerably. Of special interest is a sensor which can monitor biological contamination rapidly. The second opportunity relates to sensing microbiological contamination and water condensation on the surface of large inflatable structures. It is the goal of large inflatable structures used for habitation to take advantage of the large surface area of the structure and reject waste heat passively through the walls of the structure. Too much heat rejection leads to a cold spot with water condensation, and eventually microbiological contamination. A distributed sensor system that can measure temperature, humidity, and microbiological contamination across a large surface would benefit designers of large inflatable habitable structures. The third opportunity relates to sensing microbial bioreactors used for waste water processing and reuse. Microbiological bioreactors offer considerable advantages in weight and power compared to adsorption bed based systems when used for long periods of time. Managing and controlling bioreactors is greatly helped if distributed microsensors measured the biological populations continuously in many locations within the bioreactor. Nitrifying bacteria are of special interest to bioreactor designers, and any sensors that

  16. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  17. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Watts, Carly

    2011-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system

  18. University role in astronaut life support systems: Portable thermal control systems

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1971-01-01

    One of the most vital life support systems is that used to provide the astronaut with an adequate thermal environment. State-of-the-art techniques are reviewed for collecting and rejecting excess heat loads from the suited astronaut. Emphasis is placed on problem areas which exist and which may be suitable topics for university research. Areas covered include thermal control requirements and restrictions, methods of heat absorption and rejection or storage, and comparison between existing methods and possible future techniques.

  19. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  20. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  1. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  2. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  3. An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson's Disease.

    PubMed

    Arlotti, Mattia; Rossi, Lorenzo; Rosa, Manuela; Marceglia, Sara; Priori, Alberto

    2016-05-01

    Compared to conventional deep brain stimulation (DBS) for patients with Parkinson's Disease (PD), the newer approach of adaptive DBS (aDBS), regulating stimulation on the basis of the patient's clinical state, promises to achieve better clinical outcomes, avoid adverse-effects and save time for tuning parameters. A remaining challenge before aDBS comes into practical use is to prove its feasibility and its effectiveness in larger groups of patients and in more ecological conditions. We developed an external portable aDBS system prototype designed for clinical testing in freely-moving PD patients with externalized DBS electrodes. From a single-channel bipolar artifact-free recording, it analyses local field potentials (LFPs), during ongoing DBS for tuning stimulation parameters, independent from the specific feedback algorithm implemented. We validated the aDBS system in vitro, by testing both its sensing and closed-loop stimulation capabilities, and then tested it in vivo, focusing on the sensing capabilities. By applying the aDBS system prototype in a patient with PD, we provided evidence that it can track levodopa and DBS-induced LFP spectral power changes among different patient's clinical states. Our system, intended for testing LFP-based feedback strategies for aDBS, should help understanding how and whether aDBS therapy works in PD and indicating future technical and clinical advances. PMID:27029510

  4. Development of a prototype regenerable carbon dioxide absorber for portable life support systems. [for astronaut EVA

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.

    1977-01-01

    The design and development of a prototype carbon dioxide absorber using potassium carbonate (K2CO3) is described. Absorbers are constructed of thin, porous sheets of supported K2CO3 that are spirally wound to form a cylindrical reactor. Axial gas passages are formed between the porous sheets by corrugated screen material. Carbon dioxide and water in an enclosed life support system atmosphere react with potassium carbonate to form potassium bicarbonate. The potassium carbonate is regenerated by heating the potassium bicarbonate to 150 C at ambient pressure. The extravehicular mission design conditions are for one man for 8 h. Results are shown for a subunit test module investigating the effects of heat release, length-to-diameter ratio, and active cooling upon performance. The most important effect upon carbon dioxide removal is the temperature of the potassium carbonate.

  5. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    NASA Technical Reports Server (NTRS)

    Watts, Carly A.; Vogel, Matt

    2012-01-01

    A multi-year effort has been carried out at the Johnson Space Center to develop an advanced EVA PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off-the-shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). PLSS 1.0 was tested from June 17th through September 30th, 2011. Testing accumulated 233 hours over 45 days, while executing 119 test points. An additional 164 hours of operational time were accrued during the test series, bringing the total operational time for PLSS 1.0 testing to 397 hours. Specific PLSS 1.0 test objectives assessed during this testing include: (1) Confirming prototype components perform in a system level test as they have performed during component level testing, (2) Identifying unexpected system-level interactions (3) Operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions (4) Simulating nominal transient EVA operational scenarios (5) Simulating contingency EVA operational scenarios (6) Further evaluating prototype technology development components Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected. Documented anomalies and observations include: (1) Ventilation loop fan controller issues at high fan speeds (near 70,000 rpm, whereas the fan speed during nominal operations would be closer

  6. Canadian advanced life support capacities and future directions

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity

  7. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  8. Miniature Sensor Probe for O2, CO2, and H2O Monitoring in Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Chambers, Antja

    2013-01-01

    A miniature sensor probe, composed of four sensors which monitor the partial pressure of O2, CO2, H2O, and temperature, designed to operate in the portable life support system (PLSS), has been demonstrated. The probe provides an important advantage over existing technology in that it is able to operate reliably while wet. These luminescence-based fiber optic sensors consist of an indicator chemistry immobilized in a polymeric film, whose emission lifetime undergoes a strong change upon a reversible interaction with the target gas. Each sensor includes chemistry specifically sensitive to one target parameter. All four sensors are based on indicator chemistries that include luminescent dyes from the same chemical family, and therefore exhibit similar photochemical properties, which allow performing measurements of all the sensors by a single, compact, low-power optoelectronic unit remotely connected to the sensors by an electromagnetic interference-proof optical fiber cable. For space systems, using these miniature sensor elements with remote optoelectronics provides unmatched design flexibility for measurements in highly constrained volume systems such as the PLSS. A 10 mm diameter and 15 mm length prototype multiparameter probe was designed, fabricated, tested, and demonstrated over a wide operational range of gas concentration, humidity, and temperature relevant to operation in the PLSS. The sensors were evaluated for measurement range, precision, accuracy, and response time in temperatures ranging from 50 aF-150 aF and relative humidity from dry to 100% RH. Operation of the sensors in water condensation conditions was demonstrated wherein the sensors not only tolerated liquid water but actually operated while wet.

  9. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Ray, Alak

    2016-01-01

    Globular clusters are bound groups of about a million stars and stellar remnants. They are old, largely isolated, and very dense. We consider what each of these special features can mean for the development of life, the evolution of intelligent life, and the long-term survival of technological civilizations. We find that, if they house planets, globular clusters provide ideal environments for advanced civilizations that can survive over long times. We therefore propose methods to search for planets in globular clusters. If planets are found and if our arguments are correct, searches for intelligent life are most likely to succeed when directed toward globular clusters. Globular clusters may be the first places in which distant life is identified in our own or in external galaxies.

  10. End-of-life care in advanced dementia.

    PubMed

    Heron, Christopher R; Simmons, B Brent

    2014-10-01

    In the next 30 years, the average age of the population will continue to increase, as will the prevalence of dementia. The management of advanced dementia requires the careful orchestration of communication, prognostication, patient care, and caregiver education. Understanding the specific tools available to establish prognosis and guide medical management in these complicated medical patients greatly improves patient and caregiver satisfaction at the end of the patient's life. In caring for patients with advanced-stage dementia, providers should be knowledgeable regarding the terminal nature of the condition and its common comorbid diseases, and should be prepared to educate the patients' caregivers, building a structure of support for the patient's benefit and navigating the complexities of end-of-life care. PMID:25414940

  11. Application of NASA's advanced life support technologies in polar regions

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Lewis, C.

    1997-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.

  12. Application of NASA's advanced life support technologies in polar regions.

    PubMed

    Bubenheim, D L; Lewis, C

    1997-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.

  13. Effect of ionizing radiation on advanced life support medications

    SciTech Connect

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-06-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs.

  14. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  15. End-of-life issues in advanced dementia

    PubMed Central

    Arcand, Marcel

    2015-01-01

    Abstract Objective To review the issues with setting goals of care for patients with advanced dementia, describe the respective roles of the physician and the patient’s family in the decision-making process, and suggest ways to support families who need more information about the care options. Sources of information Ovid MEDLINE was searched for relevant articles that were published before March 7, 2014. There were no level I studies identified; most articles provided level III evidence. Main message For patients with advanced dementia, their families have an important role in medical decision making. Families should receive timely information about the course of dementia and the care options. They need to understand that a palliative approach to care might be appropriate and does not mean abandonment of the patient. They might also want clarification about their role in the decision-making process, especially if withholding or withdrawing life-prolonging measures are considered. Conclusion Physicians should consider advanced dementia as a terminal disease for which there is a continuum of care that goes from palliative care with life-extending measures to symptomatic interventions only. Clarification of goals of care and family education are of paramount importance to avoid unwanted and burdensome interventions. PMID:25873700

  16. Tool for Sizing Analysis of the Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  17. Radiator Performance Enhancement using a LiBr-H2O Absorption Cooler and Microchannel Technology: A Portable Life Support System Example

    SciTech Connect

    Brooks, Kriston P.; TeGrotenhuis, Ward E.

    2006-03-15

    Portable life support systems must be capable of performing thermal management in a wide variety of environments. Heat-actuated heat pumps may provide this flexibility, if they can be made small enough. Microchannel technologies represent a proven approach for reducing system volume and mass. The potential impact of adding a LiBr-H2O absorption cooler to increase the radiator temperature was considered. This study showed that such a heat pump can lift the radiator temperature from 15°C to 60°C with a coefficient of performance of 0.65 and that the radiator area can be reduced by up to 60%.

  18. Work/Life Satisfaction Policy in ADVANCE Universities: Assessing Levels of Flexibility

    ERIC Educational Resources Information Center

    Tower, Leslie E.; Dilks, Lisa M.

    2015-01-01

    Work/life satisfaction policies are seen as key to recruiting, retaining, and advancing high quality faculty. This article explores the work/life policies prevalent at NSF ADVANCE institutions (PAID, Catalyst, and IT). We systematically review ADVANCE university websites (N = 124) and rank 9 categories of work/life policy including dual career…

  19. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Bishop, Sean; Duncan, Keith; Hagelin-Weaver, Helena; Neal, Luke; Sanchez, Jose; Paul, Heather L.; Wachsman, Eric

    2007-01-01

    The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. However, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight for life support if the oxygen can be recovered. Recently, the University of Florida devel- oped novel ceramic oxygen generators employing a bilayer elec- trolyte of gadolinia-doped ceria and erbia-stabilized bismuth ox- ide (ESB) for NASA's future exploration of Mars. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. The strategy discussed here for advanced life support systems employs a catalytic layer com- bined with a COG cell so that CO2 is reduced all the way to solid carbon and oxygen without carbon buildup on the COG cell and subsequent deactivation.

  20. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  1. Computer modeling for advanced life support system analysis.

    PubMed

    Drysdale, A

    1997-01-01

    This article discusses the equivalent mass approach to advanced life support system analysis, describes a computer model developed to use this approach, and presents early results from modeling the NASA JSC BioPlex. The model is built using an object oriented approach and G2, a commercially available modeling package Cost factor equivalencies are given for the Volosin scenarios. Plant data from NASA KSC and Utah State University (USU) are used, together with configuration data from the BioPlex design effort. Initial results focus on the importance of obtaining high plant productivity with a flight-like configuration. PMID:11540448

  2. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  3. NASA's Advanced Life Support Systems Human-Rated Test Facility.

    PubMed

    Henninger, D L; Tri, T O; Packham, N J

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  4. Portable treatment systems study

    SciTech Connect

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  5. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  6. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  7. Advanced Technologies to Improve Closure of Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  8. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  9. New Directions for NASA's Advanced Life Support Program

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2006-01-01

    Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The

  10. Advanced Life Support Systems: Opportunities for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.

    1994-01-01

    NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers

  11. Development and implementation of a portable grating interferometer system as a standard tool for testing optics at the Advanced Photon Source beamline 1-BM.

    PubMed

    Assoufid, Lahsen; Shi, Xianbo; Marathe, Shashidhara; Benda, Erika; Wojcik, Michael J; Lang, Keenan; Xu, Ruqing; Liu, Wenjun; Macrander, Albert T; Tischler, Jon Z

    2016-05-01

    We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APS beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.

  12. End-of-life issues in advanced dementia

    PubMed Central

    Arcand, Marcel

    2015-01-01

    Abstract Objective To answer frequently asked questions about management of end-stage pneumonia, poor nutritional intake, and dehydration in advanced dementia. Sources of information Ovid MEDLINE was searched for relevant articles published until February 2015. No level I studies were identified; most articles provided level III evidence. The symptom management suggestions are partially based on recent participation in a Delphi procedure to develop a guideline for optimal symptom relief for patients with pneumonia and dementia. Main message Feeding tubes are not recommended for patients with end-stage dementia. Comfort feeding by hand is preferable. Use of parenteral hydration might be helpful but can also contribute to discomfort at the end of life. Withholding or withdrawing artificial nutrition and hydration is generally not associated with manifestations of discomfort if mouth care is adequate. Because pneumonia usually causes considerable discomfort, clinicians should pay attention to symptom control. Sedation for agitation is often useful in patients with dementia in the terminal phase. Conclusion Symptomatic care is an appropriate option for end-stage manifestations of advanced dementia. The proposed symptom management guidelines are based on a literature review and expert consensus. PMID:25873701

  13. Measuring the Resilience of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria; Dearden, Richard; Levri, Julie A.

    2002-01-01

    Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.

  14. Application of NASA's Advanced Life Support Technologies in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the

  15. Radio Searches for Signatures of Advanced Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew

    Over the last several decades, observational astronomy has produced a flood of discoveries that suggest that the building blocks and circumstances that gave rise to life on Earth may be the rule rather than the exception. It has now been conclusively shown that planets are common and that some 5-15% of FGKM stars host planets existing in their host star's habitable zone. Further, terrestrial biology has demonstrated that life on our own planet can thrive in extraordinarily extreme environments, dramatically extending our notion of what constitutes habitability. The deeper question, yet unanswered, is whether or not life in any form has ever existed in an environment outside of the Earth. As humans, we are drawn to an even more profound question, that of whether or not extraterrestrial life may have evolved a curiosity about the universe similar to our own and the technology with which to explore it. Radio astronomy has long played a prominent role in searches for extraterrestrial intelligence (SETI), beginning with the first suggestions by Cocconi and Morrison (1959) that narrow-band radio signals near 1420 MHz might be effective tracers of advanced technology and early experiments along these lines by Frank Drake in 1961, continuing through to more recent investigations searching for several types of coherent radio signals indicative of technology at a wider range of frequencies. The motivations for radio searches for extraterrestrial intelligence have been throughly discussed in the literature, but the salient arguments are the following: 1. coherent radio emission is commonly produced by advanced technology (judging by Earth’s technological development), 2. electromagnetic radiation can convey information at the maximum velocity currently known to be possible, 3. radio photons are energetically cheap to produce, 4. certain types of coherent radio emissions are easily distinguished from astrophysical background sources, especially within the so

  16. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  17. Microbial astronauts: assembling microbial communities for advanced life support systems.

    PubMed

    Roberts, M S; Garland, J L; Mills, A L

    2004-02-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  18. Advanced Life Systems for Extreme Environments: An Arctic Application

    NASA Technical Reports Server (NTRS)

    Lewis, Carol E.; Stanford, Kerry L.; Bubenheim, David L.; Covington, Alan (Technical Monitor)

    1995-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S. Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions (U.S. Arctic Research Commission). These solutions are also damaging to the environment. Sanitation and a safe water supply are particularly problems in rural villages. About one-fourth of Alaska's 86.000 Native residents live in these communities. They are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain (Office of Technology Assessment, 1994). Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Advanced Life Systems for Extreme Environments (ALSEE) provides a solution to sanitation and safe water problems. The system uses an advanced integrated technology developed for Antarctic and space applications. ALSEE uses the systems approach to address more than waste and water problems. By incorporating hydroponic horticulture and aquaculture into the waste treatment system, ALSEE addresses the quality and quantity of fresh foods available to Arctic residents. A temperate climate is required for year-round plant growth. ALSEE facilities can be designed to include a climate controlled area within the structure. This type of environment is a change from the long periods of darkness and cold found in the Arctic and can help alleviate stress so often associated with these extremes. While the overall concept of ALSEE projects is advanced, system facilities can be operated by village residents with appropriate training. ALSEE provides continuing training and

  19. What do trainees think about advanced trauma life support (ATLS)?

    PubMed Central

    Campbell, B.; Heal, J.; Evans, S.; Marriott, S.

    2000-01-01

    Advanced trauma life support (ATLS) has become a desirable or even essential part of training for many surgeons and anaesthetists, but aspects of the ATLS course have attracted criticism. In the absence of published data on the views of trainees, this study sought their opinions in a structured questionnaire, which was completed by trainees in accident and emergency (A & E) (26), anaesthetic (82), general surgical (26), orthopaedic (42) and other (5) posts in different hospitals (response rate 66%). Of the trainees, 78% had done an ATLS course and, of these, 83% considered ATLS a 'major advantage' or 'essential' for practising their proposed specialty--100% for A & E, 94% for orthopaedics, 92% for general surgery, and 75% for anaesthetics. ATLS was considered a major curriculum vitae (CV) advantage by 94%, 85%, 50%, and 45%, respectively. Over 90% had positive attitudes towards ATLS, and 74% selected 'genuine improvement of management of trauma patients' as the most important reason for doing the course: 93% thought ATLS saved lives. Of the respondents, 83% thought that all existing consultants dealing with trauma patients should have done the course, and 41% thought it offered major advantages to doctors not involved in trauma. Funding problems for ATLS courses had been experienced by 14% trainees. This survey has shown that most trainees view ATLS positively. They believe that it provides genuine practical benefit for patients, and very few regard ATLS primarily as a career advantage or mandate. PMID:10932661

  20. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  1. Safety Analysis of Soybean Processing for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  2. Performance of advanced trauma life support procedures in microgravity

    NASA Technical Reports Server (NTRS)

    Campbell, Mark R.; Billica, Roger D.; Johnston, Smith L 3rd; Muller, Matthew S.

    2002-01-01

    BACKGROUND: Medical operations on the International Space Station will emphasize the stabilization and transport of critically injured personnel and so will need to be capable of advanced trauma life support (ATLS). METHODS: We evaluated the ATLS invasive procedures in the microgravity environment of parabolic flight using a porcine animal model. Included in the procedures evaluated were artificial ventilation, intravenous infusion, laceration closure, tracheostomy, Foley catheter drainage, chest tube insertion, peritoneal lavage, and the use of telemedicine methods for procedural direction. RESULTS: Artificial ventilation was performed and appeared to be unaltered from the 1-G environment. Intravenous infusion, laceration closure, percutaneous dilational tracheostomy, and Foley catheter drainage were achieved without difficulty. Chest tube insertion and drainage were performed with no more difficulty than in the 1-G environment due to the ability to restrain patient, operator and supplies. A Heimlich valve and Sorenson drainage system were both used to provide for chest tube drainage collection with minimal equipment, without the risk of atmospheric contamination, and with the capability to auto-transfuse blood drained from a hemothorax. The use of telemedicine in chest tube insertion was demonstrated to be useful and feasible. Peritoneal lavage using a percutaneous technique, although requiring less training to perform, was found to be dangerous in weightlessness due to the additional pressure of the bowel on the anterior abdominal wall creating a high risk of bowel perforation. CONCLUSIONS: The performance of ATLS procedures in microgravity appears to be feasible with the exception of diagnostic peritoneal lavage. Minor modifications to equipment and techniques are required in microgravity to effect surgical drainage in the presence of altered fluid dynamics, to prevent atmospheric contamination, and to provide for the restraint requirements. A parabolic

  3. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  4. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Bishop, s. R.; Duncan, K. L.; Hagelin-Weaver, H. E.; Neal, L.; Paul, H. L.; Wachsman, E. D.

    2007-01-01

    The partial electrochemical reduction of CO2 using ceramic oxygen generators (COGs) is well known and has been studied. Conventional COGs use yttria-stabilized zirconia (YSZ) electrolytes and operate at temperatures greater than 700 C (1, 2). Operating at a lower temperature has the advantage of reducing the mass of the ancillary components such as insulation. Moreover, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight if the oxygen can be recovered. Recently, the University of Florida developed ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth oxide (ESB) for NASA s future exploration of Mars (3). The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal is an issue. This strategy for CO2 removal in advanced life support systems employs a catalytic layer combined with a COG so that the CO2 is reduced completely to solid carbon and oxygen. First, to reduce the COG operating temperature, a thin, bilayer electrolyte was employed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, a catalytic carbon deposition layer was designed and the cathode utilized materials shown to be coke resistant. Third, a composite anode was used consisting of bismuth ruthenate (BRO) and ESB that has been shown to have high performance (4). The inset of figure 1 shows the conceptual design of the tubular COG and the rest of the figure shows schematically the test apparatus. Figure 2 shows the microstructure of a COG tube prior to testing. During testing, current is applied across the cell and initially CuO is reduced to copper metal by electrochemical pumping. Then the oxygen source becomes the CO/CO2. This presentation

  5. Neonatal Resuscitation Program and Pediatric Advanced Life Support.

    PubMed

    Malinowski, C

    1995-05-01

    The need for delivery resuscitation of the newborn cannot be predicted in most cases; therefore it is judicious to train all providers who may be involved in the delivery of newborns to follow guidelines developed to improve outcome, especially in the presence of transitional asphyxia. The Neonatal Resuscitation Program emphasizes basic steps of warming, drying, suctioning, and adequately ventilating the newborn. It also addresses current theories regarding resuscitation of the low birthweight newborns, infants with meconium aspiration, and medication use. The NRP applies to all acute-care hospitals that provide delivery services and those at which a respiratory therapist is likely to be present in the high-risk delivery or unanticipated delivery-room resuscitation. Outcomes have not been well documented and more clinical research is needed to identify which therapeutic strategies promote the best survival in this population. A topic that should be included in the NRP of the future is exogenous surfactant delivery. Respiratory distress syndrome has been a significant cause of death and morbidity in prematurely born neonates. Exogenous surfactant therapy has had a dramatic effect on the death rate of premature infants and on the incidence of respiratory distress syndrome. Current methods of surfactant administration demand that personnel proficient in management of the low birthweight newborn be present. As hospitals with all levels of nurseries continue to receive the prematurely delivered newborn and better methods to administer surfactant are discovered, the NRP could add information and a skills laboratory on surfactant administration. A trained cadre of health professionals who are proficient in the specific resuscitation skills required in pediatric patients can make a difference. The infant and child have different anatomy, physiology, and disease etiology that need to be emphasized and understood by the pediatric caregiver. The Pediatric Advanced Life

  6. The environmental control and life support system advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  7. The Ontario Prehospital Advanced Life Support (OPALS) Study: rationale and methodology for cardiac arrest patients.

    PubMed

    Stiell, I G; Wells, G A; Spaite, D W; Lyver, M B; Munkley, D P; Field, B J; Dagnone, E; Maloney, J P; Jones, G R; Luinstra, L G; Jermyn, B D; Ward, R; DeMaio, V J

    1998-08-01

    The Ontario Prehospital Advanced Life Support Study represents the largest prehospital study yet conducted, worldwide. This study will involve more than 25,000 cardiac arrest, trauma, and critically ill patients over an 8-year period. The study will evaluate the incremental benefit of rapid defibrillation and prehospital Advanced Cardiac Life Support measures for cardiac arrest survival and the benefit of Advanced Life Support for patients with traumatic injuries and other critically ill prehospital patients. This article describes the OPALS study with regard to the rationale and methodology for cardiac arrest patients.

  8. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect

    Cuccio, J.C.; Brehm, P.; Fang, H.T.

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  9. Women and advancement in neuropsychology: real-life lessons learned.

    PubMed

    Hilsabeck, Robin C; Martin, Eileen M

    2010-04-01

    The number of women in neuropsychology has been increasing over the past 20 years while the number of women in senior and leadership positions within neuropsychology has not. The field of neuropsychology has much to gain by facilitating the advancement of women into leadership roles, including access to some of the brightest and creative minds in the field. The purpose of this article is to offer practical advice about how to overcome barriers and advance within neuropsychology. Suggestions for professional organizations, women, and mentors of women are provided that will likely benefit trainees and junior colleagues regardless of their gender.

  10. WOMEN AND ADVANCEMENT IN NEUROPSYCHOLOGY:REAL-LIFE LESSONS LEARNED

    PubMed Central

    Hilsabeck, Robin C.; Martin, Eileen M.

    2013-01-01

    The number of women in neuropsychology has been increasing over the past 20 years while the number of women in senior and leadership positions within neuropsychology has not. The field of neuropsychology has much to gain by facilitating the advancement of women into leadership roles, including access to some of the brightest and creative minds in the field. The purpose of this article is to offer practical advice about how to overcome barriers and advance within neuropsychology. Suggestions for professional organizations, women, and mentors of women are provided that will likely benefit trainees and junior colleagues regardless of their gender. PMID:18841516

  11. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  12. Recent advances in chemical evolution and the origins of life

    NASA Technical Reports Server (NTRS)

    Oro, John; Lazcano, Antonio

    1992-01-01

    Consideration is given to the ideas of Oparin and Haldane who independently suggested more than 60 years ago that the first forms of life were anaerobic, heterotrophic bacteria that emerged as the result of a long period of chemical abiotic synthesis of organic compounds. It is suggested that at least some requirements for life are met in the Galaxy due to the cosmic abundance of carbon, nitrogen, oxygen, and other biogenic elements; the existence of extraterrestrial organic compounds; and the processes of stellar and interstellar planetary formation.

  13. Advanced Energy Storage Life and Health Prognostics (INL)

    SciTech Connect

    Jon P. Christophersen

    2011-11-01

    The objective of this work is to develop methodologies that will accurately estimate state-of-health (SOH) and remaining useful life (RUL) of electrochemical energy storage devices using both offline and online (i.e., in-situ) techniques through: (1) Developing a statistically robust battery life estimator tool based on both testing and simulation, (2) Developing rapid impedance spectrum measurement techniques that enable onboard power assessment, and (3) Developing an energy storage monitoring system that incorporates both passive and active measurements for onboard systems.

  14. Teaching Advanced Life Sciences in an Animal Context: Agricultural Science Teacher Voices

    ERIC Educational Resources Information Center

    Balschweid, Mark; Huerta, Alexandria

    2008-01-01

    The purpose of this qualitative study was to determine agricultural science teacher comfort with a new high school Advanced Life Science: Animal course and determine their perceptions of student impact. The advanced science course is eligible for college credit. The teachers revealed they felt confident of their science background in preparation…

  15. Portable Technology Comes of Age

    ERIC Educational Resources Information Center

    Wangemann, Paul; Lewis, Nina; Squires, David A.

    2003-01-01

    The PDA was originally conceived of as a portable handheld electronic device that provided a user with a tool to organize his or her life through easy access to a personal calendar, daily planner, and address book. Over the years, these devices have expanded to include many new functions, which have helped more applications in diverse fields. This…

  16. Life disruption, life continuation: contrasting themes in the lives of African-American elders with advanced heart failure.

    PubMed

    Hopp, Faith Pratt; Thornton, Nancy; Martin, Lindsey; Zalenski, Robert

    2012-01-01

    This study addresses the need for more information about how urban African-American elders experience advanced heart failure. Participants included 35 African Americans aged 60 and over with advanced heart failure, identified through records from a community hospital in Detroit, Michigan. Four focus groups (n = 13) and 22 individual interviews were conducted. We used thematic analysis to examine qualitative focus groups and interviews. Themes identified included life disruption, which encompassed the sub-themes of living scared, making sense of heart failure, and limiting activities. Resuming life was a contrasting theme involving culturally relevant coping strategies, and included the sub-themes of resiliency, spirituality, and self-care that helped patients regain and maintain a sense of self amid serious illness. Participants faced numerous challenges and invoked a variety of strategies to cope with their illness, and their stories of struggles, hardship, and resilience can serve as a model for others struggling with advanced illness. PMID:22352363

  17. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-12-31

    Emphasis is placed on life characterization based on low cycle fatigue under isothermal conditions and thermomechanical fatigue. Microstructure of failed coated and uncoated specimens is being analyzed. IN 738 LC is the material; the coating is either overlay (NiCoCrAly) or NiAl-based aluminide.

  18. End-of-life communication in Korean older adults: With focus on advance care planning and advance directives.

    PubMed

    Shin, Dong Wook; Lee, Ji Eun; Cho, BeLong; Yoo, Sang Ho; Kim, SangYun; Yoo, Jun-Hyun

    2016-04-01

    The present article aimed to provide a comprehensive review of current status of end-of-life (EOL) care and sociocultural considerations in Korea, with focus on the EOL communication and use of advance directives (AD) in elderly Koreans. Through literature review, we discuss the current status of EOL care and sociocultural considerations in Korea, and provide a look-ahead. In Korea, patients often receive life-sustaining treatment until the very end of life. Advance care planning is rare, and most do-not-resuscitate decisions are made between the family and physician at the very end of patient's life. Koreans, influenced mainly by Confucian tradition, prefer a natural death and discontinuation of life-sustaining treatment. Although Koreans generally believe that death is natural and unavoidable, they tend not to think about or discuss death, and regard preparation for death as unnecessary. As a result, AD are completed by just 4.7% of the general adult population. This situation can be explained by several sociocultural characteristics including opting for natural death, wish not to burden others, preference for family involvement and trust in doctor, avoidance of talking about death, and filial piety. Patients often receive life-sustaining treatment until the very EOL, advance care planning and the use of AD is not common in Korea. This was related to unique sociocultural characteristics of Korea. A more active role of physicians, development of a more deliberate EOL discussion process, development of culturally appropriate AD and promotion of advance care planning might be required to provide good EOL care in Korea.

