Science.gov

Sample records for advanced processing techniques

  1. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  2. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  3. Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities

    SciTech Connect

    Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

    2010-11-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

  4. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  5. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  6. Advanced signal processing technique for damage detection in steel tubes

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel Kumar; Dao, Cac Minh; Dao, Kiet; Kundu, Tribikram

    2016-04-01

    In recent years, ultrasonic guided waves gained attention for reliable testing and characterization of metals and composites. Guided wave modes are excited and detected by PZT (Lead Zirconate Titanate) transducers either in transmission or reflection mode. In this study guided waves are excited and detected in the transmission mode and the phase change of the propagating wave modes are recorded. In most of the other studies reported in the literature, the change in the received signal strength (amplitude) is investigated with varying degrees of damage while in this study the change in phase is correlated with the extent of damage. Feature extraction techniques are used for extracting phase and time-frequency information. The main advantage of this approach is that the bonding condition between the transducer and the specimen does not affect the phase while it can affect the strength of recorded signal. Therefore, if the specimen is not damaged but the transducer-specimen bonding is deteriorated then the received signal strength is altered but the phase remains same and thus false positive predictions for damage can be avoided.

  7. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  8. Automated angiogenesis quantification through advanced image processing techniques.

    PubMed

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  9. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  10. Advanced techniques for array processing. Final report, 1 Mar 89-30 Apr 91

    SciTech Connect

    Friedlander, B.

    1991-05-30

    Array processing technology is expected to be a key element in communication systems designed for the crowded and hostile environment of the future battlefield. While advanced array processing techniques have been under development for some time, their practical use has been very limited. This project addressed some of the issues which need to be resolved for a successful transition of these promising techniques from theory into practice. The main problem which was studied was that of finding the directions of multiple co-channel transmitters from measurements collected by an antenna array. Two key issues related to high-resolution direction finding were addressed: effects of system calibration errors, and effects of correlation between the received signals due to multipath propagation. A number of useful theoretical performance analysis results were derived, and computationally efficient direction estimation algorithms were developed. These results include: self-calibration techniques for antenna arrays, sensitivity analysis for high-resolution direction finding, extensions of the root-MUSIC algorithm to arbitrary arrays and to arrays with polarization diversity, and new techniques for direction finding in the presence of multipath based on array interpolation. (Author)

  11. Recent advances in electronic nose techniques for monitoring of fermentation process.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  12. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes.

    PubMed

    Justé, A; Thomma, B P H J; Lievens, B

    2008-09-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids. These methods are now increasingly applied in food microbiology as well. This review presents an overview of current community profiling techniques with their (potential) applications in food and food-related ecosystems. We critically assessed both the power and limitations of these techniques and present recent advances in the field of food microbiology attained by their application. It is unlikely that a single approach will be universally applicable for analyzing microbial communities in unknown matrices. However, when screening samples for well-defined species or functions, techniques such as DNA arrays and real-time PCR have the potential to overtake current culture-based methods. Most importantly, molecular methods will allow us to surpass our current culturing limitations, thus revealing the extent and importance of the 'non-culturable' microbial flora that occurs in food matrices and production.

  13. Application of Advanced Process Control techniques to a pusher type reheating furnace

    NASA Astrophysics Data System (ADS)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  14. A standard data set for performance analysis of advanced IR image processing techniques

    NASA Astrophysics Data System (ADS)

    Weiß, A. Robert; Adomeit, Uwe; Chevalier, Philippe; Landeau, Stéphane; Bijl, Piet; Champagnat, Frédéric; Dijk, Judith; Göhler, Benjamin; Landini, Stefano; Reynolds, Joseph P.; Smith, Leslie N.

    2012-06-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance modeling are of limited use for these types of equipment. Several groups have tried to overcome this problem by producing a variety of imagery to assess the impact of advanced signal and image processing. Mostly, this data was taken from classified targets and/ or using classified imager and is thus not suitable for comparison studies between different groups from government, industry and universities. To ameliorate this situation, NATO SET-140 has undertaken a systematic measurement campaign at the DGA technical proving ground in Angers, France, to produce an openly distributable data set suitable for the assessment of fusion, super-resolution, local contrast enhancement, dynamic range compression and image-based NUC algorithm performance. The imagery was recorded for different target / background settings, camera and/or object movements and temperature contrasts. MWIR, LWIR and Dual-band cameras were used for recording and were also thoroughly characterized in the lab. We present a selection of the data set together with examples of their use in the assessment of super-resolution and contrast enhancement algorithms.

  15. Fault detection in heavy duty wheels by advanced vibration processing techniques and lumped parameter modeling

    NASA Astrophysics Data System (ADS)

    Malago`, M.; Mucchi, E.; Dalpiaz, G.

    2016-03-01

    Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.

  16. Application of advanced signal processing techniques to the rectification and registration of spaceborne imagery. [technology transfer, data transmission

    NASA Technical Reports Server (NTRS)

    Caron, R. H.; Rifman, S. S.; Simon, K. W.

    1974-01-01

    The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.

  17. Advances in cell culture process development: tools and techniques for improving cell line development and process optimization.

    PubMed

    Sharfstein, Susan T

    2008-01-01

    At the 234th National Meeting of the American Chemical Society, held in Boston, MA, August 19-23, 2007, the ACS BIOT division held two oral sessions on Cell Culture Process Development. In addition, a number of posters were presented in this area. The critical issues facing cell culture process development today are how to effectively respond to the increase in product demands and decreased process timelines while maintaining robust process performance and product quality and responding to the Quality by Design initiative promulgated by the Food and Drug Administration. Two main areas were addressed in the presentations: first, to understand the effects of process conditions on productivity and product quality, and second, to achieve improved production cell lines. A variety of techniques to achieve these goals were presented, including automated flow cytometric analysis, a high-throughput cell analysis and selection method, transcriptional and epigenetic techniques for analysis of cell lines and cell culture systems, and novel techniques for glycoform analysis. PMID:18426245

  18. Advances in wound debridement techniques.

    PubMed

    Nazarko, Linda

    2015-06-01

    Dead and devitalised tissue interferes with the process of wound healing. Debridement is a natural process that occurs in all wounds and is crucial to healing; it reduces the bacterial burden in a wound and promotes effective inflammatory responses that encourage the formation of healthy granulation tissue (Wolcott et al, 2009). Wound care should be part of holistic patient care. Recent advances in debridement techniques include: biosurgery, hydrosurgery, mechanical debridement, and ultrasound. Biosurgery and mechanical debridement can be practiced by nonspecialist nurses and can be provided in a patient's home, thus increasing the patient's access to debridement therapy and accelerating wound healing.

  19. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  20. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M. )

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co[sup 60] gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  1. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  2. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  3. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  4. Advanced 3D image processing techniques for liver and hepatic tumor location and volumetry

    NASA Astrophysics Data System (ADS)

    Chemouny, Stephane; Joyeux, Henri; Masson, Bruno; Borne, Frederic; Jaeger, Marc; Monga, Olivier

    1999-05-01

    To assist radiologists and physicians in diagnosing, and in treatment planning and evaluating in liver oncology, we have developed a fast and accurate segmentation of the liver and its lesions within CT-scan exams. The first step of our method is to reduce spatial resolution of CT images. This will have two effects: obtain near isotropic 3D data space and drastically decrease computational time for further processing. On a second step a 3D non-linear `edge- preserving' smoothing filtering is performed throughout the entire exam. On a third step the 3D regions coming out from the second step are homogeneous enough to allow a quite simple segmentation process, based on morphological operations, under supervisor control, ending up with accurate 3D regions of interest (ROI) of the liver and all the hepatic tumors. On a fourth step the ROIs are eventually set back into the original images, features like volume and location are immediately computed and displayed. The segmentation we get is as precise as a manual one but is much faster.

  5. Advanced Simulation of Coupled Earthquake and Tsunami Events (ASCETE) - Simulation Techniques for Realistic Tsunami Process Studies

    NASA Astrophysics Data System (ADS)

    Behrens, Joern; Bader, Michael; Breuer, Alexander N.; van Dinther, Ylona; Gabriel, Alice-A.; Galvez Barron, Percy E.; Rahnema, Kaveh; Vater, Stefan; Wollherr, Stephanie

    2015-04-01

    At the End of phase 1 of the ASCETE project a simulation framework for coupled physics-based rupture generation with tsunami propagation and inundation is available. Adaptive mesh tsunami propagation and inundation by discontinuous Galerkin Runge-Kutta methods allows for accurate and conservative inundation schemes. Combined with a tree-based refinement strategy to highly optimize the code for high-performance computing architectures, a modeling tool for high fidelity tsunami simulations has been constructed. Validation results demonstrate the capacity of the software. Rupture simulation is performed by an unstructured tetrahedral discontinuous Galerking ADER discretization, which allows for accurate representation of complex geometries. The implemented code was nominated for and was selected as a finalist for the Gordon Bell award in high-performance computing. Highly realistic rupture events can be simulated with this modeling tool. The coupling of rupture induced wave activity and displacement with hydrodynamic equations still poses a major problem due to diverging time and spatial scales. Some insight from the ASCETE set-up could be gained and the presentation will focus on the coupled behavior of the simulation system. Finally, an outlook to phase 2 of the ASCETE project will be given in which further development of detailed physical processes as well as near-realistic scenario computations are planned. ASCETE is funded by the Volkswagen Foundation.

  6. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  7. Using Advanced Remote Sensing Data Fusion Techniques for Studying Earth Surface Processes and Hazards: A Landslide Detection Case Study

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2014-12-01

    A major problem in earth surface process and hazards research is we have little to no knowledge of precisely where and when the next significant event may occur. This makes it nearly impossible to set up adequate instrumentation and observation ahead of time. Furthermore, it is not practical to overcome this challenge by instrumenting and observing everywhere all the time. We can't be everywhere and see everything. Remote sensing helps us to fill that gap with missions such as Landsat and WorldView2 offering regular global coverage. However, remote sensing systems for global monitoring have several inherent compromises. Tradeoffs must be made between data storage, processing capacity, spatial resolution, spectral resolution, and temporal resolution. Additionally, instruments and systems must be designed in advance and from a generalized standpoint to serve as many purposes as possible, often at the expense of high performance in specific tasks. Because of these practical constraints, when using remote sensing data to study earth surface processes it is critical to maximize signal content or information obtained from all available data. Several approaches, including multi-temporal data fusion, multi-sensor data fusion, and fusion with derivative products such as band ratios or vegetation indices can help expand how much information can be extracted from remote sensing acquisitions. Fused dataset results contain more coherent information than the sum of their individual constituents. Examples using Landsat and WorldView2 data in this study show this added information makes it possible to map earth surface processes and events, such as the 2011 Cinque Terre landslides, in a more automated and repeatable fashion over larger areas than is possible with manual imagery analysis techniques and with greater chance of successful detection.

  8. Advances in speech processing

    NASA Astrophysics Data System (ADS)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  9. Advanced Process Control Experiments.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.; And Others

    1980-01-01

    Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)

  10. Techniques in Advanced Language Teaching.

    ERIC Educational Resources Information Center

    Ager, D. E.

    1967-01-01

    For ease of presentation, advanced grammar teaching techniques are briefly considered under the headings of structuralism (belief in the effectiveness of presenting grammar rules) and contextualism (belief in the maximum use by students of what they know in the target language). The structuralist's problem of establishing a syllabus is discussed…

  11. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    NASA Astrophysics Data System (ADS)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization

  12. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  13. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  14. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  15. Advanced soldering processes

    SciTech Connect

    Jellison, J.L.; Golden, J.; Frear, D.R.; Hosking, F.M.; Keicher, D.M.; Yost, F.G.

    1993-02-20

    Advanced soldering processes are discussed in a complete manner. The ability to meet the needs of electronic manufacturing, while addressing the environmental issues are challenging goals. Government regulations mandate the elimination of most solvents in solder flux removal. Alternative approaches to promoting wetting are discussed. Inert atmosphere soldering, acid vapor fluxless soldering, atomic and ionic hydrogen as reactive atmospheres, fluxless laser soldering in a controlled atmosphere are offered as soldering mechanisms for the future. Laser are discussed as alternate heat sources. Various types of lasers, advantages of lasers, and fiber optic beam delivery are considered.

  16. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  17. Advanced techniques of laser telemetry

    NASA Astrophysics Data System (ADS)

    Donati, S.; Gilardini, A.

    The relationships which govern a laser telemeter; noise sources; and measurement accuracy with pulsed and sinusoidal intensity modulation techniques are discussed. Developments in telemetry instrumention and optical detection are considered. Meteorological interferometers, geodimeters, and military telemeters are described. Propagation attenuation and signal to noise ratios are treated. It is shown that accuracy depends on the product of measurement time and received power. The frequency scanning technique of CW and long pulse telemetry; multifrequency techniques; pulse compression; and vernier technique are outlined.

  18. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  19. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  20. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  1. Development of an interatmospheric window wavelength (5-9 μm) infrared thermography with an advanced image processing technique

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Komiyama, Tatsuhito; Sakagami, Takahide; Kubo, Shiro

    2006-04-01

    Recently, deterioration of concrete structures before their design life has become a serious social problem in Japan. Nondestructive inspection techniques are required, for detecting defects and damages in concrete structures, such as subsurface void or delamination. As one of these techniques, the thermographic NDT can be applied as an effective NDT technique to inspect large area of the objective structure from distant place. In addition, it does not require any chemicals and application of physical excitation for inspection. However, the thermographic NDT has a shortcoming that the measurement results are affected by the reflection of atmospheric radiation due to the sunlight, sky or surrounding materials. Since most of the buildings in Japan are covered with luster materials with low emissivity, such as tile or mortal, infrared reflection on the surface is difficult to be neglected. To reduce the influence of these reflection noises, the infrared thermography with detectable wavelength from 5 to 8 μm, which coincides with absorption range of moisture, is utilized. In this research, a new infrared thermography with 5 to 8 μm wavelength range by applying a band pass filter and an uncooled microbolometer infrared array detector. Further, a new signal to noise (S/N) ratio improvement technique has been developed in order to compensate a deterioration of sensitivity due to the band pass filter.

  2. Advances in natural language processing.

    PubMed

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area.

  3. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  4. Splitting advancement genioplasty: a new genioplasty technique.

    PubMed

    Celik, M; Tuncer, S; Büyükçayir, I

    1999-08-01

    A new genioplasty technique has been described and performed on 16 patients since 1995. The technique has been developed to avoid some undesired results of the current osseous genioplasty techniques and to achieve a more natural appearance in advancement genioplasty. According to the authors' technique, a rectangular part of the outer table of the mentum is split away from the mandible, and is advanced and fixated to the mandible. This technique can be used for advancement cases but not for reduction genioplasty. This technique was performed on 16 patients with only minor complications, including one case of wound dehiscence, one hematoma, and one case of osteomyelitis, which was managed with systemic antibiotic therapy. Aesthetic results were found to be satisfactory according to an evaluation by the authors. When the results were evaluated using pre- and postoperative photos, lip position and projection of the mentum were found to be natural in shape appearance. During the late postoperative period, the new bone formation between the advanced segment and the mandible was demonstrated radiographically. Advantages of the technique include having more contact surfaces for bony healing, a natural position of the lower lip, more natural projection of the mentum, tridimensional movement of the mentum, and improvement in the soft tissue of the neck. The disadvantages of the technique are the potential risk of infection due to dead space from the advancement, manipulation problems during surgery, and possible mental nerve injury. Splitting advancement genioplasty was found to be a useful technique for advancement genioplasty. Splitting advancement genioplasty is a more physiological osteotomy technique than most of osseous genioplasty techniques. PMID:10454320

  5. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  6. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  7. Inverse lithography technique for advanced CMOS nodes

    NASA Astrophysics Data System (ADS)

    Villaret, Alexandre; Tritchkov, Alexander; Entradas, Jorge; Yesilada, Emek

    2013-04-01

    Resolution Enhancement Techniques have continuously improved over the last decade, driven by the ever growing constraints of lithography process. Despite the large number of RET applied, some hotspot configurations remain challenging for advanced nodes due to aggressive design rules. Inverse Lithography Technique (ILT) is evaluated here as a substitute to the dense OPC baseline. Indeed ILT has been known for several years for its near-to-ideal mask quality, while also being potentially more time consuming in terms of OPC run and mask processing. We chose to evaluate Mentor Graphics' ILT engine "pxOPCTM" on both lines and via hotspot configurations. These hotspots were extracted from real 28nm test cases where the dense OPC solution is not satisfactory. For both layer types, the reference OPC consists of a dense OPC engine coupled to rule-based and/or model-based assist generation method. The same CM1 model is used for the reference and the ILT OPC. ILT quality improvement is presented through Optical Rule Check (ORC) results with various adequate detectors. Several mask manufacturing rule constraints (MRC) are considered for the ILT solution and their impact on process ability is checked after mask processing. A hybrid OPC approach allowing localized ILT usage is presented in order to optimize both quality and runtime. A real mask is prepared and fabricated with this method. Finally, results analyzed on silicon are presented to compare localized ILT to reference dense OPC.

  8. Advanced techniques in abdominal surgery.

    PubMed Central

    Monson, J R

    1993-01-01

    Almost every abdominal organ is now amenable to laparoscopic surgery. Laparoscopic appendicectomy is a routine procedure which also permits identification of other conditions initially confused with an inflamed appendix. However, assessment of appendiceal inflammation is more difficult. Almost all colonic procedures can be performed laparoscopically, at least partly, though resection for colonic cancer is still controversial. For simple patch repair of perforated duodenal ulcers laparoscopy is ideal, and inguinal groin hernia can be repaired satisfactorily with a patch of synthetic mesh. Many upper abdominal procedures, however, still take more time than the open operations. These techniques reduce postoperative pain and the incidence of wound infections and allow a much earlier return to normal activity compared with open surgery. They have also brought new disciplines: surgeons must learn different hand-eye coordination, meticulous haemostasis is needed to maintain picture quality, and delivery of specimens may be problematic. The widespread introduction of laparoscopic techniques has emphasised the need for adequate training (operations that were straight-forward open procedures may require considerable laparoscopic expertise) and has raised questions about trainee surgeons acquiring adequate experience of open procedures. Images FIG 9 p1347-a p1347-b p1349-a p1350-a p1350-b PMID:8257893

  9. Advanced prosthetic techniques for below knee amputations.

    PubMed

    Staats, T B

    1985-02-01

    Recent advances in the evaluation of the amputation stump, the materials that are available for prosthetic application, techniques of improving socket fit, and prosthetic finishings promise to dramatically improve amputee function. Precision casting techniques for providing optimal fit of the amputation stump using materials such as alginate are described. The advantages of transparent check sockets for fitting the complicated amputation stump are described. Advances in research that promise to provide more functional prosthetic feet and faster and more reliable socket molding are the use of CAD-CAM (computer aided design-computer aided manufacturing) and the use of gait analysis techniques to aid in the alignment of the prosthesis after socket fitting. Finishing techniques to provide a more natural appearing prosthesis are described. These advances will gradually spread to the entire prosthetic profession.

  10. Advanced sialoendoscopy techniques, rare findings, and complications.

    PubMed

    Nahlieli, Oded

    2009-12-01

    This article presents and discusses advanced minimally invasive sialoendoscopy and combined methods: endoscopy, endoscopic-assisted techniques, and external-lithotripsy combined procedures. It also presents rare situations and complications encountered during sialoendoscopic procedures. Sialoendoscopy is a relatively novel technique, which adds significant new dimensions to the surgeon's armamentarium for management of inflammatory salivary gland diseases. Because of the rapid development in minimally invasive surgical techniques, surgeons are capable of more facilely treating complicated inflammatory and obstructive conditions of the salivary glands.

  11. Advanced Hydrogen Liquefaction Process

    SciTech Connect

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  12. Advanced techniques in current signature analysis

    SciTech Connect

    Smith, S.F.; Castleberry, K.N.

    1992-03-01

    In general, both ac and dc motors can be characterized as weakly nonlinear systems, in which both linear and nonlinear effects occur simultaneously. Fortunately, the nonlinearities are generally well behaved and understood and an be handled via several standard mathematical techniques already well developed in the systems modeling area; examples are piecewise linear approximations and Volterra series representations. Field measurements of numerous motors and motor-driven systems confirm the rather complex nature of motor current spectra and illustrate both linear and nonlinear effects (including line harmonics and modulation components). Although previous current signature analysis (CSA) work at Oak Ridge and other sites has principally focused on the modulation mechanisms and detection methods (AM, PM, and FM), more recent studies have been conducted on linear spectral components (those appearing in the electric current at their actual frequencies and not as modulation sidebands). For example, large axial-flow compressors ({approximately}3300 hp) in the US gaseous diffusion uranium enrichment plants exhibit running-speed ({approximately}20 Hz) and high-frequency vibrational information (>1 kHz) in their motor current spectra. Several signal-processing techniques developed to facilitate analysis of these components, including specialized filtering schemes, are presented. Finally, concepts for the designs of advanced digitally based CSA units are offered, which should serve to foster the development of much more computationally capable ``smart`` CSA instrumentation in the next several years. 3 refs.

  13. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  14. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  15. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  16. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  17. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  18. Advanced parallel processing with supercomputer architectures

    SciTech Connect

    Hwang, K.

    1987-10-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers.

  19. Recent advancement of turbulent flow measurement techniques

    NASA Technical Reports Server (NTRS)

    Battle, T.; Wang, P.; Cheng, D. Y.

    1974-01-01

    Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.

  20. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  1. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  2. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  3. Advanced AE Techniques in Composite Materials Research

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been successfully used to evaluate damage mechanisms in laboratory testing of composite coupons. An example is presented in which the initiation of transverse matrix cracking was monitored. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite specimens or structures, the effects of modal wave propagation over larger distances and through structural complexities must be well characterized and understood. To demonstrate these effects, measurements of the far field, peak amplitude attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels are discussed. These measurements demonstrated that the flexural mode attenuation is dominated by dispersion effects. Thus, it is significantly affected by the thickness of the composite plate. Furthermore, the flexural mode attenuation can be significantly larger than that of the extensional mode even though its peak amplitude consists of much lower frequency components.

