Science.gov

Sample records for advanced progressive matrices

  1. New Rule Use Drives the Relation between Working Memory Capacity and Raven's Advanced Progressive Matrices

    ERIC Educational Resources Information Center

    Wiley, Jennifer; Jarosz, Andrew F.; Cushen, Patrick J.; Colflesh, Gregory J. H.

    2011-01-01

    The correlation between individual differences in working memory capacity and performance on the Raven's Advanced Progressive Matrices (RAPM) is well documented yet poorly understood. The present work proposes a new explanation: that the need to use a new combination of rules on RAPM problems drives the relation between performance and working…

  2. Item Response Theory Analysis and Differential Item Functioning across Age, Gender and Country of a Short Form of the Advanced Progressive Matrices

    ERIC Educational Resources Information Center

    Chiesi, Francesca; Ciancaleoni, Matteo; Galli, Silvia; Morsanyi, Kinga; Primi, Caterina

    2012-01-01

    Item Response Theory (IRT) models were applied to investigate the psychometric properties of the Arthur and Day's Advanced Progressive Matrices-Short Form (APM-SF; 1994) [Arthur and Day (1994). "Development of a short form for the Raven Advanced Progressive Matrices test." "Educational and Psychological Measurement, 54," 395-403] in order to test…

  3. The difference isn't black and white: stereotype threat and the race gap on Raven's Advanced Progressive Matrices.

    PubMed

    Brown, Ryan P; Day, Eric Anthony

    2006-07-01

    This study addresses recent criticisms aimed at the interpretation of stereotype threat research and methodological weaknesses of previous studies that have examined race differences on Raven's Advanced Progressive Matrices (APM). African American and White undergraduates completed the APM under three conditions. In two threat conditions, participants received either standard APM instructions (standard threat) or were told that the APM was an IQ test (high threat). In a low threat condition, participants were told that the APM was a set of puzzles and that the researchers wanted their opinions of them. Results supported the stereotype threat interpretation of race differences in cognitive ability test scores. Although African American participants underperformed Whites under both standard and high threat instructions, they performed just as well as Whites did under low threat instructions.

  4. Advanced Progressive Matrices and Sex Differences: Comment to Mackintosh and Bennett (2005)

    ERIC Educational Resources Information Center

    Colom, Roberto; Abad, Francisco J.

    2007-01-01

    Mackintosh and Bennett's [Mackintosh, N. J. and Bennett, E. S, (2005). ''What do Raven's Matrices measure? An analysis in terms of sex differences.'' Intelligence 33: 663-674.] study shows that males outperform females in some APM items but not in others, implicating that these items are measuring discriminable mental processes. The present…

  5. Using the Advanced Progressive Matrices (Set I) to Assess Fluid Ability in a Short Time Frame: An Item Response Theory-Based Analysis

    ERIC Educational Resources Information Center

    Chiesi, Francesca; Ciancaleoni, Matteo; Galli, Silvia; Primi, Caterina

    2012-01-01

    This article is aimed at evaluating the possibility that Set I of the Advanced Progressive Matrices (APM-Set I) can be employed to assess fluid ability in a short time frame. The APM-Set I was administered to a sample of 1,389 primary and secondary school students. Confirmatory factor analysis attested to the unidimensionality of the scale. Item…

  6. The Quest for Item Types Based on Information Processing: An Analysis of Raven's Advanced Progressive Matrices, with a Consideration of Gender Differences

    ERIC Educational Resources Information Center

    Vigneau, Francois; Bors, Douglas A.

    2008-01-01

    Various taxonomies of Raven's Advanced Progressive Matrices (APM) items have been proposed in the literature to account for performance on the test. In the present article, three such taxonomies based on information processing, namely Carpenter, Just and Shell's [Carpenter, P.A., Just, M.A., & Shell, P., (1990). What one intelligence test…

  7. Visual/verbal-analytic reasoning bias as a function of self-reported autistic-like traits: a study of typically developing individuals solving Raven's Advanced Progressive Matrices.

    PubMed

    Fugard, Andrew J B; Stewart, Mary E; Stenning, Keith

    2011-05-01

    People with autism spectrum condition (ASC) perform well on Raven's matrices, a test which loads highly on the general factor in intelligence. However, the mechanisms supporting enhanced performance on the test are poorly understood. Evidence is accumulating that milder variants of the ASC phenotype are present in typically developing individuals, and that those who are further along the autistic-like trait spectrum show similar patterns of abilities and impairments as people with clinically diagnosed ASC. We investigated whether self-reported autistic-like traits in a university student sample, assessed using the Autism-Spectrum Quotient (AQ; Baron-Cohen, Wheelwright, Skinner, et al., 2001), predict performance on Raven's Advanced Progressive Matrices. We found that reporting poorer social skills but better attention switching predicted a higher Advanced matrices score overall. DeShon, Chan, and Weissbein (1995) classified Advanced matrices items as requiring a visuospatial, or a verbal-analytic strategy. We hypothesised that higher AQ scores would predict better performance on visuospatial items than on verbal-analytic items. This prediction was confirmed. These results are consistent with the continuum view and can be explained by the enhanced perceptual functioning theory of performance peaks in ASC. The results also confirm a new prediction about Raven's Advanced Progressive Matrices performance in people with ASC. PMID:21325371

  8. Advanced incomplete factorization algorithms for Stiltijes matrices

    SciTech Connect

    Il`in, V.P.

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  9. Visual/Verbal-Analytic Reasoning Bias as a Function of Self-Reported Autistic-Like Traits: A Study of Typically Developing Individuals Solving Raven's Advanced Progressive Matrices

    ERIC Educational Resources Information Center

    Fugard, Andrew J. B.; Stewart, Mary E.; Stenning, Keith

    2011-01-01

    People with autism spectrum condition (ASC) perform well on Raven's matrices, a test which loads highly on the general factor in intelligence. However, the mechanisms supporting enhanced performance on the test are poorly understood. Evidence is accumulating that milder variants of the ASC phenotype are present in typically developing individuals,…

  10. Variation in Raven's Progressive Matrices Scores across Time and Place

    ERIC Educational Resources Information Center

    Brouwers, Symen A.; Van de Vijver, Fons J. R.; Van Hemert, Dianne A.

    2009-01-01

    The paper describes a cross-cultural and historical meta-analysis of Raven's Progressive Matrices. Data were analyzed of 798 samples from 45 countries (N = 244,316), which were published between 1944 and 2003. Country-level indicators of educational permeation (which involves a broad set of interrelated educational input and output factors that…

  11. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  12. Use of the Raven Progressive Matrices Test in an Ethnically Diverse Gifted Population.

    ERIC Educational Resources Information Center

    Saccuzzo, Dennis P.; And Others

    The efficacy of use of the Raven Progressive Matrices Test (RPM) in the selection of gifted children from traditionally underrepresented groups was investigated in a large-scale study with a diverse population. A total of 16,985 subjects were given the Raven Progressive Matrices Test. These included 22.7 percent Latinos, 37 percent Whites, 14…

  13. Progress in bacterial cellulose matrices for biotechnological applications.

    PubMed

    Cacicedo, Maximiliano L; Castro, M Cristina; Servetas, Ioannis; Bosnea, Loulouda; Boura, Konstantina; Tsafrakidou, Panagiota; Dima, Agapi; Terpou, Antonia; Koutinas, Athanasios; Castro, Guillermo R

    2016-08-01

    Bacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups. Modification of BC can be made by two strategies: in-situ, during the BC production, and ex-situ after BC purification. In bioprocesses, multilayer BC nanocomposites can contain biocatalysts designed to be suitable for outside to inside cell activities. These nanocomposites biocatalysts can (i) increase productivity in bioreactors and bioprocessing, (ii) provide cell activities does not possess without DNA cloning and (iii) provide novel nano-carriers for cell inside activity and bioprocessing. In nanomedicine, BC matrices containing therapeutic molecules can be used for pathologies like skin burns, and implantable therapeutic devices. In nanoelectronics, semiconductors BC-based using salts and synthetic polymers brings novel films showing excellent optical and photochemical properties. PMID:26927233

  14. Progress in bacterial cellulose matrices for biotechnological applications.

    PubMed

    Cacicedo, Maximiliano L; Castro, M Cristina; Servetas, Ioannis; Bosnea, Loulouda; Boura, Konstantina; Tsafrakidou, Panagiota; Dima, Agapi; Terpou, Antonia; Koutinas, Athanasios; Castro, Guillermo R

    2016-08-01

    Bacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups. Modification of BC can be made by two strategies: in-situ, during the BC production, and ex-situ after BC purification. In bioprocesses, multilayer BC nanocomposites can contain biocatalysts designed to be suitable for outside to inside cell activities. These nanocomposites biocatalysts can (i) increase productivity in bioreactors and bioprocessing, (ii) provide cell activities does not possess without DNA cloning and (iii) provide novel nano-carriers for cell inside activity and bioprocessing. In nanomedicine, BC matrices containing therapeutic molecules can be used for pathologies like skin burns, and implantable therapeutic devices. In nanoelectronics, semiconductors BC-based using salts and synthetic polymers brings novel films showing excellent optical and photochemical properties.