  19. Embracing a broad spirituality in end of life discussions and advance care planning.

    PubMed

    Churchill, Larry R

    2015-04-01

    Advance care planning for end of life typically focuses on the mechanics of completing living wills and durable power of attorney documents. Even when spiritual aspects of end of life care are discussed, the dominant assumptions are those of traditional religious systems. A broad view of spirituality is needed, one that may involve traditional religious beliefs but also includes personal understandings of what is holy or sacred. Embracing this broad practice of spirituality will help both familial and professional caregivers honor an essential aspect of end of life discussions and promote greater discernment of the deep meaning in advance care documents.

  20. Psychosocial concerns among Latinas with life-limiting advanced cancers.

    PubMed

    Nedjat-Haiem, Frances R; Carrion, Iraida V; Lorenz, Karl A; Ell, Kathleen; Palinkas, Lawrence

    2013-01-01

    Research has demonstrated that limited dialogue in end-of-life (EOL) care can negatively impact decision-making and place of death. Furthermore, when vulnerable populations are faced with EOL cancer care, they experience issues resulting from previous gaps in services attributed to sociocultural and economic issues that influence EOL care. These conditions place an additional burden on disadvantaged populations which can cause distress, especially as disparate conditions continue to persist. Little is known about Latinos' psychosocial concerns that lead to distress in EOL care. The objective of this study is to explore Latinas' experiences with life-limiting cancer conditions to identify the EOL care concerns that impact their dying experience. This study used a phenomenological approach to explore the EOL care concerns of 24 Latinas receiving treatment for metastatic cancers in a public sector healthcare system in Los Angeles, California. In-depth interviews were recorded and transcribed, and qualitative analysis was performed using Atlas.ti software.

  1. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-10-01

    Most of the studies on the low cycle fatigue life prediction have been reported under isothermal conditions where the deformation of the material is strain dependent. In the development of gas turbines, components such as blades and vanes are exposed to temperature variations in addition to strain cycling. As a result, the deformation process becomes temperature and strain dependent. Therefore, the life of the component becomes sensitive to temperature-strain cycling which produces a process known as {open_quotes}thermomechanical fatigue, or TMF{close_quotes}. The TMF fatigue failure phenomenon has been modeled using conventional fatigue life prediction methods, which are not sufficiently accurate to quantitatively establish an allowable design procedure. To add to the complexity of TMF life prediction, blade and vane substrates are normally coated with aluminide, overlay or thermal barrier type coatings (TBC) where the durability of the component is dominated by the coating/substrate constitutive response and by the fatigue behavior of the coating. A number of issues arise from TMF depending on the type of temperature/strain phase cycle: (1) time-dependent inelastic behavior can significantly affect the stress response. For example, creep relaxation during a tensile or compressive loading at elevated temperatures leads to a progressive increase in the mean stress level under cyclic loading. (2) the mismatch in elastic and thermal expansion properties between the coating and the substrate can lead to significant deviations in the coating stress levels due to changes in the elastic modulii. (3) the {open_quotes}dry{close_quotes} corrosion resistance coatings applied to the substrate may act as primary crack initiation sites. Crack initiation in the coating is a function of the coating composition, its mechanical properties, creep relaxation behavior, thermal strain range and the strain/temperature phase relationship.

  2. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  3. Pathways From Religion to Advance Care Planning: Beliefs About Control Over Length of Life and End-of-Life Values

    PubMed Central

    Garrido, Melissa M.

    2013-01-01

    Purpose of the Study: To evaluate the extent to which religious affiliation and self-identified religious importance affect advance care planning (ACP) via beliefs about control over life length and end-of-life values. Design and Methods: Three hundred and five adults aged 55 and older from diverse racial and socioeconomic groups seeking outpatient care in New Jersey were surveyed. Measures included discussion of end-of-life preferences; living will (LW) completion; durable power of attorney for healthcare (DPAHC) appointment; religious affiliation; importance of religion; and beliefs about who/what controls life length, end-of-life values, health status, and sociodemographics. Results: Of the sample, 68.9% had an informal discussion and 46.2% both discussed their preferences and did formal ACP (LW and/or DPAHC). Conservative Protestants and those placing great importance on religion/spirituality had a lower likelihood of ACP. These associations were largely accounted for by beliefs about God’s controlling life length and values for using all available treatments. Implications: Beliefs and values about control account for relationships between religiosity and ACP. Beliefs and some values differ by religious affiliation. As such, congregations may be one nonclinical setting in which ACP discussions could be held, as individuals with similar attitudes toward the end of life could discuss their treatment preferences with those who share their views. PMID:23161430

  4. State of Health and Quality of Life of Women at Advanced Age.

    PubMed

    Pinkas, Jarosław; Gujski, Mariusz; Humeniuk, Ewa; Raczkiewicz, Dorota; Bejga, Przemysław; Owoc, Alfred; Bojar, Iwona

    2016-01-01

    BACKGROUND Evaluation of the state of health, quality of life, and relationship between the level of the quality of life and health status in a group of women at advanced age (90 and more years) in Poland. MATERIAL AND METHODS The study was conducted in 2014 in an all-Polish sample of 870 women aged 90 and over. The research instruments were: the author's questionnaire, and standardized tests: Katz index of independence in Activities of Daily Living (ADL), Abbreviated Mental Test Score (AMTS), The World Health Organization Quality of Life (WHOQOL) - BREF. The results of the study were statistically analyzed using significant t test for mean and regression analysis. RESULTS The majority of women at advanced age suffered from chronic pain (76%) and such major geriatric problems as hypoacusis (81%), visual disturbances (69%) and urinary incontinence (60%), the minority - fall and fainting (39%) as well as stool incontinence (17%), severe functional and cognitive impairment (24% and 10% respectively). Women at advanced age assessed positively for overall quality of life (mean 3.3 on 1-5 scale), social relationships (3.5) and environment (3.2), but negatively - general, physical and psychological health (2.7, 2.7 and 2.8 respectively). The presence of chronic pain and major geriatric problems: urinary and stool incontinences, falls and fainting, visual disturbances and hypoacusis significantly decreases overall quality of life, general, physical and psychological health, social relationships and environment of women at advanced age. Overall quality of life, general, physical and psychological health, social relationships and environment correlate to functional and cognitive impairments of women at advanced age. CONCLUSIONS Quality of life of women at advanced age decreased if chronic pain, major geriatric problems as well as functional and cognitive impairments occur. PMID:27580565

  5. Recent advances in elastomer service-life prediction

    NASA Technical Reports Server (NTRS)

    Landel, R. F.; Fedors, R. F.; Moacanin, J.

    1973-01-01

    The mechanical properties of an elastomer, including rupture and its time dependence, are defined uniquely by a tensile property surface in normalized stress-strain-time coordinates. In practice, the property surface is determined from short-time constant strain-rate uniaxial tests. By using the time reduction properties of both temperature and cross-link density, an effective time scale of over ten decades of log time can be covered. Changes in cross-link density, filler content, or swelling do not affect the limits of the property surface when plotted in logarithmic coordinates but merely shift their positions. The shape, however, may be modified in certain cases. The service life of an elastomer in the absence of aging reactions can be estimated from the property surface and expected in-use conditions such as strains (static or dynamic).

  6. The life aquatic: advances in marine vertebrate genomics.

    PubMed

    Kelley, Joanna L; Brown, Anthony P; Therkildsen, Nina Overgaard; Foote, Andrew D

    2016-07-01

    The ocean is hypothesized to be where life on earth originated, and subsequent evolutionary transitions between marine and terrestrial environments have been key events in the origin of contemporary biodiversity. Here, we review how comparative genomic approaches are an increasingly important aspect of understanding evolutionary processes, such as physiological and morphological adaptation to the diverse habitats within the marine environment. In addition, we highlight how population genomics has provided unprecedented resolution for population structuring, speciation and adaptation in marine environments, which can have a low cost of dispersal and few physical barriers to gene flow, and can thus support large populations. Building upon this work, we outline the applications of genomics tools to conservation and their relevance to assessing the wide-ranging impact of fisheries and climate change on marine species. PMID:27376488

  7. Reproducible analyses of microbial food for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  8. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  9. The patient perspective: Quality of life in advanced heart failure with frequent hospitalisations.

    PubMed

    Nieminen, Markku S; Dickstein, Kenneth; Fonseca, Cândida; Serrano, Jose Magaña; Parissis, John; Fedele, Francesco; Wikström, Gerhard; Agostoni, Piergiuseppe; Atar, Shaul; Baholli, Loant; Brito, Dulce; Colet, Josep Comín; Édes, István; Gómez Mesa, Juan E; Gorjup, Vojka; Garza, Eduardo Herrera; González Juanatey, José R; Karanovic, Nenad; Karavidas, Apostolos; Katsytadze, Igor; Kivikko, Matti; Matskeplishvili, Simon; Merkely, Béla; Morandi, Fabrizio; Novoa, Angel; Oliva, Fabrizio; Ostadal, Petr; Pereira-Barretto, Antonio; Pollesello, Piero; Rudiger, Alain; Schwinger, Robert H G; Wieser, Manfred; Yavelov, Igor; Zymliński, Robert

    2015-07-15

    End of life is an unfortunate but inevitable phase of the heart failure patients' journey. It is often preceded by a stage in the progression of heart failure defined as advanced heart failure, and characterised by poor quality of life and frequent hospitalisations. In clinical practice, the efficacy of treatments for advanced heart failure is often assessed by parameters such as clinical status, haemodynamics, neurohormonal status, and echo/MRI indices. From the patients' perspective, however, quality-of-life-related parameters, such as functional capacity, exercise performance, psychological status, and frequency of re-hospitalisations, are more significant. The effects of therapies and interventions on these parameters are, however, underrepresented in clinical trials targeted to assess advanced heart failure treatment efficacy, and data are overall scarce. This is possibly due to a non-universal definition of the quality-of-life-related endpoints, and to the difficult standardisation of the data collection. These uncertainties also lead to difficulties in handling trade-off decisions between quality of life and survival by patients, families and healthcare providers. A panel of 34 experts in the field of cardiology and intensive cardiac care from 21 countries around the world convened for reviewing the existing data on quality-of-life in patients with advanced heart failure, discussing and reaching a consensus on the validity and significance of quality-of-life assessment methods. Gaps in routine care and research, which should be addressed, were identified. Finally, published data on the effects of current i.v. vasoactive therapies such as inotropes, inodilators, and vasodilators on quality-of-life in advanced heart failure patients were analysed.

  10. [Development and Hosting of a Perioperative Advanced Life Support Training Course for Anesthesiologists].

    PubMed

    Komasawa, Nobuyasu; Fujiwara, Shunsuke; Haba, Masanori; Ueshima, Hironobu; Okada, Daisuke; Minami, Toshiaki

    2015-05-01

    Participation in the American Heart Association advanced cardiac life support provider course is a prerequisite for taking the anesthesiology specialist examination in Japan. The course teaches fundamental resuscitation methods for different types of cardiac arrest. However, crisis in the perioperative period can result from airway trouble, central venous catheter displacement, or massive hemorrhage. We report our experience of holding a problem- and learning-based perioperative advanced life support training course, Advanced Life Support for Operation (ALS-OP). Main contents of the course included circulation management, airway management central venous catheters, and pain clinic-related complications. ALS-OP simulation training may be beneficial for educating anesthesiologist and promoting perioperative patient safety. PMID:26422971

  11. Advanced Life Support Food Subsystem Salad Crop Requirements

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Stevens, Irene; Swango, Beverly E.; Toerne, Mary E.; Lane, Helen W. (Technical Monitor)

    2002-01-01

    As the National Aeronautics and Space Administration (NASA) begins to look towards longer duration space flights, the importance of fresh foods and varied menu choices increases. Long duration space missions require development of both a Transit Food System and a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions while the second will be used in conditions of partial gravity (hypogravity). The Transit Food System will consist of prepackaged food of extended shelf life. Microgravity imposes significant limitations on the ability of the crew to handle food and allows only for minimal processing. Salad crops will be available for the planetary mission. Supplementing the transit food system with salad crops is also being considered. These crops will include carrots, tomatoes, lettuce, radish, spinach, chard, cabbage, and onion. The crops will be incorporated in the menu along with the prepackaged food. The fresh tasting salad crops will provide variety, texture, and color in the menu. This variety should provide increased psychological benefit. Preliminary studies on spinach, tomatoes, and bok choy have been completed. Sensory and analytical tests, including color and moisture were conducted on the chamber grown crops and compared to store bought spinach, tomatoes, and bok choy. Preliminary studies of the appropriate serving sizes and number of servings per week have also been conducted.

  12. Beyond advance directives: importance of communication skills at the end of life.

    PubMed

    Tulsky, James A

    2005-07-20

    Patients and their families struggle with myriad choices concerning medical treatments that frequently precede death. Advance directives have been proposed as a tool to facilitate end-of-life decision making, yet frequently fail to achieve this goal. In the context of the case of a man with metastatic cancer for whom an advance directive was unable to prevent a traumatic death, I review the challenges in creating and implementing advance directives, discuss factors that can affect clear decision making; including trust, uncertainty, emotion, hope, and the presence of multiple medical providers; and offer practical suggestions for physicians. Advance care planning remains a useful tool for approaching conversations with patients about the end of life. However, such planning should occur within a framework that emphasizes responding to patient and family emotions and focuses more on goals for care and less on specific treatments.

  13. State of Health and Quality of Life of Women at Advanced Age

    PubMed Central

    Pinkas, Jarosław; Gujski, Mariusz; Humeniuk, Ewa; Raczkiewicz, Dorota; Bejga, Przemysław; Owoc, Alfred; Bojar, Iwona

    2016-01-01

    Background Evaluation of the state of health, quality of life, and the relationship between the level of the quality of life and health status in a group of women at an advanced age (90 years of age and older) in Poland. Material/Methods The study was conducted in 2014 in an all-Polish sample of 870 women aged 90 years and older. The research instruments were: the authors’ questionnaire and several standardized tests: Katz Index of Independence in Activities of Daily Living (Katz ADL), Abbreviated Mental Test Score (AMTS), and the World Health Organization Quality of Life (WHOQOL)-BREF. The results of the study were statistically analyzed using significant t-test for mean and regression analysis. Results The majority of women at an advanced age suffered from chronic pain (76%) and major geriatric problems such as hypoacusis (81%), visual disturbances (69%) and urinary incontinence (60%); the minority of women at an advanced age suffered from falls and fainting (39%), stool incontinence (17%), severe functional impairment (24%), and cognitive impairment (10%). On a scale of 1 to 5, women at an advanced age assessed positively for overall quality of life (mean 3.3), social relationships (3.5), and environment (3.2), but negatively for general health, physical health, and psychological health (2.7, 2.7, and 2.8, respectively). The presence of chronic pain and geriatric problems, including urinary and stool incontinences, falls and faint ing, visual disturbances and hypoacusis, significantly decreased overall quality of life; general health, physical health, psychological health, social relationships, and environment. Overall quality of life, general health, physical health, psychological health, social relationships, and environment was correlated with functional and cognitive impairments. Conclusions Quality of life of women at an advanced age decreased if chronic pain, major geriatric problems, or functional or cognitive impairments occurred. PMID:27580565

  14. Care of Patients at the End of Life: Advance Care Planning.

    PubMed

    Ackermann, Richard J

    2016-08-01

    Advance directives are legal documents that give instructions about how to provide care when patients develop life-threatening illnesses and can no longer communicate their wishes. Two types of documents are widely used-a living will and a durable power of attorney for health care. Most states also authorize physician orders for life-sustaining treatment. Physicians should encourage patients, particularly those with severe chronic or terminal conditions, to prepare advance directives. Medicare now reimburses billing codes for advance care consultations. Directions regarding cardiopulmonary resuscitation and artificial ventilation often are included in advance care plans, and use of artificial nutrition and hydration (ANH) also should be addressed, particularly for patients with advanced dementia. Evidence shows that in such patients, ANH does not prolong survival, increase comfort, or improve quality of life. Given the lack of benefit, physicians should recommend against use of ANH for patients with dementia. Finally, physicians should encourage use of hospice services by patients whose life expectancy is 6 months or less. Although Medicare and most other health care insurers cover hospice care, and despite evidence that patient and family satisfaction increase when hospice services are used, many patients do not use these services. PMID:27490070

  15. Embedded Data Processor and Portable Computer Technology testbeds

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.

    1993-01-01

    Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.

  16. Limitation to Advanced Life Support in patients admitted to intensive care unit with integrated palliative care

    PubMed Central

    Mazutti, Sandra Regina Gonzaga; Nascimento, Andréia de Fátima; Fumis, Renata Rego Lins

    2016-01-01

    Objective To estimate the incidence of limitations to Advanced Life Support in critically ill patients admitted to an intensive care unit with integrated palliative care. Methods This retrospective cohort study included patients in the palliative care program of the intensive care unit of Hospital Paulistano over 18 years of age from May 1, 2011, to January 31, 2014. The limitations to Advanced Life Support that were analyzed included do-not-resuscitate orders, mechanical ventilation, dialysis and vasoactive drugs. Central tendency measures were calculated for quantitative variables. The chi-squared test was used to compare the characteristics of patients with or without limits to Advanced Life Support, and the Wilcoxon test was used to compare length of stay after Advanced Life Support. Confidence intervals reflecting p ≤ 0.05 were considered for statistical significance. Results A total of 3,487 patients were admitted to the intensive care unit, of whom 342 were included in the palliative care program. It was observed that after entering the palliative care program, it took a median of 2 (1 - 4) days for death to occur in the intensive care unit and 4 (2 - 11) days for hospital death to occur. Many of the limitations to Advanced Life Support (42.7%) took place on the first day of hospitalization. Cardiopulmonary resuscitation (96.8%) and ventilatory support (73.6%) were the most adopted limitations. Conclusion The contribution of palliative care integrated into the intensive care unit was important for the practice of orthothanasia, i.e., the non-extension of the life of a critically ill patient by artificial means. PMID:27626949

  17. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  18. Advanced Life Support Research and Technology Development Metric: Fiscal Year 2003

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2003. As such, the values herein are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. The Metric is one of several measures employed by the National Aeronautics and Space Administration (NASA) to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). More specifically, the Metric is the ratio defined by the equivalent system mass (ESM) of a life support system for a specific mission using the ISS ECLSS technologies divided by the ESM for an equivalent life support system using the best ALS technologies. As defined, the Metric should increase in value as the ALS technologies become lighter, less power intensive, and require less volume. For Fiscal Year 2003, the Advanced Life Support Research and Technology Development Metric value is 1.47 for an Orbiting Research Facility and 1.36 for an Independent Exploration Mission.

  19. FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Anderson, Molly; Duffield, Bruce; Hanford, Tony; Jeng, Frank

    2004-01-01

    Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications.

  20. Against All Odds: Positive Life Experiences of People with Advanced Amyotrophic Lateral Sclerosis.

    ERIC Educational Resources Information Center

    Young, Jenny M.; McNicoll, Paule

    1998-01-01

    Describes the nature of positive life experiences of 13 people coping exceptionally well while living with advanced amyotrophic lateral sclerosis (ALS), or Lou Gehrig's, disease and the resulting significant physical disabilities. Emerging themes were the use of cognitive reappraisal, reframing, and intellectual stimulation as coping mechanisms;…

  1. Portable computers as companions in space

    NASA Technical Reports Server (NTRS)

    Muratore, Debra; Holden, Kritina; Wilmington, Robert

    1991-01-01

    The paper describes a Space Shuttle Program payload that uses a Macintosh portable computer to gather human performance data for a cursor control device experiment and to test prototype software applications for the Space Station Freedom (SSF). The payload is the first phase of a NASA research and development project to operationally test human-computer interface requirements and crew support applications for an advanced portable computer for the SSF.

  2. Analysis of life cycle costs for electric vans with advanced battery systems

    SciTech Connect

    Marr, W.W.; Walsh, W.J.; Miller, J.F.

    1989-01-01

    The performance of advanced Zn/Br/sub 2/, LiAl/FeS, Na/S, Ni/Fe, and Fe/Air batteries in electric vans was compared to that of tubular lead-acid technology. The MARVEL computer analysis system evaluated these batteries for the G-Van and IDSEP vehicles over two driving schedules. Each of the advanced batteries exhibited the potential for major improvements in both range and life cycle cost compared with tubular lead-acid. A sensitivity analysis reveals specific energy, battery initial cost, and cycle life to be the dominant factors in reducing life cycle cost for the case of vans powered by tubular lead-acid batteries.

  3. Analysis of life cycle costs for electric vans with advanced battery systems

    SciTech Connect

    Marr, W.W.; Walsh, W.J.; Miller, J.F.

    1988-11-01

    The performance of advanced Zn/Br/sub 2/, LiAl/FeS, Na/S, Ni/Fe, and Fe/Air batteries in electric vans was compared to that of tubular lead-acid technology. The MARVEL computer analysis system evaluated these batteries for the G-Van and IDSEP vehicles over two driving schedules. Each of the advanced batteries exhibited the potential for major improvements in both range and life cycle cost compared with tubular lead-acid. A sensitivity analysis revealed specific energy, battery initial cost, and cycle life to be the dominant factors in reducing life cycle cost for the case of vans powered by tubular lead-acid batteries. 5 refs., 8 figs., 2 tabs.

  4. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  5. End-of-Life Care for Undocumented Immigrants With Advanced Cancer: Documenting the Undocumented.

    PubMed

    Jaramillo, Sylvia; Hui, David

    2016-04-01

    There are approximately 11.1 million undocumented immigrants in the United States, with a majority being Latino. Cancer is now the leading cause of death in Latinos. There is little research guiding providers on how to deliver optimal end-of-life care in this population. We describe a case of an undocumented Latino patient with advanced cancer, and provide a review of the literature on end-of-life care in undocumented immigrants. Our patient encountered many challenges as he navigated through the healthcare system in the last months of life. These included delayed diagnosis, limited social support, financial issues, fear of deportation, and language and cultural barriers, which resulted in significant physical and psychological distress. Within the undocumented patient population, there is often a lack of advance care planning, prognostic understanding, mistrust, religious practices, and cultural beliefs that may affect decision making. Given the growing number of undocumented immigrants in the United States, it is important for clinicians and policy makers to have a better understanding of the issues surrounding end-of-life care for undocumented immigrants, and work together to improve the quality of life and quality of end-of-life care for these disadvantaged individuals.

  6. End-of-life care in patients with advanced lung cancer.

    PubMed

    Lim, Richard B L

    2016-10-01

    Despite advances in the detection, pathological diagnosis and therapeutics of lung cancer, many patients still develop advanced, incurable and progressively fatal disease. As physicians, the duties to cure sometimes, relieve often and comfort always should be a constant reminder to us of the needs that must be met when caring for a patient with lung cancer. Four key areas of end-of-life care in advanced lung cancer begin with first recognizing 'when a patient is approaching the end of life'. The clinician should be able to recognize when the focus of care needs to shift from an aggressive life-sustaining approach to an approach that helps prepare and support a patient and family members through a period of progressive, inevitable decline. Once the needs are recognized, the second key area is appropriate communication, where the clinician should assist patients and family members in understanding where they are in the disease trajectory and what to expect. This involves developing rapport, breaking bad news, managing expectations and navigating care plans. Subsequently, the third key area is symptom management that focuses on the goals to first and foremost provide comfort and dignity. Symptoms that are common towards the end of life in lung cancer include pain, dyspnoea, delirium and respiratory secretions. Such symptoms need to be anticipated and addressed promptly with appropriate medications and explanations to the patient and family. Lastly, in order for physicians to provide quality end-of-life care, it is necessary to understand the ethical principles applied to end-of-life-care interventions. Misconceptions about euthanasia versus withholding or withdrawing life-sustaining treatments may lead to physician distress and inappropriate decision making. PMID:27585597

  7. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    NASA Astrophysics Data System (ADS)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  8. Opportunities for portable Ballard Fuel Cells

    SciTech Connect

    Voss, H.H.; Huff, J.R.

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  9. Advanced life support systems in lunar and Martian environments utilizing a higher plant based engineering paradigm

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1992-01-01

    The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.

  10. Analysis of edible oil processing options for the BIO-Plex advanced life support system.

    PubMed

    Greenwalt, C J; Hunter, J

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  11. [Organization of anesthesia management and advanced life support at military medical evacuation levels].

    PubMed

    Shchegolev, A V; Petrakov, V A; Savchenko, I F

    2014-07-01

    Anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels in armed conflict (local war) is time-consuming and resource-requiring task. One of the mathematical modeling methods was used to evaluate capabilities of anesthesia and intensive care units at tactical level. Obtained result allows us to tell that there is a need to make several system changes of the existing system of anesthesia management and advanced life support for the severely wounded personnel at military medical evacuation levels. In addition to increasing number of staff of anesthesiology-critical care during the given period of time another solution should be the creation of an early evacuation to a specialized medical care level by special means while conducting intensive monitoring and treatment.

  12. Analysis of edible oil processing options for the BIO-Plex advanced life support system.

    PubMed

    Greenwalt, C J; Hunter, J

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation. PMID:11676438

  13. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  14. Portable Instrumented Communication Library

    1993-06-10

    PICL is a subroutine library that can be used to develop parallel programs that are portable across several distributed-memory multiprocessors. PICL provides a portable syntax for key communication primitives and related system calls. It also provides portable routines to perform certain widely-used, high-level communication operations, such as global broadcast and global summation. PICL provides execution tracing that can be used to monitor performance or to aid in debugging.

  15. Portable nanoparticle based sensors for antioxidant analysis.

    PubMed

    Sharpe, Erica; Andreescu, Silvana

    2015-01-01

    Interest in portable sensing devices has increased throughout the past decade. Portable sensors are convenient for use in remote locations and in places with limited resources for advanced instrumentation. Often such devices utilize advanced technology that allows the final user to simply deposit the sample onto the sensing platform without preparation of multiple reagents. Herein, we describe preparation and characterization of a colorimetric paper-based metal oxide sensing array designed for the field detection of polyphenolic antioxidants. This sensor is a good candidate for use in analysis of the antioxidant character of food, drink, botanical medicines, physiological fluids, and more. PMID:25323510

  16. Independent contributors to overall quality of life in people with advanced cancer

    PubMed Central

    M Rodríguez, A; Mayo, N E; Gagnon, B

    2013-01-01

    Background: The definition of health for people with cancer is not focused solely on the physiology of illness and the length of life remaining, but is also concerned with improving the well-being and the quality of the life (QOL) remaining to be lived. This study aimed to identify the constructs most associated with QOL in people with advanced cancer. Methods: Two hundred three persons with recent diagnoses of different advanced cancers were evaluated with 65 variables representing individual and environmental factors, biological factors, symptoms, function, general health perceptions and overall QOL at diagnosis. Three independent stepwise multiple linear regressions identified the most important contributors to overall QOL. R2 ranking and effect sizes were estimated and averaged by construct. Results: The most important contributor of overall QOL for people recently diagnosed with advanced cancer was social support. It was followed by general health perceptions, energy, social function, psychological function and physical function. Conclusions: We used effect sizes to summarise multiple multivariate linear regressions for a more manageable and clinically interpretable picture. The findings emphasise the importance of incorporating the assessment and treatment of relevant symptoms, functions and social support in people recently diagnosed with advanced cancer as part of their clinical care. PMID:23591199

  17. End-of-Life Decisions and Palliative Care in Advanced Heart Failure.

    PubMed

    Meyers, Deborah E; Goodlin, Sarah J

    2016-09-01

    Advanced heart failure (HF) therapies are focused on extending life and improving function. In contrast, palliative care is a holistic approach that focuses on symptom alleviation and patients' physical, psychosocial, and spiritual needs. HF clinicians can integrate palliative care strategies by incorporating several important components of planning and decision-making for HF patients. Future care planning (FCP) for HF patients should incorporate the basic tenets of shared decision-making (SDM). These include understanding the patient's perspective and care preferences, articulating what is medically feasible, and integrating these considerations into the overall care plan. Use of defined triggers for FCP can stimulate important patient-caregiver conversations. Guidelines advocate an annual review of HF status and future care preferences. Advance directives are important for any individual with a chronic, life-limiting illness and should be integrated into FCP. Nevertheless, use of advance directives by HF patients is extremely low. Consideration of illness trajectories and risk-scoring tools might facilitate prognostication and delivery of appropriate HF care. Decisions about heart transplantation or left ventricular assist device implantation should include planning for potential complications associated with these therapies. Such decisions also should include a discussion of palliative management, as an alternative to intervention and also as an option for managing symptoms or adverse events after intervention. Palliative care, including FCP and SDM, should be integrated into the course of all patients with advanced HF. Clinicians who provide HF care should acquire the skills necessary for conducting FCP and SDM discussions.

  18. End-of-Life Decisions and Palliative Care in Advanced Heart Failure.

    PubMed

    Meyers, Deborah E; Goodlin, Sarah J

    2016-09-01

    Advanced heart failure (HF) therapies are focused on extending life and improving function. In contrast, palliative care is a holistic approach that focuses on symptom alleviation and patients' physical, psychosocial, and spiritual needs. HF clinicians can integrate palliative care strategies by incorporating several important components of planning and decision-making for HF patients. Future care planning (FCP) for HF patients should incorporate the basic tenets of shared decision-making (SDM). These include understanding the patient's perspective and care preferences, articulating what is medically feasible, and integrating these considerations into the overall care plan. Use of defined triggers for FCP can stimulate important patient-caregiver conversations. Guidelines advocate an annual review of HF status and future care preferences. Advance directives are important for any individual with a chronic, life-limiting illness and should be integrated into FCP. Nevertheless, use of advance directives by HF patients is extremely low. Consideration of illness trajectories and risk-scoring tools might facilitate prognostication and delivery of appropriate HF care. Decisions about heart transplantation or left ventricular assist device implantation should include planning for potential complications associated with these therapies. Such decisions also should include a discussion of palliative management, as an alternative to intervention and also as an option for managing symptoms or adverse events after intervention. Palliative care, including FCP and SDM, should be integrated into the course of all patients with advanced HF. Clinicians who provide HF care should acquire the skills necessary for conducting FCP and SDM discussions. PMID:27568873

  19. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment.