  4. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  5. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  6. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  7. Practical Advances in Petroleum Processing

    NASA Astrophysics Data System (ADS)

    Hsu, Chang S.; Robinson, Paul R.

    "This comprehensive book by Robinson and Hsu will certainly become the standard text book for the oil refining business...[A] must read for all who are associated with oil refining." - Dr. Walter Fritsch, Senior Vice President Refining, OMV "This book covers a very advanced horizon of petroleum processing technology. For all refiners facing regional and global environmental concerns, and for those who seek a more sophisticated understanding of the refining of petroleum resources, this book has been long in coming." - Mr. Naomasa Kondo, Cosmo Oil Company, Ltd.

  8. Advanced detectors and signal processing

    NASA Technical Reports Server (NTRS)

    Greve, D. W.; Rasky, P. H. L.; Kryder, M. H.

    1986-01-01

    Continued progress is reported toward development of a silicon on garnet technology which would allow fabrication of advanced detection and signal processing circuits on bubble memories. The first integrated detectors and propagation patterns have been designed and incorporated on a new mask set. In addition, annealing studies on spacer layers are performed. Based on those studies, a new double layer spacer is proposed which should reduce contamination of the silicon originating in the substrate. Finally, the magnetic sensitivity of uncontaminated detectors from the last lot of wafers is measured. The measured sensitivity is lower than anticipated but still higher than present magnetoresistive detectors.

  9. Advances in nanodiagnostic techniques for microbial agents.

    PubMed

    Syed, Muhammad Ali

    2014-01-15

    Infectious diseases account for millions of sufferings and deaths in both developing as well as developed countries with a substantial economic loss. Massive increase in world population and international travel has facilitated their spread from one part of the world to other areas, making them one of the most significant global health risks. Furthermore, detection of bioterrorism agents in water, food and environmental samples as well traveler's baggage is a great challenge of the time for security purpose. Prevention strategies against infectious agents demand rapid and accurate detection and identification of the causative agents with highest sensitivity which should be equally available in different parts of the globe. Similarly, rapid and early diagnosis of infectious diseases has always been indispensable for their prompt cure and management, which has stimulated scientists to develop highly sophisticated techniques over centuries and the efforts continue unabated. Conventional diagnostic techniques are time consuming, tedious, expensive, less sensitive, and unsuitable for field situations. Nanodiagnostic assays have been promising for early, sensitive, point-of-care and cost-effective detection of microbial agents. There has been an explosive research in this area of science in last two decades yielding highly fascinating results. This review highlights some of the advancements made in the field of nanotechnology based assays for microbial detection since 2005 along with providing the basic understanding. PMID:24012709

  10. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  11. Advanced optical imaging techniques for neurodevelopment.

    PubMed

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-12-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy.

  12. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  13. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  14. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  15. Advances in procedural techniques--antegrade.

    PubMed

    Wilson, William; Spratt, James C

    2014-05-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the "hybrid' approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited "interventional" collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  16. Advanced automated char image analysis techniques

    SciTech Connect

    Tao Wu; Edward Lester; Michael Cloke

    2006-05-15

    Char morphology is an important characteristic when attempting to understand coal behavior and coal burnout. In this study, an augmented algorithm has been proposed to identify char types using image analysis. On the basis of a series of image processing steps, a char image is singled out from the whole image, which then allows the important major features of the char particle to be measured, including size, porosity, and wall thickness. The techniques for automated char image analysis have been tested against char images taken from ICCP Char Atlas as well as actual char particles derived from pyrolyzed char samples. Thirty different chars were prepared in a drop tube furnace operating at 1300{sup o}C, 1% oxygen, and 100 ms from 15 different world coals sieved into two size fractions (53-75 and 106-125 {mu}m). The results from this automated technique are comparable with those from manual analysis, and the additional detail from the automated sytem has potential use in applications such as combustion modeling systems. Obtaining highly detailed char information with automated methods has traditionally been hampered by the difficulty of automatic recognition of individual char particles. 20 refs., 10 figs., 3 tabs.

  17. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  18. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  19. Advanced computer modeling techniques expand belt conveyor technology

    SciTech Connect

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  20. A Comparative of business process modelling techniques

    NASA Astrophysics Data System (ADS)

    Tangkawarow, I. R. H. T.; Waworuntu, J.

    2016-04-01

    In this era, there is a lot of business process modeling techniques. This article is the research about differences of business process modeling techniques. For each technique will explain about the definition and the structure. This paper presents a comparative analysis of some popular business process modelling techniques. The comparative framework is based on 2 criteria: notation and how it works when implemented in Somerleyton Animal Park. Each technique will end with the advantages and disadvantages. The final conclusion will give recommend of business process modeling techniques that easy to use and serve the basis for evaluating further modelling techniques.

  1. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    SciTech Connect

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users and vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.

  2. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    DOE PAGES

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users andmore » vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.« less

  3. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  4. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  5. Advances in laparoscopic urologic surgery techniques

    PubMed Central

    Abdul-Muhsin, Haidar M.; Humphreys, Mitchell R.

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  6. Advances in laparoscopic urologic surgery techniques.

    PubMed

    Abdul-Muhsin, Haidar M; Humphreys, Mitchell R

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  7. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  8. Advanced enhancement techniques for digitized images

    NASA Astrophysics Data System (ADS)

    Tom, V. T.; Merenyi, R. C.; Carlotto, M. J.; Heller, W. G.

    Computer image enhancement of digitized X-ray and conventional photographs has been employed to reveal anomalies in aerospace hardware. Signal processing of these images included use of specially-developed filters to sharpen detail without sacrificing radiographic information, application of local contrast stretch and histogram equalization algorithms to display structure in low-contrast areas and employment of other unique digital processing methods. Edge detection, normally complicated by poor spatial resolution, limited contrast and recording media noise, was performed as a post-processing operation via a difference-of-Gaussians method and a least squares fitting procedures. In this manner, multi-image signal processing allowed for the precise measurement (to within 0.02 inches, rms) of the Inertial Upper Stage nozzle nosecap motion during a static test firing as well as identifying potential problems in the Solid Rocket Booster parachute deployment.

  9. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  10. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  11. Advanced ultrasonic techniques for local tumor hyperthermia.

    PubMed

    Lele, P P

    1989-05-01

    Scanned, intensity-modulated, focused ultrasound (SIMFU) presently is the modality of choice for localized, controlled heating of deep as well as superficial tumors noninvasively. With the present SIMFU system, it was possible to heat 88 per cent of deep tumors up to 12 cm in depth and 15 cm in diameter, to 43 degrees C in 3 to 4 minutes. The infiltrative tumor margins could be heated to the desired therapeutic temperature. The temperature outside the treatment field fell off sharply. Excellent objective responses were obtained without local or systemic toxicity. Multiinstitutional clinical trials of local hyperthermia by this promising technique are clearly warranted.

  12. Air pollution monitoring by advanced spectroscopic techniques.

    PubMed

    Hodgeson, J A; McClenny, W A; Hanst, P L

    1973-10-19

    The monitoring requirements related to air pollution are many and varied. The molecules of concern differ greatly in their chemical and physical properties, in the nature of their environment, and in their concentration ranges. Furthermore, the application may have specific requirements such as rapid response time, ultrasensitivity, multipollutant capability, or capability for remote measurements. For these reasons, no single spectroscopic technique appears to offer a panacea for all monitoring needs. Instead we have attempted to demonstrate in the above discussion that, regardless of the difficulty and complexity of the monitoring problems, spectroscopy offers many tools by which such problems may be solved.

  13. Advanced analysis techniques for uranium assay

    SciTech Connect

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.; Beard, C. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  14. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  15. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  16. Laparoscopic ureteral reimplantation: a simplified dome advancement technique.

    PubMed

    Lima, Guilherme C; Rais-Bahrami, Soroush; Link, Richard E; Kavoussi, Louis R

    2005-12-01

    Laparoscopic Boari flap reimplantation has been used to treat long distal ureteral strictures. This technique requires extensive bladder mobilization and complex intracorporeal suturing. This demonstrates a novel laparoscopic bladder dome advancement approach for ureteral reimplantation. This technique obviates the need for bladder pedicle dissection and simplifies the required suturing.

  17. Evaluation of Advanced Retrieval Techniques in an Experimental Online Catalog.

    ERIC Educational Resources Information Center

    Larson, Ray R.

    1992-01-01

    Discusses subject searching problems in online library catalogs; explains advanced information retrieval (IR) techniques; and describes experiments conducted on a test collection database, CHESHIRE (California Hybrid Extended SMART for Hypertext and Information Retrieval Experimentation), which was created to evaluate IR techniques in online…

  18. Advanced fabrication techniques for cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1978-01-01

    An improved design for regeneratively cooled engine structures was identified. This design uses photochemically machined (PCM) coolant passages. It permits the braze joint to be placed in a relatively cool area, remote from the critical hot face sheet. The geometry of the passages at the face sheet also minimizes stress concentration and, therefore, enhances the low cycle fatigue performance. The two most promising alloys identified for this application are Inconel 617 and Nickel 201. Inconel 617 was selected because it has excellent creep rupture properties, while Nickel 201 was selected because of its predicted good performance under low cycle fatigue loading. The fabrication of the PCM coolant passages in both Inconel 617 and Nickel 201 was successfully developed. During fabrication of Inconel 617, undesirable characteristics were observed in the braze joints. A development program to resolve this condition was undertaken and led to definition of an isothermal solidification process for joining Inconel 617 panels. This process produced joints which approach parent metal strength and homogeneity.

  19. Advanced Techniques for Root Cause Analysis

    2000-09-19

    Five items make up this package, or can be used individually. The Chronological Safety Management Template utilizes a linear adaptation of the Integrated Safety Management System laid out in the form of a template that greatly enhances the ability of the analyst to perform the first step of any investigation which is to gather all pertinent facts and identify causal factors. The Problem Analysis Tree is a simple three (3) level problem analysis tree whichmore » is easier for organizations outside of WSRC to use. Another part is the Systemic Root Cause Tree. One of the most basic and unique features of Expanded Root Cause Analysis is the Systemic Root Cause portion of the Expanded Root Cause Pyramid. The Systemic Root Causes are even more basic than the Programmatic Root Causes and represent Root Causes that cut across multiple (if not all) programs in an organization. the Systemic Root Cause portion contains 51 causes embedded at the bottom level of a three level Systemic Root Cause Tree that is divided into logical, organizationally based categorie to assist the analyst. The Computer Aided Root Cause Analysis that allows the analyst at each level of the Pyramid to a) obtain a brief description of the cause that is being considered, b) record a decision that the item is applicable, c) proceed to the next level of the Pyramid to see only those items at the next level of the tree that are relevant to the particular cause that has been chosen, and d) at the end of the process automatically print out a summary report of the incident, the causal factors as they relate to the safety management system, the probable causes, apparent causes, Programmatic Root Causes and Systemic Root Causes for each causal factor and the associated corrective action.« less

  20. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  1. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  2. Advanced planning for ISS payload ground processing

    NASA Astrophysics Data System (ADS)

    Page, Kimberly A.

    2000-01-01

    Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .

  3. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  4. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  5. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  6. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  7. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  8. Advanced regenerative-cooling techniques for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Shoji, J. M.

    1975-01-01

    A review of regenerative-cooling techniques applicable to advanced planned engine designs for space booster and orbit transportation systems has developed the status of the key elements of this cooling mode. This work is presented in terms of gas side, coolant side, wall conduction heat transfer, and chamber life fatigue margin considerations. Described are preliminary heat transfer and trade analyses performed using developed techniques combining channel wall construction with advanced, high-strength, high-thermal-conductivity materials (NARloy-Z or Zr-Cu alloys) in high heat flux regions, combined with lightweight steel tubular nozzle wall construction. Advanced cooling techniques such as oxygen cooling and dual-mode hydrocarbon/hydrogen fuel operation and their limitations are indicated for the regenerative cooling approach.

  9. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted. PMID:27483933

  10. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted.

  11. Bi-maxillary advancement surgery: Technique, indications and results.

    PubMed

    Olivi, Pierre; Garcia, Claude

    2014-06-01

    Esthetic analysis of the face in some patients presenting a dental Class II can reveal the need for maxillo-mandibular advancement surgery. In these cases, mandibular advancement alone would provide a result which was satisfactory from the occlusal viewpoint but esthetically displeasing. Using bi-maxillary advancement, the impact of nasal volume is reduced and the nasolabial relationship is corrected. The sub-mandibular length is increased, thus creating a better-defined cervico-mental angle. This treatment technique involving a prior mandibular procedure has the advantage of restoring patients' dental occlusion while optimizing their facial esthetics.

  12. Wood Technology: Techniques, Processes, and Products

    ERIC Educational Resources Information Center

    Oatman, Olan

    1975-01-01

    Seven areas of wood technology illustrates applicable techniques, processes, and products for an industrial arts woodworking curriculum. They are: wood lamination; PEG (polyethylene glycol) diffusion processes; wood flour and/or particle molding; production product of industry; WPC (wood-plastic-composition) process; residential construction; and…

  13. Hybrid inverse lithography techniques for advanced hierarchical memories

    NASA Astrophysics Data System (ADS)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  14. Recent advances in imaging subcellular processes

    PubMed Central

    Myers, Kenneth A.; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  15. Recent advances in imaging subcellular processes.

    PubMed

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  16. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  17. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  18. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  19. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  20. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  1. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    PubMed

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  2. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  3. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  4. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  5. Signal processing techniques for synchronization of wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Jaehan; Wu, Yik-Chung; Chaudhari, Qasim; Qaraqe, Khalid; Serpedin, Erchin

    2010-11-01

    Clock synchronization is a critical component in wireless sensor networks, as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and sleep wake-up scheduling, etc. Early studies on clock synchronization for wireless sensor networks mainly focus on protocol design. However, clock synchronization problem is inherently related to parameter estimation, and recently, studies of clock synchronization from the signal processing viewpoint started to emerge. In this article, a survey of latest advances on clock synchronization is provided by adopting a signal processing viewpoint. We demonstrate that many existing and intuitive clock synchronization protocols can be interpreted by common statistical signal processing methods. Furthermore, the use of advanced signal processing techniques for deriving optimal clock synchronization algorithms under challenging scenarios will be illustrated.

  6. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  7. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  8. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  9. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    PubMed Central

    Mastropasqua, Rodolfo; Agnifili, Luca; Mattei, Peter A.; Caulo, Massimo; Fasanella, Vincenzo; Navarra, Riccardo; Mastropasqua, Leonardo; Marchini, Giorgio

    2015-01-01

    Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR) techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity) may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible. PMID:26167474

  10. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  11. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  12. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  13. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  14. Human factors challenges for advanced process control

    SciTech Connect

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  15. Weldability and joining techniques for advanced fossil energy system alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M.

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  16. Full Endoscopic Spinal Surgery Techniques: Advancements, Indications, and Outcomes

    PubMed Central

    Yue, James J.; Long, William

    2015-01-01

    Advancements in both surgical instrumentation and full endoscopic spine techniques have resulted in positive clinical outcomes in the treatment of cervical, thoracic, and lumbar spine pathologies. Endoscopic techniques impart minimal approach related disruption of non-pathologic spinal anatomy and function while concurrently maximizing functional visualization and correction of pathological tissues. An advanced understanding of the applicable functional neuroanatomy, in particular the neuroforamen, is essential for successful outcomes. Additionally, an understanding of the varying types of disc prolapse pathology in relation to the neuroforamen will result in more optimal surgical outcomes. Indications for lumbar endoscopic spine surgery include disc herniations, spinal stenosis, infections, medial branch rhizotomy, and interbody fusion. Limitations are based on both non spine and spine related findings. A high riding iliac wing, a more posteriorly located retroperitoneal cavity, an overly distal or proximally migrated herniated disc are all relative contra-indications to lumbar endoscopic spinal surgery techniques. Modifications in scope size and visual field of view angulation have enabled both anterior and posterior cervical decompression. Endoscopic burrs, electrocautery, and focused laser technology allow for the least invasive spinal surgical techniques in all age groups and across varying body habitus. Complications include among others, dural tears, dysesthsia, nerve injury, and infection. PMID:26114086

  17. Full Endoscopic Spinal Surgery Techniques: Advancements, Indications, and Outcomes.

    PubMed

    Yue, James J; Long, William

    2015-01-01

    Advancements in both surgical instrumentation and full endoscopic spine techniques have resulted in positive clinical outcomes in the treatment of cervical, thoracic, and lumbar spine pathologies. Endoscopic techniques impart minimal approach related disruption of non-pathologic spinal anatomy and function while concurrently maximizing functional visualization and correction of pathological tissues. An advanced understanding of the applicable functional neuroanatomy, in particular the neuroforamen, is essential for successful outcomes. Additionally, an understanding of the varying types of disc prolapse pathology in relation to the neuroforamen will result in more optimal surgical outcomes. Indications for lumbar endoscopic spine surgery include disc herniations, spinal stenosis, infections, medial branch rhizotomy, and interbody fusion. Limitations are based on both non spine and spine related findings. A high riding iliac wing, a more posteriorly located retroperitoneal cavity, an overly distal or proximally migrated herniated disc are all relative contra-indications to lumbar endoscopic spinal surgery techniques. Modifications in scope size and visual field of view angulation have enabled both anterior and posterior cervical decompression. Endoscopic burrs, electrocautery, and focused laser technology allow for the least invasive spinal surgical techniques in all age groups and across varying body habitus. Complications include among others, dural tears, dysesthsia, nerve injury, and infection. PMID:26114086

  18. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  19. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  20. Advanced titanium alloys and processes for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Rack, H. J.; Qazi, Javaid

    2005-11-01

    Major advances continue to be made in enhancing patient care while at the same time attempting to slow ever-rising health costs. Among the most innovative of these advances are minimally invasive surgical techniques, which allow patients to undergo life-saving and quality-of-life enhancing surgery with minimized risk and substantially reduced hospital stays. Recently this approach was introduced for orthopedic procedures (e.g., during total hip replacement surgery). In this instance, the implantable devices will bear the same loads and will therefore be subject to higher stress. This paper provides a brief overview of several potential approaches for developing new advanced titanium alloys and processes that should provide substantial benefit for this application in minimally invasive devices.

  1. The origins of bioethics: advances in resuscitations techniques.

    PubMed

    Niebroj, L

    2008-12-01

    During the last years there has been an increasing interest in meta-bioethical issues. This turn in the research focus is regarded as a sign of the maturation of bioethics as a distinct area of an academic inquiry. The role of historic-philosophical reflection is often emphasized. It should be noted that there is a rather common agreement that the future of bioethics lies in the critical reflection on its past, in particular, on the very origins of this discipline. Sharing Caplan's opinion, advances in medicine technologies, especially the introduction of respirators and artificial heart machines, is considered as one of the main issues that started bioethics. Using methods of historical as well as meta-ethical research, this article aims at describing the role of advances in resuscitation techniques in the emergence of bioethics and at exploring how bioethical reflection has been shaped by technological developments. A brief historical analysis permits to say that there is a close bond between the emergence of bioethics and the introduction of sophisticated resuscitation technologies into medical practice. The meta-ethical reflection reveals that advances in resuscitation techniques not only initiated bioethics in the second half of the 20(th) century but influenced its evolution by (i) posing a question of justice in health care, (ii) altering commonly accepted ontological notions of human corporeality, and (iii) reconsidering the very purpose of medicine.

  2. Indications and general techniques for lasers in advanced operative laparoscopy.

    PubMed

    Dorsey, J H

    1991-09-01

    Lasers are but one of the several energy delivery systems used by the operative laparoscopist in the performance of advanced operative laparoscopy. Safety is a key factor in the selection of a laser because the tissue damage produced by this instrument is absolutely predictable. The surgeon must be totally familiar with the chosen wavelength and its tissue reaction if this safety factor is to be realized. Other instruments complement the use of lasers in advanced operative laparoscopy, and without thorough knowledge of all available techniques and instruments, the operative laparoscopist will not achieve the full potential of this specialty. It is beyond the scope of this issue on gynecologic laser surgery to present all of the useful nonlaser techniques. Suffice it to say that we often use laser, loop ligature, sutures, hemoclips, bipolar electricity, hydrodissection, and endocoagulation during the course of a day in the operating room and sometimes during one case. As enthusiasm for advanced operative laparoscopy grows and endoscopic capability increases, more complicated and prolonged surgical feats are reported. Radical hysterectomy and lymphadenectomy have been performed by the laparoscopic route, and endoscopic management of ovarian tumors also has been reported. At this moment, these must be viewed as "show and tell" procedures unsupported by statistics to demonstrate any advantage (or disadvantage) when compared with conventional surgical methods. The time required of advanced operative laparoscopy for any given procedure is certainly an important factor. Prolonged operative and anesthesia time certainly can negate the supposed benefit of small incisions and minimally invasive surgery. What goes on inside the abdomen is certainly the most important part of advanced operative laparoscopy. Good surgeons must recognize their own limitations and the limitations of available technology. The operative laparoscopist must know when to quit and institute a

  3. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    Computer graphics and visualization techniques continue to provide untapped research opportunities, particularly when working with earth science disciplines. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs we are developing new techniques for simulating sand. In addition, through collaboration with the Oregon Space Grant, we’ve been communicating with the Jet Propulsion Laboratory (JPL) to exchange ideas and gain feedback on our work. More specifically, JPL’s DARTS Laboratory specializes in planetary vehicle simulation, such as the Mars rovers. This simulation utilizes a virtual "sand box" to test how planetary rovers respond to different terrains while traversing them. Unfortunately, this simulation is unable to fully mimic the harsh, sandy environments of those found on Mars. Ideally, these simulations should allow a rover to interact with the sand beneath it, particularly for different sand granularities and densities. In particular, there may be situations where a rover may become stuck in sand due to lack of friction between the sand and wheels. In fact, in May 2009, the Spirit rover became stuck in the Martian sand and has provided additional motivation for this research. In order to develop a new sand simulation model, high performance computing will play a very important role in this work. More specifically, graphics processing units (GPUs) are useful due to their ability to run general purpose algorithms and ability to perform massively parallel computations. In prior research, simulating vast quantities of sand has been difficult to compute in real-time due to the computational complexity of many colliding particles. With the use of GPUs however, each particle collision will be parallelized, allowing for a dramatic performance increase. In addition, spatial partitioning will also provide a speed boost as this will help limit the number of particle collision calculations. However, since the goal of this

  4. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  5. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  6. Advanced bioreactor concepts for coal processing

    SciTech Connect

    Scott, C.D.