  15. Advanced applications of reduced density matrices in electronic structure theory

    NASA Astrophysics Data System (ADS)

    Rothman, Adam Eric

    This dissertation describes several applications of reduced density matrices (RDMs) in electronic structure theory. RDM methods are a valuable addition to the library of electronic structure theories because they reduce a many-electron problem to the space of just two electrons without approximation. New theoretical and computational avenues enabled by the two-electron RDM (2-RDM) have already shown substantial progress in calculating atomic and molecular energies and properties with an eye toward predictive chemistry. More than simply accurate calculations, RDM methods entail a paradigm shift in quantum chemistry. While one-electron approaches are conceptually easy to understand, the importance of the 2-RDM quantifies the centrality of a two-body framework. The 2-RDM facilitates a two-electron interpretation of quantum mechanics that will undoubtedly lead to a greater understanding of electron correlation. Two applications presented in the dissertation center around near-exact evaluation of the 2-RDM in chemical systems without the many-electron wave function, but approach the problem from different angles. The first applies variational 2-RDM theory to a model quantum dot; the second attempts non-variational determination of the 2-RDM in open-shell atomic and molecular systems using an extension of the anti-Hermitian contracted Schrodinger equation (ACSE). An example reaction is presented to demonstrate how energies computed with the 2-RDM can facilitate an understanding of chemical reactivity. A third application uses the one-electron RDM (1-RDM) as a tool for understanding molecular conductivity. In this case, the 1-RDM is valuable because it integrates out many extraneous degrees of freedom from metal baths, simplifying the electron transport problem but retaining enough information to predict the dependence of current on applied voltage. The results are competitive with other conductivity theories, including a dominant scattering-based understanding, but

  16. Researchers' Bibliography for Raven's Progressive Matrices and Mill Hill Vocabulary Scales.

    ERIC Educational Resources Information Center

    Court, J. H., Comp.

    This annotated bibliography enables researchers who are using Raven's Progressive Matrices or the Mill Hill Vocabulary Scales to become familiar with other work that used these tests. The bibliography derives from Raven's own collection of sources, updated to the end of 1971. The major division of material is by tests rather than subject areas;…

  17. Development of Abbreviated Nine-Item Forms of the Raven's Standard Progressive Matrices Test

    ERIC Educational Resources Information Center

    Bilker, Warren B.; Hansen, John A.; Brensinger, Colleen M.; Richard, Jan; Gur, Raquel E.; Gur, Ruben C.

    2012-01-01

    The Raven's Standard Progressive Matrices (RSPM) is a 60-item test for measuring abstract reasoning, considered a nonverbal estimate of fluid intelligence, and often included in clinical assessment batteries and research on patients with cognitive deficits. The goal was to develop and apply a predictive model approach to reduce the number of items…

  18. Raven's Coloured Progressive Matrices as a Measure of Cognitive Functioning in Cerebral Palsy

    ERIC Educational Resources Information Center

    Pueyo, R.; Junque, C.; Vendrell, P.; Narberhaus, A.; Segarra, D.

    2008-01-01

    Background: Cognitive dysfunction is frequent in Cerebral Palsy (CP). CP motor impairment and associated speech deficits often hinder cognitive assessment, with the result being that not all CP studies consider cognitive dysfunction. Raven's Coloured Progressive Matrices is a simple, rapid test which can be used in persons with severe motor…

  19. The Shortened Raven Standard Progressive Matrices: Item Response Theory-Based Psychometric Analyses and Normative Data

    ERIC Educational Resources Information Center

    Van der Elst, Wim; Ouwehand, Carolijn; van Rijn, Peter; Lee, Nikki; Van Boxtel, Martin; Jolles, Jelle

    2013-01-01

    The purpose of the present study was to evaluate the psychometric properties of a shortened version of the Raven Standard Progressive Matrices (SPM) under an item response theory framework (the one- and two-parameter logistic models). The shortened Raven SPM was administered to N = 453 cognitively healthy adults aged between 24 and 83 years. The…

  20. IP-MSA: Independent order of progressive multiple sequence alignments using different substitution matrices

    NASA Astrophysics Data System (ADS)

    Boraik, Aziz Nasser; Abdullah, Rosni; Venkat, Ibrahim

    2014-12-01

    Multiple sequence alignment (MSA) is an essential process for many biological sequence analyses. There are many algorithms developed to solve MSA, but an efficient computation method with very high accuracy is still a challenge. Progressive alignment is the most widely used approach to compute the final MSA. In this paper, we present a simple and effective progressive approach. Based on the independent order of sequences progressive alignment which proposed in QOMA, this method has been modified to align the whole sequences to maximize the score of MSA. Moreover, in order to further improve the accuracy of the method, we estimate the similarity of any pair of input sequences by using their percent identity, and based on this measure, we choose different substitution matrices during the progressive alignment. In addition, we have included horizontal information to alignment by adjusting the weights of amino acid residues based on their neighboring residues. The experimental results have been tested on popular benchmark of global protein sequences BAliBASE 3.0 and local protein sequences IRMBASE 2.0. The results of the proposed approach outperform the original method in QOMA in terms of sum-of-pair score and column score by up to 14% and 7% respectively.

  1. The Bender Gestalt and the Ravens Progressive Matrices Measures of Perceptual Behavior, Motor Behavior and Perceptual-Motor Behavior.

    ERIC Educational Resources Information Center

    Roberds, Jeannette

    The scores of 79 second-grade pupils on the Ravens Colored Progressive Matrices and the Bender Gestalt were factor-analyzed using six different factor-analytic procedures. Sex, age, and vocabulary test scores were included in the analysis as marker variables. The original factor solutions were subjected to oblique transformation and the…

  2. What One Intelligence Test Measures: A Theoretical Account of the Processing in the Raven Progressive Matrices Test.

    ERIC Educational Resources Information Center

    Carpenter, Patricia A.; And Others

    The cognitive processes in a widely used, non-verbal test of analytic intelligence--the Raven Progressive Matrices Test (J. C. Raven, 1962)--were analyzed. The analysis determined which processes distinguished between higher-scoring and lower-scoring subjects and which processes were common to all subjects and all items on the test. The analysis…

  3. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes.

    PubMed

    Justé, A; Thomma, B P H J; Lievens, B

    2008-09-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids. These methods are now increasingly applied in food microbiology as well. This review presents an overview of current community profiling techniques with their (potential) applications in food and food-related ecosystems. We critically assessed both the power and limitations of these techniques and present recent advances in the field of food microbiology attained by their application. It is unlikely that a single approach will be universally applicable for analyzing microbial communities in unknown matrices. However, when screening samples for well-defined species or functions, techniques such as DNA arrays and real-time PCR have the potential to overtake current culture-based methods. Most importantly, molecular methods will allow us to surpass our current culturing limitations, thus revealing the extent and importance of the 'non-culturable' microbial flora that occurs in food matrices and production.

  4. Approximating large resonance parameter covariance matrices with group-wise covariance matrices for advanced nuclear fuel cycle applications

    SciTech Connect

    Dunn, Michael E; Leal, Luiz C; Wiarda, Dorothea; Arbanas, Goran

    2008-01-01

    The large size of resonance parameter covariance matrices (RPCM) in the actinide region often renders them impractical for dissemination via ENDF. Therefore, a method of approximating the RPCM by a much smaller group-wise covariance matrix (GWCM) is described, implemented, and examined. In this work, 233U RPCM is used to generate GWCM's for the 44 group AMPX, 100 group GE, 171 group VITAMIN-C, and 240 group CSWEG. Each of these GWCM's is then used to compute group-wise uncertainties for the groups of the remaining group structures. The group-wise uncertainties thus obtained are compared with those obtained from a full RPCM, i.e. without the approximation. A systematic comparison of group-wise uncertainties based on GWCM's vs. RPCM, for a variety of group structures, will shed light on the validity of this approximation and may suggest which group structure(s) yield a GWCM that could be used in lieu of the RPCM.

  5. Advances in technologies for the measurement of uranium in diverse matrices.

    PubMed

    Rathore, D P S

    2008-10-19

    An overview of the advances in technologies, which can be used in the field as well as in a laboratory for the measurement of uranium in diverse matrices like, waters, minerals, mineralized rocks, and other beneficiation products for its exploration and processing industries is presented. Laser based technologies, ion chromatography, microsample X-ray analysis method followed by energy dispersive X-ray fluorescence technique (MXA-EDXRF), sensors for electrochemical detection followed by cyclic voltammogram and alpha liquid scintillation counting techniques are the most promising techniques. Among these techniques, laser fluorimetry/spectrofluorimetry, in particular, is the technique of choice because of its high performance qualification (PQ), inherent sensitivity, simplicity, cost effectiveness, minimum generation of analytical waste, rapidity, easy calibration and operation. It also fulfills the basic essential requirements of reliability, applicability and practicability (RAPs) for the analysis of uranium in solution of diverse matrices in entire nuclear fuel cycle. A very extensive range of uranium concentrations may be covered. Laser fluorimetry is suitable for direct determination of uranium in natural water systems within the microg L(-1) and mg L(-1) range while differential technique in laser fluorimetry (DT-LIF) is suitable for mineralized rocks and concentrates independent of matrix effects (uranium in samples containing >0.01% uranium). The most interesting feature of TRLIF is its capability of performing speciation of complexes directly in solution as well as remote determination via fiber optics and optrode. Future trend and advances in lasers, miniaturization and automation via flow injection analysis (FIA) has been discussed. PMID:18804592

  6. Advanced 80 We Stirling Convertor Development Progress

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Carroll, Cliff; Penswick, L. B.