    PubMed

    Rahman, Sheikh M; Eckelman, Matthew J; Onnis-Hayden, Annalisa; Gu, April Z

    2016-03-15

    Advanced nutrient removal processes, while improving the water quality of the receiving water body, can also produce indirect environmental and health impacts associated with increases in usage of energy, chemicals, and other material resources. The present study evaluated three levels of treatment for nutrient removal (N and P) using 27 representative treatment process configurations. Impacts were assessed across multiple environmental and health impacts using life-cycle assessment (LCA) following the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) impact-assessment method. Results show that advanced technologies that achieve high-level nutrient removal significantly decreased local eutrophication potential, while chemicals and electricity use for these advanced treatments, particularly multistage enhanced tertiary processes and reverse osmosis, simultaneously increased eutrophication indirectly and contributed to other potential environmental and health impacts including human and ecotoxicity, global warming potential, ozone depletion, and acidification. Average eutrophication potential can be reduced by about 70% when Level 2 (TN = 3 mg/L; TP = 0.1 mg/L) treatments are employed instead of Level 1 (TN = 8 mg/L; TP = 1 mg/L), but the implementation of more advanced tertiary processes for Level 3 (TN = 1 mg/L; TP = 0.01 mg/L) treatment may only lead to an additional 15% net reduction in life-cycle eutrophication potential. PMID:26871301

  20. Advanced Launch Technology Life Cycle Analysis Using the Architectural Comparison Tool (ACT)

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.

    2015-01-01

    Life cycle technology impact comparisons for nanolauncher technology concepts were performed using an Affordability Comparison Tool (ACT) prototype. Examined are cost drivers and whether technology investments can dramatically affect the life cycle characteristics. Primary among the selected applications was the prospect of improving nanolauncher systems. As a result, findings and conclusions are documented for ways of creating more productive and affordable nanolauncher systems; e.g., an Express Lane-Flex Lane concept is forwarded, and the beneficial effect of incorporating advanced integrated avionics is explored. Also, a Functional Systems Breakdown Structure (F-SBS) was developed to derive consistent definitions of the flight and ground systems for both system performance and life cycle analysis. Further, a comprehensive catalog of ground segment functions was created.

  1. Quality of life and palliative care needs of elderly patients with advanced heart failure

    PubMed Central

    Chan, Helen YL; Yu, Doris SF; Leung, Doris YP; Chan, Aileen WK; Hui, Elsie

    2016-01-01

    Objective To examine the quality of life and palliative care needs of elderly patients with advanced heart failure (HF). Methods This was a correlation descriptive study conducted at a 650-bed sub-acute hospital. Patients who were aged 65 or over, diagnosed with HF of New York Heart Association Class III or IV symptoms, and mentally sound were eligible to the study. The Edmonton Symptom Assessment Scale, the overall quality of life single item scale, and the McQill Quality of Life Questionnaire (MQoL), were used for measurement. Multiple regression analysis was performed to determine factors for predicting quality of life. Results A convenience sample of 112 patients was recruited. Their age was 81.5 ± 8.5 years. The three most distressing symptoms reported by the patients were tiredness (5.96 ± 2.78), drowsiness (5.47 ± 2.93), and shortness of breath (5.34 ± 2.96). Their mean overall quality of life single item scale score was 4.72 ± 2.06 out of 10. The mean MQoL physical subscale score was the lowest (4.20 ± 1.767), whereas their mean psychological subscale was the highest (7.14 ± 2.39). However, in a multivariate analysis model, quality of life was significantly associated with existential wellbeing, physical wellbeing, psychological wellbeing and educational level. Conclusions The findings highlight that spiritual concerns are significant palliative care needs among elderly patients with advanced HF, in addition to symptom management. This is in line with the argument that palliative care that places great emphasis on holistic care should be integrated to the care of this group of patients. PMID:27594869

  2. Portable peak flow meters.

    PubMed

    McNaughton, J P

    1997-02-01

    There are several portable peak flow meters available. These instruments vary in construction and performance. Guidelines are recommended for minimum performance and testing of portable peak flow meters, with the aim of establishing a procedure for standardizing all peak flow meters. Future studies to clarify the usefulness of mechanical test apparatus and clinical trials of peak flow meters are also recommended. PMID:9098706

  3. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  4. [The quality of life after chemotherapy in advanced non-small cell lung cancer patients].

    PubMed

    Słowik-Gabryelska, A; Szczepanik, A; Kalicka, A

    1999-01-01

    The intensity of complains, short survival and great number of patients makes many oncologists to apply chemotherapy in advanced non-small cell lung cancer/NSCLC/. The achieved median duration of life after chemotherapy was 6 to 12 month. From the other hand non small cell lung cancer chemotherapy is a big burden even to healthy persons. It can worsen the quality of life. That was the reason we evaluated the quality of life after chemotherapy in advanced non small cell lung cancer patients. Taking into account, that the evaluation of quality of life, used in most diseases is useless in advanced NSCLC patients, for appreciation the quality of life in these cases the lung cancer symptoms scale/LCSS/was adopted. In 110 non small cell lung cancer patients in stage IIIB and IV, who received combined chemotherapy by Le Chevalier/Vindesine, Cisplatin, Cyclophosphamide, Lomustin/or by Rosell/Mitomycin, Cyclophosphamide, Cisplatin/the quality of life was evaluated. In 20-persons control group all patients received the symptomatic treatment. In observed group of 110 patients, tumor regressions after 4 courses of chemotherapy allowed to resect cancer in 14 cases, to apply radiotherapy in 42 and to continue chemiotherapy in 23 persons. In every person from above mentioned group the quality of life was evaluated on the basis of intensity of cancer symptoms, accordingly to LCSS. The intensity of cancer symptoms was compared before and after treatment. There were compared; the innensity of complains, weakness, appetite, malnutrition, and hematological, neurological, performans state as well as respiratory sufficiency, infections, cardiac disorders and pain. Apart it, the side effects of applied therapy were assessed in 5 degree scale. The level of hemoglobin, the number of leucocytes, thrombocytes, bilirubine and transaminases in peripheral blood, hematurie, proteinurie, bleedings, appetite, nausea, vomitings, diarrhea, mucosal lesions, infections, skin lesions, cardiac lesions

  5. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  6. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  7. Assessment of anxiety and depression in advanced cancer patients and their relationship with quality of life.

    PubMed

    Mystakidou, K; Tsilika, E; Parpa, E; Katsouda, E; Galanos, A; Vlahos, L

    2005-10-01

    The growing interest in the mental health and quality of life of cancer patients, has been the major reason for conducting this study. The aims were to compare advanced cancer patients' responses to Hospital Anxiety and Depression (HAD) scale with those to European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30, version 3.0), as well as the impact of quality of life dimensions (as measured by EORTC QLQ-C30) on the levels of anxiety and depression. The analysis, conducted in 120 advanced cancer patients, showed that the most significant associations were found between emotional functioning and HAD-T (total sum of scores) (r=-0.747; p < 0.0005), HAD-A (anxiety) (r=-0.725; p < 0.0005) and HAD-D (depression) (r=-0.553; p < 0.0005). In the prediction of HAD-T, the contribution of physical, emotional, role, and social functioning along with nausea-vomiting, dyspnea, sleep disturbance and gender is high. For anxiety, the predictor variables were physical, role, cognitive, emotional, and social functioning, followed by dyspnea, sleep disturbance, and appetite loss, while depression was predicted by physical, role, emotional, and social functioning, the symptoms of nausea-vomiting, pain, sleep disturbance, constipation, as well as the variables of age, gender, anticancer treatment and performance status. Concluding, psychological morbidity, in this patient population, was predominantly predicted by the emotional functioning dimension of EORTC QLQ-C30. PMID:16155770

  8. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also

  9. Progress in the Development of Direct Osmotic Concentration Wastewater Recovery Process for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael

    2005-01-01

    Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.

  10. Portable/transport ventilators. Breath easier.

    PubMed

    2010-03-01

    Many of today's portable ventilators come "fully loaded" with advanced capabilities formerly available only on full-size models. However, more is not always better. in some settings, a simpler, less expensive unit is often preferred. we'll help you choose a model that matches your users' needs.

  11. Award-Winning CARES/Life Ceramics Durability Evaluation Software Is Making Advanced Technology Accessible

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.

  12. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  13. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  14. Considerations in miniaturizing simplified agro-ecosystems for advanced life support

    NASA Technical Reports Server (NTRS)

    Volk, T.

    1996-01-01

    Miniaturizing the Earth's biogeochemical cycles to support human life during future space missions is the goal of the NASA research and engineering program in advanced life support. Mission requirements to reduce mass, volume, and power have focused efforts on (1) a maximally simplified agro-ecosystem of humans, food crops, and microbes; and, (2) a design for optimized productivity of food crops with high light levels over long days, with hydroponics, with elevated carbon dioxide and other controlled environmental factors, as well as with genetic selection for desirable crop properties. Mathematical modeling contributes to the goals by establishing trade-offs, by analyzing the growth and development of experimental crops, and by pointing to the possibilities of directed phasic control using modified field crop models to increase the harvest index.

  15. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally. PMID:11808572

  16. Evolution and development of the Advanced Trauma Life Support (ATLS) protocol: a historical perspective.

    PubMed

    Radvinsky, David S; Yoon, Richard S; Schmitt, Paul J; Prestigiacomo, Charles J; Swan, Kenneth G; Liporace, Frank A

    2012-04-01

    The Advanced Trauma Life Support (ATLS) protocol is a successful course offered by the American College of Surgeons. Once based on didactic lectures and seminars taught by experts in the field, trauma training has evolved to become a set of standardized assessment and treatment protocols based on evidence rather than expert opinion. As the ATLS expands, indices to predict outcome, morbidity, and mortality have evolved to guide management and treatment based on retrospective data. This historical, perspective article attempts to tell the story of ATLS from its inception to its evolution as an international standard for the initial assessment and management of trauma patients.

  17. Symptom clusters and quality of life among patients with advanced heart failure

    PubMed Central

    Yu, Doris SF; Chan, Helen YL; Leung, Doris YP; Hui, Elsie; Sit, Janet WH

    2016-01-01

    Objectives To identify symptom clusters among patients with advanced heart failure (HF) and the independent relationships with their quality of life (QoL). Methods This is the secondary data analysis of a cross-sectional study which interviewed 119 patients with advanced HF in the geriatric unit of a regional hospital in Hong Kong. The symptom profile and QoL were assessed by using the Edmonton Symptom Assessment Scale (ESAS) and the McGill QoL Questionnaire. Exploratory factor analysis was used to identify the symptom clusters. Hierarchical regression analysis was used to examine the independent relationships with their QoL, after adjusting the effects of age, gender, and comorbidities. Results The patients were at an advanced age (82.9 ± 6.5 years). Three distinct symptom clusters were identified: they were the distress cluster (including shortness of breath, anxiety, and depression), the decondition cluster (fatigue, drowsiness, nausea, and reduced appetite), and the discomfort cluster (pain, and sense of generalized discomfort). These three symptom clusters accounted for 63.25% of variance of the patients' symptom experience. The small to moderate correlations between these symptom clusters indicated that they were rather independent of one another. After adjusting the age, gender and comorbidities, the distress (β = −0.635, P < 0.001), the decondition (β = −0.148, P = 0.01), and the discomfort (β = −0.258, P < 0.001) symptom clusters independently predicted their QoL. Conclusions This study identified the distinctive symptom clusters among patients with advanced HF. The results shed light on the need to develop palliative care interventions for optimizing the symptom control for this life-limiting disease. PMID:27403150

  18. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Bouchier, Francis A.; Hannum, David W.; Rhykerd, Jr., Charles L.

    2003-01-01

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated.

  19. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  20. Goals of care in advanced dementia: quality of life, dignity and comfort.

    PubMed

    Volicer, L

    2007-01-01

    Prolongation of human lifespan is increasing the number of individuals suffering from Alzheimer's disease and other progressive dementia worldwide. There are about 5 million of these individuals in both United States and European Union and many more in other countries of the world (1). Because there is no curative treatment for these diseases, most individuals with dementia survive to an advanced stage of dementia at which time many of them require institutional care. Home care for individuals with advanced dementia and especially institutional care are very expensive and are becoming major public health problems. The cost of care for advanced dementia is often increased by the use of aggressive medical interventions that may not be in the best interest of the patient. Because advanced dementia is currently incurable, it should be considered a terminal illness, similar to terminal cancer. Therefore, palliative care may be the most appropriate strategy for management of advanced dementia (2). The goals of palliative care are maintenance of quality of life, dignity and comfort and the four articles in this special issue are addressing these goals. Enhancement of quality of life in dementia requires attention to three main domains: provision of meaningful activities, appropriate medical care, and treatment of behavioral symptoms (3). Individuals with advanced dementia may not be able to participate in many activity programs but they still may maintain some quality of life if they are provided care in a pleasant environment with constant presence of a caregiver. Simard describes a program, Namaste Care, which is specifically tailored for individuals with advanced dementia. This program requires neither major expenditure nor increased staffing and should be instituted in all facilities that care for individuals with advanced dementia. Maintaining functional status of individuals with advanced dementia is important because it improves their self esteem and facilitates

  1. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  2. Advanced Burn Life Support for Day-to-Day Burn Injury Management and Disaster Preparedness: Stakeholder Experiences and Student Perceptions Following 56 Advanced Burn Life Support Courses.

    PubMed

    Kearns, Randy D; Ortiz-Pujols, Shiara M; Craig, Christopher K; Gusler, James R; Skarote, Mary Beth; Carter, Jeffery; Rezak-Alger, Amy; Cairns, Charles B; Lofald, Daniel; Hubble, Michael W; Holmes, James H; Lord, Graydon C; Helminiak, Clare; Cairns, Bruce A

    2015-01-01

    Educational programs for clinicians managing patients with burn injuries represent a critical aspect of burn disaster preparedness. Managing a disaster, which includes a surge of burn-injured patients, remains one of the more challenging aspects of disaster medicine. During a 6-year period that included the development of a burn surge disaster program for one state, a critical gap was recognized as public presentations were conducted across the state. This gap revealed an acute and greater than anticipated need to include burn care education as an integral part of comprehensive burn surge disaster preparedness. Many hospital and prehospital providers expressed concern with managing even a single, burn-injured patient. While multiple programs were considered, Advanced Burn Life Support (ABLS), a national standardized educational program was selected to help address this need. The curriculum includes initial care for the burn-injured patient as well as an overview of the burn centers role in the disaster preparedness community. After 4 years and 56 classes conducted across the state, a survey was developed including a section that measured the perceptions of those who completed the ABLS educational program. The study specifically examines questions including whether clinicians perceived changes in their burn care knowledge, skills and abilities, and burn disaster preparedness following completion of the program? including whether clinicians. PMID:25167372

  3. Inexpensive portable drug detector

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Heimbuch, A. H.; Parker, J. A.

    1977-01-01

    Inexpensive, easy-to-use, self-scanning, self-calibrating, portable unit automatically graphs fluorescence spectrum of drug sample. Device also measures rate of movement through chromatographic column for forensic and medical testing.

  4. Portable Dental System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Portable dental system provides dental care in isolated communities. System includes a patient's chair and a dentist's stool, an X-ray machine and a power unit, all of which fold into compact packages. A large yellow "pumpkin" is a collapsible compressed air tank. Portable system has been used successfully in South America in out of the way communities with this back-packable system, and in American nursing homes. This product is no longer manufactured.

  5. Technology assessment for the advanced life detector. Final technical report, May 1987-January 1988

    SciTech Connect

    Burrows, W.D.; George, D.T.

    1988-01-29

    This report summarizes an assessment of technology available to develop a noninvasive life detector for use on the battlefield. The detectors determine if casualties wearing chemical protective overgarments are alive or dead without further exposing either the casualties or the aidmen to the contaminated environment. Seven technology approaches sponsored by the Department of Defense (comprising 11 devices), four technologies identified in a market survey, and one device described in a Broad Agency Announcement proposal were examined as candidate Advanced Life Detectors. The technologies and instruments surveyed included three transmitter-receiver technologies, an electrocardiogram (ECG) technology, pacemaker-transmitter/receiver, dry electrode heart rate monitor, five microwave technologies, flash reflectance oximetry, an ultrasound technology, a streaming potential technology, a dry electrode ECG monitor coupled to a microphone, a statometric technique for determining heart rate and blood pressure, and a vital-signs monitor that determines heart rate and blood pressure using blood pressure cuff and microphones incorporated into the cuff. Analysis of the state-of-the-art of each device indicates that none of them are advanced enough to fulfill all the requirements of the draft Joint Services Operational Requirement. Three of the devices identified are recommended for further evaluation.

  6. Improving End-of-Life Care Prognostic Discussions: Role of Advanced Practice Nurses.

    PubMed

    Kalowes, Peggy

    2015-01-01

    Research has validated the desire of patients and families for ongoing prognostic information; however, few conversations occur before patients reach the advanced stages of their disease trajectory. Physician hesitance and delay in discussing unfavorable prognoses deny patients and families optimal time to prepare for critical decision making. Advanced practice registered nurses can play a crucial, complementary role with the critical care interdisciplinary team to implement strategies to improve communication about prognosis and end of life with patients and families. Clinicians should discuss deterioration in disease-specific characteristics and changes (decline) in functional status. Functional status can serve as an accurate guide for forecasting prognosis, particularly in patients with heart failure, stroke, chronic lung disease, and end-stage renal disease. This article provides an overview of effective intensive care unit prognostic systems and discusses barriers and opportunities for nurses to use evidence-based knowledge related to disease trajectory and prognosis to improve communication and the quality of palliative and end-of-life care for patients.

  7. Trends in the Aggressiveness of End-of-Life Care for Advanced Stomach Cancer Patients

    PubMed Central

    Hong, Ji Hyung; Rho, Sang-Young

    2013-01-01

    Purpose It is important to balance the appropriateness of active cancer treatments and end-of-life care to improve the quality of life for terminally ill cancer patients. This study describes the treatment patterns and end-of-life care in terminal gastric cancer patients. Materials and Methods We retrospectively analyzed the records of 137 patients with advanced gastric cancer receiving chemotherapy and dying between June 1, 2006 and May 31, 2011. We recorded interval between last chemotherapy dose and death; frequency of emergency room visits or admission to the intensive care unit in the last month before death; rate of hospice referral and agreement with written do-not-resuscitate orders; and change in laboratory values in the last three months before death. Results During the last six months of life, 130 patients (94.9%) received palliative chemotherapy; 86 (62.7%) during the final two months; 41 (29.9%) during the final month. During the final month, 53 patients (38.7%) visited an emergency room more than once; 21 (15.3%) were admitted to the intensive care unit. Hospice referral occurred in 54% (74 patients) of the patients; 93.4% (128 patients) gave written do-not-resuscitate orders. Platelets, aspartate aminotransferase and creatinine changed significantly two weeks before death; total bilirubin, one month before; and C-reactive protein, between four and two weeks before death. Conclusion Our results demonstrated that a significant proportion of gastric cancer patients received palliative chemotherapy to the end of life and the patients who stopped the chemotherapy at least one month before death had a lower rate of intensive care unit admission and longer overall survival than those who sustained aggressive chemotherapy until the last months of their lives. PMID:24453999

  8. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  9. Religious Coping is Associated with the Quality of Life of Patients with Advanced Cancer

    PubMed Central

    Tarakeshwar, Nalini; Vanderwerker, Lauren C.; Paulk, Elizabeth; Pearce, Michelle J.; Kasl, Stanislav V.; Prigerson, Holly G.

    2008-01-01

    Background For patients confronting a life-threatening illness such as advanced cancer, religious coping can be an important factor influencing their quality of life (QOL). Objective The study's main purpose was to examine the association between religious coping and QOL among 170 patients with advanced cancer. Both positive religious coping (e.g., benevolent religious appraisals) and negative religious coping (e.g., anger at God) and multiple dimensions of QOL (physical, physical symptom, psychological, existential, and support) were studied. Design Structured interviews were conducted with 170 patients recruited as part of an ongoing multi-institutional longitudinal evaluation of the prevalence of mental illness and patterns of mental health service utilization in advanced cancer patients and their primary informal caregivers. Measurements Patients completed measures of QOL (McGill QOL questionnaire), religious coping (Brief Measure of Religious Coping [RCOPE] and Multidimensional Measure of Religion/Spirituality), self-efficacy (General Self-Efficacy Scale), and sociodemographic variables. Results Linear regression analyses revealed that after controlling for sociodemographic variables, lifetime history of depression and self-efficacy, greater use of positive religious coping was associated with better overall QOL as well as higher scores on the existential and support QOL dimensions. Greater use of positive religious coping was also related to more physical symptoms. In contrast, greater use of negative religious coping was related to poorer overall QOL and lower scores on the existential and psychological QOL dimensions. Conclusions Findings show that religious coping plays an important role for the QOL of patients and the types of religious coping strategies used are related to better or poorer QOL. PMID:16752970

  10. The Environmental Control and Life Support System (ECLSS) advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  11. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  12. Clarifying Objectives and Results of Equivalent System Mass Analyses for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Drysdale, Alan E.

    2003-01-01

    This paper discusses some of the analytical decisions that an investigator must make during the course of a life support system trade study. Equivalent System Mass (ESM) is often applied to evaluate trade study options in the Advanced Life Support (ALS) Program. ESM can be used to identify which of several options that meet all requirements are most likely to have lowest cost. It can also be used to identify which of the many interacting parts of a life support system have the greatest impact and sensitivity to assumptions. This paper summarizes recommendations made in the newly developed ALS ESM Guidelines Document and expands on some of the issues relating to trade studies that involve ESM. In particular, the following three points are expounded: 1) The importance of objectives: Analysis objectives drive the approach to any trade study, including identification of assumptions, selection of characteristics to compare in the analysis, and the most appropriate techniques for reflecting those characteristics. 2) The importance of results inferprefafion: The accuracy desired in the results depends upon the analysis objectives, whereas the realized accuracy is determined by the data quality and degree of detail in analysis methods. 3) The importance of analysis documentation: Documentation of assumptions and data modifications is critical for effective peer evaluation of any trade study. ESM results are analysis-specific and should always be reported in context, rather than as solitary values. For this reason, results reporting should be done with adequate rigor to allow for verification by other researchers.

  13. Advanced trauma and life support principles: an audit of their application in a rural trauma centre.

    PubMed

    Calleary, J G; el-Nazir, A K; el-Sadig, O; Carolan, P E; Joyce, W P

    1999-01-01

    In December of 1995 a system of trauma care based on Advanced Trauma Life Support (ATLS) principles was instituted to assess the impact of such principles on trauma care in a rural general hospital setting. This audit reviews the results over a 2 yr period to December 1997. All patients admitted with major trauma (i.e. with life threatening or potentially life threatening injuries) to Cavan General Hospital (CGH) were eligible for inclusion. This numbered 70 patients admitted (for at least 3 days), or who were transferred after resuscitation and stabilization as well as inpatient deaths. Twenty-seven patients who died prior to admission are also reviewed. The endpoints assessed were death, disability and survival 3 months post-accident. Based on injury severity scores 7 per cent of cases suffered fatal non-survivable injury, 20-30 per cent had very serious injury with an overall mortality rate of 17 per cent. The predicted mortality rate was 30 per cent. One-third had their full treatment at CGH with a 76 per cent survival rate. The other two-thirds were transferred for specialist intervention with an overall survival of 80 per cent, a disability rate of 16 per cent and a mortality rate of 4 per cent. No patient died during transportation. PMID:10422385

  14. The MELISSA pilot plant facility as as integration test-bed for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, Ch

    2004-01-01

    The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. An analytical framework for determining life cycle cost implications of the advanced launch system

    NASA Astrophysics Data System (ADS)

    Stockman, William K.

    1988-12-01

    The product of this research effort was a simplified cost analysis tool that can be used to determine life cycle costs for the Advanced Launch System. The major objective was to develop a tool that would allow quick analysis of proposals and provide data input in a timely fashion. This effort produced a core program that can be used to determine life cycle costs as a function of system components, production infrastructures, reliability assumptions and flexible mission models. The life cycle cost model can operate in either a deterministic or stochastic mode depending on user inputs. An additional effort modeled the production infrastructure using a network flow system. This system modeled the flow of the basic vehicle components from initial production through final launch. The analysis tool uses a commercially available spreadsheet package available for most personal computers. The analyst using this program operates in a user-friendly environment that simplifies data input and problem formulation. The user has a wide variety of output formats and graphics options that simplify report generation.

  16. Mathematical Modeling of Food Supply for Long Term Space Missions Using Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Cruthirds, John E.

    2003-01-01

    A habitat for long duration missions which utilizes Advanced Life Support (ALS), the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently being built at JSC. In this system all consumables will be recycled and reused. In support of this effort, a menu is being planned utilizing ALS crops that will meet nutritional and psychological requirements. The need exists in the food system to identify specific physical quantities that define life support systems from an analysis and modeling perspective. Once these quantities are defined, they need to be fed into a mathematical model that takes into consideration other systems in the BIO-Plex. This model, if successful, will be used to understand the impacts of changes in the food system on the other systems and vice versa. The Equivalent System Mass (ESM) metric has been used to describe systems and subsystems, including the food system options, in terms of the single parameter, mass. There is concern that this approach might not adequately address the important issues of food quality and psychological impact on crew morale of a supply of fiesh food items. In fact, the mass of food can also depend on the quality of the food. This summer faculty fellow project will involve creating an appropriate mathematical model for the food plan developed by the Food Processing System for BIO-Plex. The desired outcome of this work will be a quantitative model that can be applied to the various options of supplying food on long-term space missions.

  17. Dynamic Modeling of Off-Nominal Operation in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    System failures, off-nominal operation, or unexpected interruptions in processing capability can cause unanticipated instabilities in Advanced Life Support (ALS) systems, even long after they are repaired. Much current modeling assumes ALS systems are static and linear, but ALS systems are actually dynamic and nonlinear, especially when failures and off nominal operation are considered. Modeling and simulation provide a way to study the stability and time behavior of nonlinear dynamic ALS systems under changed system configurations or operational scenarios. The dynamic behavior of a nonlinear system can be fully explored only by computer simulation over the full range of inputs and initial conditions. Previous simulations of BIO-Plex in SIMULINK, a toolbox of Matlab, were extended to model the off-nominal operation and long-term dynamics of partially closed physical/chemical and bioregenerative life support systems. System nonlinearity has many interesting potential consequences. Different equilibrium points may be reached for different initial conditions. The system stability can depend on the exact system inputs and initial conditions. The system may oscillate or even in rare cases behave chaotically. Temporary internal hardware failures or external perturbations in ALS systems can lead to dynamic instability and total ALS system failure. Appropriate control techniques can restore reliable operation and minimize the effects of dynamic instabilities due to anomalies or perturbations in a life support system.

  18. Hand-portable liquid chromatographic instrumentation.

    PubMed

    Sharma, Sonika; Tolley, Luke T; Tolley, H Dennis; Plistil, Alex; Stearns, Stanley D; Lee, Milton L

    2015-11-20

    Over the last four decades, liquid chromatography (LC) has experienced an evolution to smaller columns and particles, new stationary phases and low flow rate instrumentation. However, the development of person-portable LC has not followed, mainly due to difficulties encountered in miniaturizing pumps and detectors, and in reducing solvent consumption. The recent introduction of small, non-splitting pumping systems and UV-absorption detectors for use with capillary columns has finally provided miniaturized instrumentation suitable for high-performance hand-portable LC. Fully integrated microfabricated LC still remains a significant challenge. Ion chromatography (IC) has been successfully miniaturized and applied for field analysis; however, applications are mostly limited to inorganic and small organic ions. This review covers advancements that make possible more rapid expansion of portable forms of LC and IC.

  19. Subsystem Details for the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.

    2004-01-01

    This document provides values at the assembly level for the subsystems described in the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric (Hanford, 2004). Hanford (2004) summarizes the subordinate computational values for the Advanced Life Support Research and Technology Development (ALS R&TD) Metric at the subsystem level, while this manuscript provides a summary at the assembly level. Hanford (2004) lists mass, volume, power, cooling, and crewtime for each mission examined by the ALS R&TD Metric according to the nominal organization for the Advanced Life Support (ALS) elements. The values in the tables below, Table 2.1 through Table 2.8, list the assemblies, using the organization and names within the Advanced Life Support Sizing Analysis Tool (ALSSAT) for each ALS element. These tables specifically detail mass, volume, power, cooling, and crewtime. Additionally, mass and volume are designated in terms of values associated with initial hardware and resupplied hardware just as they are within ALSSAT. The overall subsystem values are listed on the line following each subsystem entry. These values are consistent with those reported in Hanford (2004) for each listed mission. Any deviations between these values and those in Hanford (2004) arise from differences in when individual numerical values are rounded within each report, and therefore the resulting minor differences should not concern even a careful reader. Hanford (2004) u es the uni ts kW(sub e) and kW(sub th) for power and cooling, respectively, while the nomenclature below uses W(sub e) and W(sub th), which is consistent with the native units within ALSSAT. The assemblies, as specified within ALSSAT, are listed in bold below their respective subsystems. When recognizable assembly components are not listed within ALSSAT, a summary of the assembly is provided on the same line as the entry for the assembly. Assemblies with one or more recognizable components are further

  20. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    NASA Technical Reports Server (NTRS)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  1. Development Status of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Cavazzoni, Jim; Brodbeck, Christina; Morrow, Rich; Ho, Michael; Kaehms, Bob; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. The core functionality of OPIS will launch in October of 2005. This paper presents the current OPIS development status. OPIS core functionality involves a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIS) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. The data will be stored in an object-oriented relational database (created in MySQL(R)) located on a secure server at NASA ARC. Upon launch, OPIS can be utilized by Managers to identify research and technology development gaps and to assess task performance. Analysts can employ OPIS to obtain.

  2. Online model-based diagnosis to support autonomous operation of an advanced life support system

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed.