    1988-01-01

    The development of advanced bioreactor systems for the processing of coal should follow some basic principles. Continuous operation is preferred, with maximum bioreagent concentrations and enhanced mass transfer. Although conventional stirred-tank bioreactors will be more appropriate for some processing concepts, columnar reactors with retained bioreagents could be the system of choice for most of the applications. Serious consideration must now be given to process development of some biological coal processing concepts. Process biology and biochemistry will continue to be very important, but efficient bioreactor systems will be necessary for economic feasibility. Conventional bioreactor concepts will be useful for some applications, but columnar systems represent an innovative approach to the design of continuous bioreactors with high productivity and good operational control. Fluidized and packed beds are the most promising configurations, especially where three-phase operation is required and where interphase mass transport is a likely controlling mechanism. Although the biocatalyst must be immobilized into or onto particles to be retained in the bioreactors, this also results in a very high biocatalyst concentration without washout and a significant enhancement in bioconversion rates. The multistage nature of these types of bioreactors also contributes to higher efficiencies for many types of biocatalytic processes. 25 refs.

  7. Ultrasonic techniques for process monitoring and control.

    SciTech Connect

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  8. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  9. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  10. Recent advances in UHV techniques for particle accelerators

    SciTech Connect

    M. G. Rao

    1995-01-01

    The ultrahigh vacuum (UHV) requirements for storage rings and accelerators, and the development of the science and technology of UHV for particle accelerators and magnetic fusion devices have been recently reviewed by N.B. Mistry and H.F. Dylla respectively. In this paper, the latest developments in the advancement of UHV techniques for the vacuum integrity of Continuous Electron Beam Accelerator Facility (CEBAF) and for successfully dealing with the synchrotron radiation related beam line vacuum problem encountered in the design of the SSC are reviewed: the review includes developments in extreme sensitivity He leak detection technique based on the dynamic adsorption and desorption of He, operation of ionization gauges at Lhe temperatures, metal sponges for the effective cryopumping of H{sup 2} and He to pressures better than 10{sup -14} torr, and low cost and high He sensitivity RGA's. The details of a new extreme sensitivity He leak detector system are also discussed here.

  11. Metrology aspects of SIMS depth profiling for advanced ULSI processes

    SciTech Connect

    Budrevich, Andre; Hunter, Jerry

    1998-11-24

    As the semiconductor industry roadmap passes through the 0.1 {mu}m technology node, the junction depth of the transistor source/drain extension will be required to be less than 20 nm and the well doping will be near 1.0 {mu}m in depth. The development of advanced ULSI processing techniques requires the evolution of new metrology tools to ensure process capability. High sensitivity (ppb) coupled with excellent depth resolution (1 nm) makes SIMS the technique of choice for measuring the in-depth chemical distribution of these dopants with high precision and accuracy. This paper will discuss the issues, which impact the accuracy and precision of SIMS measurements of ion implants (both shallow and deep). First this paper will discuss common uses of the SIMS technique in the technology development and manufacturing of advanced ULSI processes. In the second part of this paper the ability of SIMS to make high precision measurements of ion implant depth profiles will be studied.

  12. Digital techniques for processing Landsat imagery

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1978-01-01

    An overview of the basic techniques used to process Landsat images with a digital computer, and the VICAR image processing software developed at JPL and available to users through the NASA sponsored COSMIC computer program distribution center is presented. Examples of subjective processing performed to improve the information display for the human observer, such as contrast enhancement, pseudocolor display and band rationing, and of quantitative processing using mathematical models, such as classification based on multispectral signatures of different areas within a given scene and geometric transformation of imagery into standard mapping projections are given. Examples are illustrated by Landsat scenes of the Andes mountains and Altyn-Tagh fault zone in China before and after contrast enhancement and classification of land use in Portland, Oregon. The VICAR image processing software system which consists of a language translator that simplifies execution of image processing programs and provides a general purpose format so that imagery from a variety of sources can be processed by the same basic set of general applications programs is described.

  13. Advanced bronchoscopic techniques in diagnosis and staging of lung cancer.

    PubMed

    Zaric, Bojan; Stojsic, Vladimir; Sarcev, Tatjana; Stojanovic, Goran; Carapic, Vladimir; Perin, Branislav; Zarogoulidis, Paul; Darwiche, Kaid; Tsakiridis, Kosmas; Karapantzos, Ilias; Kesisis, Georgios; Kougioumtzi, Ioanna; Katsikogiannis, Nikolaos; Machairiotis, Nikolaos; Stylianaki, Aikaterini; Foroulis, Christophoros N; Zarogoulidis, Konstantinos

    2013-09-01

    The role of advanced brochoscopic diagnostic techniques in detection and staging of lung cancer has steeply increased in recent years. Bronchoscopic imaging techniques became widely available and easy to use. Technical improvement led to merging in technologies making autofluorescence or narrow band imaging incorporated into one bronchoscope. New tools, such as autofluorescence imagining (AFI), narrow band imaging (NBI) or fuji intelligent chromo endoscopy (FICE), found their place in respiratory endoscopy suites. Development of endobronchial ultrasound (EBUS) improved minimally invasive mediastinal staging and diagnosis of peripheral lung lesions. Linear EBUS proven to be complementary to mediastinoscopy. This technique is now available in almost all high volume centers performing bronchoscopy. Radial EBUS with mini-probes and guiding sheaths provides accurate diagnosis of peripheral pulmonary lesions. Combining EBUS guided procedures with rapid on site cytology (ROSE) increases diagnostic yield even more. Electromagnetic navigation technology (EMN) is also widely used for diagnosis of peripheral lesions. Future development will certainly lead to new improvements in technology and creation of new sophisticated tools for research in respiratory endoscopy. Broncho-microscopy, alveoloscopy, optical coherence tomography are some of the new research techniques emerging for rapid technological development.

  14. A Study of Linear Approximation Techniques for SAR Azimuth Processing

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Perry, R. P.; Liu, B.

    1979-01-01

    The application of the step transform subarray processing techniques to synthetic aperture radar (SAR) was studied. The subarray technique permits the application of efficient digital transform computational techniques such as the fast Fourier transform to be applied while offering an effective tool for range migration compensation. Range migration compensation is applied at the subarray level, and with the subarray size based on worst case range migration conditions, a minimum control system is achieved. A baseline processor was designed for a four-look SAR system covering approximately 4096 by 4096 SAR sample field every 2.5 seconds. Implementation of the baseline system was projected using advanced low power technologies. A 20 swath is implemented with approximately 1000 circuits having a power dissipation of from 70 to 195 watts. The baseline batch step transform processor is compared to a continuous strip processor, and variations of the baseline are developed for a wide range of SAR parameters.

  15. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  16. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  17. The SuperMAG data processing technique

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.

    2012-09-01

    In this paper I outline the data processing technique which is used in the SuperMAG initiative. SuperMAG is a worldwide collaboration of organizations and national agencies that currently operate more than 300 ground based magnetometers. SuperMAG provides easy access to validated ground magnetic field perturbations in the same coordinate system, identical time resolution and with a common baseline removal approach. The purpose of SuperMAG is to provide scientists, teachers, students and the general public easy access to measurements of the magnetic field at the surface of the Earth. Easy access to data, plots and derived products maximizes the utilization of this unique data set. It is outlined how SuperMAG processes the observations obtained by the individual data provider. Data are rotated into a local magnetic coordinate system by determining a time dependent declination angle. This angle displays a slow gradual change and a yearly periodic variation attributed to changes in the Earth main field and season temperature variations. The baseline is determined from the data itself in a three step process: (1) a daily baseline, (2) a yearly trend, and (3) a residual offset. This technique does not require so-called quiet days and thus it avoids all the well-known problems associated with their identification. The residual offset for the N- and Z-components shows a distinct latitudinal dependence while the E-component is independent of the latitude. This result is interpreted as being due to a weak ring current (likely asymmetric) which is present even during official quiet days. For the purpose of M-I research using 1-min data I find no difference between observatories and variometers. I finally argue that there is no correct baseline determination technique since we do not have a set of ground-truth observations required to make an objective evaluation. Instead, the user must keep in mind the assumptions on which the baseline was determined and draw conclusions

  18. Advanced laser processing of glass materials

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Obata, Kotaro; Cheng, Ya; Midorikawa, Katsumi

    2003-09-01

    Three kinds of advanced technologies using lasers for glass microprocessing are reviewed. Simultaneous irradiation of vacuum ultraviolet (VUV) laser beam, which possesses extremely small laser fluence, with ultraviolet (UV) laser achieves enhanced high surface and edge quality ablation in fused silica and other hard materials with little debris deposition as well as high-speed and high-efficiency refractive index modification of fused silica (VUV-UV multiwavelength excitation processing). Metal plasma generated by the laser beam effectively assists high-quality ablation of transparent materials, resulting in surface microstructuring, high-speed holes drilling, crack-free marking, color marking, painting and metal interconnection for the various kinds of glass materials (laser-induced plasma-assisted ablation (LIPAA)). In the meanwhile, a nature of multiphoton absorption of femtosecond laser by transparent materials realizes fabrication of true three-dimensional microstructures embedded in photosensitive glass.

  19. Developments and advances concerning the hyperpolarisation technique SABRE.

    PubMed

    Mewis, Ryan E

    2015-10-01

    To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. PMID:26264565

  20. Novel imazethapyr detoxification applying advanced oxidation processes.

    PubMed

    Stathis, Ioannis; Hela, Dimitra G; Scrano, Laura; Lelario, Filomena; Emanuele, Lucia; Bufo, Sabino A

    2011-01-01

    Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O₃), and hydrogen peroxide tied to UV-irradiation (H₂O₂/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O₃/UV), ozonation joined to titanium dioxide photo-catalysis (TiO₂/UV+O₃), sole photo-catalysis (TiO₂/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO₂/UV+H₂O₂) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products. PMID:21726140

  1. Advanced alarm systems: Display and processing issues

    SciTech Connect

    O`Hara, J.M.; Wachtel, J.; Perensky, J.

    1995-05-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) deficiencies associated with nuclear power plant alarm systems. The overall objective of the study is to develop HFE review guidance for alarm systems. In support of this objective, human performance issues needing additional research were identified. Among the important issues were alarm processing strategies and alarm display techniques. This paper will discuss these issues and briefly describe our current research plan to address them.

  2. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    SciTech Connect

    Iliescu, Bogdan; Haskal, Ziv J.

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  3. Writer Identification Using Inexpensive Signal Processing Techniques

    NASA Astrophysics Data System (ADS)

    Mokhov, Serguei A.; Song, Miao; Suen, Ching Y.

    We propose to use novel and classical audio and text signal-processing and otherwise techniques for “inexpensive” fast writer identification tasks of scanned hand-written documents “visually”. The “inexpensive” refers to the efficiency of the identification process in terms of CPU cycles while preserving decent accuracy for preliminary identification. This is a comparative study of multiple algorithm combinations in a pattern recognition pipeline implemented in Java around an open-source Modular Audio Recognition Framework (MARF) that can do a lot more beyond audio. We present our preliminary experimental findings in such an identification task. We simulate “visual” identification by “looking” at the hand-written document as a whole rather than trying to extract fine-grained features out of it prior classification.

  4. Clinical decision support systems for brain tumor characterization using advanced magnetic resonance imaging techniques.

    PubMed

    Tsolaki, Evangelia; Kousi, Evanthia; Svolos, Patricia; Kapsalaki, Efthychia; Theodorou, Kyriaki; Kappas, Constastine; Tsougos, Ioannis

    2014-04-28

    In recent years, advanced magnetic resonance imaging (MRI) techniques, such as magnetic resonance spectroscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in order to resolve demanding diagnostic problems such as brain tumor characterization and grading, as these techniques offer a more detailed and non-invasive evaluation of the area under study. In the last decade a great effort has been made to import and utilize intelligent systems in the so-called clinical decision support systems (CDSS) for automatic processing, classification, evaluation and representation of MRI data in order for advanced MRI techniques to become a part of the clinical routine, since the amount of data from the aforementioned techniques has gradually increased. Hence, the purpose of the current review article is two-fold. The first is to review and evaluate the progress that has been made towards the utilization of CDSS based on data from advanced MRI techniques. The second is to analyze and propose the future work that has to be done, based on the existing problems and challenges, especially taking into account the new imaging techniques and parameters that can be introduced into intelligent systems to significantly improve their diagnostic specificity and clinical application.

  5. Processing Techniques and Applications of Silk Hydrogels in Bioengineering.

    PubMed

    Floren, Michael; Migliaresi, Claudio; Motta, Antonella

    2016-01-01

    Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications. PMID:27649251

  6. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    PubMed Central

    Floren, Michael; Migliaresi, Claudio; Motta, Antonella

    2016-01-01

    Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications. PMID:27649251

  7. Study on advanced information processing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Liu, Jyh-Charn

    1992-01-01

    Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.

  8. Recent advances in EEG data processing.

    PubMed

    Zetterberg, L H

    1978-01-01

    It is argued that the most interesting advances in EEG signal processing are with methods based on descriptive mathematical models of the process. Formulation of auto-regressive (AR) and mixed autoregressive and moving average (ARMA) models is reviewed for the scalar and the multidimensional cases and extensions to allow time-varying coefficients are pointed out. Data processing with parametric models, DPPM, involves parameter estimation and a large number of algorithms are available. Emphasis is put on those that are simple to apply and require a modest amount of computation. A recursive algorithm by Levinson, Robinson and Durbin is well suited for estimation of the coefficients in the AR model and for tests of model order. It is applicable to both the scalar and multidimensional cases. The ARMA model can be handled by approximation of an AR model or by nonlinear optimization. Recursive estimation with AR and ARMA models is reviewed and the connection with the Kalman filter pointed out. In this way processes with time-varying properties may be handled and a stationarity index is defined. The recursive algorithms can deal with AR or ARMA models in the same way. A reformulation of the algorithm to include sparsely updated parameter estimates significantly speeds up the calculations. It will allow several EEG channels to be handled simultaneously in real time on a modern minicomputer installation. DPPM has been particularly successful in the areas of spectral analysis and detection of short transients such as spikes and sharp waves. Recently some interesting attempts have been made to apply classification algorithms to estimated parameters. A brief review is made of the main results in these areas.

  9. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  10. Techniques for developing approximate optimal advanced launch system guidance

    NASA Technical Reports Server (NTRS)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  11. Neurocysticercosis: evaluation with advanced magnetic resonance techniques and atypical forms.

    PubMed

    do Amaral, Lázaro Luís Faria; Ferreira, Rafael Martins; da Rocha, Antônio José; Ferreira, Nelson Paes Diniz Fortes

    2005-04-01

    Neurocysticercosis (NCC) is the most common helminthic infection of the central nervous system, but its diagnosis remains difficult. The purpose of this article is to perform a critical analysis of the literature and show our experience in the evaluation of NCC. We discuss the advanced MR technique applications such as diffusion and perfusion-weighted imaging, spectroscopy, cisternography with FLAIR, and supplemental O2 and 3D-CISS. The typical manifestations of NCC are described; emphasis is given to the unusual presentations. The atypical forms of neurocysticercosis were divided into: intraventricular, subarachnoid, spinal, orbital, and intraparenchymatous. Special attention was also given to reactivation of previously calcified lesions and neurocysticercosis associated with mesial temporal sclerosis.

  12. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  13. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  14. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  15. Multiple advanced surgical techniques to treat acquired seminal duct obstruction

    PubMed Central

    Jiang, Hong-Tao; Yuan, Qian; Liu, Yu; Liu, Zeng-Qin; Zhou, Zhen-Yu; Xiao, Ke-Feng; Yang, Jiang-Gen

    2014-01-01

    The aim of this study was to evaluate the outcomes of multiple advanced surgical treatments (i.e. microsurgery, laparoscopic surgery and endoscopic surgery) for acquired obstructive azoospermia. We analyzed the surgical outcomes of 51 patients with suspected acquired obstructive azoospermia consecutively who enrolled at our center between January 2009 and May 2013. Modified vasoepididymostomy, laparoscopically assisted vasovasostomy and transurethral incision of the ejaculatory duct with holmium laser were chosen and performed based on the different obstruction sites. The mean postoperative follow-up time was 22 months (range: 9 months to 52 months). Semen analyses were initiated at four postoperative weeks, followed by trimonthly (months 3, 6, 9 and 12) semen analyses, until no sperm was found at 12 months or until pregnancy was achieved. Patency was defined as >10,000 sperm ml−1 of semen. The obstruction sites, postoperative patency and natural pregnancy rate were recorded. Of 51 patients, 47 underwent bilateral or unilateral surgical reconstruction; the other four patients were unable to be treated with surgical reconstruction because of pelvic vas or intratesticular tubules obstruction. The reconstruction rate was 92.2% (47/51), and the patency rate and natural pregnancy rate were 89.4% (42/47) and 38.1% (16/42), respectively. No severe complications were observed. Using multiple advanced surgical techniques, more extensive range of seminal duct obstruction was accessible and correctable; thus, a favorable patency and pregnancy rate can be achieved. PMID:25337841

  16. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  17. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems.

    PubMed

    Neu, Thomas R; Manz, Bertram; Volke, Frank; Dynes, James J; Hitchcock, Adam P; Lawrence, John R

    2010-04-01

    Scientific imaging represents an important and accepted research tool for the analysis and understanding of complex natural systems. Apart from traditional microscopic techniques such as light and electron microscopy, new advanced techniques have been established including laser scanning microscopy (LSM), magnetic resonance imaging (MRI) and scanning transmission X-ray microscopy (STXM). These new techniques allow in situ analysis of the structure, composition, processes and dynamics of microbial communities. The three techniques open up quantitative analytical imaging possibilities that were, until a few years ago, impossible. The microscopic techniques represent powerful tools for examination of mixed environmental microbial communities usually encountered in the form of aggregates and films. As a consequence, LSM, MRI and STXM are being used in order to study complex microbial biofilm systems. This mini review provides a short outline of the more recent applications with the intention to stimulate new research and imaging approaches in microbiology.

  18. Process tool monitoring and matching using interferometry technique

    NASA Astrophysics Data System (ADS)

    Anberg, Doug; Owen, David M.; Mileham, Jeffrey; Lee, Byoung-Ho; Bouche, Eric

    2016-03-01

    The semiconductor industry makes dramatic device technology changes over short time periods. As the semiconductor industry advances towards to the 10 nm device node, more precise management and control of processing tools has become a significant manufacturing challenge. Some processes require multiple tool sets and some tools have multiple chambers for mass production. Tool and chamber matching has become a critical consideration for meeting today's manufacturing requirements. Additionally, process tools and chamber conditions have to be monitored to ensure uniform process performance across the tool and chamber fleet. There are many parameters for managing and monitoring tools and chambers. Particle defect monitoring is a well-known and established example where defect inspection tools can directly detect particles on the wafer surface. However, leading edge processes are driving the need to also monitor invisible defects, i.e. stress, contamination, etc., because some device failures cannot be directly correlated with traditional visualized defect maps or other known sources. Some failure maps show the same signatures as stress or contamination maps, which implies correlation to device performance or yield. In this paper we present process tool monitoring and matching using an interferometry technique. There are many types of interferometry techniques used for various process monitoring applications. We use a Coherent Gradient Sensing (CGS) interferometer which is self-referencing and enables high throughput measurements. Using this technique, we can quickly measure the topography of an entire wafer surface and obtain stress and displacement data from the topography measurement. For improved tool and chamber matching and reduced device failure, wafer stress measurements can be implemented as a regular tool or chamber monitoring test for either unpatterned or patterned wafers as a good criteria for improved process stability.

  19. Novel digital signal processing and detection techniques

    NASA Astrophysics Data System (ADS)

    Liu, B.

    1981-09-01

    In the area of narrowband signal processing, design rules are developed for optimum decimator and interpolator, a new efficient scheme using recursive filter for decimation/interpolation is proposed, and a novel approach to the computation of narrowband spectra is shown to yield substantial saving over conventional approaches. Results on the implementation of recursive filters with poles near the unit circle that produces significantly reduced roundoff error include a transformation technique, a scheme to modify the quantizer error spectrum, and a new computationally efficient low noise filter structure. In the area of nonclassical signal detection, several results were derived on nonparametric sequential procedures and on the quantization of signal for detection. In addition, a programmable charge transfer device filter is developed, several problems concerning ADPCM are investigated, results are obtained on FFT roundoff error including the prime factor algorithm, and an effective method of generating random sequences is studied.

  20. Natural language processing and advanced information management

    NASA Technical Reports Server (NTRS)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  1. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  2. Advanced reburning with new process enhancements

    SciTech Connect

    Folsom, B.; Payne, R.; Moyeda, D.

    1996-01-01

    Advanced Reburning (AR) is a synergistic integration of reburning and selective non-catalytic reduction (SNCR) which can reduce NO{sub x} emissions by over 85% from boilers and furnaces. Reburning is used to set up conditions which optimize the performance of SNCR including broadening of the temperature window and reduction of ammonia slip. AR has been tested extensively at pilot scale as part of two DOE projects. Recently, two AR improvements have been developed and tested at bench scale: reagent injection into the reburning zone and specific promoters which enhance NO{sub x} control, broaden the SNCR temperature window, and further reduce ammonia slip. The reburning zone reagent injection can be used to eliminate the injection of urea or ammonia SNCR agents thus significantly reducing total capital cost. Alternately, two injection stages can be used to increase NO{sub x} control to 95%. This paper presents the results of pilot and bench scale tests of both the AR and the new process enhancements. Plans for additional development and a full scale field evaluation are discussed.

  3. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  4. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  5. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  6. Bone feature analysis using image processing techniques.