    2005-02-01

    This paper presents progress on the Advanced Stirling Convertor (ASC) being developed by Sunpower and Boeing/Rocketdyne under NASA NRA funding. The ASC will use a high temperature heater head to allow for operation at 850 °C. The ASC is projected to have an efficiency approaching 40% (AC electrical out/ heat in) when operating at a temperature ratio of 3.0, and to have a convertor specific power of 90 We/kg (AC). An early developmental unit, the Frequency Test Bed (FTB) convertor, has already demonstrated 36% efficiency (based on AC electrical out) at this temperature ratio. The ASC is being developed for potential use in advanced radioisotope space power systems. The increased efficiency of this Stirling convertor compared to RTGs, would reduce the required amount of Plutonium fuel by a factor of approximately 5.

  7. Progressive condylar resorption after mandibular advancement.

    PubMed

    Kobayashi, Tadaharu; Izumi, Naoya; Kojima, Taku; Sakagami, Naoko; Saito, Isao; Saito, Chikara

    2012-03-01

    Progressive condylar resorption is an irreversible complication and a factor in the development of late skeletal relapse after orthognathic surgery. We have evaluated cephalometric characteristics, signs and symptoms in the temporomandibular joint (TMJ), and surgical factors in six patients (one man and five women) who developed it after orthognathic surgery. The findings in preoperative cephalograms indicated that the patients had clockwise rotation of the mandible and retrognathism because of a small SNB angle, a wide mandibular plane angle, and a "minus" value for inclination of the ramus. There were erosions or deformities of the condyles, or both, on three-dimensional computed tomography (CT) taken before treatment. The mean (SD) anterior movement of the mandible at operation was 12.1 (3.9)mm and the mean relapse was -6.4 (2.5)mm. The mean change in posterior facial height was 4.5 (2.1)mm at operation and the mean relapse was -5.3 (1.8)mm. Two patients had click, or pain, or both, preoperatively. The click disappeared in one patient postoperatively, but one of the patients who had been symptom-free developed crepitus postoperatively. In the classified resorption pattern, posterior-superior bone loss was seen in three cases, anterior-superior bone loss in two, and superior bone loss in one. Progressive condylar resorption after orthognathic surgery is multifactorial, and some of the risk factors are inter-related. Patients with clockwise rotation of the mandible and retrognathism in preoperative cephalograms; erosion, or deformity of the condyle, or both, on preoperative CT; and wide mandibular advancement and counterclockwise rotation of the mandibular proximal segment at operation, seemed to be at risk. The mandible should therefore be advanced only when the condyles are stable on radiographs, and careful attention should be paid to postoperative mechanical loading on the TMJ in high-risk patients. PMID:21440343

  8. Halting progressive neurodegeneration in advanced retinitis pigmentosa

    PubMed Central

    Koch, Susanne F.; Tsai, Yi-Ting; Duong, Jimmy K.; Wu, Wen-Hsuan; Hsu, Chun-Wei; Wu, Wei-Pu; Bonet-Ponce, Luis; Lin, Chyuan-Sheng; Tsang, Stephen H.

    2015-01-01

    Hereditary retinal degenerative diseases, such as retinitis pigmentosa (RP), are characterized by the progressive loss of rod photoreceptors followed by loss of cones. While retinal gene therapy clinical trials demonstrated temporary improvement in visual function, this approach has yet to achieve sustained functional and anatomical rescue after disease onset in patients. The lack of sustained benefit could be due to insufficient transduction efficiency of viral vectors (“too little”) and/or because the disease is too advanced (“too late”) at the time therapy is initiated. Here, we tested the latter hypothesis and developed a mouse RP model that permits restoration of the mutant gene in all diseased photoreceptor cells, thereby ensuring sufficient transduction efficiency. We then treated mice at early, mid, or late disease stages. At all 3 time points, degeneration was halted and function was rescued for at least 1 year. Not only do our results demonstrate that gene therapy effectively preserves function after the onset of degeneration, our study also demonstrates that there is a broad therapeutic time window. Moreover, these results suggest that RP patients are treatable, despite most being diagnosed after substantial photoreceptor loss, and that gene therapy research must focus on improving transduction efficiency to maximize clinical impact. PMID:26301813

  9. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    SciTech Connect

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  10. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  11. Somatotype and intellectual ability (Raven Progressive Matrices Test) in Chilean school-age children.

    PubMed

    Tapia, Liliana U; Lizana, Pablo A; Orellana, Yasna Z; Villagrán, Francisca S; Arias, Vanessa F; Almagià, Atilio F; Burrows, Raquel A; Ivanovic, Daniza M

    2013-01-01

    Objetivos: El objetivo de este estudio fue determinar la relación entre el somatotipo y la habilidad intelectual (HA) en estudiantes de 11-12 y 15-16 años de edad de la Región Metropolitana, Chile. Métodos: Se registró una muestra representativa de 1.015 escolares de acuerdo a los resultados del sistema de medición de la calidad de la educación (SIMCE) 2009. Se evaluó el somatotipo de Heath-Carter y la HA de acuerdo al Test de Matrices Progresivas de Raven. Resultados: Un 59% presentó un somatotipo endomórfico, 28% mesomórfico y 13% ectomorfo. La HA se distribuyó en: 11,2% Grado I, 26,8% Grado II, 41% Grado III, 17,6% Grado IV y 3,2% Grado V. Se presenta una correlación significativa positiva con el componente endomórfico (r = 0,074 p = 0,02), y sólo en mujeres (r = 0,109 p = 0,02), a la vez se observa una relación significativa positiva con el componente ectomorfo (r = 0,067 p < 0,05). Conclusiones: Esto sugiere que otras variables estarían influyendo más fuertemente en la HA, además de apoyar la no discriminación por biotipo en los establecimientos educacionales.

  12. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices – implications in the aging of resin-dentin bonds

    PubMed Central

    Kim, Young Kyung; Mai, Sui; Mazzoni, Annalisa; Liu, Yan; Tezvergil-Mutluay, Arzu; Takahashi, Kei; Zhang, Kai; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    Biomineralization is a dehydration process in which water from the intrafibrillar compartments of collagen fibrils are progressively replaced by apatites. As water is an important element that precipitates the lack of durability of resin-dentin bonds, this study examined the use of a biomimetic remineralization strategy as a progressive dehydration mechanism for preserving joint integrity and maintaining adhesive strength after aging. Human dentin surfaces were bonded with dentin adhesives, restored with resin composites and sectioned into sticks containing the adhesive joint. Experimental specimens were aged in a biomimetic analog-containing remineralizing medium and control specimens in simulated body fluid for up to 12 months. Specimens retrieved from the designated periods were examined by transmission electron microscopy for manifestation of water-rich regions using a silver tracer and for collagen degradation within the adhesive joints. Tensile testing was performed to determine the potential loss of bond integrity after aging. Control specimens exhibited severe collagen degradation within the adhesive joint after aging. Remineralized specimens exhibited progressive dehydration as manifested by silver tracer reduction and partial remineralization of water-filled micro-channels within the adhesive joint, as well as intrafibrillar remineralization of collagen fibrils that were demineralized initially as part of the bonding procedure. Biomimetic remineralization as a progressive dehydration mechanism of water-rich, resin-sparse collagen matrices enables those adhesive joints to resist degradation over the 12-month aging period, as verified by the conservation of their tensile bond strengths. The ability of the proof-of-concept biomimetic remineralization strategy to prevent bond degradation warrants further development of clinically-relevant delivery systems. PMID:20304110

  13. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes.

    PubMed

    Tokumura, Masahiro; Sugawara, Asato; Raknuzzaman, Mohammad; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2016-09-01

    Simple semi-theoretical models were developed to estimate the performance of three different kinds of advanced oxidation processes (AOPs) in the degradation of pharmaceuticals. The AOPs included the photo-Fenton process as an example of a liquid-liquid reaction, the TiO2 photocatalytic oxidation process as a solid-liquid reaction, and the combined ozone and hydrogen peroxide oxidation process as a gas-liquid reaction; the effects of the aqueous matrices (CESs: co-existing substances) of actual wastewater on the removal of pharmaceuticals (carbamazepine and diclofenac) was taken into account. By comparing the characteristic parameters of the models, obtained from the experiments using pure water and actual wastewater, the effects of CESs on the respective removal mechanisms could be separately and quantitatively evaluated. As a general tendency, the AOPs proceeded less effectively (were inhibited) in the matrices containing CESs, as observed with the use of a lower initial concentration of pharmaceuticals. The inhibition mechanisms differed for the three types of AOPs. In the photo-Fenton process, the Fenton reaction was improved by the incorporation of CESs, while the photo-reduction reaction was significantly inhibited. In the TiO2 photocatalytic oxidation process, competition between the pharmaceuticals and CESs for adsorption on the catalyst surface was a less significant inhibitory factor than the scavenger effects of the CESs. The combined ozone and hydrogen peroxide oxidation process was most strongly inhibited by CESs among the AOPs investigated in this study. PMID:27317938

  14. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes.