  3. Online fault adaptive control for efficient resource management in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Abdelwahed, Sherif; Wu, Jian; Biswas, Gautam; Ramirez, John; Manders, Eric-J

    2005-01-01

    This article presents the design and implementation of a controller scheme for efficient resource management in Advanced Life Support Systems. In the proposed approach, a switching hybrid system model is used to represent the dynamics of the system components and their interactions. The operational specifications for the controller are represented by utility functions, and the corresponding resource management problem is formulated as a safety control problem. The controller is designed as a limited-horizon online supervisory controller that performs a limited forward search on the state-space of the system at each time step, and uses the utility functions to decide on the best action. The feasibility and accuracy of the online algorithm can be assessed at design time. We demonstrate the effectiveness of the scheme by running a set of experiments on the Reverse Osmosis (RO) subsystem of the Water Recovery System (WRS).

  4. Development of expanded extrusion food products for an Advanced Life Support system.

    PubMed

    Zasypkin, D V; Lee, T C

    1999-01-01

    Extrusion processing was proposed to provide texture and to expand the variety of cereal food products in an isolated Advanced Life Support (ALS) system. Rice, wheat, and soy are the baseline crops selected for growing during long-term manned space missions. A Brabender single-screw laboratory extruder (model 2003, L/D 20:1), equipped with round nozzles of various lengths, was used as a prototype of a small-size extruder. Several concepts were tested to extend the variety and improve the quality of the products, to decrease environmental loads, and to promote processing stability. These concepts include: the blending of wheat and soybean flour, the extrusion of a coarser rice flour, separation of wheat bran, and optimization of the extruder nozzle design. An optimal nozzle length has been established for the extrusion of rice flour. Bran separating was necessary to improve the quality of wheat extrudates.

  5. Advanced Trauma Life Support (ATLS) in Hungary; The First 10 Years.

    PubMed

    Varga, Endre; Endre, Endre; Kószó, Balázs; Pető, Zoltán; Ágoston, Zsuzsanna; Gyura, Erika; Nardai, Gábor; Boa, Kristóf; Süveges, Gábor

    2016-01-01

    Advanced Trauma Life Support (ATLS) programs are recognized as the standard educational trauma program worldwide. Data suggest that ATLS has a positive impact on the value of trauma care. The ATLS Hungary program has been started in 2005, celebrating its 10-year anniversary this year. In the present brief communication a brief overview is provided on the program.Student evaluation and statistical data about the participants were collected throughout the 10-year history of the Hungarian program.Student evaluation shows a high level of satisfaction amongst the participating doctors. Most participants are working in higher level centers. The Hungarian program shows good quality according to the participants. Establishing at least one new center is crucial to be able to provide the course for every professional interested in it or required to take it. PMID:27162927

  6. Quality of life in patients with venous stasis ulcers and others with advanced venous insufficiency.

    PubMed

    Tracz, Edyta; Zamojska, Ewa; Modrzejewski, Andrzej; Zaborski, Daniel; Grzesiak, Wilhelm

    2015-01-01

    The quality of life (QoL) in patients with advanced venous insufficiency (including venous stasis ulcers, skin discoloration, stasis eczema, and lipodermatosclerosis) assessed using the Clinical Etiological Anatomical Pathophysiological (CEAP) and Venous Clinical Severity Score (VCSS) classifications is presented. Also, disease features such as: intensity of pain, edema and inflammatory response that exerted the most profound effect on different domains of QoL are reported. The global QoL in patients with lower leg venous ulcerations was relatively similar to that observed in other patients with chronic venous insufficiency. The presence of venous ulcerations was associated with lower QoL in a Physical domain. Significant correlations were found between pain intensity and the values of Physical, Physiological, Level of Independence and Environmental domains, between edema intensity and Social domain as well as between the intensity of inflammatory response and Physical and Spiritual domains.

  7. A Simulation Study Comparing Incineration and Composting in a Mars-Based Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Hogan, John; Kang, Sukwon; Cavazzoni, Jim; Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The objective of this study is to compare incineration and composting in a Mars-based advanced life support (ALS) system. The variables explored include waste pre-processing requirements, reactor sizing and buffer capacities. The study incorporates detailed mathematical models of biomass production and waste processing into an existing dynamic ALS system model. The ALS system and incineration models (written in MATLAB/SIMULINK(c)) were developed at the NASA Ames Research Center. The composting process is modeled using first order kinetics, with different degradation rates for individual waste components (carbohydrates, proteins, fats, cellulose and lignin). The biomass waste streams are generated using modified "Eneray Cascade" crop models, which use light- and dark-cycle temperatures, irradiance, photoperiod, [CO2], planting density, and relative humidity as model inputs. The study also includes an evaluation of equivalent system mass (ESM).

  8. An optimal control strategy for crop growth in advanced life support systems.

    PubMed

    Fleisher, D H; Baruh, H

    2001-01-01

    A feedback control method for regulating crop growth in advanced life support systems is presented. Two models for crop growth are considered, one developed by the agricultural industry and used by the Ames Research Center, and a mechanistic model, termed the Energy Cascade model. Proportional and pointwise-optimal control laws are applied to both models using wheat as the crop and light intensity as the control input. The control is particularly sensitive to errors in measurement of crop dry mass. However, it is shown that the proposed approach is a potentially viable way of controlling crop growth as it compensates for model errors and problems associated with applying the desired control input due to environmental disturbances. Grant numbers: NGT5-50229. PMID:11725784

  9. Advanced Trauma Life Support (ATLS) in Hungary; The First 10 Years.

    PubMed

    Varga, Endre; Endre, Endre; Kószó, Balázs; Pető, Zoltán; Ágoston, Zsuzsanna; Gyura, Erika; Nardai, Gábor; Boa, Kristóf; Süveges, Gábor

    2016-01-01

    Advanced Trauma Life Support (ATLS) programs are recognized as the standard educational trauma program worldwide. Data suggest that ATLS has a positive impact on the value of trauma care. The ATLS Hungary program has been started in 2005, celebrating its 10-year anniversary this year. In the present brief communication a brief overview is provided on the program.Student evaluation and statistical data about the participants were collected throughout the 10-year history of the Hungarian program.Student evaluation shows a high level of satisfaction amongst the participating doctors. Most participants are working in higher level centers. The Hungarian program shows good quality according to the participants. Establishing at least one new center is crucial to be able to provide the course for every professional interested in it or required to take it.

  10. Online model-based diagnosis to support autonomous operation of an advanced life support system.

    PubMed

    Biswas, Gautam; Manders, Eric-Jan; Ramirez, John; Mahadevan, Nagabhusan; Abdelwahed, Sherif

    2004-01-01

    This article describes methods for online model-based diagnosis of subsystems of the advanced life support system (ALS). The diagnosis methodology is tailored to detect, isolate, and identify faults in components of the system quickly so that fault-adaptive control techniques can be applied to maintain system operation without interruption. We describe the components of our hybrid modeling scheme and the diagnosis methodology, and then demonstrate the effectiveness of this methodology by building a detailed model of the reverse osmosis (RO) system of the water recovery system (WRS) of the ALS. This model is validated with real data collected from an experimental testbed at NASA JSC. A number of diagnosis experiments run on simulated faulty data are presented and the results are discussed. PMID:15880907

  11. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.; Hannum, David W.; Puissant, James G.; Varley, Nathan R.

    2003-08-12

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated. The screen can be positioned directly in front of the detector prior to heating to improve detection capability.

  12. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  13. Study for requirement of advanced long life small modular fast reactor

    NASA Astrophysics Data System (ADS)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung; Kim, T. K.

    2016-01-01

    To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length.

  14. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  15. Recommended guidelines for uniform reporting of pediatric advanced life support: the pediatric Utstein style.

    PubMed

    Zaritsky, A; Nadkarni, V; Hazinski, M F; Foltin, G; Quan, L; Wright, J; Fiser, D; Zideman, D; O'Malley, P; Chameides, L

    1995-10-01

    This statement is the product of a task force meeting held June 8, 1994, in Washington DC in conjunction with the First International Conference on Pediatric Resuscitation and a follow-up task force writing group meeting held September 18, 1994, in Chicago. Draft versions of the statement were circulated for comment to all members of the task force, the American Heart Association Subcommittee on Pediatric Resuscitation, and several outside reviewers. This statement and the International Conference on Pediatric Resuscitation were cosponsored by the American Academy of Pediatrics and the American Heart Association. The development of this statement was authorized by the American Academy of Pediatrics; the American Heart Association National Subcommittees on Pediatric Resuscitation, Basic Life Support, and Advanced Cardiac Life Support, the Committee on Emergency Cardiac Care, the Science Advisory Committee; and the European Resuscitation Council. In addition to the writing group, members of the Pediatric Utstein Task Force are Paul Anderson, M Douglas Baker, Jane Ball, Desmond Bohn, Dena Brownstein, J Michael Dean, Niranjan Kissoon, Bruce Klein, Patrick Malone, Karin McCloskey, James McCrory, P Pearl O'Rourke, Mary Patterson, Charles Schleien, James Seidel, Joseph J Tepas III, and Becky Yano.

  16. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    NASA Technical Reports Server (NTRS)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  17. Portable alpha spectrometer.

    PubMed

    Martín Sánchez, A; de la Torre Pérez, J

    2012-09-01

    Many portable devices have been designed to detect γ-rays or alpha and beta particles. Most of the α-particle detectors give the total count as a result, without identifying the radionuclides existing in the sample. The development of a device allowing rapid and straightforward α-particle spectrometry would be very useful for detecting the radioactive contents of unknown samples. This work describes the construction of a portable device using silicon semiconductor detectors designed to rapidly detect and possibly identify alpha-emitting radionuclides.

  18. Outcomes After Out-of-Hospital Cardiac Arrest Treated by Basic vs Advanced Life Support

    PubMed Central

    Sanghavi, Prachi; Jena, Anupam B.; Newhouse, Joseph P.; Zaslavsky, Alan M.

    2014-01-01

    IMPORTANCE Most out-of-hospital cardiac arrests receiving emergency medical services in the United States are treated by ambulance service providers trained in advanced life support (ALS), but supporting evidence for the use of ALS over basic life support (BLS) is limited. OBJECTIVE To compare the effects of BLS and ALS on outcomes after out-of-hospital cardiac arrest. DESIGN, SETTING, AND PARTICIPANTS Observational cohort study of a nationally representative sample of traditional Medicare beneficiaries from nonrural counties who experienced out-of-hospital cardiac arrest between January 1, 2009, and October 2, 2011, and for whom ALS or BLS ambulance services were billed to Medicare (31 292 ALS cases and 1643 BLS cases). Propensity score methods were used to compare the effects of ALS and BLS on patient survival, neurological performance, and medical spending after cardiac arrest. MAIN OUTCOMES AND MEASURES Survival to hospital discharge, to 30 days, and to 90 days; neurological performance; and incremental medical spending per additional survivor to 1 year. RESULTS Survival to hospital discharge was greater among patients receiving BLS (13.1% vs 9.2% for ALS; 4.0 [95% CI, 2.3–5.7] percentage point difference), as was survival to 90 days (8.0% vs 5.4% for ALS; 2.6 [95% CI, 1.2–4.0] percentage point difference). Basic life support was associated with better neurological functioning among hospitalized patients (21.8% vs 44.8% with poor neurological functioning for ALS; 23.0 [95% CI, 18.6–27.4] percentage point difference). Incremental medical spending per additional survivor to 1 year for BLS relative to ALS was $154 333. CONCLUSIONS AND RELEVANCE Patients with out-of-hospital cardiac arrest who received BLS had higher survival at hospital discharge and at 90 days compared with those who received ALS and were less likely to experience poor neurological functioning. PMID:25419698

  19. Development Approach of the Advanced Life Support On-line Project Information System

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, John A.; Morrow, Rich; Ho, Michael C.; Kaehms, Bob; Cavazzoni, Jim; Brodbeck, Christina A.; Whitaker, Dawn R.

    2005-01-01

    The Advanced Life Support (ALS) Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. There has been significant advancement in the On-line Project Information System (OPIS) over the past year (Hogan et al, 2004). This paper presents the resultant OPIS development approach. OPIS is being built as an application framework consisting of an uderlying Linux/Apache/MySQL/PHP (LAMP) stack, and supporting class libraries that provides database abstraction and automatic code generation, simplifying the ongoing development and maintenance process. Such a development approach allows for quick adaptation to serve multiple Programs, although initial deployment is for an ALS module. OPIS core functionality will involve a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIs) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. Such Annual Reports will be permanent, citable references within OPIS. OPlS core functionality will also include Project Home Sites, which will allow PIS to provide updated technology information to the Community in between Annual Report updates. All data will be stored in an object-oriented relational database, created in MySQL(Reistered Trademark) and located on a secure server at NASA Ames Research Center (ARC). Upon launch, OPlS can be utilized by Managers to identify research and technology development (R&TD) gaps and to assess task performance. Analysts can employ OPlS to obtain the current, comprehensive, accurate information about advanced technologies that is required to perform trade studies of various life support system options. ALS researchers and technology developers can use OPlS to achieve an improved understanding of the NASA

  20. Fixed Facts about Portable Classrooms.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    1998-01-01

    Discusses the easing of overcrowded schools through the use of portable classrooms and provides an example from Elk Grove Unified School District (California) which has opened entire elementary schools using only portables. Fifteen tips for installing relocatables are highlighted. (GR)

  1. Compact portable electric power sources

    SciTech Connect

    Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

    1997-02-01

    This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

  2. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  3. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  4. Mobility, Portability, and Placelessness

    ERIC Educational Resources Information Center

    Kupfer, Joseph

    2007-01-01

    Electronic technology has created a revolution in portability of information, documentation, and communication. We are now able to connect with people, information, organizations, and merchandise from anywhere at practically any time. As electronically fabricated environments replace actual physical surroundings, however, we become displaced.…

  5. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  6. PORTABLE SOURCE OF RADIOACTIVITY

    DOEpatents

    Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.

    1959-06-16

    A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)

  7. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  8. Portable nucleic acid thermocyclers.

    PubMed

    Almassian, David R; Cockrell, Lisa M; Nelson, William M

    2013-11-21

    A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.

  9. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  10. Portable Suction Lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-07-13

    A portable lysimeter including a collection vessel having an inflatable bladder and a semi-permeable member assembly at least partially movable in response to inflation of the bladder, a sample conduit in fluid communication with the semi-permeable member and a reservoir in fluid communication with the sample conduit.

  11. Portable, remote environmental control system

    SciTech Connect

    Cherry, R.L.; Maes, R.P.; Pfeiffer, G.F.

    1984-02-28

    A portable thermostat is coupled to the control unit of a heating or cooling device through a radio link. The RF signal transmitted by the thermostat is encoded and then decoded by the control unit in order to prevent interference with other similar devices. In order to maximize the life of a battery powering the thermostat, the thermostat calls for the energization of a heating or cooling device by transmitting the RF signal at widely spaced intervals. The heating or cooling device is energized by shunting a pair of terminals, thereby completing an AC control loop. The unit applies the terminals to a storage copacitor during a small portion of each EC cycle to power the control unit while shunting the terminals during the remaining part of the cycle.

  12. A Portable Diode Array Spectrophotometer.

    PubMed

    Stephenson, David

    2016-05-01

    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. PMID:27036399

  13. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  14. The Quality-of-Life Effects of Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer

    SciTech Connect

    Herman, Joseph M.; Narang, Amol K.; Griffith, Kent A.; Zalupski, Mark M.; Reese, Jennifer B.; Gearhart, Susan L.; Azad, Nolifer S.; Chan, June; Olsen, Leah; Efron, Jonathan E.; Lawrence, Theodore S.; Ben-Josef, Edgar

    2013-01-01

    Purpose: Existing studies that examine the effect of neoadjuvant chemoradiation (CRT) for locally advanced rectal cancer on patient quality of life (QOL) are limited. Our goals were to prospectively explore acute changes in patient-reported QOL endpoints during and after treatment and to establish a distribution of scores that could be used for comparison as new treatment modalities emerge. Methods and Materials: Fifty patients with locally advanced rectal cancer were prospectively enrolled at 2 institutions. Validated cancer-specific European Organization for Research and Treatment of Cancer (EORTC QLQ-CR30) and colorectal cancer-specific (EORTC QLQ-CR38 and EORTC QLQ-CR 29) QOL questionnaires were administered to patients 1 month before they began CRT, at week 4 of CRT, and 1 month after they had finished CRT. The questionnaires included multiple symptom scales, functional domains, and a composite global QOL score. Additionally, a toxicity scale was completed by providers 1 month before the beginning of CRT, weekly during treatment, and 1 month after the end of CRT. Results: Global QOL showed a statistically significant and borderline clinically significant decrease during CRT (-9.50, P=.0024) but returned to baseline 1 month after the end of treatment (-0.33, P=.9205). Symptoms during treatment were mostly gastrointestinal (nausea/vomiting +9.94, P<.0001; and diarrhea +16.67, P=.0022), urinary (dysuria +13.33, P<.0001; and frequency +11.82, P=.0006) or fatigue (+16.22, P<.0001). These symptoms returned to baseline after therapy. However, sexual enjoyment (P=.0236) and sexual function (P=.0047) remained persistently diminished after therapy. Conclusions: Rectal cancer patients undergoing neoadjuvant CRT may experience a reduction in global QOL along with significant gastrointestinal and genitourinary symptoms during treatment. Moreover, provider-rated toxicity scales may not fully capture this decrease in patient-reported QOL. Although most symptoms are transient

  15. Advanced Cardiac Life Support (ACLS) utilizing Man-Tended Capability (MTC) hardware onboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, M.; Barratt, M.; Lloyd, C.

    1992-01-01

    Because of the time and distance involved in returning a patient from space to a definitive medical care facility, the capability for Advanced Cardiac Life Support (ACLS) exists onboard Space Station Freedom. Methods: In order to evaluate the effectiveness of terrestrial ACLS protocols in microgravity, a medical team conducted simulations during parabolic flights onboard the KC-135 aircraft. The hardware planned for use during the MTC phase of the space station was utilized to increase the fidelity of the scenario and to evaluate the prototype equipment. Based on initial KC-135 testing of CPR and ACLS, changes were made to the ventricular fibrillation algorithm in order to accommodate the space environment. Other constraints to delivery of ACLS onboard the space station include crew size, minimum training, crew deconditioning, and limited supplies and equipment. Results: The delivery of ACLS in microgravity is hindered by the environment, but should be adequate. Factors specific to microgravity were identified for inclusion in the protocol including immediate restraint of the patient and early intubation to insure airway. External cardiac compressions of adequate force and frequency were administered using various methods. The more significant limiting factors appear to be crew training, crew size, and limited supplies. Conclusions: Although ACLS is possible in the microgravity environment, future evaluations are necessary to further refine the protocols. Proper patient and medical officer restraint is crucial prior to advanced procedures. Also emphasis should be placed on early intubation for airway management and drug administration. Preliminary results and further testing will be utilized in the design of medical hardware, determination of crew training, and medical operations for space station and beyond.

  16. Portable computer system architecture for the Space Station Freedom program

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Liu, Yuan-Kwei; Fernquist, Alan R.

    1993-01-01

    This paper outlines various mission requirements and technical approaches that support the potential use of portable computers in several defined activities within the Space Station Freedom (SSF) program. Specifically, the use of portable computers as consoles for both spacecraft control and payload applications is presented. Various issues and proposed solutions regarding the incorporation of portable computers within the program are presented. The primary issues presented regard architecture (standard interface for expansion, advanced processors and displays), integration (methods of high-speed data communication, peripheral interfaces, and interconnectivity within various support networks), and evolution (wireless communications and multimedia data interface methods).

  17. Balancing Act: A View of Benefits and Work-Life Balance through the Eyes of Advancement Professionals

    ERIC Educational Resources Information Center

    Collins, Mary Ellen

    2011-01-01

    People who choose careers in advancement know they're not entering a 9-to-5, 40-hours-a-week profession. Staffers juggle personal lives with their commitment to stressful jobs that involve travel, long hours, weekend events, and deadlines. Work-life balance means different things to different people, but flexibility seems to be a priority for…

  18. Life testing of reflowed and reworked advanced CCGA surface mount packages in harsh thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2013-03-01

    Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A

  19. [Respecting patient's end of life wishes: feasibility study of an information on surrogate and advance directives].

    PubMed

    Vinant, Pascale; Rousseau, Isabelle; Huillard, Olivier; Goldwasser, François; Guillard, Marie-Yvonne; Colombet, Isabelle

    2015-03-01

    This prospective interventional study aims to show the feasibility and impact of information procedure on surrogate and advance directives (AD), for patients with incurable lung or gastrointestinal cancer. The intervention consisted of two semi-structured interviews. The first included: collection of preferences for prognostic information and involvement in decision-making, initial assessment of knowledge, information and surrogate and DA. The second assessed the impact of the first interview on knowledge, surrogate designation and DA writing, the assessment procedure by the patient and assessment of anxiety generated. Among 77 eligible patients, 23 (30 %) were included, 6/29 (21 %) refused to participate, 20/23 (87 %) completed both interviews. Patients not included had a higher 4-month death rate than included ones (39 % vs. 4 %, P=0.002). Patients included had high expectations of information and appreciated it be delivered early, by someone not involved in their care. The study shows the feasibility of the procedure and its impact on the use of surrogate and DA by patients, however, revealing the complexity of approaching end-of-life wills and the importance of a process of anticipated discussion.

  20. [Respecting patient's end of life wishes: feasibility study of an information on surrogate and advance directives].

    PubMed

    Vinant, Pascale; Rousseau, Isabelle; Huillard, Olivier; Goldwasser, François; Guillard, Marie-Yvonne; Colombet, Isabelle

    2015-03-01

    This prospective interventional study aims to show the feasibility and impact of information procedure on surrogate and advance directives (AD), for patients with incurable lung or gastrointestinal cancer. The intervention consisted of two semi-structured interviews. The first included: collection of preferences for prognostic information and involvement in decision-making, initial assessment of knowledge, information and surrogate and DA. The second assessed the impact of the first interview on knowledge, surrogate designation and DA writing, the assessment procedure by the patient and assessment of anxiety generated. Among 77 eligible patients, 23 (30 %) were included, 6/29 (21 %) refused to participate, 20/23 (87 %) completed both interviews. Patients not included had a higher 4-month death rate than included ones (39 % vs. 4 %, P=0.002). Patients included had high expectations of information and appreciated it be delivered early, by someone not involved in their care. The study shows the feasibility of the procedure and its impact on the use of surrogate and DA by patients, however, revealing the complexity of approaching end-of-life wills and the importance of a process of anticipated discussion. PMID:25732047

  1. Mission simulation as an approach to develop requirements for automation in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.

  2. Design and development of a virtual reality simulator for advanced cardiac life support training.

    PubMed

    Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall

    2014-07-01

    The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.

  3. Cancer Related Fatigue and Quality of Life in Patients with Advanced Prostate Cancer Undergoing Chemotherapy

    PubMed Central

    Charalambous, Andreas; Kouta, Christiana

    2016-01-01

    Cancer related fatigue (CRF) is a common and debilitating symptom that can influence quality of life (QoL) in cancer patients. The increase in survival times stresses for a better understanding of how CRF affects patients' QoL. This was a cross-sectional descriptive study with 148 randomly recruited prostate cancer patients aiming to explore CRF and its impact on QoL. Assessments included the Cancer Fatigue Scale, EORTC QLQ-C30, and EORTC QLQ-PR25. Additionally, 15 in-depth structured interviews were performed. Quantitative data were analyzed with simple and multiple regression analysis and independent samples t-test. Qualitative data were analyzed with the use of thematic content analysis. The 66.9% of the patients experienced CRF with higher levels being recorded for the affective subscale. Statistically significant differences were found between the patients reporting CRF and lower levels of QoL (mean = 49.1) and those that did not report fatigue and had higher levels of QoL (mean = 72.1). The interviews emphasized CRF's profound impact on the patients' lives that was reflected on the following themes: “dependency on others,” “loss of power over decision making,” and “daily living disruption.” Cancer related fatigue is a significant problem for patients with advanced prostate cancer and one that affects their QoL in various ways. PMID:26981530

  4. Advanced cardiac life support instruction: do we know tomorrow what we know today?

    PubMed

    Settles, Julie; Jeffries, Pamela R; Smith, Terri M; Meyers, Jennifer S

    2011-06-01

    This study compared two instructional and evaluation methods for teaching advanced cardiac life support (ACLS) to health care professionals who were taking the ACLS course for the first time. Outcomes of the instruction were measured on completion of the course and at 3 months and 6 months postinstruction to identify differences in participants' knowledge retention, skills competency, and self-efficacy in performing ACLS. In addition, satisfaction with the teaching method was evaluated. The two methods of teaching and evaluating competencies for ACLS were (1) traditional classroom instruction plus practice and evaluation with monitors (low-fidelity simulation); and (2) classroom instruction plus practice with high-fidelity patient simulators. Participants in the study were 148 health care professionals or health care students who were novices in ACLS preparation. Participants were recruited from a large Midwest school of nursing and school of medicine, a Midwest physicians' assistant program, and a not-for-profit hospital. The findings showed no significant differences in ACLS knowledge, skills, self-efficacy, or learner satisfaction immediately after instruction or at 3 to 9 months posttraining. Retention of ACLS knowledge and skills competency over time was low in both groups; recommendations and interventions are discussed based on the study results.

  5. Nile tilapia Oreochromis niloticus as a food source in advanced life support systems: Initial considerations

    NASA Astrophysics Data System (ADS)

    Gonzales, John M.; Brown, Paul B.

    2006-01-01

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Tilapia are currently under evaluation as a source of food and their contribution to reducing waste in advanced life support systems (ALSS). The nutritional composition of tilapia whole bodies, fillet, and carcass residues were quantitatively determined. Carbon and nitrogen free-extract percentages were similar among whole body (53.76% and 6.96%, respectively), fillets (47.06% and 6.75%, respectively), and carcass (56.36% and 7.04%, respectively) whereas percentages of N, S, and protein were highest in fillet (13.34, 1.34, and 83.37%, respectively) than whole body (9.27, 0.62, and 57.97%, respectively) and carcass (7.70, 0.39, and 48.15%, respectively). Whole body and fillet meet and/or exceeded current nutritional recommendations for protein, vitamin D, ascorbic acid, and selenium for international space station missions. Whole body appears to be a better source of lipids and n-3 fatty acids, calcium, and phosphorous than fillet. Consuming whole fish appears to optimize equivalent system mass compared to consumption of fillets. Additional research is needed to determine nutritional composition of tilapia whole body, fillet, and carcass when fed waste residues possibly encountered in an ALSS.

  6. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  7. Portable outgas detection apparatus

    SciTech Connect

    Haney, Steven Julian; Malinowski, Michael E.

    2004-05-11

    A portable device for detecting surface outgas contaminants of an article includes: (i) a portable housing that has a chamber which is in communication with a port that is adapted to be sealably attached to a surface of the article; (ii) a mass spectrometer that is coupled to the chamber for analyzing gaseous materials in the chamber; and (iii) means for generating a vacuum within the chamber thereby drawing outgas contaminants from the surface of the article into the chamber for analysis by the mass spectrometer. By performing a mass spectrometric analysis of the surface of interest and comparing the data with mass spectrometric data ascertained with the device from a clean surface, the type and amount of outgas contaminants, if any, can be determined.

  8. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  9. Portable shift register

    SciTech Connect

    Halbig, J.K.; Bourret, S.C.; Hansen, W.J.; Hicks, D.V.; Klosterbuer, S.F.; Krick, M.S.

    1994-01-01

    An electronics package for a small, battery-operated, self-contained, neutron coincidence counter based on a portable shift-register (PSR) has been developed. The counter was developed for applications not adequately addressed by commercial packages, including in-plant measurements to demonstrate compliance with regulations (domestic and international), in-plant process control, and in-field measurements (environmental monitoring or safeguards). Our package's features, which address these applications, include the following: Small size for portability and ease of installation;battery or mains operation; a built-in battery to power the unit and a typical detector such as a small sample counter, for over 6 h if power lines are bad or noisy, if there is a temporary absence of power, or if portability is desired; complete support, including bias, for standard neutron detectors; a powerful communications package to easily facilitate robust external control over a serial port; and a C-library to simplify creating external control programs in computers or other controllers. Whereas the PSR specifically addresses the applications mentioned above, it also performs all the measurements made by previous electronics packages for neutron coincidence counters developed at Los Alamos and commercialized. The PSR electronics package, exclusive of carrying handle, is 8 by 10 by 20 cm; it contains the circuit boards, battery, and bias supply and weighs less than 2 kg. This instrument package is the second in an emerging family of portable measurement instruments being developed; the first was the Miniature and Modular Multichannel Analyzer (M[sup 3]CA). The PSR makes extensive use of hardware and software developed for the M[sup 3]CA; like the M[sup 3]CA, it is intended primarily for use with an external controller interfaced over a serial channel.

  10. Portable Planetariums Teach Science

    NASA Technical Reports Server (NTRS)

    2015-01-01

    With the Internet proving to be the wave of the future, in the 1990s Johnson Space Center awarded grants to Rice University in Houston for developing the world's first Internet-accessible museum kiosk. Further grants were awarded to the school for creating educational software for use in homes and schools, leading to the creation of Museums Teaching Planet Earth Inc. The company has gone on to develop and sell portable planetariums and accompanying educational shows.

  11. Portable Laser Laboratory

    SciTech Connect

    Weir, J.T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  12. Portable cutting apparatus

    DOEpatents

    Gilmore, R.F.

    1984-07-17

    A remotely operable, portable cutting apparatus detachably secured to the workpiece by laterally spaced clamp assemblies engagable with the workpiece on opposite sides of the intended line of cut. A reciprocal cutter head is mounted between the clamp assemblies and is provided with a traveling abrasive cutting wire adapted to sever the workpiece normal to the longitudinal axis thereof. Dust and debris are withdrawn from the cutting area by a vacuum force through a nozzle mounted on the cutting head.

  13. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  14. An Exploratory Study of Advancing Mobilization in the Life Insurance Industry: The Case of Taiwan's Nan Shan Life Insurance Corporation.

    ERIC Educational Resources Information Center

    Luarn, Pin; Lin, Tom M. Y.; Lo, Peter K. Y.