    PubMed

    Liu, Z Q; Austin, T; Thomas, C D; Clement, J G

    1996-01-01

    In order to establish the correlation between bone structure and age, and information about age-related bone changes, it is necessary to study microstructural features of human bone. Traditionally, in bone biology and forensic science, the analysis if bone cross-sections has been carried out manually. Such a process is known to be slow, inefficient and prone to human error. Consequently, the results obtained so far have been unreliable. In this paper we present a new approach to quantitative analysis of cross-sections of human bones using digital image processing techniques. We demonstrate that such a system is able to extract various bone features consistently and is capable of providing more reliable data and statistics for bones. Consequently, we will be able to correlate features of bone microstructure with age and possibly also with age related bone diseases such as osteoporosis. The development of knowledge-based computer vision-systems for automated bone image analysis can now be considered feasible.

  7. Single Molecule Techniques for Advanced in situ Hybridization

    SciTech Connect

    Hollars, C W; Stubbs, L; Carlson, K; Lu, X; Wehri, E

    2003-02-03

    One of the most significant achievements of modern science is completion of the human genome sequence, completed in the year 2000. Despite this monumental accomplishment, researchers have only begun to understand the relationships between this three-billion-nucleotide genetic code and the regulation and control of gene and protein expression within each of the millions of different types of highly specialized cells. Several methodologies have been developed for the analysis of gene and protein expression in situ, yet despite these advancements, the pace of such analyses is extremely limited. Because information regarding the precise timing and location of gene expression is a crucial component in the discovery of new pharmacological agents for the treatment of disease, there is an enormous incentive to develop technologies that accelerate the analytical process. Here we report on the use of plasmon resonant particles as advanced probes for in situ hybridization. These probes are used for the detection of low levels of gene-probe response and demonstrate a detection method that enables precise, simultaneous localization within a cell of the points of expression of multiple genes or proteins in a single sample.

  8. Intelligent processing techniques for sensor fusion

    NASA Astrophysics Data System (ADS)

    Byrd, Katherine A.; Smith, Bart; Allen, Doug; Morris, Norman; Bjork, Charles A., Jr.; Deal-Giblin, Kim; Rushing, John A.

    1998-03-01

    Intelligent processing techniques which can effectively combine sensor data from disparate sensors by selecting and using only the most beneficial individual sensor data is a critical element of exoatmospheric interceptor systems. A major goal of these algorithms is to provide robust discrimination against stressing threats in poor a priori conditions, and to incorporate adaptive approaches in off- nominal conditions. This paper summarizes the intelligent processing algorithms being developed, implemented and tested to intelligently fuse data from passive infrared and active LADAR sensors at the measurement, feature and decision level. These intelligent algorithms employ dynamic selection of individual sensors features and the weighting of multiple classifier decisions to optimize performance in good a priori conditions and robustness in poor a priori conditions. Features can be dynamically selected based on an estimate of the feature confidence which is determined from feature quality and weighting terms derived from the quality of sensor data and expected phenomenology. Multiple classifiers are employed which use both fuzzy logic and knowledge based approaches to fuse the sensor data and to provide a target lethality estimate. Target designation decisions can be made by fusing weighted individual classifier decisions whose output contains an estimate of the confidence of the data and the discrimination decisions. The confidence in the data and decisions can be used in real time to dynamically select different sensor feature data or to request additional sensor data on specific objects that have not been confidently identified as being lethal or non- lethal. The algorithms are implemented in C within a graphic user interface framework. Dynamic memory allocation and the sequentialy implementation of the feature algorithms are employed. The baseline set of fused sensor discrimination algorithms with intelligent processing are described in this paper. Example results

  9. Nondestructive Characterization by Advanced Synchrotron Light Techniques: Spectromicroscopy and Coherent Radiology

    PubMed Central

    Margaritondo, Giorgio; Hwu, Yeukuang; Je, Jung Ho

    2008-01-01

    The advanced characteristics of synchrotron light has led in recent years to the development of a series of new experimental techniques to investigate chemical and physical properties on a microscopic scale. Although originally developed for materials science and biomedical research, such techniques find increasing applications in other domains – and could be quite useful for the study and conservation of cultural heritage. Specifically, they can nondestructively provide detailed chemical composition information that can be useful for the identification of specimens, for the discovery of historical links based on the sources of chemical raw materials and on chemical processes, for the analysis of damage, their causes and remedies and for many other issues. Likewise, morphological and structural information on a microscopic scale is useful for the identification, study and preservation of many different cultural and historical specimens. We concentrate here on two classes of techniques: in the first case, photoemission spectromicroscopy. This is the result of the advanced evolution of photoemission techniques like ESCA (Electron Microscopy for Chemical Analysis). By combining high lateral resolution to spectroscopy, photoemission spectromicroscopy can deliver fine chemical information on a microscopic scale in a nondestructive fashion. The second class of techniques exploits the high lateral coherence of modern synchrotron sources, a byproduct of the quest for high brightness or brilliance. We will see that such techniques now push radiology into the submicron scale and the submillisecond time domain. Furthermore, they can be implemented in a tomographic mode, increasing the information and becoming potentially quite useful for the analysis of cultural heritage specimens.

  10. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  11. Plan for advanced microelectronics processing technology application

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  12. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  13. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  14. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  15. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  16. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    PubMed

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  17. Achieving miniature sensor systems via advanced packaging techniques

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Bobier, Kevin; Demmin, Jeffrey

    2005-05-01

    Demands for miniaturized networked sensors that can be deployed in large quantities dictate that the packages be small and cost effective. In order to accomplish these objectives, system developers generally apply advanced packaging techniques to proven systems. A partnership of Nova Engineering and Tessera begins with a baseline of Nova's Unattended Ground Sensors (UGS) technology and utilizes Tessera's three-dimensional (3D) Chip-Scale Packaging (CSP), Multi-Chip Packaging (MCP), and System-in-Package (SIP) innovations to enable novel methods for fabricating compact, vertically integrated sensors utilizing digital, RF, and micro-electromechanical systems (MEMS) devices. These technologies, applied to a variety of sensors and integrated radio architectures, enable diverse multi-modal sensing networks with wireless communication capabilities. Sensors including imaging, accelerometers, acoustical, inertial measurement units, and gas and pressure sensors can be utilized. The greatest challenge to high density, multi-modal sensor networks is the ability to test each component prior to integration, commonly called Known Good Die (KGD) testing. In addition, the mix of multi-sourcing and high technology magnifies the challenge of testing at the die level. Utilizing Tessera proprietary CSP, MCP, and SIP interconnection methods enables fully testable, low profile stacking to create multi-modal sensor radios with high yield.

  18. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  19. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  20. Nitride Fuel Development Using Cryo-process Technique

    SciTech Connect

    O'Brien, Brandi M; Windes, William E

    2007-06-01

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles held together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.

  1. Advanced Reduction Processes: A New Class of Treatment Processes

    PubMed Central

    Vellanki, Bhanu Prakash; Batchelor, Bill; Abdel-Wahab, Ahmed

    2013-01-01

    Abstract A new class of treatment processes called advanced reduction processes (ARPs) is proposed. ARPs combine activation methods and reducing agents to form highly reactive reducing radicals that degrade oxidized contaminants. Batch screening experiments were conducted to identify effective ARPs by applying several combinations of activation methods (ultraviolet light, ultrasound, electron beam, and microwaves) and reducing agents (dithionite, sulfite, ferrous iron, and sulfide) to degradation of four target contaminants (perchlorate, nitrate, perfluorooctanoic acid, and 2,4 dichlorophenol) at three pH-levels (2.4, 7.0, and 11.2). These experiments identified the combination of sulfite activated by ultraviolet light produced by a low-pressure mercury vapor lamp (UV-L) as an effective ARP. More detailed kinetic experiments were conducted with nitrate and perchlorate as target compounds, and nitrate was found to degrade more rapidly than perchlorate. Effectiveness of the UV-L/sulfite treatment process improved with increasing pH for both perchlorate and nitrate. We present the theory behind ARPs, identify potential ARPs, demonstrate their effectiveness against a wide range of contaminants, and provide basic experimental evidence in support of the fundamental hypothesis for ARP, namely, that activation methods can be applied to reductants to form reducing radicals that degrade oxidized contaminants. This article provides an introduction to ARPs along with sufficient data to identify potentially effective ARPs and the target compounds these ARPs will be most effective in destroying. Further research will provide a detailed analysis of degradation kinetics and the mechanisms of contaminant destruction in an ARP. PMID:23840160

  2. Safety Analysis of Soybean Processing for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  3. Silicon and germanium crystallization techniques for advanced device applications

    NASA Astrophysics Data System (ADS)

    Liu, Yaocheng

    Three-dimensional architectures are believed to be one of the possible approaches to reduce interconnect delay in integrated circuits. Metal-induced crystallization (MIC) can produce reasonably high-quality Si crystals with low-temperature processing, enabling the monolithic integration of multilevel devices and circuits. A two-step MIC process was developed to make single-crystal Si pillars on insulator by forming a single-grain NiSi2 template in the first step and crystallizing the amorphous Si by NiSi2-mediated solid-phase epitaxy (SPE) in the second step. A transmission electron microscopy study clearly showed the quality improvement over the traditional MIC process. Another crystallization technique developed is rapid melt growth (RMG) for the fabrication of Ge crystals and Ge-on-insulator (GeOI) substrates. Ge is an important semiconductor with high carrier mobility and excellent optoelectronic properties. GeOI substrates are particularly desired to achieve high device performances and to solve the process problems traditionally associated with bulk Ge wafers. High-quality Ge crystals and GeOI structures were grown on Si substrates using the novel rapid melt growth technique that integrates the key elements in Czochralski growth---seeding, melting, epitaxy and defect necking. Growth velocity and nucleation rate were calculated to determine the RMG process window. Self-aligned microcrucibles were created to hold the Ge liquid during the RMG annealing. Material characterization showed a very low defect density in the RMG GeOI structures. The Ge films are relaxed, with their orientations controlled by the Si substrates. P-channel MOSFETs and p-i-n photodetectors were fabricated with the GeOI substrates. The device properties are comparable to those obtained with bulk Ge wafers, indicating that the RMG GeOI substrates are well suited for device fabrication. A new theory, growth-induced barrier lowering (GIBL), is proposed to understand the defect generation in

  4. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  5. New Generation of High Resolution Ultrasonic Imaging Technique for Advanced Material Characterization: Review

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.

    The role of non-destructive material characterization and NDT is changing at a rapid rate, continuing to evolve alongside the dramatic development of novel techniques based on the principles of high-resolution imaging. The modern use of advanced optical, thermal, ultrasonic, laser-ultrasound, acoustic emission, vibration, electro-magnetic, and X-ray techniques, etc., as well as refined measurement and signal/data processing devices, allows for continuous generation of on-line information. As a result real-time process monitoring can be achieved, leading to the more effective and efficient control of numerous processes, greatly improving manufacturing as a whole. Indeed, concurrent quality inspection has become an attainable reality. With the advent of new materials for use in various structures, joints, and parts, however, innovative applications of modern NDT imaging techniques are necessary to monitor as many stages of manufacturing as possible. Simply put, intelligent advance manufacturing is impossible without actively integrating modern non-destructive evaluation into the production system.

  6. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  7. Comparison of three advanced chromatographic techniques for cannabis identification.

    PubMed

    Debruyne, D; Albessard, F; Bigot, M C; Moulin, M

    1994-01-01

    The development of chromatography technology, with the increasing availability of easier-to-use mass spectrometers combined with gas chromatography (GC), the use of diode-array or programmable variable-wavelength ultraviolet absorption detectors in conjunction with high-performance liquid chromatography (HPLC), and the availability of scanners capable of reading thin-layer chromatography (TLC) plates in the ultraviolet and visible regions, has made for easier, quicker and more positive identification of cannabis samples that standard analytical laboratories are occasionally required to undertake in the effort to combat drug addiction. At laboratories that do not possess the technique of GC combined with mass spectrometry, which provides an irrefutable identification, the following procedure involving HPLC or TLC techniques may be used: identification of the chromatographic peaks corresponding to each of the three main cannabis constituents-cannabidiol (CBD), delta-9-tetrahydrocannabinol (delta-9-THC) and cannabinol (CBN)-by comparison with published data in conjunction with a specific absorption spectrum for each of those constituents obtained between 200 and 300 nm. The collection of the fractions corresponding to the three major cannabinoids at the HPLC system outlet and the cross-checking of their identity in the GC process with flame ionization detection can further corroborate the identification and minimize possible errors due to interference.

  8. 40 CFR 35.935-20 - Innovative processes and techniques.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Innovative processes and techniques. 35... § 35.935-20 Innovative processes and techniques. If the grantee receives 85-percent grant assistance for innovative processes and techniques, the following conditions apply during the 5-year...

  9. 40 CFR 35.935-20 - Innovative processes and techniques.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Innovative processes and techniques. 35... § 35.935-20 Innovative processes and techniques. If the grantee receives 85-percent grant assistance for innovative processes and techniques, the following conditions apply during the 5-year...

  10. 40 CFR 35.935-20 - Innovative processes and techniques.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Innovative processes and techniques. 35... § 35.935-20 Innovative processes and techniques. If the grantee receives 85-percent grant assistance for innovative processes and techniques, the following conditions apply during the 5-year...

  11. 40 CFR 35.935-20 - Innovative processes and techniques.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Innovative processes and techniques. 35... § 35.935-20 Innovative processes and techniques. If the grantee receives 85-percent grant assistance for innovative processes and techniques, the following conditions apply during the 5-year...

  12. 40 CFR 35.935-20 - Innovative processes and techniques.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Innovative processes and techniques. 35... § 35.935-20 Innovative processes and techniques. If the grantee receives 85-percent grant assistance for innovative processes and techniques, the following conditions apply during the 5-year...

  13. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  14. Application of advanced oxidation processes for TNT removal: A review.

    PubMed

    Ayoub, Kaidar; van Hullebusch, Eric D; Cassir, Michel; Bermond, Alain

    2010-06-15

    Nowadays, there are increasingly stringent regulations requiring drastic treatment of 2,4,6-trinitrotoluene (TNT) contaminated waters to generate treated waters which could be easily reused or released into the environment without any harmful effects. TNT is among the most highly suspected explosive compounds that interfere with groundwater system due to its high toxicity and low biodegradability. The present work is an overview of the literature on TNT removal from polluted waters and soils and, more particularly, its treatability by advanced oxidation processes (AOPs). Among the remediation technologies, AOPs constitute a promising technology for the treatment of wastewaters containing non-easily biodegradable organic compounds. Data concerning the degradation of TNT reported during the period 1990-2009 are evaluated in this review. Among the AOPs, the following techniques are successively debated: processes based on hydrogen peroxide (H(2)O(2)+UV, Fenton, photo-Fenton and Fenton-like processes), photocatalysis, processes based on ozone (O(3), O(3)+UV) and electrochemical processes. Kinetic constants related to TNT degradation and the different mechanistic degradation pathways are discussed. Possible future treatment strategies, such as, coupling AOP with biological treatment is also considered as a mean to improve TNT remediation efficiency and kinetic.

  15. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  16. Advanced Cell Culture Techniques for Cancer Drug Discovery

    PubMed Central

    Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

    2014-01-01

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

  17. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  18. Evaluation methodologies for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.

    1984-01-01

    The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.

  19. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  20. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    ERIC Educational Resources Information Center

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  1. Process Mapping: Tools, Techniques, & Critical Success Factors.

    ERIC Educational Resources Information Center

    Kalman, Howard K.

    2002-01-01

    Explains process mapping as an analytical tool and a process intervention that performance technologists can use to improve human performance by reducing error variance. Highlights include benefits of process mapping; and critical success factors, including organizational readiness, time commitment by participants, and the availability of a…

  2. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  3. Processing Nanostructured Sensors Using Microfabrication Techniques

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; VanderWal, Randall L.; Evans, Laura J.; Xu, Jennifer C.

    2010-01-01

    Standard microfabrication techniques can be implemented and scaled to help assemble nanoscale microsensors. Currently nanostructures are often deposited onto materials primarily by adding them to a solution, then applying the solution in a thin film. This results in random placement of the nanostructures with no controlled order, and no way to accurately reproduce the placement. This method changes the means by which microsensors with nanostructures are fabricated. The fundamental advantage to this approach is that it enables standard microfabrication techniques to be applied in the repeated manufacture of nanostructured sensors on a microplatform.

  4. Processing of Nanostructured Devices Using Microfabrication Techniques

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W (Inventor); Xu, Jennifer C (Inventor); Evans, Laura J (Inventor); Kulis, Michael H (Inventor); Berger, Gordon M (Inventor); Vander Wal, Randall L (Inventor)

    2014-01-01

    Systems and methods that incorporate nanostructures into microdevices are discussed herein. These systems and methods can allow for standard microfabrication techniques to be extended to the field of nanotechnology. Sensors incorporating nanostructures can be fabricated as described herein, and can be used to reliably detect a range of gases with high response.

  5. Advanced materials for geothermal energy processes

    SciTech Connect

    Kukacka, L.E.

    1985-08-01

    The primary goal of the geothermal materials program is to ensure that the private sector development of geothermal energy resources is not constrained by the availability of technologically and economically viable materials of construction. This requires the performance of long-term high risk GHTD-sponsored materials R and D. Ongoing programs described include high temperature elastomers for dynamic sealing applications, advanced materials for lost circulation control, waste utilization and disposal, corrosion resistant elastomeric liners for well casing, and non-metallic heat exchangers. 9 refs.

  6. Recent advances in biosensor techniques for environmental monitoring.

    PubMed

    Rogers, K R

    2006-05-24

    Biosensors for environmental applications continue to show advances and improvements in areas such as sensitivity, selectivity and simplicity. In addition to detecting and measuring specific compounds or compound classes such as pesticides, hazardous industrial chemicals, toxic metals, and pathogenic bacteria, biosensors and bioanalytical assays have been designed to measure biological effects such as cytotoxicity, genotoxicity, biological oxygen demand, pathogenic bacteria, and endocrine disruption effects. This article is intended to discuss recent advances in the area of biosensors for environmental applications.

  7. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  8. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  9. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  10. Advanced techniques in IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2006-04-01

    Within the past five years, the Pest Management industry has become aware that IR thermography can aid in the detection of pest infestations and locate other conditions that are within the purview of the industry. This paper will review the applications that can be utilized by the pest management professional and discuss the advanced techniques that may be required in conjunction with thermal imaging to locate insect and other pest infestations, moisture within structures, the verification of data and the special challenges associated with the inspection process.

  11. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  12. Improving Learning Processes: Principles, Strategies and Techniques.

    ERIC Educational Resources Information Center

    Cox, Philip

    This guide, which examines the relationship between learning processes and learning outcomes, is aimed at senior managers, quality managers, and others at colleges and other post-16 learning providers in the United Kingdom. It is intended to help them define the key processes undertaken by learning providers, understand the critical relationships…

  13. Processing techniques for global land 1-km AVHRR data

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Steinwand, Daniel R.; Wivell, Charles E.; Hollaren, Douglas M.; Meyer, David

    1993-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in cooperation with several international science organizations has developed techniques for processing daily Advanced Very High Resolution Radiometer (AVHRR) 1-km data of the entire global land surface. These techniques include orbital stitching, geometric rectification, radiometric calibration, and atmospheric correction. An orbital stitching algorithm was developed to combine consecutive observations acquired along an orbit by ground receiving stations into contiguous half-orbital segments. The geometric rectification process uses an AVHRR satellite model that contains modules for forward mapping, forward terrain correction, and inverse mapping with terrain correction. The correction is accomplished by using the hydrologic features coastlines and lakes from the Digital Chart of the World. These features are rasterized into the satellite projection and are matched to the AVHRR imagery using binary edge correlation techniques. The resulting coefficients are related to six attitude correction parameters: roll, roll rate, pitch, pitch rate, yaw, and altitude. The image can then be precision corrected to a variety of map projections and user-selected image frames. Because the AVHRR lacks onboard calibration for the optical wavelengths, a series of time-variant calibration coefficients derived from vicarious calibration methods and are used to model the degradation profile of the instruments. Reducing atmospheric effects on AVHRR data is important. A method has been develop that will remove the effects of molecular scattering and absorption from clear sky observations, using climatological measurements of ozone. Other methods to remove the effects of water vapor and aerosols are being investigated.

  14. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  15. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  16. Advanced Millimeter-Wave Security Portal Imaging Techniques

    SciTech Connect

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  17. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  18. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  19. Advanced Image Processing of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Jobson, Daniel J.; Rahman, Zia-ur; Hines, Glenn

    2006-01-01

    Aerial imagery of the Earth is an invaluable tool for the assessment of ground features, especially during times of disaster. Researchers at the NASA Langley Research Center have developed techniques which have proven to be useful for such imagery. Aerial imagery from various sources, including Langley's Boeing 757 Aries aircraft, has been studied extensively. This paper discusses these studies and demonstrates that better-than-observer imagery can be obtained even when visibility is severely compromised. A real-time, multi-spectral experimental system will be described and numerous examples will be shown.

  20. Processing dentures using a microwave technique.

    PubMed

    Ilbay, S G; Güvener, S; Alkumru, H N

    1994-01-01

    In this research the technique of curing denture base acrylic resins by microwave energy was investigated with respect to polymerization method, hardness, mechanical and physical properties. Twenty-one different polymerization methods were used by varying radiation power and curing time. The Vickers hardness test was applied to the samples which were polymerized. The average value was found to be 22.46 VHN (Vicker hardness number), that is, almost the same as conventionally cured acrylic. The recommended polymerization method of curing acrylic was 3 min at 550 W in a microwave oven. Mechanical and physical tests were applied to the samples which were cured by the recommended polymerization method. The average transverse load to fracture value was found to be 7.6 kg, and the transverse deflection value was 1.5 mm at 3500 g, and 2.9 mm at 5000 g. Water sorption of acrylic resin cured by microwave energy was 0.72 mg cm-2 and the solubility rate in water was 0.038 mg cm-2. Results conformed with the ADA specification. The findings showed that acrylic resin cured by microwave energy is more resistant to mechanical failure than conventionally cured acrylic and this technique can safely be applied to the production of denture bases.