    PubMed

    Tokumura, Masahiro; Sugawara, Asato; Raknuzzaman, Mohammad; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2016-09-01

    Simple semi-theoretical models were developed to estimate the performance of three different kinds of advanced oxidation processes (AOPs) in the degradation of pharmaceuticals. The AOPs included the photo-Fenton process as an example of a liquid-liquid reaction, the TiO2 photocatalytic oxidation process as a solid-liquid reaction, and the combined ozone and hydrogen peroxide oxidation process as a gas-liquid reaction; the effects of the aqueous matrices (CESs: co-existing substances) of actual wastewater on the removal of pharmaceuticals (carbamazepine and diclofenac) was taken into account. By comparing the characteristic parameters of the models, obtained from the experiments using pure water and actual wastewater, the effects of CESs on the respective removal mechanisms could be separately and quantitatively evaluated. As a general tendency, the AOPs proceeded less effectively (were inhibited) in the matrices containing CESs, as observed with the use of a lower initial concentration of pharmaceuticals. The inhibition mechanisms differed for the three types of AOPs. In the photo-Fenton process, the Fenton reaction was improved by the incorporation of CESs, while the photo-reduction reaction was significantly inhibited. In the TiO2 photocatalytic oxidation process, competition between the pharmaceuticals and CESs for adsorption on the catalyst surface was a less significant inhibitory factor than the scavenger effects of the CESs. The combined ozone and hydrogen peroxide oxidation process was most strongly inhibited by CESs among the AOPs investigated in this study.

  15. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  16. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  17. Quantum efficiency of PAG decomposition in different polymer matrices at advanced lithographic wavelengths

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Sinta, Roger F.; Mowers, William A.; Cabral, Alberto

    2003-06-01

    The Dill ABC parameters for optical resists are typically determined by measuring the change in the intensity of transmitted light at the wavelength of interest as a function of incident energy. The effectiveness of the experiment rests with the fact that the resist optical properties change with exposure and that the optical properties are directly related to the concentration of PAG compound. These conditions are not typically satisfied in CA resists and thus C is unobtainable by this method. FT-IR spectroscopy can directly measure changes in the photoactive species by isolating and measuring absorbance peaks unique to the photoactive species. We employed the ProABC software, specially modified to allow FT-IR absorbance input, to extract ABS parameters through a best fit of the lithography model to experimental data. The quantum efficiency of PAG decomposition at 157-, 193-, and 248-nm was determined for four diazomethane type PAGs in four different polymer matrices. It was found that both the Dill C parameter and the quantum efficiency for all PAGs increased as wavelength decreased, but that the magnitude of the increase was strongly dependent on the polymer matrix.

  18. Advances in in vitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices.

    PubMed

    Cui, Xin-Yi; Xiang, Ping; He, Rui-Wen; Juhasz, Albert; Ma, Lena Q

    2016-05-01

    Cleanup goals for sites contaminated with persistent organic pollutants (POPs) are often established based on total contaminant concentrations. However, mounting evidence suggests that understanding contaminant bioavailability in soils is necessary for accurate assessment of contaminant exposure to humans via oral ingestion pathway. Animal-based in vivo tests have been used to assess contaminant bioavailability in soils; however, due to ethical issues and cost, it is desirable to use in vitro assays as alternatives. Various in vitro methods have been developed, which simulate human gastrointestinal (GI) tract using different digestion fluids. These methods can be used to predict POP bioavailability in soils, foods, and indoor dust after showing good correlation with in vivo animal data. Here, five common in vitro methods are evaluated and compared using PAHs and PBDEs as an example of traditional and emerging POPs. Their applications and limitations are discussed while focusing on method improvements and future challenges to predict POP bioavailability in different matrices. The discussions should shed light for future research to accurately assess human exposure to POPs via oral ingestion pathway. PMID:26921590

  19. Advanced Communications Architecture Demonstration Made Significant Progress

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2004-01-01

    Simulation for a ground station located at 44.5 deg latitude. The Advanced Communications Architecture Demonstration (ACAD) is a concept architecture to provide high-rate Ka-band (27-GHz) direct-to-ground delivery of payload data from the International Space Station. This new concept in delivering data from the space station targets scientific experiments that buffer data onboard. The concept design provides a method to augment the current downlink capability through the Tracking Data Relay Satellite System (TDRSS) Ku-band (15-GHz) communications system. The ACAD concept pushes the limits of technology in high-rate data communications for space-qualified systems. Research activities are ongoing in examining the various aspects of high-rate communications systems including: (1) link budget parametric analyses, (2) antenna configuration trade studies, (3) orbital simulations (see the preceding figure), (4) optimization of ground station contact time (see the following graph), (5) processor and storage architecture definition, and (6) protocol evaluations and dependencies.

  20. Advanced Technology Solar Telescope Construction: Progress Report

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas R.; McMullin, J.; Keil, S.; Goode, P.; Knoelker, M.; Kuhn, J.; Rosner, R.; ATST Team

    2012-05-01

    The 4m Advance Technology Solar Telescope (ATST) on Haleakala will be the most powerful solar telescope and the world’s leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun’s output. The ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve magnetic features at their intrinsic scales. A high order adaptive optics system delivers a corrected beam to the initial set of five state-of-the-art, facility class instrumentation located in the coude laboratory facility. Photopheric and chromospheric magnetometry is part of the key mission of four of these instruments. Coronal magnetometry and spectroscopy will be performed by two of these instruments at infrared wavelengths. The ATST project has transitioned from design and development to its construction phase. Site construction is expected to begin in April 2012. The project has awarded design and fabrication contracts for major telescope subsystems. A robust instrument program has been established and all instruments have passed preliminary design reviews or critical design reviews. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the project status of the telescope and discussion of the approach to integrating instruments into the facility. The National Science Foundation (NSF) through the National Solar Observatory (NSO) funds the ATST Project. The NSO is operated under a cooperative agreement between the Association of Universities for Research in Astronomy, Inc. (AURA) and NSF.

  1. Genetic and environmental contributions to population group differences on the Raven's Progressive Matrices estimated from twins reared together and apart.

    PubMed

    Rushton, J Philippe; Bons, Trudy Ann; Vernon, Philip A; Cvorović, Jelena

    2007-07-22

    We carried out two studies to test the hypothesis that genetic and environmental influences explain population group differences in general mental ability just as they do individual differences within a group. We estimated the heritability and environmentality of scores on the diagrammatic puzzles of the Raven's Coloured and/or Standard Progressive Matrices (CPM/SPM) from two independent twin samples and correlated these estimates with group differences on the same items. In Study 1, 199 pairs of 5- to 7-year-old monozygotic (MZ) and dizygotic (DZ) twins reared together provided estimates of heritability and environmentality for 36 puzzles from the CPM. These estimates correlated with the differences between the twins and 94 Serbian Roma (both rs=0.32; Ns=36; ps<0.05). In Study 2, 152 pairs of adult MZ and DZ twins reared apart provided estimates of heritability and environmentality for 58 puzzles from the SPM. These estimates correlated with the differences among 11 diverse samples including (i) the reared-apart twins, (ii) another sample of Serbian Roma, and (iii) East Asian, White, South Asian, Coloured and Black high school and university students in South Africa. In 55 comparisons, group differences were more pronounced on the more heritable and on the more environmental items (mean rs=0.40 and 0.47, respectively; Ns=58; ps<0.05). After controlling for measurement reliability and variance in item pass rates, the heritabilities still correlated with the group differences, although the environmentalities did not. Puzzles found relatively difficult (or easy) by the twins were those found relatively difficult (or easy) by the others (mean r=0.87). These results suggest that population group differences are part of the normal variation expected within a universal human cognition. PMID:17504738

  2. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  3. Progress to Develop an Advanced Solar-Selective Coating

    SciTech Connect

    Kennedy, C. E.

    2008-03-01

    The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

  4. Performance of matrices developed to identify patients with early rheumatoid arthritis with rapid radiographic progression despite methotrexate therapy: an external validation study based on the ESPOIR cohort data

    PubMed Central

    Granger, Benjamin; Combe, Bernard; Le Loet, Xavier; Saraux, Alain; Guillemin, Francis; Fautrel, Bruno

    2016-01-01

    Introduction Use of prediction matrices of risk or rapid radiographic progression (RRP) for early rheumatoid arthritis (RA) in clinical practice could help to better rationalise the first line of treatment. Before use, they must be validated in populations that have not participated in their construction. The main objective is to use the ESPOIR cohort to validate the performance of 3 matrices (ASPIRE, BEST and SONORA) to predict patients at high risk of RRP at 1 year of disease despite initial treatment with methotrexate (MTX). Methods We selected from the ESPOIR cohort 370 patients receiving MTX or leflunomide (LEF) for ≥3 months within the first year of follow-up. Patients were assessed clinically every 6 months, and structural damage progression seen on radiography was measured by the van der Heijde-modified Sharp score (vSHS) at 1 year. RRP was defined as an increase in the vSHS≥5 points during the first year. Results At 1 year, the mean vSHS score was 1.7±5.0 and 46 patients had RRP. The ASPIRE matrix had only moderate validity in the ESPOIR population, with area under the receiver operating characteristic curve (AUC) <0.7. The AUC for the BEST and SONORA matrices were 0.73 and 0.76. Presence of rheumatoid factor (RF)—or anti-citrullinated protein antibodies (ACPAs) and initial structural damage were always predictive of RRP at 1 year. Disease Activity Score in 28 joints (DAS28) and C reactive protein (ASPIRE threshold) were not associated with RRP. Conclusions Matrices to identify patients at risk of RRP tested in the ESPOIR cohort seem to perform moderately. There is no matrix that shows clearly superior performance. PMID:27252898

  5. Crizotinib Improves Progression-Free Survival in Some Patients with Advanced Lung Cancer

    MedlinePlus

    ... Prevention Lung Cancer Screening Research Crizotinib Improves Progression-Free Survival in Some Patients with Advanced Lung Cancer ( ... starting treatment without their disease getting worse (progression-free survival), as assessed by radiologic review. Results Progression- ...