    2003-01-01

    Employs a case study method, using in-depth interviews of 29 corporate managers and experts, to understand the current state of mobilization in the life insurance industry. Suggests a conceptual framework and formulates possible research propositions incorporating several variables. Suggests 10 key success factors for implementing mobilization in…

  15. Advance Directives for End-of-Life Care and the Role of Health Education Specialists: Applying the Theory of Reasoned Action

    ERIC Educational Resources Information Center

    Tremethick, Mary Jane; Johnson, Maureen K.; Carter, Mary R.

    2011-01-01

    Quality end-of-life care is subjective and based on individual values and beliefs. An advance directive provides a legal means of communicating these values and beliefs, as well as preferences in regards to end-of-life care when an individual is no longer able to make his or her desires known. In many nations, advance directives are underused…

  16. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    NASA Technical Reports Server (NTRS)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  17. An On-line Technology Information System (OTIS) for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriquez, Luis

    2003-01-01

    OTIS is an on-line communication platform designed for smooth flow of technology information between advanced life support (ALS) technology developers, researchers, system analysts, and managers. With pathways for efficient transfer of information, several improvements in the ALS Program will result. With OTIS, it will be possible to provide programmatic information for technology developers and researchers, technical information for analysts, and managerial decision support. OTIS is a platform that enables the effective research, development, and delivery of complex systems for life support. An electronic data collection form has been developed for the solid waste element, drafted by the Solid Waste Working Group. Forms for other elements (air revitalization, water recovery, food processing, biomass production and thermal control) will also be developed, based on lessons learned from the development of the solid waste form. All forms will be developed by consultation with other working groups, comprised of experts in the area of interest. Forms will be converted to an on-line data collection interface that technology developers will use to transfer information into OTIS. Funded technology developers will log in to OTIS annually to complete the element- specific forms for their technology. The type and amount of information requested expands as the technology readiness level (TRL) increases. The completed forms will feed into a regularly updated and maintained database that will store technology information and allow for database searching. To ensure confidentiality of proprietary information, security permissions will be customized for each user. Principal investigators of a project will be able to designate certain data as proprietary and only technical monitors of a task, ALS Management, and the principal investigator will have the ability to view this information. The typical OTIS user will be able to read all non-proprietary information about all projects

  18. Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment

    NASA Technical Reports Server (NTRS)

    Yackovetsky, Robert (Technical Monitor)

    2002-01-01

    The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.

  19. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  20. Architecture and Functionality of the Advanced Life Support On-Line Project Information System (OPIS)

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriquez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  1. Can course format influence the performance of students in an advanced cardiac life support (ACLS) program?

    PubMed

    Garrido, F D; Romano, M M D; Schmidt, A; Pazin-Filho, A

    2011-01-01

    Advanced cardiac life support (ACLS) is a problem-based course that employs simulation techniques to teach the standard management techniques of cardiovascular emergencies. Its structure is periodically revised according to new versions of the American Heart Association guidelines. Since it was introduced in Brazil in 1996, the ACLS has been through two conceptual and structural changes. Detailed documented reports on the effect of these changes on student performance are limited. The objective of the present study was to evaluate the effect of conceptual and structural changes of the course on student ACLS performance at a Brazilian training center. This was a retrospective study of 3266 students divided into two groups according to the teaching model: Model 1 (N = 1181; 1999-2003) and Model 2 (N = 2085; 2003-2007). Model 2 increased practical skill activities to 75% of the total versus 60% in Model 1. Furthermore, the teaching material provided to the students before the course was more objective than that used for Model 1. Scores greater than 85% in the theoretical evaluation and approval in the evaluation of practice by the instructor were considered to be a positive outcome. Multiple logistic regression was used to adjust for potential confounders (specialty, residency, study time, opportunity to enhance practical skills during the course and location where the course was given). Compared to Model 1, Model 2 presented odds ratios (OR) indicating better performance in the theoretical (OR = 1.34; 95%CI = 1.10-1.64), practical (OR = 1.19; 95%CI = 0.90-1.57), and combined (OR = 1.38; 95%CI = 1.13-1.68) outcomes. Increasing the time devoted to practical skills did not improve the performance of ACLS students.

  2. An On-Line Technology Information System (OTIS) for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Boulanger, Richard; Hoganm John A.; Rodriquez, Luis

    2003-01-01

    An On-line Technology Information System (OTIS) is currently being developed for the Advanced Life Support (ALS) Program. This paper describes the preliminary development of OTIS, which is a system designed to provide centralized collection and organization of technology information. The lack of thorough, reliable and easily understood technology information is a major obstacle in effective assessment of technology development progress, trade studies, metric calculations, and technology selection for integrated testing. OTIS will provide a formalized, well-organized protocol to communicate thorough, accurate, current and relevant technology information between the hands-on technology developer and the ALS Community. The need for this type of information transfer system within the Solid Waste Management (SWM) element was recently identified and addressed. A SWM Technology Information Form (TIF) was developed specifically for collecting detailed technology information in the area of SWM. In the TIF, information is requested from SWM technology developers, based upon the Technology Readiness Level (TRL). Basic information is requested for low-TRL technologies, and more detailed information is requested as the TRL of the technology increases. A comparable form is also being developed for the wastewater processing element. In the future, similar forms will also be developed for the ALS elements of air revitalization, food processing, biomass production and thermal control. These ALS element-specific forms will be implemented in OTIS via a web-accessible interface,with the data stored in an object-oriented relational database (created in MySQLTM) located on a secure server at NASA Ames Research Center. With OTIS, ALS element leads and managers will be able to carry out informed research and development investment, thereby promoting technology through the TRL scale. OTIS will also allow analysts to make accurate evaluations of technology options. Additionally, the range

  3. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  4. Practical Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.

  5. Advanced life events (ALEs) that impede aging-in-place among seniors.

    PubMed

    Lindquist, Lee A; Ramirez-Zohfeld, Vanessa; Sunkara, Priya; Forcucci, Chris; Campbell, Dianne; Mitzen, Phyllis; Cameron, Kenzie A

    2016-01-01

    Despite the wishes of many seniors to age-in-place in their own homes, critical events occur that impede their ability to do so. A gap exists as to what these advanced life events (ALEs) entail and the planning that older adults perceive is necessary. The purpose of this study was to identify seniors' perceptions and planning toward ALEs that may impact their ability to remain in their own home. We conducted focus groups with 68 seniors, age ≥65 years (mean age 73.8 years), living in the community (rural, urban, and suburban), using open-ended questions about perceptions of future heath events, needs, and planning. Three investigators coded transcriptions using constant comparative analysis to identify emerging themes, with disagreements resolved via consensus. Subjects identified five ALEs that impacted their ability to remain at home: (1) Hospitalizations, (2) Falls, (3) Dementia, (4) Spousal Loss, and (5) Home Upkeep Issues. While recognizing that ALEs frequently occur, many subjects reported a lack of planning for ALEs and perceived that these ALEs would not happen to them. Themes for the rationale behind the lack of planning emerged as: uncertainty in future, being too healthy/too sick, offspring influences, denial/procrastination, pride, feeling overwhelmed, and financial concerns. Subjects expressed reliance on offspring for navigating future ALEs, although many had not communicated their needs with their offspring. Overcoming the reasons for not planning for ALEs is crucial, as being prepared for future home needs provides seniors a voice in their care while engaging key supporters (e.g., offspring). PMID:26952382

  6. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  7. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  8. Development of portable fuel cells

    SciTech Connect

    Nakatou, K.; Sumi, S.; Nishizawa, N.

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  9. CURRICULUM GUIDES IN BIOLOGY--LIFE SCIENCE, BIOLOGY--GENERAL, AND BIOLOGY--ADVANCED PLACEMENT.

    ERIC Educational Resources Information Center

    WESNER, GORDON E.; AND OTHERS

    "BIOLOGY--LIFE SCIENCE" IS GEARED TO STUDENTS OF AVERAGE ABILITY, "BIOLOGY--GENERAL" IS OFFERED FOR THOSE WHO HAVE COMPLETED "BIOLOGY--GENERAL" IN GRADES 10 OR 11 AND WHO WISH TO PURSUE COLLEGE LEVEL STUDY WHILE IN GRADE 12. THE NONTECHNICAL "BIOLOGY--LIFE SCIENCE" HAS OUTLINED UNITS IN ORGANIZING FOOD, ORGAN SYSTEMS, HEALTH, CONTINUANCE OF LIFE,…

  10. Solar heated portable structure

    SciTech Connect

    Fodor, E.V.; King, F.F.; King, J.M.

    1982-03-23

    A solar heated portable structure comprising a flexible bottom panel, a flexible side assembly and a flexible transmitting panel , all coupled together and supported to form an enclosed chamber. The transmitting panel is capable of transmitting a majority of the radiant energy from the solar radiation spectrum to heat the enclosed chamber like a sauna and has an area at least 0.7 the area of the bottom panel to maximize heating while minimizing material costs. The transmitting panel can be transparent to ultraviolet radiation to allow persons inside the chamber to be tanned.

  11. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  12. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  13. Portable pathogen detection system

    SciTech Connect

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  14. Portable data collection device

    DOEpatents

    French, Patrick D.

    1996-01-01

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

  15. Portable data collection device

    DOEpatents

    French, P.D.

    1996-06-11

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.

  16. Portable hydrogenerating apparatus

    SciTech Connect

    Borgren, P.M.

    1982-04-13

    Apparatus for generating hydroelectric power comprising a portable collector tube assembly which can be transported to the site of a water source having a waterfall sufficient in magnitude to provide a pressure head for driving a turbine generator. The tube assembly comprises telescopically arranged inner and outer tubes, and means for rotating the tube assembly and extending the inner tube so as to place the upper, extended end thereof in a position within and below the top of the waterfall so as to take advantage of the resulting hydrodynamic and hydrostatic forces.

  17. Portable emittance measurement device

    SciTech Connect

    Liakin, D.; Seleznev, D.; Orlov, A.; Kuibeda, R.; Kropachev, G.; Kulevoy, T.; Yakushin, P.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  18. Portable classroom leads to partnership.

    PubMed

    Le Ber, Jeanne Marie; Lombardo, Nancy T; Weber, Alice; Bramble, John

    2004-01-01

    Library faculty participation on the School of Medicine Curriculum Steering Committee led to a unique opportunity to partner technology and teaching utilizing the library's portable wireless classroom. The pathology lab course master expressed a desire to revise the curriculum using patient cases and direct access to the Web and library resources. Since the pathology lab lacked computers, the library's portable wireless classroom provided a solution. Originally developed to provide maximum portability and flexibility, the wireless classroom consists of ten laptop computers configured with wireless cards and an access point. While the portable wireless classroom led to a partnership with the School of Medicine, there were additional benefits and positive consequences for the library.

  19. Advanced Life Support Water Recycling Technologies Case Studies: Vapor Phase Catalytic Ammonia Removal and Direct Osmotic Concentration

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.

  20. [Advance Care Planning and Decisions to limit treatment at the end of life - the view from medical ethics and psychooncology].

    PubMed

    Winkler, Eva C; Heußner, Pia

    2016-03-01

    Decisions to limit treatment are important in order to avoid overtreatment at the end of life. They proceed more than half of expected deaths in Europe and the US, but are not always communicated with the patient in advance. One reason for non-involvement is that conversations that prepare patients for end-of-life decisions and work out their preferences do not take place on a regular basis. At the same time there is growing evidence that such communication improves patients' quality of life, reduces anxiety and depression and allows patients to develop a realistic understanding of their situation - which in turn is a prerequisite for shared decision making about limiting treatment. In this paper we define "treatment limitation" and explain the medical ethics perspective. The main focus, however, is on the causes that hinder advanced care planning and conversations about limiting treatment in the care of patients with advanced disease. Finally the evidence for approaches to improve the situation is presented with concrete suggestions for solutions.

  1. Concurrent CO2 Control and O2 Generation for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.

    2007-01-01

    The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then

  2. The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.

    2009-01-01

    Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the

  3. Realistic Planning with Portable Classrooms.

    ERIC Educational Resources Information Center

    Roman, Michael I.

    2002-01-01

    Discusses why it is not wise to address the need for short-term space with the least expensive portable classrooms available. Explains that the problem is not that minimum specification trailers deteriorate rapidly with poor maintenance, but that perceived short-term requirements often turn out to be long-term. Asserts that portable classrooms…

  4. 29 CFR 1917.119 - Portable ladders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements for Portable Reinforced Plastic Ladders (d) Standards for job-made portable ladders. Job-made... length. (e) Maintenance and inspection. (1) The employer shall maintain portable ladders in...

  5. 29 CFR 1917.119 - Portable ladders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Requirements for Portable Reinforced Plastic Ladders (d) Standards for job-made portable ladders. Job-made... length. (e) Maintenance and inspection. (1) The employer shall maintain portable ladders in...

  6. Determinants of quality of life in advanced kidney disease: time to screen?

    PubMed

    Iyasere, Osasuyi; Brown, Edwina A

    2014-06-01

    The incidence of older patients with end stage renal disease is on the increase. This group of patients have multiple comorbidities and a high symptom burden. Dialysis can be life sustaining for such patients. But it is often at the expense of quality of life, which starts to decline early in the pathway of chronic kidney disease. Quality of life is also important to patients and is a major determinant in decisions regarding renal replacement. As a result, validated patient-reported outcome measures are increasingly used to assess quality of life in renal patients. Cognitive impairment, depression, malnutrition and function decline are non-renal determinants of quality of life and mortality. They are under-recognised in the renal population but are potentially treatable, if not preventable. This review article discusses aetio-pathogenesis, prevalence and impact of these four outcomes, advocating regular screening for early identification and management.

  7. Using System Mass (SM), Equivalent Mass (EM), Equivalent System Mass (ESM) or Life Cycle Mass (LCM) in Advanced Life Support (ALS) Reporting

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The Advanced Life Support (ALS) has used a single number, Equivalent System Mass (ESM), for both reporting progress and technology selection. ESM is the launch mass required to provide a space system. ESM indicates launch cost. ESM alone is inadequate for technology selection, which should include other metrics such as Technology Readiness Level (TRL) and Life Cycle Cost (LCC) and also consider perfom.arxe 2nd risk. ESM has proven difficult to implement as a reporting metric, partly because it includes non-mass technology selection factors. Since it will not be used exclusively for technology selection, a new reporting metric can be made easier to compute and explain. Systems design trades-off performance, cost, and risk, but a risk weighted cost/benefit metric would be too complex to report. Since life support has fixed requirements, different systems usually have roughly equal performance. Risk is important since failure can harm the crew, but it is difficult to treat simply. Cost is not easy to estimate, but preliminary space system cost estimates are usually based on mass, which is better estimated than cost. Amass-based cost estimate, similar to ESM, would be a good single reporting metric. The paper defines and compares four mass-based cost estimates, Equivalent Mass (EM), Equivalent System Mass (ESM), Life Cycle Mass (LCM), and System Mass (SM). EM is traditional in life support and includes mass, volume, power, cooling and logistics. ESM is the specifically defined ALS metric, which adds crew time and possibly other cost factors to EM. LCM is a new metric, a mass-based estimate of LCC measured in mass units. SM includes only the factors of EM that are originally measured in mass, the hardware and logistics mass. All four mass-based metrics usually give similar comparisons. SM is by far the simplest to compute and easiest to explain.

  8. The characteristics of advanced cancer patients followed at home, but admitted to the hospital for the last days of life.

    PubMed

    Mercadante, Sebastiano; Masedu, Francesco; Valenti, Marco; Mercadante, Alessandro; Aielli, Federica

    2016-08-01

    Information regarding advanced cancer patients followed at home who are admitted to the hospital in the last days of life are lacking. The aim of this study was to assess the characteristics of patients who were hospitalized in the last days of life after being assisted by a home palliative care team. The secondary outcome was to identify possible risk factors for hospitalization. The charts were analyzed of a consecutive sample of advanced cancer patients admitted to hospital wards in the last days of life after being followed at home by a palliative care team. Of 550 consecutive patients followed at home, 138 (25.1 %) were admitted to the hospital. Younger patients were more likely to die in the hospital. In a logistic risk analysis adjusted for age, patients with lung and head-neck cancer were more likely to die in the hospital. Patients having a female relative or a female consort as a caregiver were more likely to die at home. CAGE-positive patients (7.25 %), and patients with a shorter period of home assistance were more likely transported to hospital before dying (p = 0.00 and p < 0.024, respectively). The most frequent reason for hospital admission was dyspnea. Admission was more frequent to the oncology ward. Patients who were admitted to the hospital died after a mean of 10.2 days (SD 8.2, range 0-40). This study provides preliminary data on the risk factors of hospitalization at the end of life for advanced cancer patients followed at home.

  9. Portable Cooler/Warmers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Early in the space program, NASA recognized the need to replace bulky coils, compressers, and motors for refrigeration purposes by looking at existing thermoelectric technology. This effort resulted in the development of miniaturized thermoelectric components and packaging to accommodate tight confines of spacecraft. Koolatron's portable electronic refrigerators incorporate this NASA technology. Each of the cooler/warmers employs one or two miniaturized thermoelectric modules. Although each module is only the size of a book of matches, it delivers the cooling power of a 10-pound block of ice. In some models, the cooler can be converted to a warmer. There are no moving parts. The Koolatrons can be plugged into auto cigarette lighters, recreational vehicles, boats or motel outlets.

  10. Portable Medical System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Portable Medical Status and Treatment System (PMSTS) is designed for use in remote areas where considerable time may elapse before a patient can be transported to a hospital. First units were delivered to the Department of Transportation last year and tested in two types of medical emergency environments: one in a rural Pennsylvania community and another aboard a U.S. Coast Guard rescue helicopter operating along Florida's Gulf Coast. The system has the capability to transmit vital signs to a distantly located physician, who can perform diagnosis and relay treatment instructions to the attendant at the scene. The battery powered PMSTS includes a vital signs monitor and a defibrillator. Narco has also developed a companion system, called Porta-Fib III designed for use in a hospital environment with modifications accordingly. Both systems are offshoots of an earlier NASA project known as the Physician's Black Bag developed by Telecare, Inc., a company now acquired by NARCO.

  11. Portable intensity interferometry

    NASA Astrophysics Data System (ADS)

    Horch, Elliott P.; Camarata, Matthew A.

    2012-07-01

    A limitation of the current generation of long baseline optical interferometers is the need to make the light interfere prior to detection. This is unlike the radio regime where signals can be recorded fast enough to use electronics to accomplish the same result. This paper describes a modern optical intensity interferometer based on electronics with picosecond timing resolution. The instrument will allow for portable optical interferometry with much larger baselines than currently possible by using existing large telescopes. With modern electronics, the limiting magnitude of the technique at a 4-m aperture size becomes competitive with some amplitude-based interferometers. The instrumentation will permit a wireless mode of operation with GPS clocking technology, extending the work to extremely large baselines. We discuss the basic observing strategy, a planned observational program at the Lowell Observatory 1.8-m and 1.0-m telescopes, and the science that can realistically be done with this instrumentation.

  12. Portable, wheeled cooler apparatus

    SciTech Connect

    Bartholomew, A.E.; Miller, J.L.

    1988-02-16

    A portable, wheeled cooler apparatus adapted to be supported on and easily moved along a support surface is described comprising; (a) a cooler chest assembly including a support container member having an enclosure lid member connected thereto to hold ice and/or other contents therein for insulating purposes; (b) a support wheel assembly connected to the cooler chest assembly operable for supporting on the support surface; and (c) a combination handle and lock assembly connected to an upright wall of the support container member of the cooler chest assembly and operable (1) in one position extended over the enclosure lid member and against another upright wall of the support container member to hold the cooler chest assembly in an enclosed, locked condition; and (2) in a second extended rigid condition to provide a handle assembly for ease of inclining and moving the cooler chest assembly by pulling or pushing on the support wheel assembly.

  13. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R.; Jones, David Carl

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  14. Advanced support systems development and supporting technologies for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei

    1994-01-01

    A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.

  15. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial

    PubMed Central

    2011-01-01

    Background Tumor patients exhibit an increased peripheral demand of fatty acids and protein. Contrarily, tumors utilize glucose as their main source of energy supply. Thus, a diet supplying the cancer patient with sufficient fat and protein for his demands while restricting the carbohydrates (CHO) tumors thrive on, could be a helpful strategy in improving the patients' situation. A ketogenic diet (KD) fulfills these requirements. Therefore, we performed a pilot study to investigate the feasibility of a KD and its influence on the quality of life of patients with advanced metastatic tumors. Methods Sixteen patients with advanced metastatic tumors and no conventional therapeutic options participated in the study. The patients were instructed to follow a KD (less than 70 g CHO per day) with normal groceries and were provided with a supply of food additives to mix a protein/fat shake to simplify the 3-month intervention period. Quality of life [assessed by EORTC QLQ-C30 (version 2)], serum and general health parameters were determined at baseline, after every two weeks of follow-up, or after drop out. The effect of dietary change on metabolism was monitored daily by measuring urinary ketone bodies. Results One patient did not tolerate the diet and dropped out within 3 days. Among those who tolerated the diet, two patients died early, one stopped after 2 weeks due to personal reasons, one felt unable to stick to the diet after 4 weeks, one stopped after 6 and two stopped after 7 and 8 weeks due to progress of the disease, one had to discontinue after 6 weeks to resume chemotherapy and five completed the 3 month intervention period. These five and the one who resumed chemotherapy after 6 weeks report an improved emotional functioning and less insomnia, while several other parameters of quality of life remained stable or worsened, reflecting their very advanced disease. Except for temporary constipation and fatigue, we found no severe adverse side effects, especially no

  16. Portable Habitat for Antarctic Scientific Research (PHASR)

    NASA Technical Reports Server (NTRS)

    Griswold, Samantha S.

    1992-01-01

    The Portable Habitat for Antarctic Scientific Research, PHASR, is designed as a versatile, general purpose habitat system that addresses the problem of functional space and environmental soundness in a partially fabric-covered shelter. PHASR is used for remote field site applications that can be quickly deployed. PHASR will also provide four scientists with a comfortable and efficient use of interior space. PHASR is a NASA/USRA Advanced Design Program project conducted at the University of Houston College of Architecture, Sasadawa International Center for Space Architecture (SICSA). This report is prepared for NASA/USRA.

  17. Advanced Energy Storage Life and Health Prognostics (INL) FY 2012 Annual Progress Report

    SciTech Connect

    Jon P. Christophersen

    2012-10-01

    The objective of this work is to develop methodologies that will accurately estimate state-of-health (SOH) and remaining useful life (RUL) of electrochemical energy storage devices using both offline and online (i.e., in-situ) techniques through: · A statistically robust offline battery calendar life estimator tool based on both testing and simulation, and · Novel onboard sensor technology for improved online battery diagnostics and prognostics.

  18. The Space Exploration Initiative: a challenge to advanced life support technologies: keynote presentation.

    PubMed

    Mendell, W W

    1991-10-01

    President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth.

  19. The Space Exploration Initiative: a challenge to advanced life support technologies: keynote presentation.

    PubMed

    Mendell, W W

    1991-10-01

    President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient and efficient systems for applications on Earth. PMID:11537682

  20. Elementary Student Knowledge Gains in the Digital Portable Planetarium

    ERIC Educational Resources Information Center

    Carsten-Conner, Laura D.; Larson, Angela M.; Arseneau, Jennifer; Herrick, Robert R.

    2015-01-01

    Immersive environments hold promise to provide unique and heightened sensory experiences that focus a learner's attention, and thus may be useful learning platforms. In particular, portable planetariums may be useful in advancing conceptual knowledge about the night sky, because they afford learners with Earth-based views of celestial motions,…

  1. 37. ELECTRICAL PLAN AND DETAILS. SHOWS PLANNED LOCATION OF PORTABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ELECTRICAL PLAN AND DETAILS. SHOWS PLANNED LOCATION OF PORTABLE GENERATOR. FUNCTION OF FOUR-FOOT SQUARE PIT IS SHOWN AS 'D.C. POWER SUPPLY PIT.' F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-E-1. INEL INDEX CODE NUMBER: 075 0701 10 851 151973. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  2. Legal implications for failure to comply with advance directives: an examination of the incompetent individual's right to refuse life-sustaining medical treatment.

    PubMed

    Perry, Sherynn J

    2002-01-01

    Life-sustaining medical technology in the past century has created a growing body of case law and legislation recognizing the incompetent individual's right to make his or her own end-of-life decisions. This article focuses on California's leadership in the area of these specific end-of-life issues: specifically, exploring the right of an incompetent individual to refuse life-sustaining medical treatment. The article examines advance directives along with various judicial decision-making standards for incompetent individuals and explores the sociobehavioral and legal rationale for compliance with incompetent individual's rights to make end-of-life decisions. Finally this article concludes (i) that advance directives allow competent individuals to state the medical treatment they would prefer in the event they should later become incompetent and (ii) that when advance directives are properly executed in a detailed manner, under laws currently in effect in some jurisdictions, the preferences stated in the directive bind health care providers.

  3. A Trusted Portable Computing Device

    NASA Astrophysics Data System (ADS)

    Ming-wei, Fang; Jun-jun, Wu; Peng-fei, Yu; Xin-fang, Zhang

    A trusted portable computing device and its security mechanism were presented to solve the security issues, such as the attack of virus and Trojan horse, the lost and stolen of storage device, in mobile office. It used smart card to build a trusted portable security base, virtualization to create a secure virtual execution environment, two-factor authentication mechanism to identify legitimate users, and dynamic encryption to protect data privacy. The security environment described in this paper is characteristic of portability, security and reliability. It can meet the security requirement of mobile office.

  4. The Social Structuring of Mental Health over the Adult Life Course: Advancing Theory in the Sociology of Aging

    PubMed Central

    Clarke, Philippa; Marshall, Victor; House, James; Lantz, Paula

    2011-01-01

    The sociology of aging draws on a broad array of theoretical perspectives from several disciplines, but rarely has it developed its own. We build on past work to advance and empirically test a model of mental health framed in terms of structural theorizing and situated within the life course perspective. Whereas most prior research has been based on cross-sectional data, we utilize four waves of data from a nationally representative sample of American adults (Americans' Changing Lives Study) collected prospectively over a 15-year period and find that education, employment and marital status, as well as their consequences for income and health, effectively explain the increase in depressive symptoms after age 65. We also found significant cohort differences in age trajectories of mental health that were partly explained by historical increases in education. We demonstrate that a purely structural theory can take us far in explaining later life mental health. PMID:22081728

  5. [Principles of attachment theory in subjective life satisfaction and individual orientation to the future in advanced adulthood].

    PubMed

    Wensauer, M; Grossmann, K E

    1998-10-01

    Attachment representation was assessed in 48 elderly people with an average age of 69 years. The adult attachment interview was used plus an additional question about wishes for the future. Coherent correlations with subjective life satisfaction and individual future perspective were demonstrated. Elderly participants with secure attachment representation were more satisfied, they were also less anxious, and more often positive about their future. If their adult children had secure attachment representation, they were reported by their elderly parents to be socially, emotionally, and materially more supportive. Attachment representation as a biographical variable is the result of developmental processes. Our findings show qualitative differences in attachment representation with clear consequences for lifestyles in advanced age. Perception and interpretation of environment, and the ability to integrate negative emotions into positive life perspectives is mainly a matter of social-emotional experiences with significant attachment figures.

  6. Crop selection for advanced life support systems in the ESA MELiSSA program: Durum wheat (Triticum turgidum var durum)

    NASA Astrophysics Data System (ADS)

    Stasiak, M.; Gidzinski, D.; Jordan, M.; Dixon, M.

    2012-06-01

    As part of an ESA MELiSSA investigation into advanced life support (ALS) candidate crop cultivar selection and growth requirements, the University of Guelph's Controlled Environment Systems Research Facility (CESRF) conducted a case study on growth and development of four durum wheat cultivars (Triticum turgidum var durum) grown hydroponically under controlled conditions in a sealed environment. Cultivars tested were Canadian developed Avonlea, Commander, Eurostar and Strongfield. There were few fundamental differences in durum quality parameters between hydroponically and field grown wheat, however yields of Eurostar and Strongfield exceeded those of field trials by 41% and 87% respectively.

  7. End-of-life care for persons with advanced chronic obstructive pulmonary disease: report of a national interdisciplinary consensus meeting.

    PubMed

    Goodridge, D M; Marciniuk, D D; Brooks, D; van Dam, A; Hutchinson, S; Bailey, P; Baxter, S; Dorasamy, P; Dumont, S; Hassan, S; Hernandez, P; Kerigan, A; Rocker, G; Wilson, D; Young, J

    2009-01-01

    While systemic shortcomings in meeting the needs of individuals with progressive chronic illnesses at the end of life have been well documented, there is growing interest in improving both care and quality of life for persons with advanced chronic obstructive pulmonary disease (COPD). For instance, the American Thoracic Society has issued an official statement on palliative care for patients with respiratory diseases, affirming that the prevention, relief, reduction and soothing of symptoms "without affecting a cure" must become an integral component of standard care. A recent Medline search located 1015 articles related to palliative or end-of life care for people with COPD published between 2001 and 2008, compared with only 336 articles published before 2001. To address the needs of Canadian patients, an interdisciplinary consensus meeting, funded by the Canadian Institutes of Health Research and supported by the Canadian Thoracic Society, the Canadian Respiratory Health Professionals and the Canadian Lung Association was convened in Toronto, Ontario, on November 22, 2008, to begin examining the quality of end-of-life care for individuals with COPD in Canada. The present report summarizes the background to and outcomes of this consensus meeting.

  8. Model implementation for dynamic computation of system cost for advanced life support

    NASA Technical Reports Server (NTRS)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Developing an Advanced Life Support System for the Flexible Path into Deep Space

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Kliss, Mark H.

    2010-01-01

    Long duration human missions beyond low Earth orbit, such as a permanent lunar base, an asteroid rendezvous, or exploring Mars, will use recycling life support systems to preclude supplying large amounts of metabolic consumables. The International Space Station (ISS) life support design provides a historic guiding basis for future systems, but both its system architecture and the subsystem technologies should be reconsidered. Different technologies for the functional subsystems have been investigated and some past alternates appear better for flexible path destinations beyond low Earth orbit. There is a need to develop more capable technologies that provide lower mass, increased closure, and higher reliability. A major objective of redesigning the life support system for the flexible path is achieving the maintainability and ultra-reliability necessary for deep space operations.