  1. Surface electromyography signal processing and classification techniques.

    PubMed

    Chowdhury, Rubana H; Reaz, Mamun B I; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A A; Chellappan, K; Chang, T G

    2013-09-17

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

  2. Surface Electromyography Signal Processing and Classification Techniques

    PubMed Central

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  3. A general software reliability process simulation technique

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1991-01-01

    The structure and rationale of the generalized software reliability process, together with the design and implementation of a computer program that simulates this process are described. Given assumed parameters of a particular project, the users of this program are able to generate simulated status timelines of work products, numbers of injected anomalies, and the progress of testing, fault isolation, repair, validation, and retest. Such timelines are useful in comparison with actual timeline data, for validating the project input parameters, and for providing data for researchers in reliability prediction modeling.

  4. Recent advances in microscopic techniques for visualizing leukocytes in vivo

    PubMed Central

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  5. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  6. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  7. Coordinating developmental and psychoanalytic processes: conceptualizing technique.

    PubMed

    Abrams, S; Solnit, A J

    1998-01-01

    Throughout childhood and adolescence, psychological growth proceeds in a sequence of progressive hierarchical organizations. Consequently, children are continuously consolidating existing positions or are in transition from one to another. When analytic treatment is proposed, analysts often find themselves in the position of being required to technically coordinate the requirements of the analytic process with those of the ongoing developmental process. While it is the patient who will ultimately bring the needs of both processes together, the approach the analyst assumes to recognizing and addressing these needs can have a facilitating influence on the treatment. Play, for example, is a window on old conflicts and impaired object relationships from the past, but it is also a way in which children consolidate existing organizational hierarchies. Similarly, the analytic interaction provides a pathway to the past, but it is also used by children to provide the building blocks for newly emerging structures. To facilitate further clinical research, a conceptual outline of the relationship between the two processes is provided. PMID:9565900

  8. Technique for analyzing human respiratory process

    NASA Technical Reports Server (NTRS)

    Liu, F. F.

    1970-01-01

    Electronic system /MIRACLE 2/ places frequency and gas flow rate of the respiratory process within a common frame of reference to render them comparable and compatible with ''real clock time.'' Numerous measurements are accomplished accurately on a strict one-minute half-minute, breath-by-breath, or other period basis.

  9. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  10. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  11. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  12. Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques.

    PubMed

    Mazaj, Matjaž; Kaučič, Venčeslav; Zabukovec Logar, Nataša

    2016-01-01

    The research on metal-organic frameworks (MOFs) experienced rapid progress in recent years due to their structure diversity and wide range of application opportunities. Continuous progress of X-ray and neutron diffraction methods enables more and more detailed insight into MOF's structural features and significantly contributes to the understanding of their chemistry. Improved instrumentation and data processing in high-resolution X-ray diffraction methods enables the determination of new complex MOF crystal structures in powdered form. By the use of neutron diffraction techniques, a lot of knowledge about the interaction of guest molecules with crystalline framework has been gained in the past few years. Moreover, in-situ time-resolved studies by various diffraction and scattering techniques provided comprehensive information about crystallization kinetics, crystal growth mechanism and structural dynamics triggered by external physical or chemical stimuli. The review emphasizes most relevant advanced structural studies of MOFs based on powder X-ray and neutron scattering. PMID:27640372

  13. Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques.

    PubMed

    Mazaj, Matjaž; Kaučič, Venčeslav; Zabukovec Logar, Nataša

    2016-01-01

    The research on metal-organic frameworks (MOFs) experienced rapid progress in recent years due to their structure diversity and wide range of application opportunities. Continuous progress of X-ray and neutron diffraction methods enables more and more detailed insight into MOF's structural features and significantly contributes to the understanding of their chemistry. Improved instrumentation and data processing in high-resolution X-ray diffraction methods enables the determination of new complex MOF crystal structures in powdered form. By the use of neutron diffraction techniques, a lot of knowledge about the interaction of guest molecules with crystalline framework has been gained in the past few years. Moreover, in-situ time-resolved studies by various diffraction and scattering techniques provided comprehensive information about crystallization kinetics, crystal growth mechanism and structural dynamics triggered by external physical or chemical stimuli. The review emphasizes most relevant advanced structural studies of MOFs based on powder X-ray and neutron scattering.

  14. Selected applications and processing techniques for LTCC.

    SciTech Connect

    Peterson, Kenneth Allen; Krueger, Daniel S.; Sandoval, Charles E.

    2010-11-01

    Low Temperature Cofired Ceramic has proven itself in microelectronics, microsystems (including microfluidic systems), sensors, RF features, and various non-electronic applications. We will discuss selected applications and the processing associated with those applications. We will then focus on our recent work in the area of EMI shielding using full tape thickness features (FTTF) and sidewall metallization. The FTTF is very effective in applications with -150 dB isolation requirements, but presents obvious processing difficulties in full-scale fabrication. The FTTF forms a single continuous solid wall around the volume to be shielded by using sequential punching and feature-filling. We discuss the material incompatibilities and manufacturing considerations that need to be addressed for such structures and show preliminary implementations.

  15. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  16. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  17. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  18. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  19. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques

    PubMed Central

    Oedit, Amar; Ramautar, Rawi; Hankemeier, Thomas

    2016-01-01

    Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid‐liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre‐concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012–November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed. PMID:26864699

  20. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  1. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  2. Advances in Processing of Bulk Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  3. Developing processing techniques for Skylab data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Morgenstern, J. P.

    1975-01-01

    The author has identified the following significant results. The effects of misregistration and the scan-line-straightening algorithm on multispectral data were found to be: (1) there is greatly increased misregistration in scan-line-straightening data over conic data; (2) scanner caused misregistration between any pairs of channels may not be corrected for in scan-line-straightened data; and (3) this data will have few pure field center pixels than will conic data. A program SIMSIG was developed implementing the signature simulation model. Data processing stages of the experiment were carried out, and an analysis was made of the effects of spatial misregistration on field center classification accuracy. Fifteen signatures originally used for classifying the data were analyzed, showing the following breakdown: corn (4 signatures), trees (2), brush (1), grasses, weeds, etc. (5), bare soil (1), soybeans (1), and alfalfa (1).

  4. Sparse regularization techniques provide novel insights into outcome integration processes.

    PubMed

    Mohr, Holger; Wolfensteller, Uta; Frimmel, Steffi; Ruge, Hannes

    2015-01-01

    By exploiting information that is contained in the spatial arrangement of neural activations, multivariate pattern analysis (MVPA) can detect distributed brain activations which are not accessible by standard univariate analysis. Recent methodological advances in MVPA regularization techniques have made it feasible to produce sparse discriminative whole-brain maps with highly specific patterns. Furthermore, the most recent refinement, the Graph Net, explicitly takes the 3D-structure of fMRI data into account. Here, these advanced classification methods were applied to a large fMRI sample (N=70) in order to gain novel insights into the functional localization of outcome integration processes. While the beneficial effect of differential outcomes is well-studied in trial-and-error learning, outcome integration in the context of instruction-based learning has remained largely unexplored. In order to examine neural processes associated with outcome integration in the context of instruction-based learning, two groups of subjects underwent functional imaging while being presented with either differential or ambiguous outcomes following the execution of varying stimulus-response instructions. While no significant univariate group differences were found in the resulting fMRI dataset, L1-regularized (sparse) classifiers performed significantly above chance and also clearly outperformed the standard L2-regularized (dense) Support Vector Machine on this whole-brain between-subject classification task. Moreover, additional L2-regularization via the Elastic Net and spatial regularization by the Graph Net improved interpretability of discriminative weight maps but were accompanied by reduced classification accuracies. Most importantly, classification based on sparse regularization facilitated the identification of highly specific regions differentially engaged under ambiguous and differential outcome conditions, comprising several prefrontal regions previously associated with

  5. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  6. Quantum Information Processing using Scalable Techniques

    NASA Astrophysics Data System (ADS)

    Hanneke, D.; Bowler, R.; Jost, J. D.; Home, J. P.; Lin, Y.; Tan, T.-R.; Leibfried, D.; Wineland, D. J.

    2011-05-01

    We report progress towards improving our previous demonstrations that combined all the fundamental building blocks required for scalable quantum information processing using trapped atomic ions. Included elements are long-lived qubits; a laser-induced universal gate set; state initialization and readout; and information transport, including co-trapping a second ion species to reinitialize motion without qubit decoherence. Recent efforts have focused on reducing experimental overhead and increasing gate fidelity. Most of the experimental duty cycle was previously used for transport, separation, and recombination of ion chains as well as re-cooling of motional excitation. We have addressed these issues by developing and implementing an arbitrary waveform generator with an update rate far above the ions' motional frequencies. To reduce gate errors, we actively stabilize the position of several UV (313 nm) laser beams. We have also switched the two-qubit entangling gate to one that acts directly on 9Be+ hyperfine qubit states whose energy separation is magnetic-fluctuation insensitive. This work is supported by DARPA, NSA, ONR, IARPA, Sandia, and the NIST Quantum Information Program.

  7. Brain development in preterm infants assessed using advanced MRI techniques.

    PubMed

    Tusor, Nora; Arichi, Tomoki; Counsell, Serena J; Edwards, A David

    2014-03-01

    Infants who are born preterm have a high incidence of neurocognitive and neurobehavioral abnormalities, which may be associated with impaired brain development. Advanced magnetic resonance imaging (MRI) approaches, such as diffusion MRI (d-MRI) and functional MRI (fMRI), provide objective and reproducible measures of brain development. Indices derived from d-MRI can be used to provide quantitative measures of preterm brain injury. Although fMRI of the neonatal brain is currently a research tool, future studies combining d-MRI and fMRI have the potential to assess the structural and functional properties of the developing brain and its response to injury.

  8. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  9. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  10. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  11. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  12. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  13. Integration of advanced nuclear materials separation processes

    SciTech Connect

    Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D.; Buelow, S.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.

  14. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  15. Advanced modeling techniques in application to plasma pulse treatment

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. F.; Pashchenko, F. F.

    2016-06-01

    Different approaches considered for simulation of plasma pulse treatment process. The assumption of a significant non-linearity of processes in the treatment of oil wells has been confirmed. Method of functional transformations and fuzzy logic methods suggested for construction of a mathematical model. It is shown, that models, based on fuzzy logic are able to provide a satisfactory accuracy of simulation and prediction of non-linear processes observed.

  16. The importance of new processing techniques in tissue engineering

    NASA Technical Reports Server (NTRS)

    Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1996-01-01

    The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.

  17. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C; Tenembaum, Silvia N; Banwell, Brenda; Greenberg, Benjamin M; Bennett, Jeffrey L; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T; Cabre, Philippe; Marignier, Romain; Tedder, Thomas; van Pelt, Danielle; Broadley, Simon; Chitnis, Tanuja; Wingerchuk, Dean; Pandit, Lekha; Leite, Maria Isabel; Apiwattanakul, Metha; Kleiter, Ingo; Prayoonwiwat, Naraporn; Han, May; Hellwig, Kerstin; van Herle, Katja; John, Gareth; Hooper, D Craig; Nakashima, Ichiro; Sato, Douglas; Yeaman, Michael R; Waubant, Emmanuelle; Zamvil, Scott; Stüve, Olaf; Aktas, Orhan; Smith, Terry J; Jacob, Anu; O'Connor, Kevin

    2015-07-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease.

  18. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    PubMed Central

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.

    2016-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  19. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C; Tenembaum, Silvia N; Banwell, Brenda; Greenberg, Benjamin M; Bennett, Jeffrey L; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T; Cabre, Philippe; Marignier, Romain; Tedder, Thomas; van Pelt, Danielle; Broadley, Simon; Chitnis, Tanuja; Wingerchuk, Dean; Pandit, Lekha; Leite, Maria Isabel; Apiwattanakul, Metha; Kleiter, Ingo; Prayoonwiwat, Naraporn; Han, May; Hellwig, Kerstin; van Herle, Katja; John, Gareth; Hooper, D Craig; Nakashima, Ichiro; Sato, Douglas; Yeaman, Michael R; Waubant, Emmanuelle; Zamvil, Scott; Stüve, Olaf; Aktas, Orhan; Smith, Terry J; Jacob, Anu; O'Connor, Kevin

    2015-07-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  20. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  1. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  2. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    PubMed

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-01-01

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions. PMID:27645770

  3. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities.

  4. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  5. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  6. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  7. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion.

  8. Advances in dental veneers: materials, applications, and techniques.

    PubMed

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers.

  9. Advances in dental veneers: materials, applications, and techniques

    PubMed Central

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers. PMID:23674920

  10. The emerging role of advanced neuroimaging techniques for brain metastases.

    PubMed

    Nowosielski, Martha; Radbruch, Alexander

    2015-06-01

    Brain metastases are an increasingly encountered and frightening manifestation of systemic cancer. More effective therapeutic strategies for the primary tumor are resulting in longer patient survival on the one hand while on the other, better brain tumor detection has resulted from increased availability and development of more precise brain imaging methods. This review focuses on the emerging role of functional neuroimaging techniques; magnetic resonance imaging (MRI) as well as positron emission tomography (PET), in establishing diagnosis, for monitoring treatment response with an emphasis on new targeted as well as immunomodulatory therapies and for predicting prognosis in patients with brain metastases.

  11. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  12. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  13. PROLIFERATION RESISTANCE OF ADVANCED SPENT FUEL CONDITIONING PROCESS

    SciTech Connect

    MARLOW, JOHNNA B.; LEE, SANG Y.; THOMAS, KENNETH E.; MILLER, MICHAEL C.; KIM, H.D.

    2007-02-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyro-metallurgical spent fuel conditioning technology that is under development by the Korea Atomic Energy Research Institute (KAERI). KAERl has been developing this technology to resolve the high-level waste (HLW) disposition problem since 1997 and is planning to perform a lab-scale demonstration in 2008. The proposed concept is an electrometallurgical treatment technique that converts spent nuclear fuels into a single set of disposal metal forms to reduce the volume and simplify the qualification process. The goal of the project is to recover more than 99% of the actinides in metallic form from oxide spent fuel in a proliferation-resistant manner. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, decreasing the burden of the final disposal in terms of size, safety, and cost. The success of the ACP will depend on a number of factors. One key factor is 'proliferation resistance,' and it should be judged by the manner in which it addresses issues of proliferation concern. In this paper, the proliferation resistance of the ACP technology has been analyzed. The intrinsic and extrinsic proliferation resistance features of the ACP technology were examined for the pilot-scale ACP facility based on the Nuclear Energy Research Advisory Committee's TOPS (Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power System) metrics. It was found that the ACP system was more proliferation-resistant than aqueous technologies. The ACP as envisioned in current process flow is not capable of separating plutonium, and significant additional steps would be required to create a pathway to produce plutonium. However, like other processes, it could be modified to directly obtain weapon-usable materials. In this paper, several options are suggested for modification of the process or facility design in order to reduce the

  14. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  15. Advanced terahertz techniques for quality control and counterfeit detection

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  16. Advanced microscopy techniques resolving complex precipitates in steels

    NASA Astrophysics Data System (ADS)

    Saikaly, W.; Soto, R.; Bano, X.; Issartel, C.; Rigaut, G.; Charaï, A.

    1999-06-01

    Scanning electron microscopy as well as analytical transmission electron microscopy techniques such as high resolution, electron diffraction, energy dispersive X-ray spectrometry (EDX), parallel electron energy loss spectroscopy (PEELS) and elemental mapping via a Gatan Imaging Filter (GIF) have been used to study complex precipitation in commercial dual phase steels microalloyed with titanium. Titanium nitrides, titanium carbosulfides, titanium carbonitrides and titanium carbides were characterized in this study. Both carbon extraction replicas and thin foils were used as sample preparation techniques. On both the microscopic and nanometric scales, it was found that a large amount of precipitation occurred heterogeneously on already existing inclusions/precipitates. CaS inclusions (1 to 2 μm), already present in liquid steel, acted as nucleation sites for TiN precipitating upon the steel's solidification. In addition, TiC nucleated on existing smaller TiN (around 30 to 50 nm). Despite the complexity of such alloys, the statistical analysis conducted on the non-equilibrium samples were found to be in rather good agreement with the theoretical equilibrium calculations. Heterogeneous precipitation must have played a role in bringing these results closer together.

  17. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  18. Advanced coding techniques for few mode transmission systems.

    PubMed

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol.

  19. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  20. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  1. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  2. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  3. Recent Advances in Stable Isotope Techniques for N2O Source Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Baggs, E.; Mair, L.; Mahmood, S.

    2007-12-01

    The use of 13C, 15N and 18O enables us to overcome uncertainties associated with soil C and N processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, and are fundamental for examining interactions between C and N cycles. Here we will introduce the 15N-, 18O- and 13C-enrichment techniques we have developed to distinguish between different N2O-producing processes in situ in soils, presenting selected results, and will critically assess their potential, alone and in combination with molecular techniques, to help address key research questions for soil biogeochemistry and microbial ecology. We have developed 15N- 18O-enrichment techniques to distinguish between, and to quantify, N2O production during ammonia oxidation, nitrifier denitrification and denitrification. This provides a great advantage over natural abundance approaches as it enables quantification of N2O from each microbial source, which can be coupled with quantification of N2 production, and used to examine interactions between different processes and cycles. These approaches have also provided new insights into the N cycle and how it interacts with the C cycle. For example, we now know that ammonia oxidising bacteria significantly contribute to N2O emissions from soils, both via the traditionally accepted ammonia oxidation pathway, and also via denitrification (nitrifier denitrification) which can proceed even under aerobic conditions. We are also linking emissions from each source to diversity and activity of relevant microbial functional groups, for example through the development and application of a specific nirK primer for the nitrite reductase in ammonia oxidising bacteria. Recently, isotopomers have been proposed as an alternative for source partitioning N2O at natural abundance levels, and offers the potential to investigate N2O production from nitrate ammonification, and overcomes the

  4. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    SciTech Connect

    Lebedev, G. V. Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-15

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  5. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  6. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  7. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  8. Recent advances in techniques for tsetse-fly control*

    PubMed Central

    MacLennan, K. J. R.

    1967-01-01

    With the advent of modern persistent insecticides, it has become possible to utilize some of the knowledge that has accumulated on the ecology and bionomics of Glossina and to devise more effective techniques for the control and eventual extermination of these species. The present article, based on experience of the tsetse fly problem in Northern Nigeria, points out that the disadvantages of control techniques—heavy expenditure of money and manpower and undue damage to the biosystem—can now largely be overcome by basing the application of insecticides on knowledge of the habits of the particular species of Glossina in a particular environment. Two factors are essential to the success of a control project: the proper selection of sites for spraying (the concept of restricted application) and the degree of persistence of the insecticide used. Reinfestation from within or outside the project area must also be taken into account. These and other aspects are discussed in relation to experience gained from a successful extermination project carried out in the Sudan vegetation zone and from present control activities in the Northern Guinea vegetation zone. PMID:5301739

  9. Advanced pattern-matching techniques for autonomous acquisition

    NASA Astrophysics Data System (ADS)

    Narendra, P. M.; Westover, B. L.

    1981-01-01

    The key objective of this effort is the development of pattern-matching algorithms which can impart autonomous acquisition capability to precision-guided munitions such as Copperhead and Hellfire. Autonomous acquisition through pattern matching holds the promise of eliminating laser designation and enhancing fire power by multiple target prioritization. The pattern-matching approach being developed under this program is based on a symbolic pattern-matching framework, which is suited for the autonomous acquisition scenario. It is based on matching a symbolic representation derived from the two images, and it can accommodate the stringent pattern-matchine criteria established by the scenario: enormous differences in the scene perspective, aspect and range between the two sensors, differences in sensor characteristics and illumination, and scene changes such as target motion and obscuration from one view point ot the other. This report contains a description of an efficient branch-and-bound technique for symbolic pattern matching. Also presented are the results of applying a simulation of the algorithm to pairs of FLIR images of military vehicles in cluttered environments as well as pairs of images from different sensors (FLIR and silicon TV). The computational requirements are analyzed toward real-time implementation, and avenues of future work are recommended.

  10. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  11. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  12. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  13. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  14. Process Concerns In Use of Force Field Techniques.

    ERIC Educational Resources Information Center

    Giammatteo, Michael C.

    This paper, one of a series derived from techniques used in training student teachers, explores the process of manipulating the variables in a problem or conflict or challenge situation. Specifically, it explores interpersonal feelings, intrapersonal feelings and conflicts that occur when these two are not in harmony. The technique calls upon the…

  15. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  16. The physics of bat echolocation: Signal processing techniques

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2004-12-01

    The physical principles and signal processing techniques underlying bat echolocation are investigated. It is shown, by calculation and simulation, how the measured echolocation performance of bats can be achieved.

  17. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1992-07-10

    Coherent anti-Stokes Raman Spectroscopy (CARS) is used to study the plasma-assisted chemical vapor deposition (PACVD) of TiB{sub 2}. CARS is applied to the dominent species in an inductively coupled B{sub 2}H{sub 6}/Ar rf plasma. Axial concentration profiles of diborane and hydrogen are probed in the plasma. A five-step mechanism is developed. Photochemical initiation of the chemical reaction is considered. 16 refs, 5 figs.(DLC)

  18. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  19. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1995-01-01

    The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.

  20. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Lacson, Jamie; Collazo, Julian

    1997-01-01

    During the period June 1, 1996 through May 31, 1997, the main effort has been in the development of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested and evaluated for thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out by using many different instruments and methods, ranging from intensive elemental analysis to testing the physical attributes of a material. The material development concentrated on two key areas: (1) development of coatings for carbon/carbon composites, and (2) development of ultra-high temperature ceramics (UHTC). This report describes the progress made in these two areas of research during this contract period.

  1. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  2. Applying Parallel Processing Techniques to Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    1996-01-01

    The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.

  3. An investigation of radiometer design using digital processing techniques

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.