  6. Advanced thermally stable jet fuels. Technical progress report, 1995

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1996-04-01

    The Penn State program in advanced thermally stable jet fuels has five components:(1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub- micrometer and micrometer sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics by direct liquefaction of coal. Progress reports for these tasks are presented.

  7. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention's performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  8. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention`s performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  9. Therapeutic advances in multiple system atrophy and progressive supranuclear palsy.

    PubMed

    Poewe, Werner; Mahlknecht, Philipp; Krismer, Florian

    2015-09-15

    Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are relentlessly progressive neurodegenerative diseases leading to severe disability and ultimately death within less than 10 y. Despite increasing efforts in basic and clinical research, effective therapies for these atypical parkinsonian disorders are lacking. Although earlier small clinical studies in MSA and PSP mainly focused on symptomatic treatment, advances in the understanding of the molecular underpinnings of these diseases and in the search for biomarkers have paved the way for the first large and well-designed clinical trials aiming at disease modification. Targets of intervention in these trials have included α-synuclein inclusion pathology in the case of MSA and tau-related mechanisms in PSP. Since 2013, four large randomized, placebo-controlled, double-blind disease-modification trials have been completed and published, using rasagiline (MSA), rifampicin (MSA), tideglusib (PSP), or davunetide (PSP). All of these failed to demonstrate signal efficacy with regard to the primary outcome measures. In addition, two randomized, placebo-controlled, double-blind trials have studied the efficacy of droxidopa in the symptomatic treatment of neurogenic orthostatic hypotension, including patients with MSA, with positive results in one trial. This review summarizes the design and the outcomes of these and other smaller trials published since 2013 and attempts to highlight priority areas of future therapeutic research in MSA and PSP. © 2015 International Parkinson and Movement Disorder Society.

  10. Gender-related decrease in raven`s progressive matrices scores in children prenatally exposed to polychlorinated biphenyls and related contaminants

    SciTech Connect

    Guo, Y.L.; Lai, T.J.; Chen, S.J.; Hsu, C.C.

    1995-07-01

    Polychlorinated biphenyls (PCBs) and industrial mixtures that have been widely used throughout the world. PCBs have long environmental half lives and bioconcentrate, therefore contaminating soil, water, wild life, and human tissues. Typical human exposures come from environmental contamination of food supply, especially fresh water fish and meat, and occupational exposures. In certain uses, PCBs can partially oxidize and themselves become contaminated by extremely toxic compounds such as polychlorinated dibenzofurans (PCDFs). Two episodes of intoxication with heat-degraded PCBs have occurred, in Japan and Taiwan respectively. In 1979, over 2000 persons in Taiwan were intoxicated by heat-degraded PCBs that had contaminated their cooking oil. Kaneclor 500 (a Japanese PCB mixture) contained in the heating pipe was used as the heat transmitter. Leakage of the pipe introduced PCBs and heat-degraded products such as polychlorinated dibenzofurans (PCDFs) and polychlorinated quaterphenyls (PCQs) into the rice oil. Exposed victims developed chloracne, hyperpigmentation, peripheral neuropathy, and other signs and symptoms which were later called Yu-Cheng ({open_quotes}oil disease{close_quotes}) in Taiwan. These symptoms were caused not only by PCBs but by their heat degraded products, PCDFs. PCBs, PCDFs and PCDDs also can cross the placenta to affect the fetus and cause significant neurodevelopmental toxicity. Raven`s Colored Progressive Matrices (CPM) and Standarized Progressive Matrices (SPM) test spatial rather than verbal capabilities in children. These test are useful for determining whether prenatal exposure to PCBs/PCDFs cause differential effects on boys and girls. This paper reports results of CPM and SPM from age six to nine year in Yu-Cheng children and their matched controls. Cognative deficits up to 9 years of age were detected n children with prenatal exposure to PCBs and PCDFs, and boys were more affected than girls. 26 refs., 1 fig., 2 tabs.

  11. Advanced Stirling Converter (ASC) Phase III Progress Update

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Wilson, Kyle; Buffalino, Andrew; Frye, Patrick; Matejczyk, Dan; Penswick, L. B.

    2007-01-01

    Progress in the development of the Advanced Stirling Convertor (ASC) is presented here. The ASC is being developed under contact with the NASA Glenn Research Center and is supported by the Science Mission Directorate for potential use in future radioisotope power systems having significantly increased efficiency and higher specific power compared to the current thermoelectric systems. Phase II of the effort successfully demonstrated very high conversion efficiency and also demonstrated the low mass capability of the ASC design. The non-hermetic ASC-1 converters demonstrated during Phase II employ superalloy heater heads designed for greater than 14 years life at 850 °C operation. Phase III, which is reported on here, includes the fabrication of multiple next generation hermetic ASC-2 units. Phase III also includes the development of multiple lower-temperature (650 °C hot end) convertors based on the basic ASC design and designated as ASC-0 units. Multiple converters are being built for extended life testing at NASA GRC.

  12. Progress in the Advanced Synthetic-Diamond Drill Bit Program

    SciTech Connect

    Glowka, D.A.; Dennis, T.; Le, Phi; Cohen, J.; Chow, J.

    1995-11-01

    Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

  13. FY2013 Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-12-01

    Annual progress report on the work of the the Advanced Combustion Engine Program. The Advanced Combustion Engine Program supports the Vehicle Technologies Office mission by addressing critical technical barriers to commercializing higher efficiency, very low emissions, advanced combustion engines for passenger and commercial vehicles that meet future federal emissions regulations.

  14. Technical Advancement and Human Progress and The Problems of Education.

    ERIC Educational Resources Information Center

    Bixby, Louis W.

    1980-01-01

    Projects and discusses possible future developments resulting from electrochemical technological advancements. Educational implications are explored, and examples of integrated learning in diverse interest areas are given. (CS)

  15. Solving the Raven Progressive Matrices by Adults with Intellectual Disability with/without Down Syndrome: Different Cognitive Patterns as Indicated by Eye-Movements

    ERIC Educational Resources Information Center

    Vakil, Eli; Lifshitz-Zehavi, Hefziba

    2012-01-01

    Raven matrices are used for assessing fluid intelligence and the intellectual level of groups with low intelligence. Our study addresses qualitative analysis of information processing in Raven matrices performance among individuals with intellectual disability with that of their typically developed (TD) counterparts. Twenty-three adults with…

  16. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  17. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1977-01-01

    Material categories as well as coatings and recent turbine cooling developments are reviewed. Current state of the art is identified, and as assessment, when appropriate, of progress, problems, and future directions is provided.

  18. Progress on Converting a NIF Quad to Eight, Petawatt Beams for Advanced Radiography

    SciTech Connect

    Crane, J K

    2009-10-19

    We are converting a quad of NIF beamlines into eight, short-pulse (1-50 ps), petawatt-class beams for advanced radiography and fast ignition experiments. This paper describes progress toward completing this project.

  19. Progress on converting a NIF quad to eight, petawatt beams for advanced radiography

    NASA Astrophysics Data System (ADS)

    Crane, J. K.; Tietbohl, G.; Arnold, P.; Bliss, E. S.; Boley, C.; Britten, G.; Brunton, G.; Clark, W.; Dawson, J. W.; Fochs, S.; Hackel, R.; Haefner, C.; Halpin, J.; Heebner, J.; Henesian, M.; Hermann, M.; Hernandez, J.; Kanz, V.; McHale, B.; McLeod, J. B.; Nguyen, H.; Phan, H.; Rushford, M.; Shaw, B.; Shverdin, M.; Sigurdsson, R.; Speck, R.; Stolz, C.; Trummer, D.; Wolfe, J.; Wong, J. N.; Siders, G. C.; Barty, C. P. J.

    2010-08-01

    We are converting a quad of NIF beamlines into eight, short-pulse (1-50 ps), petawatt-class beams for advanced radiography and fast ignition experiments. This paper describes progress toward completing this project.

  20. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  1. Recent progress of the Los Alamos advanced free electron laser

    SciTech Connect

    Nguyen, D.C.; Austin, R.H.; Chan, K.C.D.; Feldman, D.W.; Goldstein, J.C.; Gierman, S.M.; Kinross-Wright, J.M.; Kong, S.H.; Plato, J.G.; Russell, S.J.

    1994-05-01

    Many industrial and research applications can benefit from the availability of a compact, user-friendly, broadly tunable and high average power free electron laser (FEL). Over the past four years, the Los Alamos Advanced FEL has been built with these design goals. The key to a compact FEL is the integration of advanced beam technologies such as a high-brightness photoinjector, a high-gradient compact linac, and permanent magnet beamline components. These technologies enable the authors to shrink the FEL size yet maintain its high average power capability. The Advanced FEL has been in operation in the near ir (4-6 {mu}m) since early 1993. Recent results of the Advanced FEL lasing at saturation and upgrades to improve its average power are presented.

  2. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  3. Advanced Cooling Technology, Inc. final technical progress report

    SciTech Connect

    Myers, H.S.

    1993-08-12

    Tasks performed to develop an improved version of Advanced Cooling Technology`s Evaporative Subcooling System are described. Work on pump stability, improved drainage mechanism, and the American Refrigeration Institute engineering performance tests is presented.

  4. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    SciTech Connect

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  5. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Romano, A.J.