  10. Multiaxial deformation and life prediction model and experimental data for advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1993-06-01

    This paper summarizes recent experimental results on creep and creep rupture behavior of a commercial grade of Si{sub 3}N{sub 4} ceramic in the temperature range of 1150 to 1300C obtained at ORNL; and introduces a tentative multiaxial deformation and life prediction model for ceramic materials under general thermomechanical loadings. Issues related to the possible standardization of the data analysis methodology and possible future research needs for high temperature structural ceramics in the area of development of data base and life prediction methodology are also discussed.

  11. Advanced Regenerative Environmental Control and Life Support Systems: Air and Water Regeneration

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.

    1985-01-01

    Extended manned space missions will require regenerative life support techniques. Past manned missions used nonregenerative expendables, except for a molecular sieve based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The Space Station scheduled to be operational in the 1990's is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The techniques to be used in the requirements for the space station are addressed.

  12. Portable Sonic Boom Simulation

    NASA Astrophysics Data System (ADS)

    Salamone, Joe

    2006-05-01

    A method is presented to simulate sonic booms using high fidelity and custom-built audio equipment that output to an acoustically treated listening environment, all of which is contained in a portable vehicle. The audio system has inherent low and high frequency performance limitations and also introduces distortion due to the frequency response of the system. The limitations of the system are compensated for by band-pass filtering a full-fidelity sonic boom signature and applying a system equalization filter. The purpose of the band-pass filter is to remove frequency content above and below the capabilities of the system yet retain the audible and felt characteristics of the full-fidelity waveform. The equalization filter, computed from time-domain Wiener filtering, compensates for the frequency-dependent system response of the audio system at several listening positions. The system performance is evaluated by comparing the PLdB, SEL(A) and SEL(C) of the measured system output to the full-fidelity waveform. Results show good agreement between the loudness levels of the full-fidelity waveform and the corresponding measured system output.

  13. Portable classroom leads to partnership.

    PubMed

    Le Ber, Jeanne Marie; Lombardo, Nancy T; Weber, Alice; Bramble, John

    2004-01-01

    Library faculty participation on the School of Medicine Curriculum Steering Committee led to a unique opportunity to partner technology and teaching utilizing the library's portable wireless classroom. The pathology lab course master expressed a desire to revise the curriculum using patient cases and direct access to the Web and library resources. Since the pathology lab lacked computers, the library's portable wireless classroom provided a solution. Originally developed to provide maximum portability and flexibility, the wireless classroom consists of ten laptop computers configured with wireless cards and an access point. While the portable wireless classroom led to a partnership with the School of Medicine, there were additional benefits and positive consequences for the library. PMID:15148018

  14. Alternative Metrics for Evaluating the Resilence of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria; Dearden, Richard; Levri, Julie A.

    2002-01-01

    Ensuring the safety of the crew is a key performance requirement of a life support system. However, a number of conceptual and practical difficulties arise when devising metrics to concretely measure the ability of a life support system to maintain critical functions in the presence of anticipated and unanticipated faults. Resilience is a dynamic property of a life support system that depends on the complex interactions between faults, controls and system hardware. We review some of the approaches to understanding the robustness or resilience of complex systems being developed in diverse fields such as ecology, software engineering and cell biology and discuss their applicability to regenerative life support systems. We also consider how approaches to measuring resilience vary depending on system design choices such as the definition and choice of the nominal operating regime. Finally, we explore data collection and implementation issues such as the key differences between the instantaneous or conditional and average or overall measures of resilience. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data are used to consider alternative measures of resilience as predictors of the system's ability to recover from component-level faults.

  15. Initial assessments of life support technology evolution and advanced sensor requirements, volume 2, appendix A

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E.

    1991-01-01

    The primary issues studied were how the transition from a physical/chemical (P/C) to hybrid to a Closed Ecological Life Support System (CELSS) could be achieved, what sensors and monitors are needed for a P/C -CELSS hybrid system, and how a CELSS could be automated and what controls would be needed to do so.

  16. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  17. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  18. Palliative Care Improves Survival, Quality of Life in Advanced Lung Cancer | Division of Cancer Prevention

    Cancer.gov

    Results from the first randomized clinical trial of its kind have revealed a surprising and welcome benefit of early palliative care for patients with advanced lung cancer—longer median survival. Although several researchers said that the finding needs to be confirmed in other trials of patients with other cancer types, they were cautiously optimistic that the trial results could influence oncologists’ perceptions and use of palliative care. |

  19. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    SciTech Connect

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  20. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    NASA Technical Reports Server (NTRS)

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  1. Portable source identification device

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet (7.3 m) in the air, allowing a wide vertical scanning range.

  2. Portable Multiplex Pathogen Detector

    SciTech Connect

    Visuri, S; McBride, M T; Matthews, D; Rao, R

    2002-07-15

    Tumor marker concentrations in serum provide useful information regarding clinical stage and prognosis of cancer and can thus be used for presymptomatic diagnostic purposes. Currently, detection and identification of soluble analytes in biological fluids is conducted by methods including bioassays, ELISA, PCR, DNA chip or strip tests. While these technologies are generally sensitive and specific, they are time consuming, labor intensive and cannot be multiplexed. Our goal is to develop a simple, point-of-care, portable, liquid array-based immunoassay device capable of simultaneous detection of a variety of cancer markers. Here we describe the development of assays for the detection of Serum Prostate Specific Antigen, and Ovalbumin from a single sample. The multiplexed immunoassays utilize polystyrene microbeads. The beads are imbedded with precise ratios of red and orange fluorescent dyes yielding an array of 100 beads, each with a unique spectral address (Figure 1). Each bead can be coated with capture antibodies specific for a given antigen. After antigen capture, secondary antibodies sandwich the bound antigen and are indirectly labeled by the fluorescent reporter phycoerythrin (PE). Each optically encoded and fluorescently-labeled microbead is then individually interrogated. A red laser excites the dye molecules imbedded inside the bead and classifies the bead to its unique bead set, and a green laser quantifies the assay at the bead surface. This technology has been proven to be comparable to the ELISA in terms of sensitivity and specificity. We also describe the laser-based instrumentation used to acquire fluorescent bead images Following the assay, droplets of bead suspension containing a mixture of bead classes were deposited onto filters held in place by a disposable plexiglass device and the resultant arrays viewed under the fluorescent imaging setup. Using the appropriate filter sets to extract the necessary red, orange and green fluorescence from the

  3. Portable Source Identification Device

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet in the air, allowing a wide vertical scanning range.

  4. The influence of an advanced agriculture & life science course on students' views of the nature of science

    NASA Astrophysics Data System (ADS)

    Anderson, Megan N.

    One of the goals in today's society is to ensure that students exiting school have the ability to understand, develop, and comprehend scientific information. For students to be able to meet these goals, it is imperative that they become scientifically literate and understand the concept of the Nature of Science (NOS). The discipline of Agricultural Education has strong connections with science and today many students are earning science credit and developing science understanding through Agricultural Education courses. If students are continuing to gain science mastery through their Agricultural Education courses, they should also be gaining adequate conceptions of science and the NOS. Overall, many studies have indicated that students exiting the K-12 education system lack these vital skills and understanding. The purpose of this study was to explore the conceptions of the NOS of advanced agriculture students in Indiana. This study explored the conceptions of agricultural science students before and after taking a semester of an advanced life science course (N=48). Conceptions were explored through a qualitative case study utilizing the VNOS-C questionnaire. Responses were coded into one of three categories: Naive, Emerging, or Informed. Demographic data were also collected and analyzed. Overall, results of this study indicate that students in advanced agricultural science courses lack NOS understanding. The study's conclusions are discussed along with implications for theory, research and practice in addition to future directions for research.

  5. Nurses' knowledge of advance directives and perceived confidence in end‐of‐life care: a cross‐sectional study in five countries

    PubMed Central

    McCarthy, Geraldine; Weathers, Elizabeth; Friedman, M. Isabel; Gallo, Katherine; Ehrenfeld, Mally; Chan, Sophia; Li, William H.C.; Poletti, Piera; Zanotti, Renzo; Molloy, D. William; McGlade, Ciara; Fitzpatrick, Joyce J.; Itzhaki, Michal

    2016-01-01

    Nurses' knowledge regarding advance directives may affect their administration and completion in end‐of‐life care. Confidence among nurses is a barrier to the provision of quality end‐of‐life care. This study investigated nurses' knowledge of advance directives and perceived confidence in end‐of‐life care, in Hong Kong, Ireland, Israel, Italy and the USA using a cross‐sectional descriptive design (n = 1089). In all countries, older nurses and those who had more professional experience felt more confident managing patients' symptoms at end‐of‐life and more comfortable stopping preventive medications at end‐of‐life. Nurses in the USA reported that they have more knowledge and experience of advance directives compared with other countries. In addition, they reported the highest levels of confidence and comfort in dealing with end‐of‐life care. Although legislation for advance directives does not yet exist in Ireland, nurses reported high levels of confidence in end‐of‐life care. PMID:26823112

  6. Invited commentary: integrating a life-course perspective and social theory to advance research on residential segregation and health.

    PubMed

    Osypuk, Theresa L

    2013-02-15

    Research on racial residential segregation and health typically uses multilevel, population-based, slice-in-time data. Although research using this approach, including that by Kershaw et al. (Am J Epidemiol. 2013;177(4):299-309), has been valuable, I argue that to advance our understanding of how residential segregation influences health and health disparities, it is critical to incorporate a life-course perspective and integrate social theory. Applying a life-course perspective would entail modeling transitions, cumulative risk, and developmental and dynamic processes and mechanisms, as well as recognizing the contingency of contextual effects on different social groups. I discuss the need for analytic methods appropriate for modeling health effects of distal causes experienced across the life course, such as segregation, that operate through multiple levels and sequences of mediators, potentially across decades. Sociological theories of neighborhood attainment (e.g., segmented assimilation, ethnic resurgence, and place stratification theories) can guide effect-modification tests to help illuminate health effects resulting from intersections of residential processes, race/ethnicity, immigration, and other social determinants of health. For example, nativity and immigration history may crucially shape residential processes and exposures, but these have received limited attention in prior segregation-health literature. PMID:23337313

  7. Invited commentary: integrating a life-course perspective and social theory to advance research on residential segregation and health.

    PubMed

    Osypuk, Theresa L

    2013-02-15

    Research on racial residential segregation and health typically uses multilevel, population-based, slice-in-time data. Although research using this approach, including that by Kershaw et al. (Am J Epidemiol. 2013;177(4):299-309), has been valuable, I argue that to advance our understanding of how residential segregation influences health and health disparities, it is critical to incorporate a life-course perspective and integrate social theory. Applying a life-course perspective would entail modeling transitions, cumulative risk, and developmental and dynamic processes and mechanisms, as well as recognizing the contingency of contextual effects on different social groups. I discuss the need for analytic methods appropriate for modeling health effects of distal causes experienced across the life course, such as segregation, that operate through multiple levels and sequences of mediators, potentially across decades. Sociological theories of neighborhood attainment (e.g., segmented assimilation, ethnic resurgence, and place stratification theories) can guide effect-modification tests to help illuminate health effects resulting from intersections of residential processes, race/ethnicity, immigration, and other social determinants of health. For example, nativity and immigration history may crucially shape residential processes and exposures, but these have received limited attention in prior segregation-health literature.

  8. Invited Commentary: Integrating a Life-Course Perspective and Social Theory to Advance Research on Residential Segregation and Health

    PubMed Central

    Osypuk, Theresa L.

    2013-01-01

    Research on racial residential segregation and health typically uses multilevel, population-based, slice-in-time data. Although research using this approach, including that by Kershaw et al. (Am J Epidemiol. 2013;177(4):299–309), has been valuable, I argue that to advance our understanding of how residential segregation influences health and health disparities, it is critical to incorporate a life-course perspective and integrate social theory. Applying a life-course perspective would entail modeling transitions, cumulative risk, and developmental and dynamic processes and mechanisms, as well as recognizing the contingency of contextual effects on different social groups. I discuss the need for analytic methods appropriate for modeling health effects of distal causes experienced across the life course, such as segregation, that operate through multiple levels and sequences of mediators, potentially across decades. Sociological theories of neighborhood attainment (e.g., segmented assimilation, ethnic resurgence, and place stratification theories) can guide effect-modification tests to help illuminate health effects resulting from intersections of residential processes, race/ethnicity, immigration, and other social determinants of health. For example, nativity and immigration history may crucially shape residential processes and exposures, but these have received limited attention in prior segregation-health literature. PMID:23337313

  9. Satisfaction with life during pregnancy and early motherhood in first-time mothers of advanced age: a population-based longitudinal study

    PubMed Central

    2014-01-01

    Background The trend to delay motherhood to the age of 30 and beyond is established in most high-income countries but relatively little is known about potential effects on maternal emotional well-being. This study investigates satisfaction with life during pregnancy and the first three years of motherhood in women expecting their first baby at an advanced and very advanced age. Methods The study was based on the National Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health. Data on 18 565 nulliparous women recruited in the second trimester 1999–2008 were used. Four questionnaires were completed: at around gestational weeks 17 and 30, and at six months and three years after the birth. Medical data were retrieved from the national Medical Birth Register. Advanced age was defined as 32–37 years, very advanced age as ≥38 years and the reference group as 25–31 years. The distribution of satisfaction with life from age 25 to ≥40 years was investigated, and the mean satisfaction with life at the four time points was estimated. Logistic regression analyses based on generalised estimation equations were used to investigate associations between advanced and very advanced age and satisfaction with life when controlling for socio-demographic factors. Results Satisfaction with life decreased from around age 28 to age 40 and beyond, when measured in gestational weeks 17 and 30, and at six months and three years after the birth. When comparing women of advanced and very advanced age with the reference group, satisfaction with life was slightly reduced in the two older age groups and most of all in women of very advanced age. Women of very advanced age had the lowest scores at all time points and this was most pronounced at three years after the birth. Conclusion First-time mothers of advanced and very advanced age reported a slightly lower degree of satisfaction with life compared with the reference group of younger

  10. Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life

    PubMed Central

    Bunge, John; Gilbert, Jack A.; Moore, Jason H.

    2012-01-01

    This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

  11. Feasibility of substituting sodium for potassium in crop plants for advanced life support systems.

    PubMed

    Subbarao, G V; Wheeler, R M; Stutte, G W

    2000-01-01

    Recycling of nutrients, air, and water is an integral feature of life support systems designed for long-term space missions. Plants can play a major role in supplying the basic life support requirements, which include providing the crew's food, clean water, and air, and recycling their wastes. The nutrient flux through the plant and human systems needs to be matched in order for nutrients to recycle between humans and plants without an excessive buildup in any one section of the system. Sodium, which is essential at the macronutrient level for human metabolism, has only been shown to be a micronutrient for some plants, with only very limited uptake in most plants. Thus, when Na is added from the outside to meet the human demand in these closed life support systems it will accumulate someplace in the overall system. In simple systems such as these, without a complete biogeological cycle, the buildup of Na could occur in the nutrient solution of the plant system. Various concepts related to the substitution of sodium for potassium in crop plants are currently being investigated by NASA. Results to date suggest that Na concentrations up to 100 g kg-1 dry weight may be achievable in the edible portions of Na-tolerant crops (e.g., red beet and chard). A flow path for nutrient solution high in Na wastes has been suggested for optimizing Na and nitrogen incorporation and utilization from such solutions. Options for further improvements include selecting plant genotypes tolerant to high salinity, which are efficient in Na uptake. This should also be combined with environmental manipulations to maximize Na uptake by crop plants. PMID:11676437

  12. Advanced separator construction for long life valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Stevenson, P. R.

    The performance of absorptive glass mat separators in valve-regulated lead-acid (VRLA) batteries is strongly influenced by the diameter of the fibres from which they are made. Coarser diameter fibres are beneficial for the compressive properties of separators while finer fibres maintain the uniform distribution of the electrolyte. Studies of cell compression and electrolyte stratification are reported using separators manufactured with segregated layers of fine and coarse fibres incorporated into a single sheet. This construction locates the different classes of fibre at their location of maximum effectiveness. Improvements in battery life in both cyclic and float charge applications are recorded, and compared with single layer separators.

  13. Portable Computer Technology (PCT) Research and Development Program Phase 2

    NASA Technical Reports Server (NTRS)

    Castillo, Michael; McGuire, Kenyon; Sorgi, Alan

    1995-01-01

    The subject of this project report, focused on: (1) Design and development of two Advanced Portable Workstation 2 (APW 2) units. These units incorporate advanced technology features such as a low power Pentium processor, a high resolution color display, National Television Standards Committee (NTSC) video handling capabilities, a Personal Computer Memory Card International Association (PCMCIA) interface, and Small Computer System Interface (SCSI) and ethernet interfaces. (2) Use these units to integrate and demonstrate advanced wireless network and portable video capabilities. (3) Qualification of the APW 2 systems for use in specific experiments aboard the Mir Space Station. A major objective of the PCT Phase 2 program was to help guide future choices in computing platforms and techniques for meeting National Aeronautics and Space Administration (NASA) mission objectives. The focus being on the development of optimal configurations of computing hardware, software applications, and network technologies for use on NASA missions.

  14. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    SciTech Connect

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E.

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  15. The use of advanced mass spectrometry to dissect the life-cycle of photosystem II

    DOE PAGES

    Weisz, Daniel A.; Gross, Michael L.; Pakrasi, Himadri B.

    2016-05-10

    Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has beenmore » gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. Lastly, we conclude with an outlook for the opportunity of future MS contributions to PSII research.« less

  16. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II

    PubMed Central

    Weisz, Daniel A.; Gross, Michael L.; Pakrasi, Himadri B.

    2016-01-01

    Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research. PMID:27242823

  17. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this

  18. Safety and Benefit of Discontinuing Statin Therapy in the Setting of Advanced, Life-Limiting Illness

    PubMed Central

    Kutner, Jean S.; Blatchford, Patrick J.; Taylor, Don H.; Ritchie, Christine S.; Bull, Janet H.; Fairclough, Diane L.; Hanson, Laura C.; LeBlanc, Thomas W.; Samsa, Greg P.; Wolf, Steven; Aziz, Noreen M.; Currow, David C.; Ferrell, Betty; Wagner-Johnston, Nina; Zafar, S. Yousuf; Cleary, James F.; Dev, Sandesh; Goode, Patricia S.; Kamal, Arif H.; Kassner, Cordt; Kvale, Elizabeth A.; McCallum, Janelle G.; Ogunseitan, Adeboye B.; Pantilat, Steven Z.; Portenoy, Russell K.; Prince-Paul, Maryjo; Sloan, Jeff A.; Swetz, Keith M.; Von Gunten, Charles F.; Abernethy, Amy P.

    2015-01-01

    IMPORTANCE For patients with limited prognosis, some medication risks may outweigh the benefits, particularly when benefits take years to accrue; statins are one example. Data are lacking regarding the risks and benefits of discontinuing statin therapy for patients with limited life expectancy. OBJECTIVE To evaluate the safety, clinical, and cost impact of discontinuing statin medications for patients in the palliative care setting. DESIGN, SETTING, AND PARTICIPANTS This was a multicenter, parallel-group, unblinded, pragmatic clinical trial. Eligibility included adults with an estimated life expectancy of between 1 month and 1 year, statin therapy for 3 months or more for primary or secondary prevention of cardiovascular disease, recent deterioration in functional status, and no recent active cardiovascular disease. Participants were randomized to either discontinue or continue statin therapy and were monitored monthly for up to 1 year. The study was conducted from June 3, 2011, to May 2, 2013. All analyses were performed using an intent-to-treat approach. INTERVENTIONS Statin therapy was withdrawn from eligible patients who were randomized to the discontinuation group. Patients in the continuation group continued to receive statins. MAIN OUTCOMES AND MEASURES Outcomes included death within 60 days (primary outcome), survival, cardiovascular events, performance status, quality of life (QOL), symptoms, number of nonstatin medications, and cost savings. RESULTS A total of 381 patients were enrolled; 189 of these were randomized to discontinue statins, and 192 were randomized to continue therapy. Mean (SD) age was 74.1 (11.6) years, 22.0% of the participants were cognitively impaired, and 48.8% had cancer. The proportion of participants in the discontinuation vs continuation groups who died within 60 days was not significantly different (23.8% vs 20.3%; 90% CI, −3.5% to 10.5%; P = .36) and did not meet the noninferiority end point. Total QOL was better for the group

  19. Portable Multigas Monitors for International Space Station

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.; Ruff, Gary A.

    2011-01-01

    The Environmental Health System (EHS) on International Space Station (ISS) includes portable instruments to measure various cabin gases that acutely impact crew health. These hand-held devices measure oxygen, carbon dioxide, carbon monoxide, hydrogen chloride and hydrogen cyanide. The oxygen and carbon dioxide units also serve to back up key functions of the Major Constituent Analyzers. Wherever possible, commercial off-the-shelf (COTS) devices are employed by EHS to save development and sustaining costs. COTS hardware designed for general terrestrial applications however has limitations such as no pressure compensation, limited life of the active sensor, calibration drift, battery issues, unpredictable vendor support and obsolescence. The EHS fleet (inflight and ground inventory) of instruments is both aging and dwindling in number. With the retirement of the US Space Shuttle, maintenance of on-orbit equipment becomes all the more difficult. A project is underway to search for gas monitoring technology that is highly reliable and stable for years. Tunable Diode Laser Spectroscopy (TDLS) seems to be the front-runner technology, but generally is not yet commercially available in portable form. NASA has fostered the development of TDLS through the Small Business Innovative Research (SBIR) program. A number of gases of interest to the aerospace and submarine communities can be addressed by TDLS including the list mentioned above plus hydrogen fluoride, ammonia and water (humidity). There are several different forms of TDLS including photoacoustic and direct absorption spectroscopy using various multipass cell geometries. This paper describes the history of portable gas monitoring on NASA spacecraft and provides a status of the development of TDLS based instruments. Planned TDLS flight experiments on ISS could lead both to operational use on ISS and important roles in future Exploration spacecraft and habitats.

  20. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  1. Life cycle assessment of advanced bioethanol production from pulp and paper sludge.

    PubMed

    Sebastião, Diogo; Gonçalves, Margarida S; Marques, Susana; Fonseca, César; Gírio, Francisco; Oliveira, Ana C; Matos, Cristina T

    2016-05-01

    This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements.

  2. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  3. Effect of simulation on knowledge of advanced cardiac life support, knowledge retention, and confidence of nursing students in Jordan.

    PubMed

    Tawalbeh, Loai I; Tubaishat, Ahmad

    2014-01-01

    This study examined the effect of simulation on nursing students' knowledge of advanced cardiac life support (ACLS), knowledge retention, and confidence in applying ACLS skills. An experimental, randomized controlled (pretest-posttest) design was used. The experimental group (n = 40) attended an ACLS simulation scenario, a 4-hour PowerPoint presentation, and demonstration on a static manikin, whereas the control group (n = 42) attended the PowerPoint presentation and a demonstration only. A paired t test indicated that posttest mean knowledge of ACLS and confidence was higher in both groups. The experimental group showed higher knowledge of ACLS and higher confidence in applying ACLS, compared with the control group. Traditional training involving PowerPoint presentation and demonstration on a static manikin is an effective teaching strategy; however, simulation is significantly more effective than traditional training in helping to improve nursing students' knowledge acquisition, knowledge retention, and confidence about ACLS.

  4. [Portable instrument for arteriosclerosis assessment].

    PubMed

    Cao, Shuai; Chen, Xiang

    2014-01-01

    A portable instrument for arteriosclerosis assessment containing sensor module, acquisition board and embedded module was developed for home care in this paper. The sensor module consists of one ECG module and three pulse wave extraction modules, synchronously acquiring human ECG and pulse wave signal of carotid, radial, and dorsal, respectively. The acquisition board converts the sensor module's analog output signals into digital signals and transmits them to the embedded module. The embedded module realizes the functions including signal display, storage and the calculation and output of pulse wave velocity. The structure of the proposed portable instrument is simple, easy to use, and easy to expand. Small size, low cost, and low power consumption are also the advantages of this device. Experimental results demonstrated that the proposed portable instrument for arteriosclerosis assessment has high accuracy, good repeatability and can assess the degree of atherosclerosis appropriately.

  5. Association of Early Patient-Physician Care Planning Discussions and End-of-Life Care Intensity in Advanced Cancer

    PubMed Central

    Tisnado, Diana M.; Walling, Anne M.; Dy, Sydney M.; Asch, Steven M.; Ettner, Susan L.; Kim, Benjamin; Pantoja, Philip; Schreibeis-Baum, Hannah C.; Lorenz, Karl A.

    2015-01-01

    Abstract Background: Early patient-physician care planning discussions may influence the intensity of end-of-life (EOL) care received by veterans with advanced cancer. Objective: The study objective was to evaluate the association between medical record documentation of patient-physician care planning discussions and intensity of EOL care among veterans with advanced cancer. Methods: This was a retrospective cohort study. Subjects were 665 veteran decedents diagnosed with stage IV colorectal, lung, or pancreatic cancer in 2008, and followed till death or the end of the study period in 2011. We estimated the effect of patient-physician care planning discussions documented within one month of metastatic diagnosis on the intensity of EOL care measured by receipt of acute care, intensive interventions, chemotherapy, and hospice care, using multivariate logistic regression models. Results: Veterans in our study were predominantly male (97.1%), white (74.7%), with an average age at diagnosis of 66.4 years. Approximately 31% received some acute care, 9.3% received some intensive intervention, and 6.5% had a new chemotherapy regimen initiated in the last month of life. Approximately 41% of decedents received no hospice or were admitted within three days of death. Almost half (46.8%) had documentation of a care planning discussion within the first month after diagnosis and those who did were significantly less likely to receive acute care at EOL (OR: 0.67; p=0.025). Documented discussions were not significantly associated with intensive interventions, chemotherapy, or hospice care. Conclusion: Early care planning discussions are associated with lower rates of acute care use at the EOL in a system with already low rates of intensive EOL care. PMID:26186553

  6. Freely oriented portable superconducting magnet

    SciTech Connect

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  7. Portable Heat Pump Testing Device

    NASA Astrophysics Data System (ADS)

    Kłosowiak, R.; Bartoszewicz, J.; Urbaniak, R.

    2015-08-01

    The aim of this paper is to present the design and working principle of a portable testing device for heat pumps in the energy recirculation system. The presented test stand can be used for any refrigerating/reverse flow cycle device to calculate the device energy balance. The equipment is made of two portable containers of the capacity of 250 liters to simulate the air heat source and ground heat source with a system of temperature stabilization, compressor heat pump of the coefficient of performance (COP) of = 4.3, a failsafe system and a control and measurement system.

  8. Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life

    SciTech Connect

    Oehler, Dorothy Z.; Cady, Sherry L.

    2014-12-01

    he past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen) organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled with assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.

  9. Metabolic Flux Analysis -application in plant metabolic modelling for advanced life support systems

    NASA Astrophysics Data System (ADS)

    Sasidharan L, Swathy; Hezard, Pauline; Poughon, Laurent; Dussap, Claude-Gilles

    Plants have an important role in providing food and fresh oxygen for humans in a closed environment during long duration missions to Mars or Moon. Also, plants play an important role for recycling water. Thus, plant modelling (crop composition, yield prediction and the responses to its environment within the closed loop) gets much attention in the development of closed ecological life support systems. In order to achieve this, metabolic flux computation methods accounting for reactions stoichiometry and chemical energy conservation obtained from metabolic pathways description of different plant parts are required. The basic ideas of metabolic modelling and their application to various plant parts will be discussed. Metabolic systems consist of a set of metabolites and reactions that consume or produce them. The metabolic pathways within a metabolic network for each plant part or sub level are characterised and the metabolic fluxes, defined as the amount of converted metabolite per unit time and per unit mass of tissue (or per plant part), can be calculated. MBA (Metabolic flux analysis) which is a constraint based approach is effective at calculating flux distributions through bio-chemical networks. This methodology can be applied to several plants' growth situations. In terms of space appli-cations, it is shown how this approach could bring valuable tools for assessing and quantifying the effects of the environment of a close system on growth rate and conversion yields.

  10. Bioregenerative food system cost based on optimized menus for advanced life support

    NASA Technical Reports Server (NTRS)

    Waters, Geoffrey C R.; Olabi, Ammar; Hunter, Jean B.; Dixon, Mike A.; Lasseur, Christophe

    2002-01-01

    Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.

  11. Portable Gas Analyzer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Michromonitor M500 universal gas analyzer contains a series of miniature modules, each of which is a complete gas chromatograph, an instrument which separates a gaseous mixture into its components and measures the concentrations of each gas in the mixture. The system is manufactured by Microsensor Technology, and is used for environmental analysis, monitoring for gas leaks and chemical spills, compliance with pollution laws, etc. The technology is based on a Viking attempt to detect life on Mars. Ames/Stanford miniaturized the system and NIOSH funded further development. Three Stanford researchers commercialized the technology, which can be operated by unskilled personnel.