    1981-01-01

    The use of digital signal processing techniques in Dicke switching radiometer design was investigated. The general approach was to develop an analytical model of the existing analog radiometer and identify factors which adversly affect its performance. A digital processor was then proposed to verify the feasibility of using digital techniques to minimize these adverse effects and improve the radiometer performance. Analysis and preliminary test results comparing the digital and analog processing approaches in radiometers design were analyzed.

  4. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  5. Electron processing of fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  6. Advances in bioanalytical techniques to measure steroid hormones in serum.

    PubMed

    French, Deborah

    2016-06-01

    Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC-MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC-MS/MS has now become a popular alternative owing to simplified sample preparation than for GC-MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum. PMID:27217264

  7. Advances in measuring techniques for turbine cooling test rigs

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.

    1972-01-01

    Surface temperature distribution measurements for turbine vanes and blades were obtained by measuring the infrared energy emitted by the airfoil. The IR distribution can be related to temperature distribution by suitable calibration methods and the data presented in the form of isotherm maps. Both IR photographic and real time electro-optical methods are being investigated. The methods can be adapted to rotating as well as stationary targets, and both methods can utilize computer processing. Pressure measurements on rotating components are made with a rotating system incorporating 10 miniature transducers. A mercury wetted slip ring assembly was used to supply excitation power and as a signal transfer device. The system was successfully tested up to speeds of 9000 rpm and is now being adapted to measure rotating blade airflow quantities in a spin rig and a research engine.

  8. Advances in bioanalytical techniques to measure steroid hormones in serum.

    PubMed

    French, Deborah

    2016-06-01

    Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC-MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC-MS/MS has now become a popular alternative owing to simplified sample preparation than for GC-MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum.

  9. Advanced material separation technique based on dual energy CT scanning

    NASA Astrophysics Data System (ADS)

    Zamyatin, Alexander A.; Natarajan, Anusha; Zou, Yu

    2009-02-01

    We propose a method for material separation using dual energy data. Our method is suitable to separation of three or more materials. In this work we describe our method and show results of numerical simulation and with real dual-energy data of a head phantom. The proposed method of constructing the material separation map consists of the following steps: Data-domain dual energy decomposition - Vector plot - Density plot - Clustering - Color assignment. Density plots are introduced to allow automatic cluster separation. We use special image processing methods, including Gaussian decomposition, to improve the accuracy of material separation. We also propose using the HSL color model for better visualization and to bring a new dimension in material separation display. We study applications of bone removal and virtual contrast removal. Evaluation shows improved accuracy compared to standard methods.

  10. Microeconomics of advanced process window control for 50-nm gates

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  11. Advanced Instruction: Facilitation of Individual Learning Processes in Large Groups

    ERIC Educational Resources Information Center

    Putz, Claus; Intveen, Geesche

    2009-01-01

    By supplying various combinations of advanced instructions and different forms of exercises individual learning processes within the impartation of basic knowledge can be activated and supported at best. The fundamentals of our class "Introduction to spatial-geometric cognition using CAD" are constructional inputs, which systematically induce the…

  12. Data Processing (Advanced Business Programming) Volume II. Instructor's Guide.

    ERIC Educational Resources Information Center

    Litecky, Charles R.; Lamkin, Tim

    This curriculum guide for an advanced course in data processing is for use as a companion publication to a textbook or textbooks; references to appropriate textbooks are given in most units. Student completion of assignments in Volume I, available separately (see ED 220 604), is a prerequisite. Topics covered in the 18 units are introduction,…

  13. Advanced potato breeding clones: storage and processing evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  14. Plant responses to reduced air pressure: advanced techniques and results

    NASA Astrophysics Data System (ADS)

    Daunicht, H.-J.; Brinkjans, H. J.

    1996-01-01

    Knowledge on air pressure impacts on plant processes and growth is essential for understanding responses to altitude and for comprehending the way of action of aerial gasses in general, and is of potential importance for life support systems in space. Our research on reduced air pressure was extended by help of a new set-up comprising two constantly ventilated chambers (283 L each), allowing pressure gradients of +/- 100 kPa. They provide favourable general growth conditions while maintaining all those factors constant or at desired levels which modify the action of air pressure, e.g. water vapour pressure deficit and air mass flow over the plants. Besides plant growth parameters, transpiration and CO_2 gas exchange are determined continuously. Results are presented on young tomato plants grown hydroponically, which had been treated with various combinations of air pressure (400 - 700 - 1000 hPa), CO_2 concentration and wind intensity for seven days. At the lowest pressure transpiration was enhanced considerably, and the plants became sturdier. On the other hand growth was retarded to a certain extent, attributable to secondary air pressure effects. Therefore, even greater limitations of plant productivity are expected after more extended periods of low pressure treatment.

  15. [Our experience with the treatment of high perianal fistulas with the mucosal flap advancement technique].

    PubMed

    Marino, Giuseppe; Greco, Ettore; Gasparrini, Marcello; Romanzi, Aldo; Ottaviani, Maurizio; Nasi, Stefano; Pasquini, Giorgio

    2004-01-01

    The authors present their experience with the treatment of high transphincteric anal fistulas with the mucosal flap advancement technique. This technique, though by no means easy to perform, allows fistulas to be treated in a single surgical session in comparison to the technique in which setone is used or to the less well known transposition techniques, given the same long-term results in terms of continence and recurrence rate. After a brief overview of the problem, from the points of view of both aetiopathogenesis and classification, the principal surgical treatment techniques are described, presenting the results and complications observed in the authors' own case series. PMID:15038659

  16. Spatial and temporal filtering technique for processing lidar photocount data.

    PubMed

    Gardner, C S; Shelton, J D

    1981-04-01

    Shot noise places a practical limit on the spatial and temporal resolution of lidar photocount data. A 2-D signal-processing technique that utilizes spatial and temporal filtering to reduce shot noise and increase resolution is described. The technique is applied to sodium lidar data collected during the fall of 1979 over Urbana, Illinois. Temporal filtering is shown to enhance the spatial resolution of the sodium profiles significantly by reducing shot noise by more than 10 dB. The signal-processing technique is applicable to a wide variety of lidar data.

  17. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  18. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    SciTech Connect

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  19. Advanced array techniques for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Followill, Fred E.; Wolford, James K.; Candy, James V.

    1997-07-01

    Sensor arrays offer opportunities to beamform, and time- frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16- element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on a floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window). (Source 11). The transient event of a diesel generator turning on, including a few seconds before the `turn-on time' and a few seconds after the generator reaches `steady-state conditions'. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 163-component, high- frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  20. Advanced array techniques for unattended ground sensor applications

    SciTech Connect

    Followill, F.E.; Wolford, J.K.; Candy, J.V.

    1997-05-06

    Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  1. Advanced processing technology for high-nitrogen steels

    NASA Astrophysics Data System (ADS)

    Dunning, John S.; Simmons, John W.; Rawers, James C.

    1994-03-01

    Both high-and low-pressure processing techniques can be employed to add nitrogen to iron-based alloys at levels in excess of the equilibrium, ambient-pressure solubility limits. High-pressure techniques include high-pressure melting-solidification; powder atomization; and high-pressure, solid-state diffusion. Low-pressure techniques are centrifugal powder atomization and mechanical alloying. This article describes U.S. Bureau of Mines research on a range of processing technologies for nitrogen steels and references thermodynamic and materials characterization studies that have been completed on these materials.

  2. Optical Fourier techniques for medical image processing and phase contrast imaging.

    PubMed

    Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N

    2008-04-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy.

  3. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  4. [Advances of minimally invasive technique in colorectal cancer surgery].

    PubMed

    Wang, Xishan

    2016-06-01

    Colorectal surgery is rapidly developing in the direction of minimally invasive surgery and functional surgery. New technology and ideas are constantly emerging recently. Laparoscopic colon surgery has already been recommended by NCCN guideline. However, laparoscopic rectal cancer surgery still needs to wait for survival and recurrence rates of long-term follow-up data for verification. In recent years, with the rapid progression of imaging equipment of laparoscope, the new 3D laparoscopic system will process image more quickly, and surgeons can get space depth feeling like open surgery only with a pair of glasses. The new 3D laparoscopic system has many advantages, and can also shorten the learning curve of the beginners. But it does not mean the traditional 2D laparoscopy has been out of date. It is admitted that dialectical view on the development of the technology and equipment is still required. New things also need the accumulation of time and validation, and the deficiency of imaging system remains to be improved. At present, the robotic colorectal cancer surgery is still in its infancy, and its application is relatively common in colon surgery. In respect of robotic rectal cancer surgery, it still lacks of long-term follow-up survival results for verification. To reduce physical and psychological trauma for patients is the goal of the surgeon. Surgeons are experiencing the change from minimally invasion to non-invasion. Natural orifice translumenal endoscopic surgery (NOTES) and natural orifice specimen extraction surgery (NOSES) arise at the historic moment. Among them, transanal total mesorectal excision (taTME) incorporates the concepts of NOTES, anal minimally invasive surgery and total mesorectum excision, guaranteeing the radical cure and no scar of abdomen, but it still needs multicenter, large sample and long-term follow-up clinical data to prove its safety, efficacy and indication. Therefore, surgical procedure is transforming from conventional

  5. S-192 analysis: Conventional and special data processing techniques. [Michigan

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Morganstern, J.; Cicone, R.; Sarno, J.; Lambeck, P.; Malila, W.

    1975-01-01

    The author has identified the following significant results. Multispectral scanner data gathered over test sites in southeast Michigan were analyzed. This analysis showed the data to be somewhat deficient especially in terms of the limited signal range in most SDOs and also in regard to SDO-SDO misregistration. Further analysis showed that the scan line straightening algorithm increased the misregistration of the data. Data were processed using the conic format. The effects of such misregistration on classification accuracy was analyzed via simulation and found to be significant. Results of employing conventional as well as special, unresolved object, processing techniques were disappointing due, at least in part, to the limited signal range and noise content of the data. Application of a second class of special processing techniques, signature extension techniques, yielded better results. Two of the more basic signature extension techniques seemed to be useful in spite of the difficulties.

  6. Positron imaging techniques for process engineering: recent developments at Birmingham

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.

    2008-09-01

    For over 20 years the University of Birmingham has been using positron-emitting radioactive tracers to study engineering processes. The imaging technique of positron emission tomography (PET), widely used for medical applications, has been adapted for these studies, and the complementary technique of positron emission particle tracking (PEPT) has been developed. The radioisotopes are produced using the Birmingham MC40 cyclotron, and a variety of techniques are employed to produce suitable tracers in a wide range of forms. Detectors originally designed for medical use have been modified for engineering applications, allowing measurements to be made on real process equipment, at laboratory or pilot plant scale. This paper briefly reviews the capability of the techniques and introduces a few of the many processes to which they have been applied.

  7. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  8. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  9. Structured Information Management Using New Techniques for Processing Text.

    ERIC Educational Resources Information Center

    Gibb, Forbes; Smart, Godfrey

    1990-01-01

    Describes the development of a software system, SIMPR (Structured Information Management: Processing and Retrieval), that will process documents by indexing them and classifying their subjects. Topics discussed include information storage and retrieval, file inversion techniques, modelling the user, natural language searching, automatic indexing,…

  10. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  11. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  12. Advanced Coal Conversion Process Demonstration. Technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1993, through June 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  13. Advanced Coal Conversion Process Demonstration. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through May 31, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  14. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  15. Automated synthesis of image processing procedures using AI planning techniques

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  16. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  17. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  18. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    SciTech Connect

    Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E; Caird, J A; Barty, C J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  19. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques.

    PubMed

    Somorjai, Gabor A; Frei, Heinz; Park, Jeong Y

    2009-11-25

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ("green chemistry") and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  20. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    SciTech Connect

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  1. Advances in high-resolution imaging – techniques for three-dimensional imaging of cellular structures

    PubMed Central

    Lidke, Diane S.; Lidke, Keith A.

    2012-01-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques. PMID:22685332

  2. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  3. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    SciTech Connect

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio; Passos Piveli, Roque; Campos, Fabio

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  4. Processing techniques for data from the GKSS pressure suppression experiments

    SciTech Connect

    Holman, G.S.; McCauley, E.W.

    1980-12-22

    This report describes techniques developed at LLNL for processing data from large-scale steam condensation experiments being performed by the GKSS Research Center in the Federal Republic of Germany. In particular, the computer code GKPLOT, a special evaluation program for generating time-history plots and numerical output files of GKSS data, will be discussed together with tape handling techniques to unblock the data to a form compatible with the LLNL octopus computer network. Using these data processing techniques, we have provided a convenient means of independently examining and analyzing a very extensive data base for steam condenstaion phenomena. In addition, the techniques developed for handling the GKSS data are applicable to the treatment of similar, but perhaps differently structured, experiment data sets.

  5. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  6. Motion artifact suppression: a review of post-processing techniques.

    PubMed

    Hedley, M; Yan, H

    1992-01-01

    Patient motion during data acquisition in magnetic resonance imaging causes artifacts in the reconstructed image, which for two-dimensional Fourier transform imaging techniques appear as blurring and ghost repetitions of the moving structures. While the problem with intra-view effects has been effectively addressed using gradient moment nulling techniques, there is no corresponding technique for inter-view effects with equal effectiveness and general applicability. A number of techniques have been proposed for correcting the inter-view effects, and these may be divided into those that minimise the corruption of the data, and those that post-process the data to restore the image. The techniques in the former category are briefly reviewed, then those in the latter category are examined in detail. These are analysed in terms of motion model, model parameter estimation, and data correction.

  7. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    SciTech Connect

    Wang, J; Templeton, D C; Harris, D B

    2011-01-21

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.

  8. Classification of alarm processing techniques and human performance issues

    SciTech Connect

    Kim, I.S.; O`Hara, J.M.

    1993-05-01

    Human factors reviews indicate that conventional alarm systems based on the one sensor, one alarm approach, have many human engineering deficiencies, a paramount example being too many alarms during major disturbances. As an effort to resolve these deficiencies, various alarm processing systems have been developed using different techniques. To ensure their contribution to operational safety, the impacts of those systems on operating crew performance should be carefully evaluated. This paper briefly reviews some of the human factors research issues associated with alarm processing techniques and then discusses a framework with which to classify the techniques. The dimensions of this framework can be used to explore the effects of alarm processing systems on human performance.

  9. Classification of alarm processing techniques and human performance issues

    SciTech Connect

    Kim, I.S.; O'Hara, J.M.

    1993-01-01

    Human factors reviews indicate that conventional alarm systems based on the one sensor, one alarm approach, have many human engineering deficiencies, a paramount example being too many alarms during major disturbances. As an effort to resolve these deficiencies, various alarm processing systems have been developed using different techniques. To ensure their contribution to operational safety, the impacts of those systems on operating crew performance should be carefully evaluated. This paper briefly reviews some of the human factors research issues associated with alarm processing techniques and then discusses a framework with which to classify the techniques. The dimensions of this framework can be used to explore the effects of alarm processing systems on human performance.

  10. Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

  11. Critical fiber length technique for composite manufacturing processes

    SciTech Connect

    Sivley, G.N.; Vandiver, T.L.; Dougherty, N.S.; Pinkleton, D.A.

    1996-12-31

    An improved injection technique for composite structures has been cooperatively developed by the U.S. Army Missile Command (MICOM) and Rockwell International (RI). This process simultaneously injects chopped fiberglass fibers and an epoxy resin matrix into a mold. Four injection techniques: (1){open_quotes}Little Willie{close_quotes} RTM system, (2) Pressure Vat system, (3) Pressure Vat system with vacuum assistance, and (4) Injection gun system, were investigated for use with a 304.8 mm x 304.8 mm x 5.08 mm (12 in x 12 in x 0.2 in) flat plaque mold. The driving factors in the process optimization included: fiber length, fiber weight, matrix viscosity, injection pressure, flow rate, and tool design. At fiber weights higher than 30 percent, the injection gun appears to have advantages over the other systems investigated. Results of an experimental investigation are reviewed in this paper. The investigation of injection techniques is the initial part of the research involved in a developing process, {open_quotes}Critical Fiber Length Technique{close_quotes}. This process will use the data collected in injection experiment along with mechanical properties derived from coupon test data to be incorporated into a composite material design code. The {open_quotes}Critical Fiber Length Technique{close_quotes} is part of a Cooperative Research and Development Agreement (CRADA) established in 1994 between MICOM and RI.

  12. Using image processing techniques on proximity probe signals in rotordynamics

    NASA Astrophysics Data System (ADS)

    Diamond, Dawie; Heyns, Stephan; Oberholster, Abrie

    2016-06-01

    This paper proposes a new approach to process proximity probe signals in rotordynamic applications. It is argued that the signal be interpreted as a one dimensional image. Existing image processing techniques can then be used to gain information about the object being measured. Some results from one application is presented. Rotor blade tip deflections can be calculated through localizing phase information in this one dimensional image. It is experimentally shown that the newly proposed method performs more accurately than standard techniques, especially where the sampling rate of the data acquisition system is inadequate by conventional standards.

  13. Advanced information processing system: Input/output network management software

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  14. Model-based advanced process control of coagulation.

    PubMed

    Baxter, C W; Shariff, R; Stanley, S J; Smith, D W; Zhang, Q; Saumer, E D

    2002-01-01

    The drinking water treatment industry has seen a recent increase in the use of artificial neural networks (ANNs) for process modelling and offline process control tools and applications. While conceptual frameworks for integrating the ANN technology into the real-time control of complex treatment processes have been proposed, actual working systems have yet to be developed. This paper presents development and application of an ANN model-based advanced process control system for the coagulation process at a pilot-scale water treatment facility in Edmonton, Alberta, Canada. The system was successfully used to maintain a user-defined set point for effluent quality, by automatically varying operating conditions in response to changes in influent water quality. This new technology has the potential to realize significant operational cost saving for utilities when applied in full-scale applications.

  15. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    NASA Astrophysics Data System (ADS)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  16. Image processing of correlated data by experimental design techniques

    SciTech Connect

    Stern, D.

    1987-01-01

    New classes of algorithms are developed for processing of two-dimensional image data imbedded in correlated noise. The algorithms are based on modifications of standard analysis of variance (ANOVA) techniques ensuring their proper operation in dependent noise. The approach taken in the development of procedures is deductive. First, the theory of modified ANOVA (MANOVA) techniques involving one- and two-way layouts are considered for noise models with autocorrelation matrix (ACM) formed by direct multiplication of rows and columns or tensored correlation matrices (TCM) stressing the special case of the first-order Markov process. Next, the techniques are generalized to include arbitrary, wide-sense stationary (WSS) processes. This permits dealing with diagonal masks which have ACM of a general form even for TCM. As further extension, the theory of Latin square (LS) masks is generalized to include dependent noise with TCM. This permits dealing with three different effects of m levels using only m{sup 2} observations rather than m{sup 3}. Since in many image-processing problems, replication of data is possible, the masking techniques are generalized to replicated data for which the replication is TCM dependent. For all procedures developed, algorithms are implemented which ensure real-time processing of images.

  17. Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity

    PubMed Central

    Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

    2012-01-01

    Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

  18. Fingerprint pattern restoration by digital image processing techniques.

    PubMed

    Wen, Che-Yen; Yu, Chiu-Chung

    2003-09-01

    Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared. PMID:14535661

  19. Parametric design of ground data processing/support systems for advanced sensor systems

    NASA Technical Reports Server (NTRS)

    Denny, C.; Johnson, E. M.; Davis, E. L.

    1977-01-01

    A parametric system design technique has been applied to ground data processing/support systems for advanced sensor applications. The system establishes a direct link between budget analysts and system planners. Three primary phases are identified: the definition of requirements, system design, and system costing. The system is evaluated for three cases: (1) a study of ground data handling systems for earth resource satellites, (2) a ground data mass storage and processing system for agricultural remote-sensing studies, and (3) a parametric study of shuttle era data processing support required for atmospheric and space physics.

  20. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  1. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    SciTech Connect

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-10-03

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed.

  2. Process sequence optimization for digital microfluidic integration using EWOD technique

    NASA Astrophysics Data System (ADS)

    Yadav, Supriya; Joyce, Robin; Sharma, Akash Kumar; Sharma, Himani; Sharma, Niti Nipun; Varghese, Soney; Akhtar, Jamil

    2016-04-01

    Micro/nano-fluidic MEMS biosensors are the devices that detects the biomolecules. The emerging micro/nano-fluidic devices provide high throughput and high repeatability with very low response time and reduced device cost as compared to traditional devices. This article presents the experimental details for process sequence optimization of digital microfluidics (DMF) using "electrowetting-on-dielectric" (EWOD). Stress free thick film deposition of silicon dioxide using PECVD and subsequent process for EWOD techniques have been optimized in this work.

  3. Softform for facial rejuvenation: historical review, operative techniques, and recent advances.

    PubMed

    Miller, P J; Levine, J; Ahn, M S; Maas, C S; Constantinides, M

    2000-01-01

    The deep nasolabial fold and other facial furrows and wrinkles have challenged the facial plastic surgeon. A variety of techniques have been used in the past to correct these troublesome defects. Advances in the last five years in new materials and design have created a subcutaneous implant that has excellent properties. This article reviews the development and use of Softform facial implant.

  4. Traditional Materials and Techniques Used as Instructional Devices in an Advanced Business Spanish Conversation Class.

    ERIC Educational Resources Information Center

    Valdivieso, Jorge

    Spanish language training at the Thunderbird Graduate School of International Management is discussed, focusing on the instructional materials and classroom techniques used in advanced Spanish conversation classes. While traditional materials (dialogues, dictation, literature, mass media, video- and audiotapes) and learning activities (recitation,…

  5. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  6. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  7. On-line data processing techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Farley, D. T.

    1985-01-01

    The various techniques which are or could be used in the processing of mesosphere-stratosphere-troposphere radar scattering data are outlined. The principles of pulse compression, frequency stepping, and coherent integration are reviewed in some detail. Coarse quantization and the calculation of spectral moments are treated very briefly.

  8. Signal processing techniques for clutter filtering and wind shear detection

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Deshpande, Manohar D

    1991-01-01

    An extended Prony algorithm applicable to signal processing techniques for clutter filtering and windshear detection is discussed. The algorithm is based upon modelling the radar return as a time series, and appears to offer potential for improving hazard factor estimates in the presence of strong clutter returns.