    1980-01-01

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  6. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  7. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  8. Progress in systemic therapy of advanced hepatocellular carcinoma

    PubMed Central

    Gong, Xin-Lei; Qin, Shu-Kui

    2016-01-01

    Primary liver cancer, mainly consisting of hepatocellular carcinoma (HCC), is one of common malignancies worldwide, and prevalent among the Chinese population. A diagnosis of early stage HCC has proven to be very difficult because of its insidious feature in onset and development. At the time of diagnosis, most HCC cases are locally advanced and/or distant metastatic, which results in difficulty to be treated and poor prognosis. For advanced HCC, systemic therapy is frequently adopted as an important palliative method. In recent years, clinical studies and observations have often reported about systemic anti-cancer therapy of advanced HCC, including molecular target therapy, systemic chemotherapy and immunotherapy. In this article, we review these treatment modalities to provide a reference for clinicians. PMID:27547002

  9. Sound transmission modeling of advanced multilayered composite structures using enhanced T-matrices for two-phase materials

    NASA Astrophysics Data System (ADS)

    Woodcock, Roland L.; Bryant, Rebecca S.

    2005-09-01

    Advanced composite structures have been used for many years in the aerospace industry. When designing multilayered structures special attention must be paid to the bonding techniques since the interface conditions have a direct effect on the mechanical coupling between the individual layers. Previous studies have shown the overall acoustical performance such as transmission loss and surface absorption to be sensitive to this structural path mainly in the lower frequency range. The state of the art shows that a comprehensive model is still lacking in the framework of the transfer matrix Method. The present paper proposes a new analytical modeling approach to tackle systems with stiffeners in the low-frequency range. This technique is based on the so-called Series-Parallel network of the transmission line theory in the framework of the classical electro-acoustical analogies. The simulations show that in the typical case of a double plate with stiffeners, with regards to transmission loss the design change due to the mechanical path is captured and the increase of the overall stiffness of the system shifts the resonance to the higher frequencies. The other important acoustical properties of multilayered systems will be highlighted during the presentation with regards to optimizing the overall acoustical performance.

  10. FY2009 Annual Progress Report for Advanced Power Electronics

    SciTech Connect

    Rogers, Susan A.

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  11. Advanced thermal barrier coating system development: Technical progress report

    SciTech Connect

    1996-08-07

    Objectives are to provide an improved TBC system with increased temperature capability and improved reliability, for the Advanced Turbine Systems program (gas turbine). The base program consists of three phases: Phase I, program planning (complete); Phase II, development; and Phase III (selected specimen-bench test). Work is currently being performed in Phase II.

  12. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  13. Recent Advances and Future Progress in PET Instrumentation.

    PubMed

    Slomka, Piotr J; Pan, Tinsu; Germano, Guido

    2016-01-01

    PET is an important and growing imaging modality. PET instrumentation has undergone a steady evolution improving various aspects of imaging. In this review, we discuss recent and future software and hardware technologies for PET/CT. The improvements include new hardware, incorporating designs with digital photomultipliers, and fast electronics, allowing implementation of time-of-flight reconstruction. Manufacturers also improved PET sensitivity with a larger axial field of view and 3D imaging. On the CT side, faster scanners and multislice detectors allow implementation of advanced acquisition protocols such as 4D CT and coronary CT angiography. Significant advances have been also made in the reconstruction software, now integrating resolution recovery with advanced iterative techniques. New PET acquisition protocols have been enabled to include continuous bed motion. Efforts have been undertaken to compensate PET scans for respiratory and also for cardiac patient motion (for cardiac imaging) during PET imaging, which significantly improves overall image quality and resolution. Finally, simultaneous PET/MR systems have been recently deployed clinically and now offer even greater potential of image quality and enhanced clinical utility. PET/MR imaging allows for perfectly registered attenuation maps, clinically important complementary MR information, and potentially superior motion correction. These recent multifaceted advances allow PET to remain as one of the most exciting and relevant imaging technologies. PMID:26687853

  14. Recent Advances and Future Progress in PET Instrumentation.

    PubMed

    Slomka, Piotr J; Pan, Tinsu; Germano, Guido

    2016-01-01

    PET is an important and growing imaging modality. PET instrumentation has undergone a steady evolution improving various aspects of imaging. In this review, we discuss recent and future software and hardware technologies for PET/CT. The improvements include new hardware, incorporating designs with digital photomultipliers, and fast electronics, allowing implementation of time-of-flight reconstruction. Manufacturers also improved PET sensitivity with a larger axial field of view and 3D imaging. On the CT side, faster scanners and multislice detectors allow implementation of advanced acquisition protocols such as 4D CT and coronary CT angiography. Significant advances have been also made in the reconstruction software, now integrating resolution recovery with advanced iterative techniques. New PET acquisition protocols have been enabled to include continuous bed motion. Efforts have been undertaken to compensate PET scans for respiratory and also for cardiac patient motion (for cardiac imaging) during PET imaging, which significantly improves overall image quality and resolution. Finally, simultaneous PET/MR systems have been recently deployed clinically and now offer even greater potential of image quality and enhanced clinical utility. PET/MR imaging allows for perfectly registered attenuation maps, clinically important complementary MR information, and potentially superior motion correction. These recent multifaceted advances allow PET to remain as one of the most exciting and relevant imaging technologies.

  15. Vascular endothelial platelet endothelial cell adhesion molecule 1 (PECAM-1) regulates advanced metastatic progression

    PubMed Central

    DeLisser, Horace; Liu, Yong; Desprez, Pierre-Yves; Thor, Ann; Briasouli, Paraskevei; Handumrongkul, Chakrapong; Wilfong, Jonathon; Yount, Garret; Nosrati, Mehdi; Fong, Sylvia; Shtivelman, Emma; Fehrenbach, Melane; Cao, Gaoyuan; Moore, Dan H.; Nayak, Shruti; Liggitt, Denny; Kashani-Sabet, Mohammed; Debs, Robert

    2010-01-01

    Most patients who die from cancer succumb to treatment-refractory advanced metastatic progression. Although the early stages of tumor metastasis result in the formation of clinically silent micrometastatic foci, its later stages primarily reflect the progressive, organ-destructive growth of already advanced metastases. Early-stage metastasis is regulated by multiple factors within tumor cells as well as by the tumor microenvironment (TME). In contrast, the molecular determinants that control advanced metastatic progression remain essentially uncharacterized, precluding the development of therapies targeted against it. Here we show that the TME, functioning in part through platelet endothelial cell adhesion molecule 1 (PECAM-1), drives advanced metastatic progression and is essential for progression through its preterminal end stage. PECAM-1–KO and chimeric mice revealed that its metastasis-promoting effects are mediated specifically through vascular endothelial cell (VEC) PECAM-1. Anti–PECAM-1 mAb therapy suppresses both end-stage metastatic progression and tumor-induced cachexia in tumor-bearing mice. It reduces proliferation, but not angiogenesis or apoptosis, within advanced tumor metastases. Because its antimetastatic effects are mediated by binding to VEC rather than to tumor cells, anti–PECAM-1 mAb appears to act independently of tumor type. A modified 3D coculture assay showed that anti–PECAM-1 mAb inhibits the proliferation of PECAM-1–negative tumor cells by altering the concentrations of secreted factors. Our studies indicate that a complex interplay between elements of the TME and advanced tumor metastases directs end-stage metastatic progression. They also suggest that some therapeutic interventions may target late-stage metastases specifically. mAb-based targeting of PECAM-1 represents a TME-targeted therapeutic approach that suppresses the end stages of metastatic progression, until now a refractory clinical entity. PMID:20926749

  16. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  17. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  18. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  19. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  20. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect

    Campbell, J.H.; King-Jones, K.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  1. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    PubMed

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. PMID:27165254

  2. Advanced fuel cell development. Progress report, October-December 1979

    SciTech Connect

    Pierce, R. D.; Kucera, G. H.; Kupperman, D. S.; Poeppel, R. B.; Sim, J. W.; Singh, R. N.; Smith, J. L.

    1980-05-01

    Advanced fuel cell research and development activities at Argonne National Laboratory (ANL) during the period October-December 1979 are described. These efforts have been directed toward understanding and improving components of molten carbonate fuel cells and have included operation of 10-cm square cells. The principal focus has been on the development of electrolyte structures (LiAlO/sub 2/ and Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/) that have good electrolyte retention and mechanical properties as well as long-term stability. This effort included work on preparation of sintered LiAlO/sub 2/ as electrolyte support, use of a scanning laser acoustic microscope to evaluate electrolyte structures, and measurements of the thermal expansion coefficients of various mixtures of ..beta..-LiAlO/sub 2/ and carbonate eutectic.

  3. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1977-01-01

    Several NASA-sponsored benefit-cost studies have shown that very substantial benefits can be obtained by increasing material capability for aircraft gas turbines. Prealloyed powder processing holds promise for providing superalloys with increased strength for turbine disk applications. The developement of advanced powder metallurgy disk alloys must be based on a design of optimum processing and heat treating procedures. Materials considered for high temperature application include oxide dispersion strengthened (ODS) alloys, directionally solidified superalloys, ceramics, directionally solidified eutectics, materials combining the high strength of a gamma prime strengthened alloy with the elevated temperature strength of an ODS, and composites. Attention is also given to the use of high pressure turbine seals, approaches for promoting environmental protection, and turbine cooling technology.