  12. The Giant Snail Achatina fulica as a Candidate Species for Advanced Bioregenerative Life Support Systems

    NASA Astrophysics Data System (ADS)

    Verbitskaya, Olga; Manukovsky, Nickolay; Kovalev, Vladimir

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Rational nutrition is a resource for mitigating the influence of unfavorable conditions. The insufficiency of vegetarian diet has been examined by the Japanese, Chinese and U.S. developers of bioregenerative life support systems (BLSS). Hence, inclusion of animals such as silkworm in BLSS looks justified. The giant snail is currently under studying as a source of animal food and a species of reducing waste in BLSS. An experimental system to conduct cultivation of giant snail was developed. It was established that there are some reasons to use the giant snails in BLSS. It could be a source of delicious meat. A. fulica is capable of consuming a wide range of feedstuffs including plant residues. Cultivation of snail in the limited volume does not demand the big expenditures of labor. The production of crude edible biomass and protein of A. fulica was 60±15 g and 7±1.8 g respectively per 1 kg of consumed forage (fresh salad leaves, root and leafy tops of carrot). To satisfy daily animal protein needs (30-35 g) a crewman has to consume 260-300 g of snail meat. To produce such amount of snail protein it takes to use 4.3-5.0 kg of plant forage daily. The nutritional composition of A. fulica whole bodies (without shell) and a meal prepared in various ways was quantitatively determined. Protein, carbohydrate, fat acid and ash content percentages were different among samples prepared in various ways. The protein content was highest (68 %) in the dry sample washed with CH3 COOH solution. Taking into consideration the experimental results a conceptual configuration of BLSS with inclusion of giant snail was developed and mass flow rates between compartments were calculated. Keywords: animal food; protein; giant snail; BLSS; conceptual configuration.

  13. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    NASA Astrophysics Data System (ADS)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  14. Advancing the Screening of Fibromyalgia in Late-Life Depression: Practical Implications for Psychiatric Settings

    PubMed Central

    Jochum, John R.; Begley, Amy; Dew, Mary Amanda; Weiner, Debra K.; Karp, Jordan F.

    2015-01-01

    Background Fibromyalgia (FM) is common in older adults suffering from mood disorders. However, clinical diagnosis of FM is challenging, particularly in psychiatric settings. We examined the prevalence of FM and the sensitivity of three simple screeners for FM. Methods Using cross-sectional data, we evaluated three tests against the American College of Rheumatology (ACR) 1990 Criteria for the Classification of Fibromyalgia: a “Do you often feel like you hurt all over?” question, a pain map score, and the Pope and Hudson (PH) interview for FM. Participants: were 185 community-dwelling adults ≥ 60 years old with comorbid depression and chronic low back pain evaluated at a late-life mental health clinic. Results 53 of 185 subjects (29%) met the ACR 1990 FM criteria. Compared to those without FM, the FM group had more “yes” answers to the “hurt all over?” question and higher pain map scores. To reach a sensitivity of at least 0.90, the cut-off score for the pain map was 8. The sensitivity of the pain map, “hurt all over?” question, and PH criteria were 0.92 [95%CI 0.82–0.98], 0.91 [95%CI 0.79–0.97], and 0.94 [95%CI 0.843–0.99] respectively. Conclusions Nearly one in three older adults suffering from depression and chronic low back pain met ACR 1990 FM criteria. Three short screening tests showed high sensitivity when compared to the ACR 1990 FM criteria. Implementation of one of the simple screeners for FM in geriatric psychiatry settings may guide the need for further diagnostic evaluation. PMID:25907254

  15. Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)

    NASA Technical Reports Server (NTRS)

    Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.

  16. Development of a 1-week cycle menu for an Advanced Life Support System (ALSS) utilizing practical biomass production data from the Closed Ecology Experiment Facilities (CEEF).

    PubMed

    Masuda, Tsuyoshi; Arai, Ryuuji; Komatsubara, Osamu; Tako, Yasuhiro; Harashima, Emiko; Nitta, Keiji

    2005-01-01

    Productivities of 29 crops in the Closed Ecology Experiment Facilities (CEEF) were measured. Rice and soybean showed higher productivities than these given by the Advanced Life Support System Modeling and Analysis Project Baseline Values and Assumption Document (BVAD), but productivities of some other crops, such as potato and sweet potato, were lower. The cultivation data were utilized to develop a 1-week cycle menu for Closed Habitation Experiment. The menu met most of the nutritional requirements. Necessary cultivation area per crew was estimated to be 255 m2. Results from this study can be used to help design the future Advanced Life Support System (ALSS) including the CEEF. PMID:15742533

  17. 48 CFR 1837.170 - Pension portability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... portability. (a) It is NASA's policy not to require pension portability in service contracts. However, pension... procurement officer determines in writing, with full supporting rationale, that such a requirement is in...

  18. Portable fluorescence meter for medical applications

    NASA Astrophysics Data System (ADS)

    Kornilin, Dmitriy V.; Grishanov, Vladimir N.

    2016-04-01

    Recently, there are great deals of skin fluorescence studies for diagnostic purposes in medicine. Measurement of the intensity of autofluorescence (AF) is suitable method for diagnostic, because it does not require traumatic procedures. Skin AF is widely used by doctors in order to assess the concentration of advanced glycation endproduct (AGE). There are no in vivo fluorescence meters made in Russia, which are affordable, portable, easy-to-use and easily replicable. This paper is devoted to study of the fluorimeter and its mathematical model of spectral characteristics that were developed by authors. Fluorimeter and its software are fully operational and they were given to doctors for testing in the real clinic conditions in order to get a set of AF statistics for patients.

  19. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  20. Portable File Format (PFF) specifications.

    SciTech Connect

    Dolan, Daniel H.,

    2015-02-01

    Created at Sandia National Laboratories, the Portable File Format (PFF) allows binary data transfer across computer platforms. Although this capability is supported by many other formats, PFF files are still in use at Sandia, particularly in pulsed power research. This report provides detailed PFF specifications for accessing data without relying on legacy code.

  1. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  2. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  3. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  4. 48 CFR 1837.170 - Pension portability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Pension portability. 1837... ADMINISTRATION SPECIAL CATEGORIES OF CONTRACTING SERVICE CONTRACTING Service Contracts-General 1837.170 Pension portability. (a) It is NASA's policy not to require pension portability in service contracts. However,...

  5. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  6. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  7. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  8. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  9. 29 CFR 1917.119 - Portable ladders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Portable ladders. 1917.119 Section 1917.119 Labor... (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.119 Portable ladders. (a) Scope and applicability. This section applies to all portable ladders, including job-made ladders for temporary use,...

  10. 29 CFR 1917.119 - Portable ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Portable ladders. 1917.119 Section 1917.119 Labor... (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.119 Portable ladders. (a) Scope and applicability. This section applies to all portable ladders, including job-made ladders for temporary use,...

  11. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  12. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  13. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  14. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  15. 46 CFR 120.430 - Portable lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Portable lights. 120.430 Section 120.430 Shipping COAST... Systems § 120.430 Portable lights. Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station and the other at the...

  16. 46 CFR 183.430 - Portable lights

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Portable lights 183.430 Section 183.430 Shipping COAST...) ELECTRICAL INSTALLATION Lighting Systems § 183.430 Portable lights Each vessel must be equipped with at least two operable portable battery lights. One of these lights must be located at the operating station...

  17. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks. 172.326 Section 172.326... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for transportation or transport a portable tank containing a hazardous material unless it is legibly marked on...

  18. Exploring uncertainty in advance care planning in African Americans: does low health literacy influence decision making preference at end of life.

    PubMed

    Melhado, Lolita; Bushy, Angeline

    2011-11-01

    African Americans over 65 represent 3.5 of the 35.6 million Americans. Morbidity and mortality rates are highest among this group; associated with lack of resources and awareness of health problems. But health needs are the same at end of life, yet care is less than optimal. African Americans are less likely to have advance directives nonetheless desire communication, information, respect, and a trusting doctor-patient relationship. Low health literacy may contribute to this disparity. This scholarly review examines the health literacy in advance care planning and refines concepts of uncertainty in illness theory deriving a model for advance care planning in African Americans.

  19. Exploring uncertainty in advance care planning in African Americans: does low health literacy influence decision making preference at end of life.

    PubMed

    Melhado, Lolita; Bushy, Angeline

    2011-11-01

    African Americans over 65 represent 3.5 of the 35.6 million Americans. Morbidity and mortality rates are highest among this group; associated with lack of resources and awareness of health problems. But health needs are the same at end of life, yet care is less than optimal. African Americans are less likely to have advance directives nonetheless desire communication, information, respect, and a trusting doctor-patient relationship. Low health literacy may contribute to this disparity. This scholarly review examines the health literacy in advance care planning and refines concepts of uncertainty in illness theory deriving a model for advance care planning in African Americans. PMID:21398263

  20. Management implications of the Health Insurance Portability and Accountability Act.

    PubMed

    Prince, L H; Carroll-Barefield, A

    2000-09-01

    Health care professionals are faced with ever-changing rules and regulations and technological advances. Add to this the 1996 Health Insurance Portability and Accountability Act (HIPAA) and the health care manager's list of challenges continues to expand. This article presents an overview of HIPAA requirements and tools for use by health care managers in ensuring their facility is in compliance with the latest rulings.

  1. Portable EDITOR (PEDITOR): A portable image processing system. [satellite images

    NASA Technical Reports Server (NTRS)

    Angelici, G.; Slye, R.; Ozga, M.; Ritter, P.

    1986-01-01

    The PEDITOR image processing system was created to be readily transferable from one type of computer system to another. While nearly identical in function and operation to its predecessor, EDITOR, PEDITOR employs additional techniques which greatly enhance its portability. These cover system structure and processing. In order to confirm the portability of the software system, two different types of computer systems running greatly differing operating systems were used as target machines. A DEC-20 computer running the TOPS-20 operating system and using a Pascal Compiler was utilized for initial code development. The remaining programmers used a Motorola Corporation 68000-based Forward Technology FT-3000 supermicrocomputer running the UNIX-based XENIX operating system and using the Silicon Valley Software Pascal compiler and the XENIX C compiler for their initial code development.

  2. Barriers to Advance Care Planning at the End of Life: An Explanatory Systematic Review of Implementation Studies

    PubMed Central

    Lund, Susi; Richardson, Alison; May, Carl

    2015-01-01

    Context Advance Care Plans (ACPs) enable patients to discuss and negotiate their preferences for the future including treatment options at the end of life. Their implementation poses significant challenges. Objective To investigate barriers and facilitators to the implementation of ACPs, focusing on their workability and integration in clinical practice. Design An explanatory systematic review of qualitative implementation studies. Data sources Empirical studies that reported interventions designed to support ACP in healthcare. Web of Knowledge, Ovid MEDLINE, CINAHL, PsycINFO, British Nursing Index and PubMed databases were searched. Methods Direct content analysis, using Normalization Process Theory, to identify and characterise relevant components of implementation processes. Results 13 papers identified from 166 abstracts were included in the review. Key factors facilitating implementation were: specially prepared staff utilizing a structured approach to interactions around ACPs. Barriers to implementation were competing demands of other work, the emotional and interactional nature of patient-professional interactions around ACPs, problems in sharing decisions and preferences within and between healthcare organizations. Conclusions This review demonstrates that doing more of the things that facilitate delivery of ACPs will not reduce the effects of those things that undermine them. Structured tools are only likely to be partially effective and the creation of a specialist cadre of ACP facilitators is unlikely to be a sustainable solution. The findings underscore both the challenge and need to find ways to routinely incorporate ACPs in clinical settings where multiple and competing demands impact on practice. Interventions most likely to meet with success are those that make elements of Advance Care Planning workable within complex and time pressured clinical workflows. PMID:25679395

  3. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    PubMed

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable.

  4. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    PubMed

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  5. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    PubMed

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. PMID:26463115

  6. Exploring the Relationship between the Engineering and Physical Sciences and the Health and Life Sciences by Advanced Bibliometric Methods

    PubMed Central

    Waltman, Ludo; van Raan, Anthony F. J.; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the ‘EPS-HLS interface’ is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade. PMID:25360616

  7. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  8. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  9. A portable fNIRS system with eight channels

    NASA Astrophysics Data System (ADS)

    Si, Juanning; Zhao, Ruirui; Zhang, Yujin; Zuo, Nianming; Zhang, Xin; Jiang, Tianzi

    2015-03-01

    Abundant study on the hemodynamic response of a brain have brought quite a few advances in technologies of measuring it. The most benefitted is the functional near infrared spectroscope (fNIRS). A variety of devices have been developed for different applications. Because portable fNIRS systems were more competent to measure responses either of special subjects or in natural environment, several kinds of portable fNIRS systems have been reported. However, they all required a computer for receiving data. The extra computer increases the cost of a fNIRS system. What's more noticeable is the space required to locate the computer even for a portable system. It will discount the portability of the fNIRS system. So we designed a self-contained eight channel fNIRS system, which does not demand a computer to receive data and display data in a monitor. Instead, the system is centered by an ARM core CPU, which takes charge in organizing data and saving data, and then displays data on a touch screen. The system has also been validated by experiments on phantoms and on subjects in tasks.

  10. A census of fishes and everything they eat: How the census of marine life advanced fisheries science

    USGS Publications Warehouse

    O'Dor, Ron; Boustany, Andre M.; Chittenden, Cedar M.; Costello, Mark J.; Moustahfid, Hassan; Payne, John; Steinke, Dirk; Stokesbury, Michael J. W.; Vanden Berghe, Edward

    2012-01-01

    The Census of Marine Life was a 10-year, international research effort to explore poorly known ocean habitats and conduct large-scale experimentation with new technology. The goal of Census 2010 in its mission statement was to describe what did live in the oceans, what does live in the oceans, and what will live in the ocean. Many of the findings and techniques from census research may prove valuable in making a transition, which many governments have publicly endorsed, from single-species fisheries management to more holistic ecosystem management. Census researchers sampled continental margins, mid-Atlantic ridges, ocean floor vents and seeps, and abyssal plains and polar seas and organized massive amounts of past and new information in a public online database called the Ocean Biogeographic Information System (www.iobis.org). The census described and categorized seamount biology worldwide for its vulnerability to fishing, advanced large-scale animal tracking with acoustic arrays and satellite archival tags, and accelerated species identification, including nearshore, coral reef, and zooplankton sampling using genetic barcoding and pyrotag sequencing for microbes and helped to launch the exciting new field of marine environmental history. Above all, the census showed the value of investing in large-scale, collaborative projects and sharing results publicly.

  11. Does standardized mega-code training improve the quality of pre-hospital advanced cardiac life support (ACLS)?

    PubMed

    Schneider, T; Mauer, D; Diehl, P; Eberle, B; Dick, W

    1995-04-01

    The aim of our prospective study was to evaluate the effects of a standardized mega-code and arrhythmia training upon process elements of quality of pre-hospital advanced cardiac life support provided by a physician-staffed mobile intensive care unit. In 145 cases of adult cardiac arrest due to cardiac aetiology, time intervals from arrival of the mobile intensive care unit at the patient's side until first ECG diagnosis, first defibrillation, endotracheal intubation, and first epinephrine administration were measured with on-line tape recording, prior to, and following a standardized 8-h arrhythmia and mega-code training. Following the training, patients with asystole or pulseless electrical activity were intubated 1.1 min earlier (P = 0.03), and received epinephrine 1.3 min earlier (P = 0.01) than prior to the training. There were no significant differences in time intervals concerning management of ventricular fibrillation or tachycardia. Neither admission nor discharge rates differed significantly before and after the training. Thus, practical training including rhythm analysis and mega-code session improved the performance of our mobile intensive care unit in cases of asystole and pulseless electrical activity, and, hence, process elements of quality.

  12. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster.

    PubMed

    Tsakiri, Eleni N; Iliaki, Kalliopi K; Höhn, Annika; Grimm, Stefanie; Papassideri, Issidora S; Grune, Tilman; Trougakos, Ioannis P

    2013-12-01

    Advanced glycation end product (AGE)-modified proteins are formed by the nonenzymatic glycation of free amino groups of proteins and, along with lipofuscin (a highly oxidized aggregate of covalently cross-linked proteins, sugars, and lipids), have been found to accumulate during aging and in several age-related diseases. As the in vivo effects of diet-derived AGEs or lipofuscin remain elusive, we sought to study the impact of oral administration of glucose-, fructose-, or ribose-modified albumin or of artificial lipofuscin in a genetically tractable model organism. We report herein that continuous feeding of young Drosophila flies with culture medium enriched in AGEs or in lipofuscin resulted in reduced locomotor performance and in accelerated rates of AGE-modified proteins and carbonylated proteins accumulation in the somatic tissues and hemolymph of flies, as well as in a significant reduction of flies health span and life span. These phenotypic effects were accompanied by reduced proteasome peptidase activities in both the hemolymph and the somatic tissues of flies and higher levels of oxidative stress; furthermore, oral administration of AGEs or lipofuscin in flies triggered an upregulation of the lysosomal cathepsin B, L activities. Finally, RNAi-mediated cathepsin D knockdown reduced flies longevity and significantly augmented the deleterious effects of AGEs and lipofuscin, indicating that lysosomal cathepsins reduce the toxicity of diet-derived AGEs or lipofuscin. Our in vivo studies demonstrate that chronic ingestion of AGEs or lipofuscin disrupts proteostasis and accelerates the functional decline that occurs with normal aging. PMID:23999505

  13. Teaching paediatric resuscitation skills in a developing country: introduction of the Advanced Paediatric Life Support course into Vietnam.

    PubMed

    Young, Simon; Hutchinson, Adrian; Nguyen, Van Tu; Le, Thanh Hai; Nguyen, Dich Van; Vo, Thi Kim Hue

    2008-06-01

    In 2001, a nationwide study revealed deficiencies in the emergency care of seriously ill and injured children in Vietnam. In response, a project was initiated to conduct the Advanced Paediatric Life Support course in Vietnam and ascertain whether this course would provide a practical and sustainable method of improving the knowledge and skills of medical and nursing staff in this area. After approval to use the course was secured and funding obtained, the project commenced in 2003. Key Vietnamese personnel travelled to Australia to complete the course, undertake instructor training and gain organizational experience. Teaching materials were translated, reviewed and modified to account for local diseases and clinical practices while maintaining the fundamental principles of the parent course. Commencing in March 2004, 10 courses were conducted by Australian and Vietnamese instructors, training 239 doctors and nurses from a wide variety of clinical backgrounds. Additionally, three instructor courses were conducted, training 52 new instructors. As the skill and confidence of the Vietnamese instructors grew, the number and responsibilities of the international faculty reduced. The infrastructure now exists for the course to operate in a sustainable fashion within Vietnam. We believe that this project demonstrates that the course can be successfully modified to provide teaching in paediatric emergency care in a developing country.

  14. Microprocessor controlled portable TLD system

    NASA Technical Reports Server (NTRS)

    Apathy, I.; Deme, S.; Feher, I.

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.

  15. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  16. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  17. Portable telepathology: methods and tools.

    PubMed

    Alfaro, Luis; Roca, Ma José

    2008-07-15

    Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides, when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast.

  18. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  19. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  20. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  1. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  2. A portable luminescence dating instrument

    NASA Astrophysics Data System (ADS)

    Kook, M. H.; Murray, A. S.; Lapp, T.; Denby, P. H.; Ankjærgaard, C.; Thomsen, K.; Jain, M.; Choi, J. H.; Kim, G. H.

    2011-06-01

    We describe a portable luminescence reader suitable for use in remote localities in the field. The instrument weighs about 8 kg and is based around a 30 mm bialkali photomultiplier detecting signals through a glass filter centered on 340 nm. Stimulation is by 470 nm blue LEDs (24 W in total) operating in both continuous wave and pulsed mode; photon counting can be gated such that it is active only during the pulse off-period. There are also two bleaching light sources (470 nm, 5 W and 940 nm, 3 W), and the luminescence signals can be regenerated using a cold-cathode 30 kV X-ray tube, delivering ˜0.06 Gy.s -1. The three position sampling device has a heating element under each sampling position, able to heat the sample at 3 °C.s -1 up to at least 250 °C. The sampler can be inserted into unconsolidated sediments, and is designed to prevent exposure of the mineral grains to ambient light during sampling. The performance of the instrument in terms of sensitivity and reproducibility is comparable to that of the standard bench-top laboratory TL/OSL Risø reader. We show that the portable luminescence reader is able to measure accurately an ˜20 Gy quartz burial dose in a natural (unpretreated, no mineral separation) sandy sediment. We also show that, because of the configuration of the measurement head, the portable reader can be used to measure radioluminescence at elevated temperature in the presence of stimulation light; this facility is not available on conventional bench-top instruments. It is concluded that the portable luminescence reader can be used to accurately determine the quartz burial dose in loose sandy sediments in the field, without sample preparation or darkroom facilities.

  3. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  4. Software Complexity Threatens Performance Portability

    SciTech Connect

    Gamblin, T.

    2015-09-11

    Modern HPC software packages are rarely self-contained. They depend on a large number of external libraries, and many spend large fractions of their runtime in external subroutines. Performance portability depends not only on the effort of application teams, but also on the availability of well-tuned libraries. At most sites, the burden of maintaining libraries is shared by code teams and facilities. Facilities typically provide well-tuned default versions, but code teams frequently build with bleeding-edge compilers to achieve high performance. For this reason, HPC has no “standard” software stack, unlike other domains where performance is not critical. Incompatibilities among compilers and software versions force application teams and facility staff to re-build custom versions of libraries for each new toolchain. Because the number of potential configurations is combinatorial, and because HPC software is notoriously difficult to port to new machines [3, 7, 8], the tuning effort required to support and maintain performance-portable libraries outstrips the available manpower at most sites. Software complexity is a growing obstacle to performance portability for HPC.

  5. Handheld advanced nucleic acid analyzer

    NASA Astrophysics Data System (ADS)

    Benett, William J.; Richards, James B.; Stratton, Paul; Hadley, Dean R.; Bodtker, Brian H.; Nasarabadi, Shanavaz L.; Milanovich, Fred P.; Mariella, Raymond P., Jr.; Koopman, Ronald P.; Belgrader, Philip

    2000-12-01

    There is a growing need for portable, lightweight, battery operated instruments capable of detecting and identifying bio-warfare and bio-terrorism agents in the field. To address this need, we have developed a handheld PCR instrument. LLNLs advanced thermal cycling technology and expertise with portable, field tested biological instrumentation, combined with the development of real-time, fluorescence based PCR assays, has enabled the development of a very portable, versatile, power efficient PCR instrument with a simplified operating system designed for use by first responders. The heart of the instrument is the sample module, which incorporates the advanced silicon thermal cycler developed at LLNL.

  6. Skylab astronaut life support assembly

    NASA Technical Reports Server (NTRS)

    Brown, J. T.

    1972-01-01

    A comparative study was performed to define an optimum portable life support system for suited operations inside and outside the Skylab Program. Emphasis was placed on utilization of qualified equipment, modified versions of qualified equipment, and new systems made up to state-of-the-art components. Outlined are the mission constraints, operational modes, and evaluation ground rules by which the Skylab portable life support system was selected and the resulting design.

  7. Portable XRF Technology to Quantify Pb in Bone In Vivo.

    PubMed

    Specht, Aaron James; Weisskopf, Marc; Nie, Linda Huiling

    2014-01-01

    Lead is a ubiquitous toxicant. Bone lead has been established as an important biomarker for cumulative lead exposures and has been correlated with adverse health effects on many systems in the body. K-shell X-ray fluorescence (KXRF) is the standard method for measuring bone lead, but this approach has many difficulties that have limited the widespread use of this exposure assessment method. With recent advancements in X-ray fluorescence (XRF) technology, we have developed a portable system that can quantify lead in bone in vivo within 3 minutes. Our study investigated improvements to the system, four calibration methods, and system validation for in vivo measurements. Our main results show that the detection limit of the system is 2.9 ppm with 2 mm soft tissue thickness, the best calibration method for in vivo measurement is background subtraction, and there is strong correlation between KXRF and portable LXRF bone lead results. Our results indicate that the technology is ready to be used in large human population studies to investigate adverse health effects of lead exposure. The portability of the system and fast measurement time should allow for this technology to greatly advance the research on lead exposure and public/environmental health. PMID:26317033

  8. Portable XRF Technology to Quantify Pb in Bone In Vivo

    PubMed Central

    Specht, Aaron James; Weisskopf, Marc; Nie, Linda Huiling

    2014-01-01

    Lead is a ubiquitous toxicant. Bone lead has been established as an important biomarker for cumulative lead exposures and has been correlated with adverse health effects on many systems in the body. K-shell X-ray fluorescence (KXRF) is the standard method for measuring bone lead, but this approach has many difficulties that have limited the widespread use of this exposure assessment method. With recent advancements in X-ray fluorescence (XRF) technology, we have developed a portable system that can quantify lead in bone in vivo within 3 minutes. Our study investigated improvements to the system, four calibration methods, and system validation for in vivo measurements. Our main results show that the detection limit of the system is 2.9 ppm with 2 mm soft tissue thickness, the best calibration method for in vivo measurement is background subtraction, and there is strong correlation between KXRF and portable LXRF bone lead results. Our results indicate that the technology is ready to be used in large human population studies to investigate adverse health effects of lead exposure. The portability of the system and fast measurement time should allow for this technology to greatly advance the research on lead exposure and public/environmental health. PMID:26317033

  9. Portable XRF Technology to Quantify Pb in Bone In Vivo.

    PubMed

    Specht, Aaron James; Weisskopf, Marc; Nie, Linda Huiling

    2014-01-01

    Lead is a ubiquitous toxicant. Bone lead has been established as an important biomarker for cumulative lead exposures and has been correlated with adverse health effects on many systems in the body. K-shell X-ray fluorescence (KXRF) is the standard method for measuring bone lead, but this approach has many difficulties that have limited the widespread use of this exposure assessment method. With recent advancements in X-ray fluorescence (XRF) technology, we have developed a portable system that can quantify lead in bone in vivo within 3 minutes. Our study investigated improvements to the system, four calibration methods, and system validation for in vivo measurements. Our main results show that the detection limit of the system is 2.9 ppm with 2 mm soft tissue thickness, the best calibration method for in vivo measurement is background subtraction, and there is strong correlation between KXRF and portable LXRF bone lead results. Our results indicate that the technology is ready to be used in large human population studies to investigate adverse health effects of lead exposure. The portability of the system and fast measurement time should allow for this technology to greatly advance the research on lead exposure and public/environmental health.

  10. Correlation of Simulation Examination to Written Test Scores for Advanced Cardiac Life Support Testing: Prospective Cohort Study

    PubMed Central

    Strom, Suzanne L.; Anderson, Craig L.; Yang, Luanna; Canales, Cecilia; Amin, Alpesh; Lotfipour, Shahram; McCoy, C. Eric; Langdorf, Mark I.

    2015-01-01

    Introduction Traditional Advanced Cardiac Life Support (ACLS) courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. Objective To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. Methods We performed a prospective cohort study to determine the correlation between simulation-based evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. Results The composite average score on the written evaluation was substantially higher (93.6%) than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6–14.0%], p<0.00005). We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04), validating the new evaluation method. Conclusion Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation. PMID:26594288

  11. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    NASA Astrophysics Data System (ADS)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  12. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    SciTech Connect

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  13. Objective Structured Clinical Examination (OSCE)-based Assessment of the Advanced Trauma Life Support (ATLS) Course in Iran

    PubMed Central

    Abbasi, Hamid Reza; Amini, Mitra; Bolandparvaz, Shahram; Paydar, Shahram; Ali, Jameel; Sefidbakht, Sepideh

    2016-01-01

    Objective: To evaluate the effect of advance trauma life support (ATLS®) training on general surgery residents clinical reasoning skills using the national boards-style objective structured clinical examination (OSCE). Methods: This cross-sectional single-center study was conducted in Shiraz University of Medical Sciences including 51 surgery residents that participated in a mandatory national board style OSCE between May 2014 and May 2015. OSCE scores of two groups of general surgery residents including 23 ATLS® trained and 28 non-ATLS® trained were compared using Mann-Whitney U test. The exam was graded out of 20 points and the passing score was ≥14 including 40% trauma cases. Results: There were 8(15.7%) women and 43(84.3%) men among the participants with mean age of 31.12 ± 2.69 and 33.67 ± 4.39 years in women and men respectively. Overall 7 (87.5%) women and 34 (79.07%) men passed the OSCE. The trauma section OSCE score was significantly higher in the ATLS® trained participants when compared to non-ATLS®(7.79 ± 0.81vs.6.90 ± 1.00; p=0.001). In addition, the total score was also significantly higher in ATLS® trained residents (16.07 ± 1.41 vs. 14.60 ± 1.40; p=0.001). There was no association between gender and ATLS® score (p=0.245) or passing the OSCE (p=0.503). Conclusion: ATLS® training is associated with improved overall OSCE scores of general surgery residents completing the board examinations suggesting a positive transfer of ATLS learned skills to management of simulated surgical patients including trauma cases. PMID:27331063

  14. Portable Nanoparticle-Based Sensors for Food Safety Assessment.

    PubMed

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-12-05

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed.

  15. Portable Nanoparticle-Based Sensors for Food Safety Assessment.

    PubMed

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed. PMID:26690169

  16. Portable Nanoparticle-Based Sensors for Food Safety Assessment

    PubMed Central

    Bülbül, Gonca; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    The use of nanotechnology-derived products in the development of sensors and analytical measurement methodologies has increased significantly over the past decade. Nano-based sensing approaches include the use of nanoparticles (NPs) and nanostructures to enhance sensitivity and selectivity, design new detection schemes, improve sample preparation and increase portability. This review summarizes recent advancements in the design and development of NP-based sensors for assessing food safety. The most common types of NPs used to fabricate sensors for detection of food contaminants are discussed. Selected examples of NP-based detection schemes with colorimetric and electrochemical detection are provided with focus on sensors for the detection of chemical and biological contaminants including pesticides, heavy metals, bacterial pathogens and natural toxins. Current trends in the development of low-cost portable NP-based technology for rapid assessment of food safety as well as challenges for practical implementation and future research directions are discussed. PMID:26690169

  17. Direct broadcast satellite-audio, portable and mobile reception tradeoffs

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser

    1992-01-01

    This paper reports on the findings of a systems tradeoffs study on direct broadcast satellite-radio (DBS-R). Based on emerging advanced subband and transform audio coding systems, four ranges of bit rates: 16-32 kbps, 48-64 kbps, 96-128 kbps and 196-256 kbps are identified for DBS-R. The corresponding grades of audio quality will be subjectively comparable to AM broadcasting, monophonic FM, stereophonic FM, and CD quality audio, respectively. The satellite EIRP's needed for mobile DBS-R reception in suburban areas are sufficient for portable reception in most single family houses when allowance is made for the higher G/T of portable table-top receivers. As an example, the variation of the space segment cost as a function of frequency, audio quality, coverage capacity, and beam size is explored for a typical DBS-R system.