  9. Harmonizing the Writing Process with Music Training Techniques

    ERIC Educational Resources Information Center

    Riecken, Nancy

    2009-01-01

    Can music help students become better thinkers and writers? Over the past three years, the author has incorporated some basic music training techniques in her classrooms to help her teach the writing process to students who would otherwise click her off. The students have developed clearer thinking and organizational skills, and have increased…

  10. Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  11. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect

    O'Hern, T. J.

    2012-03-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  12. Rapid Intelligent Inspection Process Definition for dimensional measurement in advanced manufacturing

    SciTech Connect

    Brown, C.W.

    1993-03-01

    The Rapid Intelligent Inspection Process Definition (RIIPD) project is an industry-led effort to advance computer integrated manufacturing (CIM) systems for the creation and modification of inspection process definitions. The RIIPD project will define, design, develop, and demonstrate an automated tool (i.e., software) to generate inspection process plans and coordinate measuring machine (CMM) inspection programs, as well as produce support information for the dimensional measurement of piece parts. The goal of this project is to make the inspection and part verification function, specifically CMM measurements, a more effective production support tool by reducing inspection process definition flowtime, creating consistent and standard inspections, increasing confidence of measurement results, and capturing inspection expertise. This objective is accomplished through importing STEP geometry definitions, applying solid modeling, incorporating explicit tolerance representations, establishing dimensional inspection,techniques, embedding artificial intelligence techniques, and adhering to the Dimensional Measuring Interface Standard (DMIS) national standard.

  13. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  14. A graphene superficial layer for the advanced electroforming process

    NASA Astrophysics Data System (ADS)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-06-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties.Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil

  15. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  16. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  17. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  18. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    PubMed

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  19. Virus Reduction during Advanced Bardenpho and Conventional Wastewater Treatment Processes.

    PubMed

    Schmitz, Bradley W; Kitajima, Masaaki; Campillo, Maria E; Gerba, Charles P; Pepper, Ian L

    2016-09-01

    The present study investigated wastewater treatment for the removal of 11 different virus types (pepper mild mottle virus; Aichi virus; genogroup I, II, and IV noroviruses; enterovirus; sapovirus; group-A rotavirus; adenovirus; and JC and BK polyomaviruses) by two wastewater treatment facilities utilizing advanced Bardenpho technology and compared the results with conventional treatment processes. To our knowledge, this is the first study comparing full-scale treatment processes that all received sewage influent from the same region. The incidence of viruses in wastewater was assessed with respect to absolute abundance, occurrence, and reduction in monthly samples collected throughout a 12 month period in southern Arizona. Samples were concentrated via an electronegative filter method and quantified using TaqMan-based quantitative polymerase chain reaction (qPCR). Results suggest that Plant D, utilizing an advanced Bardenpho process as secondary treatment, effectively reduced pathogenic viruses better than facilities using conventional processes. However, the absence of cell-culture assays did not allow an accurate assessment of infective viruses. On the basis of these data, the Aichi virus is suggested as a conservative viral marker for adequate wastewater treatment, as it most often showed the best correlation coefficients to viral pathogens, was always detected at higher concentrations, and may overestimate the potential virus risk. PMID:27447291

  20. Computer image processing - The Viking experience. [digital enhancement techniques

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.

  1. Image Processing Techniques and Feature Recognition in Solar Physics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2010-04-01

    This review presents a comprehensive and systematic overview of image-processing techniques that are used in automated feature-detection algorithms applied to solar data: i) image pre-processing procedures, ii) automated detection of spatial features, iii) automated detection and tracking of temporal features (events), and iv) post-processing tasks, such as visualization of solar imagery, cataloguing, statistics, theoretical modeling, prediction, and forecasting. For each aspect the most recent developments and science results are highlighted. We conclude with an outlook on future trends.

  2. Multivariate image processing technique for noninvasive glucose sensing

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2010-02-01

    A potential noninvasive glucose sensing technique was investigated for application towards in vivo glucose monitoring for individuals afflicted with diabetes mellitus. Three dimensional ray tracing simulations using a realistic iris pattern integrated into an advanced human eye model are reported for physiological glucose concentrations ranging between 0 to 500 mg/dL. The anterior chamber of the human eye contains a clear fluid known as the aqueous humor. The optical refractive index of the aqueous humor varies on the order of 1.5x10-4 for a change in glucose concentration of 100 mg/dL. The simulation data was analyzed with a developed multivariate chemometrics procedure that utilizes iris-based images to form a calibration model. Results from these simulations show considerable potential for use of the developed method in the prediction of glucose. For further demonstration, an in vitro eye model was developed to validate the computer based modeling technique. In these experiments, a realistic iris pattern was placed in an analog eye model in which the glucose concentration within the fluid representing the aqueous humor was varied. A series of high resolution digital images were acquired using an optical imaging system. These images were then used to form an in vitro calibration model utilizing the same multivariate chemometric technique demonstrated in the 3-D optical simulations. In general, the developed method exhibits considerable applicability towards its use as an in vivo platform for the noninvasive monitoring of physiological glucose concentration.

  3. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  4. Advanced karst hydrological and contaminant monitoring techniques for real-time and high resolution applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In telogenetic and soil-mantled karst aquifers, the movement of autogenic recharge through the epikarstic zone and into the regional aquifer can be a complex process and have implications for flooding, groundwater contamination, and other difficult to capture processes. Recent advances in instrument...

  5. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  6. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  7. Noninvasive sensors for in-situ process monitoring and control in advanced microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Moslehi, Mehrdad M.

    1991-04-01

    The combination of noninvasive in-situ monitoring sensors single-wafer processing modules vacuum-integrated cluster tools and computer-integrated manufacturing (CIM) can provide a suitable fabrication environment for flexible and high-yield advanced semiconductor device manufacturing. The use of in-situ sensors for monitoring of equipment process and wafer parameters results in increased equipment/process up-time reduced process and device parameter spread improved cluster tool reliability and functionality and reduced overall device manufacturing cycle time. This paper will present an overview of the main features and impact of noninvasive in-situ monitoring sensors for semiconductor device manufacturing applications. Specific examples will be presented for the use of critical sensors in conjunction with cluster tools for advanced CMOS device processing. A noninvasive temperature sensor will be presented which can monitor true wafer temperature via infrared (5. 35 jtm) pyrometery and laser-assisted real-time spectral wafer emissivity measurements. This sensor design eliminates any. temperature measurement errors caused by the heating lamp radiation and wafer emissivity variations. 1. SENSORS: MOTIVATIONS AND IMPACT Semiconductor chip manufacturing factories usually employ well-established statistical process control (SPC) techniques to minimize the process parameter deviations and to increase the device fabrication yield. The conventional fabrication environments rely on controlling a limited set of critical equipment and process parameters (e. g. process pressure gas flow rates substrate temperature RF power etc. ) however most of the significant wafer process and equipment parameters of interest are not monitored in real

  8. Advanced process control with design-based metrology

    NASA Astrophysics Data System (ADS)

    Yang, Hyunjo; Kim, Jungchan; Hong, Jongkyun; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2007-03-01

    K1 factor for development and mass-production of memory devices has been decreased down to below 0.30 in recent years. Process technology has responded with extreme resolution enhancement technologies (RET) and much more complex OPC technologies than before. ArF immersion lithography is expected to remain the major patterning technology through under 35 nm node, where the degree of process difficulties and the sensitivity to process variations grow even higher. So, Design for manufacturing (DFM) is proposed to lower the degree of process difficulties and advanced process control (APC) is required to reduce the process variations. However, both DFM and APC need much feed-back from the wafer side such as hot spot inspection results and total CDU measurements at the lot, wafer, field and die level. In this work, we discuss a new design based metrology which can compare SEM image with CAD data and measure the whole CD deviations from the original layouts in a full die. It can provide the full information of hot spots and the whole CD distribution diagram of various transistors in peripheral regions as well as cell layout. So, it is possible to analyze the root cause of the CD distribution of some specific transistors or cell layout, such as OPC error, mask CDU, lens aberrations or etch process variation and so on. The applications of this new inspection tool will be introduced and APC using the analysis result will be presented in detail.

  9. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  10. H Scan/AHP advanced technology proposal evaluation process

    SciTech Connect

    Mack, S.; Valladares, M.R.S. de

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  11. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  12. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  13. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  14. A flexible architecture for advanced process control solutions

    NASA Astrophysics Data System (ADS)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  15. Experimental study of digital image processing techniques for LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rifman, S. S. (Principal Investigator); Allendoerfer, W. B.; Caron, R. H.; Pemberton, L. J.; Mckinnon, D. M.; Polanski, G.; Simon, K. W.

    1976-01-01

    The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections.

  16. Programmable rate modem utilizing digital signal processing techniques

    NASA Technical Reports Server (NTRS)

    Naveh, Arad

    1992-01-01

    The need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) modulation is discussed. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. The design trade-offs in each portion of the modulator and demodulator subsystem are outlined.

  17. Distributed processing techniques: interface design for interactive information sharing.

    PubMed

    Wagner, J R; Krumbholz, S D; Silber, L K; Aniello, A J

    1978-01-01

    The Information Systems Division of the University of Iowa Hospitals and Clinics has successfully designed and implemented a set of generalized interface data-handling routines that control message traffic between a satellite minicomputer in a clinical laboratory and a large main-frame computer. A special queue status inquiry transaction has also been developed that displays the current message-processing backlog and other system performance information. The design and operation of these programs are discussed in detail, with special emphasis on the message-queuing and verification techniques required in a distributed processing environment.

  18. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    SciTech Connect

    C.A. Gentile; S.W. Langish; C.H. Skinner; L.P. Ciebiera

    2004-09-10

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination.

  19. Survey of Natural Language Processing Techniques in Bioinformatics.

    PubMed

    Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling

    2015-01-01

    Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers.

  20. New signal processing technique for density profile reconstruction using reflectometry

    SciTech Connect

    Clairet, F.; Bottereau, C.; Ricaud, B.; Briolle, F.; Heuraux, S.

    2011-08-15

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10{sup 16} m{sup -1}. For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  1. Survey of Natural Language Processing Techniques in Bioinformatics

    PubMed Central

    Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling

    2015-01-01

    Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers. PMID:26525745

  2. Tutorial on techniques and applications for natural language processing

    SciTech Connect

    Hayes, P.J.; Carbonell, J.G.

    1983-10-17

    Natural language communication with computers has long been a major goal of Artificial Intelligence both for what it can tell us about intelligence in general and for its practical utility - data bases, software packages, and Al-based expert systems all require flexible interfaces to a growing community of users who are not able or do not wish to communicate with computers in formal, artificial command languages. Whereas many of the fundamental problems of general natural language processing (NLP) by machine remain to be solved, the area has matured in recent years to the point where practical natural language interfaces to software systems can be constructed in many restricted, but nevertheless useful, circumstances. This tutorial is intended to survey the current state of applied natural language processing by presenting computationally effective NLP techniques, by discussing the range of capabilities these techniques provide for NLP systems, an by discussing their current limitations. Following the introduction, this document is divided into two major sections: the first on language recognition strategies at the single sentence level, and the second on language processing issues that arise during interactive dialogues. In both cases, we concentrate on those aspects of the problem appropriate for interactive natural language interfaces, but relate the techniques and systems discussed to more general work on natural language, independent of application domain.

  3. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.; Smith, James A.

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  4. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    SciTech Connect

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  5. Recent advancements in low cost solar cell processing

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.

    1975-01-01

    A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.

  6. Evaluation, engineering and development of advanced cyclone processes

    SciTech Connect

    Durney, T.E.; Cook, A.; Ferris, D.D.

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  7. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  8. Advanced biological unit processes for domestic water recycling.

    PubMed

    Jefferson, B; Laine, A L; Stephenson, T; Judd, S J

    2001-01-01

    The potential of advanced biological unit operations for the recycling of grey and black waters has been evaluated. The membrane bioreactor (MBR) demonstrated the greatest efficacy towards water recycling in terms of all the quality determinants. Both the biologically aerated filter (BAF) and the MBR were able to effectively treat the organic and physical pollutants in all the types of wastewater tested. The main difference was observed in terms of the microbiological quality, measured as total coliforms. The open bed structure of the BAF enabled passage of coliforms whereas the complete barrier of the MBR produced a non detectable level in the effluent. The MBR process complied with commonly adopted water recycling quality standards for the all determinants during the grey water trials and failed only in terms of total coliform counts once black water had been introduced into the feed. The MBR was seen as a particularly suitable advanced biological process as it was very effective at stabilising out the considerable load variations encountered during the trial.

  9. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    PubMed

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually.

  10. Development of low-cost test techniques for advancing film cooling technology

    NASA Astrophysics Data System (ADS)

    Soechting, F. O.; Landis, K. K.; Dobrowolski, R.

    1987-06-01

    A program for studying advanced film hole geometries that will provide improved film effectiveness levels relative to those reported in the literature is described. A planar wind tunnel was used to conduct flow visualization studies on different film hole shapes, followed by film effectiveness measurements. The most promising geometries were then tested in a two-dimensional cascade to define the film effectiveness distributions, while duplicating a turbine airfoil curvature, Mach number, and acceleration characteristics. The test techniques are assessed and typical results are presented. It was shown that smoke flow visualization is an excellent low-cost technique for observing film coolant-to-mainstream characteristics and that reusable liquid crystal sheets provide an accurate low-cost technique for measuring near-hole film effectiveness contours. Cascade airfoils constructed using specially developed precision fabrication techniques provided high-quality film effectiveness data.

  11. Advanced semiconductor diagnosis by multidimensional electron-beam-induced current technique.

    PubMed

    Chen, J; Yuan, X; Sekiguchi, T

    2008-01-01

    We present advanced semiconductor diagnosis by using electron-beam-induced current (EBIC) technique. By varying the parameters such as temperature, accelerating voltage (V(acc)), bias voltage, and stressing time, it is possible to extend EBIC application from conventional defect characterization to advanced device diagnosis. As an electron beam can excite a certain volume even beneath the surface passive layer, EBIC can be effectively employed to diagnose complicated devices with hybrid structure. Three topics were selected to demonstrate EBIC applications. First, the recombination activities of grain boundaries and their interaction with Fe impurity in photovoltaic multicrystalline Si (mc-Si) are clarified by temperature-dependent EBIC. Second, the detection of dislocations between strained-Si and SiGe virtual substrate are shown to overcome the limitation of depletion region. Third, the observation of leakage sites in high-k gate dielectric is demonstrated for the characterization of advanced hybrid device structures.

  12. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.

    PubMed

    Kranz, Christine

    2014-01-21

    In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.

  13. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  14. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  15. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145

  16. Development of advanced electron holographic techniques and application to industrial materials and devices.

    PubMed

    Yamamoto, Kazuo; Hirayama, Tsukasa; Tanji, Takayoshi

    2013-06-01

    The development of a transmission electron microscope equipped with a field emission gun paved the way for electron holography to be put to practical use in various fields. In this paper, we review three advanced electron holography techniques: on-line real-time electron holography, three-dimensional (3D) tomographic holography and phase-shifting electron holography, which are becoming important techniques for materials science and device engineering. We also describe some applications of electron holography to the analysis of industrial materials and devices: GaAs compound semiconductors, solid oxide fuel cells and all-solid-state lithium ion batteries.

  17. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  18. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  19. Performance of Polarimetric Processing Techniques using NAWC P-3 SAR Imagery

    NASA Technical Reports Server (NTRS)

    Teti, J. G., Jr.; Lee, R. R.-Y.; Verdi, J. S.; Boerner, W.-M.

    1996-01-01

    The use of synthetic aperture radar (SAR) polarimetric processing for enhancing the detection, classification, and/or identification of scene scattering features is described. This paper describes and compares the results obtained from applying the polarimetric techniques that have been developed and/or advanced by researchers at MIT Lincoln Laboratory, and basic polarimetric match filter (PMF) techniques that have been modified to treat distributed scatterers. The paper describes the individual polarimetric processing techniques and the formulation used fro their application to polarimetric imagery obtained from the NAWC P-3 SAR. In all cases, the polarimetric techniques have been applied to enhance the detection of distributed scatterers in clutter The emphasis arises from considering most complex scatterers of interest (either man made or natural) as distributed scatterers consisting of multiple scattering centers, and many modern polarimetric radar systems have the resolution performance to resolve the multiple scattering centers. Furthermore, the individual scattering centers of a distributed target can often exhibit different polarimetric scattering characteristics, and consequently do not respond favorably to polarimetric processing techniques derived for individual point scatterers. The treatment of distributed scatterers also includes concepts for tuning the polarimetric ensemble response of individual scattering centers.

  20. A graphical technique for wastewater minimisation in batch processes.

    PubMed

    Majozi, Thokozani; Brouckaert, C J; Buckley, C A

    2006-03-01

    Presented in this paper is a graphical technique for freshwater and wastewater minimisation in completely batch operations. Water minimisation is achieved through the exploitation of inter- and intra-process water reuse and recycle opportunities. In the context of this paper, a completely batch operation is one in which water reuse or recycle can only be effected either at the start or the end of the process. During the course of the operation, water reuse and recycle opportunities are completely nullified. The intrinsic two-dimensionally constrained nature of batch processes is taken into consideration. In the first instance, time dimension is taken as a primary constraint and concentration a secondary constraint. Subsequently, the priority of constraints is reversed so as to demonstrate the effect of the targeting procedure on the final design. Attention is brought to the fact that first and cyclic-state targeting are essential in completely batch operations. Moreover, the exploration and use of inherent storage in batch processes is demonstrated using a real-life case study. Like most graphical techniques, the presented methodology is limited to single contaminants.

  1. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt; Groten, Will; Judzis, Arvids; Foley, Richard; Smith, Larry; Cross, Will; Vogt, T.

    2011-06-27

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  2. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  3. Recovering plastics for recycling by mineral processing techniques

    NASA Astrophysics Data System (ADS)

    Buchan, R.; Yarar, B.

    1995-02-01

    Patents and other literature on recycling post-consumer plastics from various sources (e.g., municipal solid waste) indicate that unit operations common to minerals processing have been seriously considered at various times. A review of the available literature and statistics on recoverable plastics reveals that only 2.4 percent is recycled. This article presents a flowsheet that we developed and tested in a bench-scale pilot plant. It shows that a combination of mineral processing techniques, including comminution, heavy media separation, and flotation, can be successfully adapted to the recycling of post-consumer plastics. The gamma flotation process, which operates on the basis of solution surface tension control to facilitate the separation of inherently hydrophobic solids, combined with the alkali-treatment of a mixed polyvinal chloride-polyethylene terephthalate feedstock generates clean polymer concentrates at high recoveries.

  4. A study of techniques for processing multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Crane, R. B.; Richardson, W.; Hieber, R. H.; Malila, W. A.

    1973-01-01

    A linear decision rule to reduce the time required for processing multispectral scanner data is developed. Test results are presented which justify the use of the new rule for digital processing whenever both accuracy and processing time are important. A method of evaluating the performance of the rule is also developed and applied to the problem of choosing a subset of channels. A technique used to find linear combinations of channels is described. The ability to extend signatures throughout a small area of approximately fifty square miles is tested. After preprocessing, signatures derived from the first of seven overlapping data sets are applied to all data sets. The test results show that the average probability of misclassification tends to increase with an increase in the number of data sets over which the signatures are extended.

  5. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  6. Recent advances in the deformation processing of titanium alloys

    NASA Astrophysics Data System (ADS)

    Tamirisakandala, S.; Bhat, R. B.; Vedam, B. V.

    2003-12-01

    Titanium (Ti) alloys are special-purpose materials used for several critical applications in aerospace as well as non-aerospace industries, and extensive deformation processing is necessary to shape-form these materials, which poses many challenges due to the microstructural complexities. Some of the recent developments in the deformation processing of Ti alloys and usefulness of integrating the material behavior information with simulation schemes while designing and optimizing manufacturing process schedules are discussed in this paper. Discussions are primarily focused on the most important alloy, Ti-6Al-4V and on developing a clear understanding on the influence of key parameters (e.g., oxygen content, starting microstructure, temperature, and strain rate) on the deformation behavior during hot working. These studies are very useful not only for obtaining controlled microstructures but also to design complex multi-step processing sequences to produce defect-free components. Strain-induced porosity (SIP) has been a serious problem during titanium alloy processing, and improved scientific understanding helps in seeking elegant solutions to avoid SIP. A novel high-speed processing technique for microstructural conversion in titanium has been described, which provides several benefits over the conventional slow-speed practices. The hot working behavior of some of the affordable α+β and β titanium alloys being developed recently—namely, Ti-5.5Al-1Fe, Ti-10V-2Fe-3Al, Ti-6.8Mo-4.5Fe-1.5Al, and Ti-10V-4.5Fe-1.5Al—has been analyzed, and the usefulness of the processing maps in optimizing the process parameters and design of hot working schedules in these alloys is demonstrated. Titanium alloys modified with small additions of boron are emerging as potential candidates for replacing structural components requiring high specific strength and stiffness. Efforts to understand the microstructural mechanisms during deformation processing of Ti-B alloys and the issues

  7. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  8. Recent Advances in Marine Enzymes for Biotechnological Processes.

    PubMed

    Lima, R N; Porto, A L M

    2016-01-01

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. PMID:27452170

  9. Heart Cycle: facilitating the deployment of advanced care processes.

    PubMed

    Meneu, T; Traver, V; Guillen, S; Valdivieso, B; Benedi, J; Fernandez-Llatas, C

    2013-01-01

    Current trends in health management improvement demand the standardization of care protocols to achieve better quality and efficiency. The use of Clinical Pathways is an emerging solution for that problem. However, current Clinical Pathways are big manuals written in natural language and highly affected by human subjectivity. These problems make their deployment and dissemination extremely difficult in real practice environments. Furthermore, the intrinsic difficulties for the design of formal Clinical Pathways requires new specific design tools to help making them relly useful and cost-effective. Process Mining techniques can help to automatically infer processes definition from execution samples and, thus, support the automatization of the standardization and continuous control of healthcare processes. This way, they can become a relevant helping tool for clinical experts and healthcare systems for reducing variability in clinical practice and better understand the performance of the system.