  4. The progress of targeted therapy in advanced gastric cancer

    PubMed Central

    2013-01-01

    Although palliative chemotherapy has been shown to prolong survival and improve quality of life, the survival of advanced gastric cancer (AGC) patients remains poor. With the advent of targeted therapy, many molecular targeted agents have been evaluated in clinical studies. Trastuzumab, an anti-HER2 monoclonal antibody, has shown activity against HER2-positive AGC and becomes the first targeted agent approved in AGC. Drugs that target epidermal growth factor receptor, including monoclonal antibody and tyrosine kinase inhibitor, do not bring survival benefit to patients with AGC. Additionally, vascular endothelial growth factor inhibitors are also under investigation. Ramucirumab has shown promising result. Other targeted agents are in preclinical or early clinical development, such as mammalian target of rapamycinm inhibitors and c-MET inhibitors. PMID:24330856

  5. Advanced thermal barrier coating system development. Technical progress report

    SciTech Connect

    1996-10-04

    The objectives of the program are to provide an improved TBC system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase 1: Program Planning--Complete; Phase 2: Development; Phase 3: Selected Specimen--Bench Test. Work is currently being performed in Phase 2 of the program. In Phase 2, process improvements will be married with new bond coat and ceramic materials systems to provide improvements over currently available TBC systems. Coating reliability will be further improved with the development of an improved lifing model and NDE techniques. This will be accomplished by conducting the following program tasks: II.1 Process Modeling; II.2 Bond Coat Development; II.3 Analytical Lifing Model; II.4 Process Development; II.5 NDE, Maintenance and Repair; II.6 New TBC Concepts. A brief summary of progress made in each of these 6 areas is given.

  6. Advanced thermal barrier coating system development. Technical progress report

    SciTech Connect

    1996-06-10

    The objectives of the program are to provide an improved TBC system with increased temperature capability and improved reliability relative to current state of the art TBC systems. The development of such a coating system is essential to the ATS engine meeting its objectives. The base program consists of three phases: Phase 1: Program Planning--Complete; Phase 2: Development; Phase 3: Selected Specimen--Bench Test. Work is currently being performed in Phase 2 of the program. In Phase 2, process improvements will be married with new bond coat and ceramic materials systems to provide improvements over currently available TBC systems. Coating reliability will be further improved with the development of an improved lifing model and NDE techniques. This will be accomplished by conducting the following program tasks: II.1 Process Modeling; II.2 Bond Coat Development; II.3 Analytical Lifing Model; II.4 Process Development; II.5 NDE, Maintenance and Repair; II.6 New TBC Concepts. A brief summary is given of progress made in each of these 6 areas.

  7. Fan Atomized Burner design advances & commercial development progress

    SciTech Connect

    Kamath, B.; Butcher, T.A.

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  8. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  9. Advancing age progressively affects obstacle avoidance skills in the elderly.

    PubMed

    Weerdesteyn, Vivian; Nienhuis, Bart; Duysens, Jacques

    2005-01-01

    The ability to adequately avoid obstacles while walking is an important skill that allows safe locomotion over uneven terrain. The high proportion of falls in the elderly that is associated to tripping over obstacles potentially illustrates an age-related deterioration of this locomotor skill. Some studies have compared young and old adults, but very little is known about the changes occurring within different age groups of elderly. In the present study, obstacle avoidance performance was studied in 25 young (20-37 years) and 99 older adults (65-88 years). The participants walked on a treadmill at a speed of 3 km/h. An obstacle was dropped 30 times in front of the left foot at various phases in the step cycle. Success rates (successful avoidance) were calculated and related to the time available between obstacle appearance and the estimated instant of foot contact with the obstacle (available response times or ARTs ranging from 200 to more than 350 ms). In addition, latencies of avoidance reactions, the choice of avoidance strategies (long or short step strategy, LSS or SSS), and three spatial parameters related to obstacle avoidance (toe distance, foot clearance, and heel distance) were determined for each participant. Compared to the young, the older adults had lower success rates, especially at short ARTs. Furthermore, they had longer reaction times, more LSS reactions, smaller toe and heel distances, and larger foot clearances. Within the group of elderly, only the 65-69 year olds were not different from young adults with respect to success rate, despite marked changes in the other parameters measured. In particular, even this younger group of elderly showed a dramatic reduction in the amount of SSS trials compared to young adults. Overall, age was a significant predictor of success rates, reaction times, and toe distances. These parameters deteriorated with advancing age. Finally, avoidance success rates at short ARTs were considerably worse in elderly

  10. [Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report

    SciTech Connect

    1998-09-30

    Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the

  11. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  12. Advanced Test Reactor National Scientific User Facility Progress

    SciTech Connect

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  13. DOE/JPL advanced thermionic technology program. Progress report No. 42

    SciTech Connect

    Not Available

    1980-01-01

    Progress is reported on the following tasks: (I) surface and plasma investigations, (II) low-temperature converter development, (III) enhanced mode converter experiments, (IV) component hardware development, (V) thermionic power module system studies, (VI) thermionic array module development, (VII) high-temperature converter evaluation, (VIII) advanced converter studies, (IX) postoperational diagnostics, (X) cylindrical converter component development, and (XI) correlation of design interfaces. (WHK)

  14. The Shh receptor Boc promotes progression of early medulloblastoma to advanced tumors.

    PubMed

    Mille, Frédéric; Tamayo-Orrego, Lukas; Lévesque, Martin; Remke, Marc; Korshunov, Andrey; Cardin, Julie; Bouchard, Nicolas; Izzi, Luisa; Kool, Marcel; Northcott, Paul A; Taylor, Michael D; Pfister, Stefan M; Charron, Frédéric

    2014-10-13

    During cerebellar development, Sonic hedgehog (Shh) signaling drives the proliferation of granule cell precursors (GCPs). Aberrant activation of Shh signaling causes overproliferation of GCPs, leading to medulloblastoma. Although the Shh-binding protein Boc associates with the Shh receptor Ptch1 to mediate Shh signaling, whether Boc plays a role in medulloblastoma is unknown. Here, we show that BOC is upregulated in medulloblastomas and induces GCP proliferation. Conversely, Boc inactivation reduces proliferation and progression of early medulloblastomas to advanced tumors. Mechanistically, we find that Boc, through elevated Shh signaling, promotes high levels of DNA damage, an effect mediated by CyclinD1. High DNA damage in the presence of Boc increases the incidence of Ptch1 loss of heterozygosity, an important event in the progression from early to advanced medulloblastoma. Together, our results indicate that DNA damage promoted by Boc leads to the demise of its own coreceptor, Ptch1, and consequently medulloblastoma progression. PMID:25263791

  15. 48 CFR 970.5232-1 - Reduction or suspension of advance, partial, or progress payments upon finding of substantial...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... advance, partial, or progress payments upon finding of substantial evidence of fraud. 970.5232-1 Section... upon finding of substantial evidence of fraud. As prescribed in 970.3200-1-1, insert the following... Contractor's request for advance, partial, or progress payment is based on fraud. (b) The Contractor shall...

  16. 48 CFR 970.5232-1 - Reduction or suspension of advance, partial, or progress payments upon finding of substantial...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... advance, partial, or progress payments upon finding of substantial evidence of fraud. 970.5232-1 Section... upon finding of substantial evidence of fraud. As prescribed in 970.3200-1-1, insert the following... Contractor's request for advance, partial, or progress payment is based on fraud. (b) The Contractor shall...

  17. 48 CFR 970.5232-1 - Reduction or suspension of advance, partial, or progress payments upon finding of substantial...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... advance, partial, or progress payments upon finding of substantial evidence of fraud. 970.5232-1 Section... upon finding of substantial evidence of fraud. As prescribed in 970.3200-1-1, insert the following... Contractor's request for advance, partial, or progress payment is based on fraud. (b) The Contractor shall...

  18. Random antagonistic matrices

    NASA Astrophysics Data System (ADS)

    Cicuta, Giovanni M.; Molinari, Luca Guido

    2016-09-01

    The ensemble of antagonistic matrices is introduced and studied. In antagonistic matrices the entries {{ A }}i,j and {{ A }}j,i are real and have opposite signs, or are both zero, and the diagonal is zero. This generalization of antisymmetric matrices is suggested by the linearized dynamics of competitive species in ecology.

  19. The specialized centers of research in rheumatoid arthritis. Recent progress and prospects for future advances.

    PubMed

    Pisetsky, D S; Haynes, B F; Lipsky, P E; Kang, A H; Postlethwaite, A E

    1991-06-01

    Specialized Centers of Research (SCOR) in arthritis are interdisciplinary research programs to investigate disease pathogenesis as well as advance diagnosis and treatment. A recent meeting of investigators from the three SCOR programs in rheumatoid arthritis demonstrated progress in several important research areas. Because of the multiplier effects of SCOR programs, new investigators have been enlisted into arthritis research as issues related to this disease become a focus of investigation throughout universities and medical centers. Continued progress by the SCOR programs should provide new targets for therapeutic intervention as well as strategies for monitoring disease activity.

  20. Potential mechanisms of disease progression and management of advanced-phase chronic myeloid leukemia

    PubMed Central

    Jabbour, Elias J.; Hughes, Timothy P.; Cortés, Jorge E.; Kantarjian, Hagop M.; Hochhaus, Andreas

    2014-01-01

    Despite vast improvements in treatment of Philadelphia chromosome–positive chronic myeloid leukemia (CML) in chronic phase (CP), advanced stages of CML, accelerated phase or blast crisis, remain notoriously difficult to treat. Treatments that are highly effective against CML-CP produce disappointing results against advanced disease. Therefore, a primary goal of therapy should be to maintain patients in CP for as long as possible, by (1) striving for deep, early molecular response to treatment; (2) using tyrosine kinase inhibitors that lower risk of disease progression; and (3) more closely observing patients who demonstrate cytogenetic risk factors at diagnosis or during treatment. PMID:24050507

  1. Toward improved durability in advanced combustors and turbines: Progress in the prediction of thermomechanical loads

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Ensign, C. Robert

    1986-01-01

    NASA is sponsoring the Turbine Engine Hot Section Technology (HOST) Project to address the need for improved durability in advanced combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to such loading, and life predictions for high temperature cyclic operation have been underway for several years and are showing promising results. Progress is reported in the development of advanced instrumentation and in the improvement of combustor aerothermal and turbine heat transfer models that will lead to more accurate prediction of thermomechanical loads.