  18. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Hunter, A.J.R.; Fraser, M.E.; Davis, S.J.

    1996-12-31

    We are part-way through the second phase of a 4-year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Our analysis approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The D-B discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. Furthermore, the discharge power requirements are quite modest, so that the unit can be powered by batteries. Thus an instrument based on ANET can readily be made portable. Our results indicate that ANET is a very sensitive technique for monitoring heavy metals and chlorinated hydrocarbons. We have demonstrated an overall detection sensitivity for most species that is at or below ppb levels. ANET alone, however, appears to be most successful in treating hazardous species that have been atomized. We are therefore developing a hybrid technique which combines a miniature, solid-state laser for sample collection and vaporization with ANET for subsequent detection. This approach requires no special sample preparation, can operate continuously, and lends itself well to compact packaging.

  19. Portable receiver for radar detection

    DOEpatents

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  20. Portable punch and die jig

    DOEpatents

    Lewandowski, Edward F.; Anderson, Petrus A.

    1978-01-01

    A portable punch and die jig includes a U-shaped jig of predetermined width having a slot of predetermined width in the base thereof extending completely across the width of the jig adapted to fit over the walls of rectangular tubes and a punch and die assembly disposed in a hole extending through the base of the jig communicating with the slot in the base of the jig for punching a hole in the walls of the rectangular tubes at precisely determined locations.

  1. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  2. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  3. ASC-ATDM Performance Portability Requirements for 2015-2019

    SciTech Connect

    Edwards, Harold C.; Trott, Christian Robert

    2015-03-01

    This report outlines the research, development, and support requirements for the Advanced Simulation and Computing (ASC ) Advanced Technology, Development, and Mitigation (ATDM) Performance Portability (a.k.a., Kokkos) project for 2015 - 2019 . The research and development (R&D) goal for Kokkos (v2) has been to create and demonstrate a thread - parallel programming model a nd standard C++ library - based implementation that enables performance portability across diverse manycore architectures such as multicore CPU, Intel Xeon Phi, and NVIDIA Kepler GPU. This R&D goal has been achieved for algorithms that use data parallel pat terns including parallel - for, parallel - reduce, and parallel - scan. Current R&D is focusing on hierarchical parallel patterns such as a directed acyclic graph (DAG) of asynchronous tasks where each task contain s nested data parallel algorithms. This five y ear plan includes R&D required to f ully and performance portably exploit thread parallelism across current and anticipated next generation platforms (NGP). The Kokkos library is being evaluated by many projects exploring algorithm s and code design for NGP. Some production libraries and applications such as Trilinos and LAMMPS have already committed to Kokkos as their foundation for manycore parallelism an d performance portability. These five year requirements includes support required for current and antic ipated ASC projects to be effective and productive in their use of Kokkos on NGP. The greatest risk to the success of Kokkos and ASC projects relying upon Kokkos is a lack of staffing resources to support Kokkos to the degree needed by these ASC projects. This support includes up - to - date tutorials, documentation, multi - platform (hardware and software stack) testing, minor feature enhancements, thread - scalable algorithm consulting, and managing collaborative R&D.

  4. Toward portable breath acetone analysis for diabetes detection.

    PubMed

    Righettoni, Marco; Tricoli, Antonio

    2011-09-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO(3) nanoparticles, made by flame spray pyrolysis, as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostics. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber is discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  5. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  6. A model for emergency department end-of-life communications after acute devastating events--part I: decision-making capacity, surrogates, and advance directives.

    PubMed

    Limehouse, Walter E; Feeser, V Ramana; Bookman, Kelly J; Derse, Arthur

    2012-09-01

    Making decisions for a patient affected by sudden devastating illness or injury traumatizes a patient's family and loved ones. Even in the absence of an emergency, surrogates making end-of-life treatment decisions may experience negative emotional effects. Helping surrogates with these end-of-life decisions under emergent conditions requires the emergency physician (EP) to be clear, making medical recommendations with sensitivity. This model for emergency department (ED) end-of-life communications after acute devastating events comprises the following steps: 1) determine the patient's decision-making capacity; 2) identify the legal surrogate; 3) elicit patient values as expressed in completed advance directives; 4) determine patient/surrogate understanding of the life-limiting event and expectant treatment goals; 5) convey physician understanding of the event, including prognosis, treatment options, and recommendation; 6) share decisions regarding withdrawing or withholding of resuscitative efforts, using available resources and considering options for organ donation; and 7) revise treatment goals as needed. Emergency physicians should break bad news compassionately, yet sufficiently, so that surrogate and family understand both the gravity of the situation and the lack of long-term benefit of continued life-sustaining interventions. EPs should also help the surrogate and family understand that palliative care addresses comfort needs of the patient including adequate treatment for pain, dyspnea, or anxiety. Part I of this communications model reviews determination of decision-making capacity, surrogacy laws, and advance directives, including legal definitions and application of these steps; Part II (which will appear in a future issue of AEM) covers communication moving from resuscitative to end-of-life and palliative treatment. EPs should recognize acute devastating illness or injuries, when appropriate, as opportunities to initiate end-of-life discussions and to

  7. A model for emergency department end-of-life communications after acute devastating events--part I: decision-making capacity, surrogates, and advance directives.

    PubMed

    Limehouse, Walter E; Feeser, V Ramana; Bookman, Kelly J; Derse, Arthur

    2012-09-01

    Making decisions for a patient affected by sudden devastating illness or injury traumatizes a patient's family and loved ones. Even in the absence of an emergency, surrogates making end-of-life treatment decisions may experience negative emotional effects. Helping surrogates with these end-of-life decisions under emergent conditions requires the emergency physician (EP) to be clear, making medical recommendations with sensitivity. This model for emergency department (ED) end-of-life communications after acute devastating events comprises the following steps: 1) determine the patient's decision-making capacity; 2) identify the legal surrogate; 3) elicit patient values as expressed in completed advance directives; 4) determine patient/surrogate understanding of the life-limiting event and expectant treatment goals; 5) convey physician understanding of the event, including prognosis, treatment options, and recommendation; 6) share decisions regarding withdrawing or withholding of resuscitative efforts, using available resources and considering options for organ donation; and 7) revise treatment goals as needed. Emergency physicians should break bad news compassionately, yet sufficiently, so that surrogate and family understand both the gravity of the situation and the lack of long-term benefit of continued life-sustaining interventions. EPs should also help the surrogate and family understand that palliative care addresses comfort needs of the patient including adequate treatment for pain, dyspnea, or anxiety. Part I of this communications model reviews determination of decision-making capacity, surrogacy laws, and advance directives, including legal definitions and application of these steps; Part II (which will appear in a future issue of AEM) covers communication moving from resuscitative to end-of-life and palliative treatment. EPs should recognize acute devastating illness or injuries, when appropriate, as opportunities to initiate end-of-life discussions and to

  8. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Portable and semi-portable fire extinguishers. 145.01 Section 145.01 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES FIRE-FIGHTING EQUIPMENT § 145.01 Portable and...

  9. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Portable and semi-portable fire extinguishers. 145.01 Section 145.01 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES FIRE-FIGHTING EQUIPMENT § 145.01 Portable and...

  10. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Portable and semi-portable fire extinguishers. 145.01 Section 145.01 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES FIRE-FIGHTING EQUIPMENT § 145.01 Portable and...

  11. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Portable and semi-portable fire extinguishers. 145.01 Section 145.01 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES FIRE-FIGHTING EQUIPMENT § 145.01 Portable and...

  12. 33 CFR 145.01 - Portable and semi-portable fire extinguishers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Portable and semi-portable fire extinguishers. 145.01 Section 145.01 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES FIRE-FIGHTING EQUIPMENT § 145.01 Portable and...

  13. Advance directives: binding or merely indicative? Incoherence of the Portuguese National Council of Ethics for the Life Sciences and insufficiencies of newly proposed regulation.

    PubMed

    Pereira, André

    2009-06-01

    The Portuguese National Council of Ethics for the Life Sciences issued in 2005 two important Opinions concerning persistent vegetative state (PVS) and refusal of blood transfusions. The first one advocated that advance directives should be respected; however, the second Opinion considered them "merely indicative." The different opinions of the National Council of Ethics reflect the difficulty of this matter. Portugal ratified the Convention on Human Rights and Biomedicine, which states that advance directives "should be taken into consideration" (Art. 9) and in order to regulate this generic rule, the Portuguese Association on Bioethics proposed to the Parliament a draft-law, which aims to legalize advance directives (including "living will" and "health-care proxy") and establish a National Registry of Advance Directives. This proposal dearly states that advance directives should be binding. However, some regulatory aspects, concerning the procedure that leads to the validity of a living will deserve further discussion. The Author argues in favour of a previous medical interview and a solemn formality in the case of binding advance directives, in order to assure the freedom and information of the refusal of treatment.

  14. The Ontario Prehospital Advanced Life Support (OPALS) study Part II: Rationale and methodology for trauma and respiratory distress patients. OPALS Study Group.

    PubMed

    Stiell, I G; Wells, G A; Spaite, D W; Nichol, G; O'Brien, B; Munkley, D P; Field, B J; Lyver, M B; Luinstra, L G; Dagnone, E; Campeau, T; Ward, R; Anderson, S

    1999-08-01

    The Ontario Prehospital Advanced Life Support (OPALS) Study represents the largest prehospital study yet conducted, worldwide. This study will involve more than 25,000 cardiac arrest, trauma, and critically ill patients over an 8-year period (1994-2002). The current article, Part II, describes in detail the rationale and methodology for major trauma and respiratory distress patients and for an economic evaluation of Advanced Life Support (ALS) programs in the OPALS Study. The OPALS Study, using a rigorous controlled methodology and a large sample size, should clearly indicate the benefit in trauma and respiratory distress patient survival and morbidity that results from the widespread introduction of prehospital ALS programs to communities of many different sizes. [Stiell IG, Wells GA, Spaite DW, Nichol G, O'Brien B, Munkley DP, Field BJ, Lyver MB, Luinstra LG, Dagnone E, Campeau T, Ward R, Anderson S, for the OPALS Study Group: The Ontario Prehospital Advanced Life Support (OPALS) Study Part II: Rationale and methodology for trauma and respiratory distress patients.

  15. A Portable Accelerator Control Toolkit

    NASA Astrophysics Data System (ADS)

    Watson, W. A., III

    1997-05-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts between laboratories to share this effort and expense. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the cdev (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. With the advent of cdev, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on cdev now provide a large suite of tools for accelerator operations, including general purpose displays, on-line accelerator models, beamline steering, machine status displays incorporating both hardware and model information (for example beam positions overlaid with beta functions) and more. A survey of cdev compatible portable applications will be presented, as well as plans for future enhancements.

  16. A portable accelerator control toolkit

    SciTech Connect

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  17. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  18. Portable humanitarian mine detector overview

    NASA Astrophysics Data System (ADS)

    Allsopp, David J.; Dibsdall, Ian M.

    2002-08-01

    This paper will present an overview and early results of the QinetiQ Portable Humanitarian Mine Detector project, funded by the UK Treasury Capital Modernization Fund. The project aims to develop a prototype multi-sensor man-portable detector for humanitarian demining, drawing on experience from work for UK MoD. The project runs from July 2000 to October 2002. The project team have visited mined areas and worked closely with a number of demining organizations and a manufacturer of metal detectors used in the field. The primary objective is to reduce the number of false alarms resulting from metallic ground clutter. An analysis of such clutter items found during actual demining has shown a large proportion to be very small when compared with anti-personnel mines. The planned system integrates: a lightweight multi-element pseudo-random-code ground penetrating radar array; a pulse induction metal detector and a capacitive sensor. Data from the GPR array and metal detector are fused to provide a simple audio-visual operator interface. The capacitive sensor provides information to aid processing of the radar responses and to provide feedback to the operator of the position of the sensors above the ground. At the time of presentation the project should be in the final stages of build, prior to tests and field trials, which QinetiQ hope to carry out under the International Test and Evaluation Project (ITEP) banner.

  19. Portable electrocardiograph through android application.

    PubMed

    De Oliveira, Igor H; Cene, V H; Balbinot, A

    2015-01-01

    An electrocardiograph was designed and implemented, being capable of obtaining electrical signals from the heart, and sending this data via Bluetooth to a tablet, in which the signals are graphically shown. The user interface is developed as an Android application. Because of the technological progress and the increasing use of full portable systems, such as tablets and cell phones, it is important to understand the functioning and development of an application, which provides a basis for conducting studies using this technology as an interface. The project development includes concepts of electronics and its application to achieve a portable and functional final project, besides using a specific programmable integrated circuit for electrocardiogram, electroencephalogram and electromyogram, the ADS1294. Using a simulator of cardiac signals, 36 different waveforms were recorded, including normal sinus rhythm, arrhythmias and artifacts. Simulations include variations of heart rate from 30 to 190 beats per minute (BPM), with variations in peak amplitude of 1 mV to 2 mV. Tests were performed with a subject at rest and in motion, observing the signals obtained and the damage to their interpretation due to the introduction of muscle movement artifacts in motion situations. PMID:26737850

  20. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  1. Portable electrocardiograph through android application.

    PubMed

    De Oliveira, Igor H; Cene, V H; Balbinot, A

    2015-01-01

    An electrocardiograph was designed and implemented, being capable of obtaining electrical signals from the heart, and sending this data via Bluetooth to a tablet, in which the signals are graphically shown. The user interface is developed as an Android application. Because of the technological progress and the increasing use of full portable systems, such as tablets and cell phones, it is important to understand the functioning and development of an application, which provides a basis for conducting studies using this technology as an interface. The project development includes concepts of electronics and its application to achieve a portable and functional final project, besides using a specific programmable integrated circuit for electrocardiogram, electroencephalogram and electromyogram, the ADS1294. Using a simulator of cardiac signals, 36 different waveforms were recorded, including normal sinus rhythm, arrhythmias and artifacts. Simulations include variations of heart rate from 30 to 190 beats per minute (BPM), with variations in peak amplitude of 1 mV to 2 mV. Tests were performed with a subject at rest and in motion, observing the signals obtained and the damage to their interpretation due to the introduction of muscle movement artifacts in motion situations.

  2. Development of a lightweight portable ventilator for far-forward battlefield combat casualty support

    NASA Astrophysics Data System (ADS)

    Cutchis, Protagoras N.; Smith, Dexter G.; Ko, Harvey W.; Wiesmann, William P.; Pranger, L. Alex

    1999-07-01

    Immediate medical provision substantially reduces the number of fatalities sustained during military operations. However, the shift from large-scale regional conflicts to smaller peacekeeping and humanitarian missions has reduced the military medical support infrastructure. Civilian emergency medical services have long emphasized the 'golden hour' during which a patient must receive definitive medical attention. Without on-scene medical support, injured soldiers must be transported significant distances before receiving advanced medical care, and rapid transport to a medical facility is not always a viable option. Technological solutions enable military medics to deliver advanced medical care on the battlefield. We report here on the development of a small lightweight portable respirator for the treatment of far- forward battlefield casualties. The Far Forward Life Support System (FFLSS) utilizes a combination of COTS (commercial off the shelf) components and custom designed systems to provide ventilatory support to injured combatants. It also incorporates a small IV fluid pump and IV fluids for resuscitation. A microcompressor control system monitors both system performance and patient parameters for system control. Telemetry to a pager-like device worn by the front line medic alerts of any anomalies in ventilator or patient parameters, which will add greatly to triage decisions and resource management. Novel elements of the FLSS design include oxygen generation, low-pressure air generation, available patient suction, and the absence of any high pressure air cylinders. A prototype developed for animal testing will be described in detail as well as further design requirements for the human rated prototype.

  3. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Hand-portable fire extinguishers and semi-portable fire... UNINSPECTED VESSELS REQUIREMENTS Fire Extinguishing Equipment § 25.30-10 Hand-portable fire extinguishers and semi-portable fire-extinguishing systems. (a) Hand portable fire extinguishers and semiportable...

  4. 46 CFR 25.30-10 - Hand-portable fire extinguishers and semi-portable fire-extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Hand-portable fire extinguishers and semi-portable fire... UNINSPECTED VESSELS REQUIREMENTS Fire Extinguishing Equipment § 25.30-10 Hand-portable fire extinguishers and semi-portable fire-extinguishing systems. (a) Hand portable fire extinguishers and semiportable...

  5. 46 CFR 129.450 - Portable lighting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Portable lighting. 129.450 Section 129.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Lighting Systems § 129.450 Portable lighting. Each vessel must be equipped with at least...

  6. 46 CFR 129.450 - Portable lighting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable lighting. 129.450 Section 129.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Lighting Systems § 129.450 Portable lighting. Each vessel must be equipped with at least...

  7. 46 CFR 129.450 - Portable lighting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Portable lighting. 129.450 Section 129.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Lighting Systems § 129.450 Portable lighting. Each vessel must be equipped with at least...

  8. 46 CFR 129.450 - Portable lighting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Portable lighting. 129.450 Section 129.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Lighting Systems § 129.450 Portable lighting. Each vessel must be equipped with at least...

  9. 46 CFR 129.450 - Portable lighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Portable lighting. 129.450 Section 129.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Lighting Systems § 129.450 Portable lighting. Each vessel must be equipped with at least...

  10. The Economics of Educational Software Portability.

    ERIC Educational Resources Information Center

    Oliveira, Joao Batista Araujo e

    1990-01-01

    Discusses economic issues that affect the portability of educational software. Topics discussed include economic reasons for portability, including cost effectiveness; the nature and behavior of educational computer software markets; the role of producers, buyers, and consumers; potential effects of government policies; computer piracy; and…

  11. 46 CFR 169.567 - Portable extinguishers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Portable extinguishers. 169.567 Section 169.567 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.567 Portable extinguishers. (a)...

  12. 46 CFR 169.567 - Portable extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable extinguishers. 169.567 Section 169.567 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.567 Portable extinguishers. (a)...

  13. 46 CFR 169.567 - Portable extinguishers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Portable extinguishers. 169.567 Section 169.567 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.567 Portable extinguishers. (a)...

  14. 49 CFR 176.137 - Portable magazine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... type 3 magazine under 27 CFR part 555 subpart K may be used for the stowage of Class 1 (explosive... Requirements for Class 1 (Explosive) Materials Stowage § 176.137 Portable magazine. (a) Each portable magazine used for the stowage of Class 1 (explosive) materials on board vessels must meet the...

  15. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks. 172.326 Section 172.326 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for...

  16. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks. 172.326 Section 172.326 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for...

  17. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks. 172.326 Section 172.326 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for...

  18. 49 CFR 172.326 - Portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks. 172.326 Section 172.326 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SECURITY PLANS Marking § 172.326 Portable tanks. (a) Shipping name. No person may offer for...

  19. 47 CFR 51.203 - Number portability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Number portability. 51.203 Section 51.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.203 Number portability. The rules governing number...

  20. 47 CFR 51.203 - Number portability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Number portability. 51.203 Section 51.203 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.203 Number portability. The rules governing number...

  1. Portable Micros: Potentials for Information Management.

    ERIC Educational Resources Information Center

    Davis, Charles H.

    1984-01-01

    Description of portable microcomputers discusses design features of Tandy TRS-80, Nippon Electric Company PC-8200, Epson HX-20, Texas Instruments TI CC 40, and Convergent Technologies' Workslate and provides several caveats and recommendations to those making purchasing decisions. Potential uses for portable microcomputers in education are also…

  2. Medipix2/USB Portable Radiation Camera

    SciTech Connect

    Vykydal, Z.; Holy, T.; Jakubek, J.; Platkevic, M.; Pospisil, S.

    2007-11-26

    Advances in the field of semiconductor technologies in the last years make possible to develop new types of ionizing radiation detectors. The Medipix2 readout ASIC is an example of such a device. It is the hybrid single photon counting imaging chip (sensor and readout chips are fabricated separately). With an appropriate sensor chip on the top, it can count single X-ray photons, without any noise or dark current, at high fluxes (several Gigaphotons per cm{sup 2} per second). It also offers excellent radiation hardness and good position resolution (256x256 pixels, each pixel has a 55x55 {mu}m{sup 2} area). To make the Medipix2 imaging chip more portable for specific applications a microprocessor controlled read-out system based on the USB (Universal Serial Bus) interface has been developed. It integrates all necessary detector support into one compact device (75x46 mm{sup 2}). All power supplies including sensor bias (up to 100 V) are internally derived from the voltage provided by the USB connection.

  3. Thermophotovoltaic and thermoelectric portable power generators

    NASA Astrophysics Data System (ADS)

    Chan, Walker R.; Waits, Christopher M.; Joannopoulos, John D.; Celanovic, Ivan

    2014-06-01

    The quest for developing clean, quiet, and portable high energy density, and ultra-compact power sources continues. Although batteries offer a well known solution, limits on the chemistry developed to date constrain the energy density to 0.2 kWh/kg, whereas many hydrocarbon fuels have energy densities closer to 13 kWh/kg. The fundamental challenge remains: how efficiently and robustly can these widely available chemical fuels be converted into electricity in a millimeter to centimeter scale systems? Here we explore two promising technologies for high energy density power generators: thermophotovoltaics (TPV) and thermoelectrics (TE). These heat to electricity conversion processes are appealing because they are fully static leading to quiet and robust operation, allow for multifuel operation due to the ease of generating heat, and offer high power densities. We will present some previous work done in the TPV and TE fields. In addition we will outline the common technological barriers facing both approaches, as well as outline the main differences. Performance for state of the art research generators will be compared as well as projections for future practically achievable systems. A viable TPV or TE power source for a ten watt for one week mission can be built from a <10% efficient device which is achievable with current state of the art technology such as photonic crystals or advanced TE materials.

  4. Portable Optical Sensor Tester (POST) Calibration Technique

    NASA Astrophysics Data System (ADS)

    Levine, Michael A.; Randolph, Clyde A.

    1983-09-01

    The Portable Optical Sensor Tester (POST) is a low background, long wavelength infrared test and calibration chamber used for evaluation and calibration of developmental LWIR sensors. It is operated by Rockwell International for the Ballistic Missile Defense Advanced Technology Center (BMDATC). The POST system generates a collimated output IR beam from a working blackbody source for test and calibration of LWIR sensors. Internal scan mirrors are used to scan the output beam to simulate flight sensor scanning. The optical path has eleven reflective surfaces making a spectral calibration of the output beam necessary. This calibration is accomplished by utilizing an NBS calibrated blackbody with a calibration accuracy of 4.2% (la quadrature accuracy = 2.0%) as a reference standard. In situ calibration of the output beam is accomplished by sampling part of the output beam and comparing it spectrally, point by point, with the output from the reference blackbody. A grating cube spectroradiometer resident in POST is used to make the spectral comparison. By careful analysis of the diffraction effects at the reference blackbody source and the utilization of a single reflective optical element to direct the reference source energy to the spectroradiometer, the calibration uncertainties are minimized.

  5. Satellite sound broadcasting system, portable reception

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser; Vaisnys, Arvydas

    1990-01-01

    Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.

  6. Precise time dissemination via portable atomic clocks

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1982-01-01

    The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.

  7. A portable powered ankle-foot orthosis for rehabilitation.

    PubMed

    Shorter, K Alex; Kogler, Géza F; Loth, Eric; Durfee, William K; Hsiao-Wecksler, Elizabeth T

    2011-01-01

    Innovative technological advancements in the field of orthotics, such as portable powered orthotic systems, could create new treatment modalities to improve the functional out come of rehabilitation. In this article, we present a novel portable powered ankle-foot orthosis (PPAFO) to provide untethered assistance during gait. The PPAFO provides both plantar flexor and dorsiflexor torque assistance by way of a bidirectional pneumatic rotary actuator. The system uses a portable pneumatic power source (compressed carbon dioxide bottle) and embedded electronics to control the actuation of the foot. We collected pilot experimental data from one impaired and three nondisabled subjects to demonstrate design functionality. The impaired subject had bilateral impairment of the lower legs due to cauda equina syndrome. We found that data from nondisabled walkers demonstrated the PPAFO's capability to provide correctly timed plantar flexor and dorsiflexor assistance during gait. Reduced activation of the tibialis anterior during stance and swing was also seen during assisted nondisabled walking trials. An increase in the vertical ground reaction force during the second half of stance was present during assisted trials for the impaired subject. Data from nondisabled walkers demonstrated functionality, and data from an impaired walker demonstrated the ability to provide functional plantar flexor assistance.

  8. Tackling field-portable Raman spectroscopy of real world samples

    NASA Astrophysics Data System (ADS)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  9. A portable powered ankle-foot orthosis for rehabilitation.

    PubMed

    Shorter, K Alex; Kogler, Géza F; Loth, Eric; Durfee, William K; Hsiao-Wecksler, Elizabeth T

    2011-01-01

    Innovative technological advancements in the field of orthotics, such as portable powered orthotic systems, could create new treatment modalities to improve the functional out come of rehabilitation. In this article, we present a novel portable powered ankle-foot orthosis (PPAFO) to provide untethered assistance during gait. The PPAFO provides both plantar flexor and dorsiflexor torque assistance by way of a bidirectional pneumatic rotary actuator. The system uses a portable pneumatic power source (compressed carbon dioxide bottle) and embedded electronics to control the actuation of the foot. We collected pilot experimental data from one impaired and three nondisabled subjects to demonstrate design functionality. The impaired subject had bilateral impairment of the lower legs due to cauda equina syndrome. We found that data from nondisabled walkers demonstrated the PPAFO's capability to provide correctly timed plantar flexor and dorsiflexor assistance during gait. Reduced activation of the tibialis anterior during stance and swing was also seen during assisted nondisabled walking trials. An increase in the vertical ground reaction force during the second half of stance was present during assisted trials for the impaired subject. Data from nondisabled walkers demonstrated functionality, and data from an impaired walker demonstrated the ability to provide functional plantar flexor assistance. PMID:21674394

  10. Development of a model for integrated care at the end of life in advanced dementia: A whole systems UK-wide approach

    PubMed Central

    Jones, Louise; Candy, Bridget; Davis, Sarah; Elliott, Margaret; Gola, Anna; Harrington, Jane; Kupeli, Nuriye; Lord, Kathryn; Moore, Kirsten; Scott, Sharon; Vickerstaff, Victoria; Omar, Rumana Z; King, Michael; Leavey, Gerard; Nazareth, Irwin; Sampson, Elizabeth L

    2015-01-01

    Background: The prevalence of dementia is rising worldwide and many people will die with the disease. Symptoms towards the end of life may be inadequately managed and informal and professional carers poorly supported. There are few evidence-based interventions to improve end-of-life care in advanced dementia. Aim: To develop an integrated, whole systems, evidence-based intervention that is pragmatic and feasible to improve end-of-life care for people with advanced dementia and support those close to them. Design: A realist-based approach in which qualitative and quantitative data assisted the development of statements. These were incorporated into the RAND/UCLA appropriateness method to achieve consensus on intervention components. Components were mapped to underlying theory of whole systems change and the intervention described in a detailed manual. Setting/participants: Data were collected from people with dementia, carers and health and social care professionals in England, from expert opinion and existing literature. Professional stakeholders in all four countries of the United Kingdom contributed to the RAND/UCLA appropriateness method process. Results: A total of 29 statements were agreed and mapped to individual, group, organisational and economic/political levels of healthcare systems. The resulting main intervention components are as follows: (1) influencing local service organisation through facilitation of integrated multi-disciplinary care, (2) providing training and support for formal and informal carers and (3) influencing local healthcare commissioning and priorities of service providers. Conclusion: Use of in-depth data, consensus methods and theoretical understanding of the intervention components produced an evidence-based intervention for further testing in end-of-life care in advanced dementia. PMID:26354388

  11. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  12. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  13. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A.

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  14. An XML portable chart format.

    PubMed Central

    Chueh, H. C.; Raila, W. F.; Berkowicz, D. A.; Barnett, G. O.

    1998-01-01

    The clinical chart remains the fundamental record of outpatient clinical care. As this information migrates to electronic form, there is an opportunity to create standard formats for transmitting these charts. This paper describes work toward a Portable Chart Format (PCF) that can represent the relevant aspects of an outpatient chart. The main goal of the format is to provide a packaging medium for outpatient clinical charts in a transfer of care scenario. A secondary goal is to support the aggregation of comparable clinical data for outcomes analysis. The syntax used for PCF is Extended Markup Language (XML), a W3C standard. The structure of the PCF is based on a clinically relevant view of the data. The data definitions and nomenclature used are based primarily on existing clinical standards. PMID:9929315

  15. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  16. RTOS kernel in portable electrocardiograph

    NASA Astrophysics Data System (ADS)

    Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.

    2011-12-01

    This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.

  17. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  18. Portable sensor for hazardous waste

    SciTech Connect

    Piper, L.G.; Fraser, M.E.; Davis, S.J.

    1995-12-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy. Our approach is to excite atomic and molecular fluorescence by the technique of active nitrogen energy transfer (ANET). The active nitrogen is made in a dielectric-barrier (D-B) discharge in nitrogen at atmospheric pressure. Only a few emission lines or bands are excited for each hazardous species, so spectral resolution requirements are greatly simplified over those of other spectroscopic techniques. The dielectric-barrier discharge is compact, 1 to 2 cm in diameter and 1 to 10 cm long. During the first phase of the program we demonstrated that a variety of hazardous species could be detected by the technique of active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence. Species investigated included heavy metals, Hg, Cr, and Se, both chlorinated and non-chlorinated organics, and uranyl compounds. For most of these species we demonstrated sensitivity limits for their detection at parts per billion (ppb) levels. Our principal goals for this second phase of the program are to develop and breadboard test instrument components and to design a prototype instrument suitable for construction and evaluation in the final phase of the program. A secondary goal is to extend the ANET technology to encompass a greater number of hazardous species, primarily additional heavy metals and radionuclides.

  19. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  20. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; Abney, Morgan B.; Wheeler, Raymond M.

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.