  10. [Application of BAF-BAC process in advanced treatment of secondary effluent of refinery processing factory].

    PubMed

    Wu, Jiangjin; Sun, Changhong; Ma, Jianju; Qin, Yongsheng

    2003-11-01

    To find a new advanced technology for wastewater reuse in refinery processing factory, a pilot test using BAF-BAC process was carried out. The results revealed that when the COD concentration of the influent was less than 130 mg/L and BAF filtration rate was lower than 4.24 m/h, the average effluent COD concentration of BAF-BAC process was less than 50 mg/L, average turbidity was 4.46 NTU. At the same time this process has some effective removal rate on ammonia-nitrogen.

  11. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  12. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  13. Processing and Preparation of Advanced Stirling Convertors for Extended Operation

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Paggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  14. Optical Fourier techniques for medical image processing and phase contrast imaging

    PubMed Central

    Yelleswarapu, Chandra S.; Kothapalli, Sri-Rajasekhar; Rao, D.V.G.L.N.

    2008-01-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764

  15. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  16. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  17. Development of Optical Diagnostic Techniques for Microgravity Materials Processing

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen

    1999-01-01

    Materials processing including crystal growth, either under a gravity environment on ground or a microgravity environment in space, involves complicated phenomena of fluid motions in gas or liquid phases as well as interaction of various species. To obtain important physical insight, it is very necessary to provide gross-field optical diagnostics for monitoring various physical properties. Materials processing inhibits easy access by ordinary instruments and thus characterizing gross-field physical properties is very challenging. Typical properties of importance can be fluid velocity, temperature, and species concentration for fluids, and surface topology and defects for solids. Observing surface grow rate during crystal growth is also important. Material microstructures, i.e., integrity of crystal structures, is strongly influenced by the existence of thermally-induced flow as well as local nucleation of particles during solidification, which may act in many detrimental ways. In both ground-based and microgravity experiments, the nature of product property changes resulting from three-dimensional fluid or particle motions need be characterized. Gross-field diagnostics is thus required to identify their effects on product defects and process deficiencies. The quantitative visualization techniques can also be used for validation of numerical modeling. For optical nonintrusive gross-field diagnostic techniques, two approaches were developed as summer projects. One optical approach allows us to provide information of species concentration and temperature for monitoring in real time. The other approach, that is, the concept which is formulated for detection of surface topography measurement can provide unprecedented spatial resolution during crystal growth.

  18. Food material properties and early hominin processing techniques.

    PubMed

    Zink, Katherine D; Lieberman, Daniel E; Lucas, Peter W

    2014-12-01

    Although early Homo is hypothesized to have used tools more than australopiths to process foods prior to consumption, it is unknown how much the food processing techniques they used altered the material properties of foods, and therefore the masticatory forces they generated, and how well they were able to comminute foods. This study presents experimental data on changes to food material properties caused by mechanical tenderization (pounding with a stone tool) and cooking (dry roasting) of two foods likely to have been important components of the hominin diet: meat and tubers. Mechanical tenderization significantly decreased tuber toughness by 42%, but had no effect on meat toughness. Roasting significantly decreased several material properties of tubers correlated with masticatory effort including toughness (49%), fracture stress (28%) and elastic modulus (45%), but increased the toughness (77%), fracture stress (50%-222%), and elastic modulus of muscle fibers in meat (308%). Despite increasing many material properties of meat associated with higher masticatory forces, roasting also decreased measured energy loss by 28%, which likely makes it easier to chew. These results suggest that the use of food processing techniques by early Homo probably differed for meat and tubers, but together would have reduced masticatory effort, helping to relax selection to maintain large, robust faces and large, thickly enameled teeth.

  19. External sorting: I/O analysis and parallel processing techniques

    SciTech Connect

    Kwan, S.C.

    1986-01-01

    This thesis deals with sorting of data that are much too large to fit in main memory or external sorting. The author focuses on two aspects of external sorting: I/O analysis and parallel processing techniques. Storage device models are defined and applied to analyze the I/O complexities of multi-way merge sort and tag sort (or key sort). It is shown that using higher-merge order, through, reduces the number of merge passes, causes excessive random I/O accesses and degrades the overall I/O performance of multi-way merge sort. Techniques are developed for producing long runs in merge sort and for rearranging the records in tag sort after their ranks are determined. A lower bound for the I/O access time or rearranging the records in tag sort is derived. Two methods are explored for implementing distribution sort on parallel computers. The first method, multi-pass distribution sort, determines the bucket ranges with one read pass over the input file, and uses subsequent passes to distribute the data into buckets and sort them. The distribution and sorting of the buckets are processed in parallel using a two-stage pipeline. The second method, one-pass distribution sort, coalesces the bucket partition, bucket distribution, and sort-bucket phases all together so that the input file needs to be processed only once.

  20. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  1. Techniques of EMG signal analysis: detection, processing, classification and applications

    PubMed Central

    Hussain, M.S.; Mohd-Yasin, F.

    2006-01-01

    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694

  2. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  3. Secondary hospital wastewater detoxification and disinfection by advanced oxidation processes.

    PubMed

    Machado, E L; Kist, L T; Schmidt, R; Hoeltz, J M; Dalberto, D; Alcayaga, E L A

    2007-10-01

    Secondary hospital wastewater treatment was investigated as an alternative to detoxification and disinfection after anaerobic digestion in a hospital located in southern Brazil. Tertiary and secondary effluents were assessed by general parameters. The use of advanced oxidation processes (UV/O3 and UV/TiO2/O3) showed potential capacity for disinfection and detoxification of wastewater effluents. The UV/TiO2/O3 method yielded the best results, decreasing toxicity of EC50 = 65 to nontoxic levels, also reducing MPN/100ml of 1.1 x 10(6) to values less than 2 and increasing wastewater biodegradability. The low energetic consumption of the proposed UV/TiO2/O3 method can be considered operationally advantageous.

  4. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  5. Advanced information processing system: Input/output system services

    NASA Technical Reports Server (NTRS)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  6. Congestion estimation technique in the optical network unit registration process.

    PubMed

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk

    2016-07-01

    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  7. Application of image processing techniques to fluid flow data analysis

    NASA Technical Reports Server (NTRS)

    Giamati, C. C.

    1981-01-01

    The application of color coding techniques used in processing remote sensing imagery to analyze and display fluid flow data is discussed. A minicomputer based color film recording and color CRT display system is described. High quality, high resolution images of two-dimensional data are produced on the film recorder. Three dimensional data, in large volume, are used to generate color motion pictures in which time is used to represent the third dimension. Several applications and examples are presented. System hardware and software is described.

  8. Application of digital image processing techniques to astronomical imagery, 1979

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.

    1979-01-01

    Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.

  9. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  10. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  11. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  12. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  13. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling.

  14. Treatment of petroleum refinery sourwater by advanced oxidation processes.

    PubMed

    Coelho, Alessandra; Castro, Antonio V; Dezotti, Márcia; Sant'Anna, G L

    2006-09-01

    The performance of several oxidation processes to remove organic pollutants from sourwater was investigated. Sourwater is a specific stream of petroleum refineries, which contains slowly biodegradable compounds and toxic substances that impair the industrial biological wastewater treatment system. Preliminary experiments were conducted, using the following processes: H2O2, H2O2/UV, UV, photocatalysis, ozonation, Fenton and photo-Fenton. All processes, except Fenton and photo-Fenton, did not lead to satisfactory results, reducing at most 35% of the sourwater dissolved organic carbon (DOC). Thus, further experiments were performed with these two techniques to evaluate process conditions and organic matter removal kinetics. Batch experiments revealed that the Fenton reaction is very fast and reaches, in a few minutes, an ultimate DOC removal of 13-27%, due to the formation of iron complexes. Radiation for an additional period of 60 min can increase DOC removal up to 87%. Experiments were also conducted in a continuous mode, operating one 0.4L Fenton stirred reactor and one 1.6L photo-Fenton reactor in series. DOC removals above 75% were reached, when the reaction system was operated with hydraulic retention times (HRT) higher than 85 min. An empirical mathematical model was proposed to represent the DOC removal kinetics, allowing predicting process performance quite satisfactorily.

  15. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  16. Signal processing techniques for atrial fibrillation source detection.

    PubMed

    Ambadkar, Minal; Leonelli, Fabio M; Sankar, Ravi

    2014-01-01

    In clinical practice, Atrial Fibrillation (AF) is the most common and critical cardiac arrhythmia encountered. The treatment that can ensure permanent AF removal is catheter ablation, where cardiologists destroy the affected cardiac muscle cells with RF or Laser. In this procedure it is necessary to know exactly from which part of the heart AF triggers are originated. Various signal processing algorithms provide a strong tool to track AF sources. This study proposes, signal processing techniques that can be exploited for characterization, analysis and source detection of AF signals. These algorithms are implemented on Electrocardiogram (ECG) and intracardiac signals which contain important information that allows the analysis of anatomic and physiologic aspects of the whole cardiac muscle. PMID:25570578

  17. Some fuzzy techniques for staff selection process: A survey

    NASA Astrophysics Data System (ADS)

    Md Saad, R.; Ahmad, M. Z.; Abu, M. S.; Jusoh, M. S.

    2013-04-01

    With high level of business competition, it is vital to have flexible staff that are able to adapt themselves with work circumstances. However, staff selection process is not an easy task to be solved, even when it is tackled in a simplified version containing only a single criterion and a homogeneous skill. When multiple criteria and various skills are involved, the problem becomes much more complicated. In adddition, there are some information that could not be measured precisely. This is patently obvious when dealing with opinions, thoughts, feelings, believes, etc. One possible tool to handle this issue is by using fuzzy set theory. Therefore, the objective of this paper is to review the existing fuzzy techniques for solving staff selection process. It classifies several existing research methods and identifies areas where there is a gap and need further research. Finally, this paper concludes by suggesting new ideas for future research based on the gaps identified.

  18. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  19. Integrative techniques related to positive processes in psychotherapy.

    PubMed

    Cromer, Thomas D

    2013-09-01

    This review compiles and evaluates a number of therapist interventions that have been found to significantly contribute to positive psychotherapy processes (i.e., increased alliance, patient engagement/satisfaction, and symptomatic improvement). Four forms of intervention are presented: Affect-focused, Supportive, Exploratory, and Patient-Therapist Interaction. The intention of this review is to link specific interventions to applied practice so that integrative clinicians can potentially use these techniques to improve their clinical work. To this end, there is the inclusion of theory and empirical studies from a range of orientations including Emotionally Focused, Psychodynamic, Client-Centered, Cognitive-Behavioral, Interpersonal, Eclectic, and Motivational Interviewing. Each of the four sections will include the theoretical basis and proposed mechanism of change for the intervention, research that supports its positive impact on psychotherapy processes, and conclude with examples demonstrating its use in actual practice. Clinical implications and considerations regarding the use of these interventions will also be presented.

  20. Signal processing techniques for atrial fibrillation source detection.

    PubMed

    Ambadkar, Minal; Leonelli, Fabio M; Sankar, Ravi

    2014-01-01

    In clinical practice, Atrial Fibrillation (AF) is the most common and critical cardiac arrhythmia encountered. The treatment that can ensure permanent AF removal is catheter ablation, where cardiologists destroy the affected cardiac muscle cells with RF or Laser. In this procedure it is necessary to know exactly from which part of the heart AF triggers are originated. Various signal processing algorithms provide a strong tool to track AF sources. This study proposes, signal processing techniques that can be exploited for characterization, analysis and source detection of AF signals. These algorithms are implemented on Electrocardiogram (ECG) and intracardiac signals which contain important information that allows the analysis of anatomic and physiologic aspects of the whole cardiac muscle.

  1. Diagnostic techniques in thermal plasma processing (Part II). Volume 2

    SciTech Connect

    Boulos, M.; Fauchais, P.; Pfender, E.

    1986-02-01

    Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000/sup 0/K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light. (WRF)

  2. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  3. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  4. Computational fluid dynamics in the design and analysis of thermal processes: a review of recent advances.

    PubMed

    Norton, Tomás; Tiwari, Brijesh; Sun, Da Wen

    2013-01-01

    The design of thermal processes in the food industry has undergone great developments in the last two decades due to the availability of cheap computer power alongside advanced modelling techniques such as computational fluid dynamics (CFD). CFD uses numerical algorithms to solve the non-linear partial differential equations of fluid mechanics and heat transfer so that the complex mechanisms that govern many food-processing systems can be resolved. In thermal processing applications, CFD can be used to build three-dimensional models that are both spatially and temporally representative of a physical system to produce solutions with high levels of physical realism without the heavy costs associated with experimental analyses. Therefore, CFD is playing an ever growing role in the development of optimization of conventional as well as the development of new thermal processes in the food industry. This paper discusses the fundamental aspects involved in developing CFD solutions and forms a state-of-the-art review on various CFD applications in conventional as well as novel thermal processes. The challenges facing CFD modellers of thermal processes are also discussed. From this review it is evident that present-day CFD software, with its rich tapestries of mathematical physics, numerical methods and visualization techniques, is currently recognized as a formidable and pervasive technology which can permit comprehensive analyses of thermal processing.

  5. Landslide detection and long-term monitoring in urban area by means of advanced interferometric techniques

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Del Ventisette, Chiara; Liguori, Vincenzo; Casagli, Nicola

    2010-05-01

    This work aims at illustrating the potential of advanced interferometric techniques for detection and long-term monitoring of landslide ground deformations at local scale. Space-born InSAR (Synthetic Aperture Radar Interferometry) has been successfully exploited in recent years to measure ground deformations associated to processes with slow kinematics, such as landslides, tectonic motions, subsidence or volcanic activity, thanks to both the standard single-interferogram approach (centimeter accuracy) and advanced time-series analyses of long temporal radar satellite data stacks (millimeter accuracy), such as Persistent Scatterers Interferometry (PSI) techniques. In order to get a complete overview and an in-depth knowledge of an investigated landslide, InSAR satellite measures can support conventional in situ data. This methodology allows studying the spatial pattern and the temporal evolution of ground deformations, improving the spatial coverage and overcoming issues related to installation of ground-based instrumentation and data acquisition in unstable areas. Here we describe the application of the above-mentioned methodology on the test area of Agrigento, Sicily (Italy), affected by hydrogeological risk. The town is located in Southern Sicily, at edge of the Apennine-Maghrebian thrust belt, on the Plio-Pleistocene and Miocene sediments of the Gela Nappe. Ground instabilities affect the urban area and involve the infrastructures of its NW side, such as the Cathedral, the Seminary and many private buildings. An integration between InSAR analyses and conventional field investigations (e.g. structural damages and fractures surveys) was therefore carried out, to support Regional Civil Protection authorities for emergency management and risk mitigation. The results of InSAR analysis highlighted a general stability of the whole urban area between 1992 and 2007. However, very high deformation rates (up to 10-12 mm/y) were identified in 1992-2000 in the W slope of the

  6. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  7. Parameter tuning of PVD process based on artificial intelligence technique

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  8. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  9. The influence of advanced processing on PWA 1480

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.; Schnittgrund, G. D.

    1989-01-01

    High thermal gradient casting of PWA 1480 was evaluated as an avenue for reducing the size of casting porosity. Hot isostatic pressing (HIP) was also employed for the elimination of casting pores. An alternate to the standard PWA 1480 coating plus diffusion bonding aging heat treatment cycle was also evaluated for potential improvements in the properties of interest to the Space Shuttle Main Engine (SSME) application. Microstructural changes associated with the high thermal gradient casting process were quantified by measurement of the size and density of the casting porosity, the amount of retained casting eutectic, and dendrite arm spacings. The results of the advanced processing have shown an improvement in material microstructure due to high thermal gradient casting. Improved homogeneity of PWA 1480 is advantageous in providing an improved solution heat treatment window and, potentially, easier HIP. High thermal gradient casting improves fatigue life by reducing casting pore size. The alternate heat treatment improves the balance of strength and ductility which appears to improve low cycle fatigue life, but with a reduction in short time stress rupture life. Based upon these tests, hot isostatic pressing appears to afford further improvements in cyclic life, though additional evaluation is suggested. Development of the alternate heat treatment is not recommended due to the reduced stress rupture capability and the need to develop a new properties data base. High thermal gradient casting and HIP are recommended for application to single crystal castings.

  10. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  11. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  12. Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia

    In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

  13. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    SciTech Connect

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

  14. Processing energetic materials with supercritical fluid precipitation techniques

    NASA Astrophysics Data System (ADS)

    Essel, Jonathan

    Research has shown that nano-sized particles of explosives have a reduced sensitivity to impact and shock. Nano-sized energetic particles have also shown promise in improving the performance of propellants and explosives. Therefore, a method to produce nano-sized explosive particles could be ideal for sensitivity and performance reasons. Supercritical fluid precipitation has been shown to produce nano-sized explosive particles effectively. This research explores the feasibility of processing energetic materials using three different supercritical fluid precipitation techniques. The first technique is called the Rapid Expansion of a Supercritical Solution (RESS). The RESS process dissolves a solute in a supercritical fluid and then rapidly expands the resulting solution through a nozzle to produce small (nano-sized) and uniform particles from a high degree of supersaturation. The second technique is the Rapid Expansion of a Supercritical Solution into a Liquid Solvent (RESOLV) Process. This process is similar to the RESS process except the supercritical solution is expanded into a liquid and dispersant solution to reduce particle agglomeration and to reduce the size of the particles further. The final technique investigated is the Rapid Expansion of a Supercritical Solution with a Nonsolute (RESS-N) process in which the precipitating solute is used to encapsulate or coat a nonsoluble substance by heterogeneous nucleation. This works takes both a theoretical an empirical approach. On the theoretical side, a numerical code that accounts for nucleation and condensation in the RESS process was written in FORTRAN to predict how altering pre-expansion pressures and pre-expansion temperatures in the RESS process could affect the final particle size of the produced RDX. It was determined that pre-expansion temperature had a marginal impact on final particle size but higher pre-expansion pressures were beneficial in forming smaller particles. Also, a software program called

  15. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication.

    PubMed

    Hoque, M Enamul; Chuan, Y Leng; Pashby, Ian

    2012-02-01

    Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.

  16. Homogenous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water.

    PubMed

    Pourakbar, Mojtaba; Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-03-01

    This study was aimed to evaluate the degradation and mineralization of amoxicillin(AMX), using VUV advanced process. The effect of pH, AMX initial concentration, presence of water ingredients, the effect of HRT, and mineralization level by VUV process were taken into consideration. In order to make a direct comparison, the test was also performed by UVC radiation. The results show that the degradation of AMX was following the first-order kinetic. It was found that direct photolysis by UVC was able to degrade 50mg/L of AMX in 50min,while it was 3min for VUV process. It was also found that the removal efficiency by VUV process was directly influenced by pH of the solution, and higher removal rates were achieved at high pH values.The results show that 10mg/L of AMX was completely degraded and mineralized within 50s and 100s, respectively, indicating that the AMX was completely destructed into non-hazardous materials. Operating the photoreactor in contentious-flow mode revealed that 10mg/L AMX was completely degraded and mineralized at HRT values of 120s and 300s. it was concluded that the VUV advanced process was an efficient and viable technique for degradation and mineralization of contaminated water by antibiotics. PMID:26669695

  17. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  18. Advanced process modeling at the BCL smelter: Improving economic and environmental performance

    NASA Astrophysics Data System (ADS)

    Tripathi, Nagendra; Peek, Edgar; Stroud, Milton

    2011-01-01

    Since 1973 Bamangwato Concessions Limited (BCL) has operated a nickel-copper smelter in Selebi-Phikwe, Botswana. The smelter treats concentrates from local mines and various custom feed concentrates. The nickel throughput capacity of this smelter is constrained by a low nickel feed grade in its primary BCL concentrate. BCL contracted Xstrata Process Support (XPS) to assist in identifying key economic drivers to maximize revenue-generating opportunities. After the disclosure of essential BCL plant performance data XPS developed and utilized advanced metallurgical modeling techniques to identify production bottlenecks, calculate Ni, Cu, and Co recoveries, manage the slag volumes, increase the custom feed capacity, and perform various feasibility analyses for key unit process operations in the BCL smelter. The methodology for developing the process model and its application in contributing to the economic bottom line are outlined in this paper.

  19. Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life

    PubMed Central

    Bunge, John; Gilbert, Jack A.; Moore, Jason H.

    2012-01-01

    This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

  20. Advances in Plasma Process Equipment Development using Plasma and Electromagnetics Modeling

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur

    2013-10-01

    Plasma processing is widely used in the semiconductor industry for thin film etching and deposition, modification of near-surface material, and cleaning. In particular, the challenges for plasma etching have increased as the critical feature dimensions for advanced semiconductor devices have decreased to 20 nm and below. Critical scaling limitations are increasingly driving the transition to 3D solutions such as multi-gate MOSFETs and 3D NAND structures. These structures create significant challenges for dielectric and conductor etching, especially given the high aspect ratio (HAR) of the features. Plasma etching equipment must therefore be capable of exacting profile control across the entire wafer for feature aspect ratios up to 80:1, high throughput, and exceptionally high selectivity. The multiple challenges for advanced 3D structures are addressed by Applied Material's plasma etching chambers by providing highly sophisticated control of ion energy, wafer temperature and plasma chemistry. Given the costs associated with such complex designs and reduced development time-scales, much of these design innovations have been enabled by utilizing advanced computational plasma modeling tools. We have expended considerable effort to develop 3-dimensional coupled plasma and electromagnetic modeling tools in recent years. In this work, we report on these modeling software and their application to plasma processing system design and evaluation of strategies for hardware and process improvement. Several of these examples deal with process uniformity, which is one of the major challenges facing plasma processing equipment design on large substrates. Three-dimensional plasma modeling is used to understand the sources of plasma non-uniformity, including the radio-frequency (RF) current path, and develop uniformity improvement techniques. Examples from coupled equipment and process models to investigate the dynamics of pulsed plasmas and their impact on plasma chemistry will