  2. Component Identification and Item Difficulty of Raven's Matrices Items.

    ERIC Educational Resources Information Center

    Green, Kathy E.; Kluever, Raymond C.

    Item components that might contribute to the difficulty of items on the Raven Colored Progressive Matrices (CPM) and the Standard Progressive Matrices (SPM) were studied. Subjects providing responses to CPM items were 269 children aged 2 years 9 months to 11 years 8 months, most of whom were referred for testing as potentially gifted. A second…

  3. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  4. Random bistochastic matrices

    NASA Astrophysics Data System (ADS)

    Cappellini, Valerio; Sommers, Hans-Jürgen; Bruzda, Wojciech; Życzkowski, Karol

    2009-09-01

    Ensembles of random stochastic and bistochastic matrices are investigated. While all columns of a random stochastic matrix can be chosen independently, the rows and columns of a bistochastic matrix have to be correlated. We evaluate the probability measure induced into the Birkhoff polytope of bistochastic matrices by applying the Sinkhorn algorithm to a given ensemble of random stochastic matrices. For matrices of order N = 2 we derive explicit formulae for the probability distributions induced by random stochastic matrices with columns distributed according to the Dirichlet distribution. For arbitrary N we construct an initial ensemble of stochastic matrices which allows one to generate random bistochastic matrices according to a distribution locally flat at the center of the Birkhoff polytope. The value of the probability density at this point enables us to obtain an estimation of the volume of the Birkhoff polytope, consistent with recent asymptotic results.

  5. Advanced thermally stable jet fuels. Technical progress report, July 1995--September 1995

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1995-10-01

    The Penn State program in advanced thermally stable jet engine fuels has five components: development of mechanisms of degradation and solids formation; quantitative measurement of growth of sub-micrometer-sized and micrometer particles suspended in fuels during thermal stresses; characterization of carbonaceous deposits by various instrumental and microscopic methods; elucidation of the role of additives in retarding the formation of carbonaceous solids; and assessment of the potential of producing high yields of cycloalkanes and hydroaromatics by direct coal liquefaction. Progress is described.

  6. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  7. Advanced MHD Algorithm for Solar and Space Science: lst Year Semi Annual Progress Report

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.; Lionello, Roberto

    2003-01-01

    We report progress for the development of MH4D for the first and second quarters of FY2004, December 29, 2002 - June 6, 2003. The present version of MH4D can now solve the full viscous and resistive MHD equations using either an explicit or a semi-implicit time advancement algorithm. In this report we describe progress in the following areas. During the two last quarters we have presented poster at the EGS-AGU-EUG Joint Assembly in Nice, France, April 6-11, 2003, and a poster at the 2003 International Sherwood Theory Conference in Corpus Christi, Texas, April 28-30 2003. In the area of code development, we have implemented the MHD equations and the semi-implicit algorithm. The new features have been tested.

  8. Advanced Coal Conversion Process Demonstration. Technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1993, through June 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  9. Advanced Coal Conversion Process Demonstration. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through May 31, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  10. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  11. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  12. Progress Towards Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Pardini, Allan F.; Suter, Jonathan D.; Prowant, Matthew S.

    2014-08-01

    Sustainable nuclear power to promote energy security and to reduce greenhouse gas emissions are two key national energy priorities. The development of deployable small modular reactors (SMRs) is expected to support these objectives by developing technologies that improve the reliability, sustain safety, and improve affordability of new reactors. Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Prognostic health management (PHM) systems can benefit both the safety and economics of deploying AdvSMRs and can play an essential role in managing the inspection and maintenance of passive components in AdvSMR systems. This paper describes progress on development of a prototypic PHM system for AdvSMR passive components, with thermal creep chosen as the target degradation mechanism.

  13. DNA technological progress toward advanced diagnostic tools to support human hookworm control.

    PubMed

    Gasser, R B; Cantacessi, C; Loukas, A

    2008-01-01

    Blood-feeding hookworms are parasitic nematodes of major human health importance. Currently, it is estimated that 740 million people are infected worldwide, and more than 80 million of them are severely affected clinically by hookworm disease. In spite of the health problems caused and the advances toward the development of vaccines against some hookworms, limited attention has been paid to the need for improved, practical methods of diagnosis. Accurate diagnosis and genetic characterization of hookworms is central to their effective control. While traditional diagnostic methods have considerable limitations, there has been some progress toward the development of molecular-diagnostic tools. The present article provides a brief background on hookworm disease of humans, reviews the main methods that have been used for diagnosis and describes progress in establishing polymerase chain reaction (PCR)-based methods for the specific diagnosis of hookworm infection and the genetic characterisation of the causative agents. This progress provides a foundation for the rapid development of practical, highly sensitive and specific diagnostic and analytical tools to be used in improved hookworm prevention and control programmes.

  14. Advanced converter technology. Technical progress report, May 23, 1979-May 22, 1980

    SciTech Connect

    Banic, C. V.; Eckhouse, S. A.; Kornbrust, F. J.; Lipman, K.; Peterson, J. L.; Rosati, R. W.

    1980-01-01

    The overall objective of this program is to define an advanced converter system employing 1980's technology in all subsystem and component areas for use in electrochemical energy storage systems. Additional experimental effort will validate elements of the advanced commutation circuitry on a full-scale breadboard basis. Improved models of battery electrical characteristics are beng defined and experimental apparatus is being designed to measure these characteristics and to enable better definition of the battery-power conditioner interface. Improvement of energy-storage system performance through modification of battery converter characteristics will also be investigated. During this first year of the contract, a new more advanced concept for power conditioning based on a concept defined by United Technologies Corporation for fuel cell use was evaluated. This high switching frequency concept has the potential for significantly reducing the size and cost of battery plant power conditioners. As a result, the Department of Energy authorized redirection of the program to first evaluate this new concept and then to reorient the program to adopt this concept as the primary one. Progress is reported. (WHK)

  15. Advanced spent fuel conditioning process (ACP) progress with respect to remote operation and maintenance

    SciTech Connect

    Lee, Hyo Jik; Lee, Jong Kwang; Park, Byung Suk; Yoon, Ji Sup

    2007-07-01

    Korea Atomic Energy Research Institute (KAERI) has been developing an Advanced Spent Fuel Conditioning Process (ACP) to reduce the volume of spent fuel, and the construction of the ACP facility (ACPF) for a demonstration of its technical feasibility has been completed. In 2006 two inactive demonstrations were performed with simulated fuels in the ACPF. Accompanied by process equipment performance tests, its remote operability and maintainability were also tested during that time. Procedures for remote operation tasks are well addressed in this study and evaluated thoroughly. Also, remote maintenance and repair tasks are addressed regarding some important modules with a high priority order. The above remote handling test's results provided a lot of information such as items to be revised to improve the efficiency of the remote handling tasks. This paper deals with the current status of ACP and the progress of remote handling of ACPF. (authors)

  16. The steady progress of targeted therapies, promising advances for lung cancer

    PubMed Central

    Bombardelli, Lorenzo; Berns, Anton

    2016-01-01

    Lung cancer remains one of the most complex and challenging cancers, being responsible for almost a third of all cancer deaths. This grim picture seems however to be changing, for at least a subset of lung cancers. The number of patients who can benefit from targeted therapies is steadily increasing thanks to the progress made in identifying actionable driver lesions in lung tumours. The success of the latest generation of EGFR and ALK inhibitors in the clinic not only illustrates the value of targeted therapies, but also shows how almost inevitably drug resistance develops. Therefore, more sophisticated approaches are needed to achieve long-term remissions. Although there are still significant barriers to be overcome, technological advances in early detection of relevant mutations and the opportunity to test new drugs in predictive preclinical models justify the hope that we will overcome these obstacles. PMID:27350784

  17. Real-world study of everolimus in advanced progressive neuroendocrine tumors.

    PubMed

    Panzuto, Francesco; Rinzivillo, Maria; Fazio, Nicola; de Braud, Filippo; Luppi, Gabriele; Zatelli, Maria Chiara; Lugli, Francesca; Tomassetti, Paola; Riccardi, Ferdinando; Nuzzo, Carmen; Brizzi, Maria Pia; Faggiano, Antongiulio; Zaniboni, Alberto; Nobili, Elisabetta; Pastorelli, Davide; Cascinu, Stefano; Merlano, Marco; Chiara, Silvana; Antonuzzo, Lorenzo; Funaioli, Chiara; Spada, Francesca; Pusceddu, Sara; Fontana, Annalisa; Ambrosio, Maria Rosaria; Cassano, Alessandra; Campana, Davide; Cartenì, Giacomo; Appetecchia, Marialuisa; Berruti, Alfredo; Colao, Annamaria; Falconi, Massimo; Delle Fave, Gianfranco

    2014-09-01

    Everolimus is a valid therapeutic option for neuroendocrine tumors (NETs); however, data in a real-world setting outside regulatory trials are sparse. The aim of this study was to determine everolimus tolerability and efficacy, in relation to previous treatments, in a compassionate use program. A total of 169 patients with advanced progressive NETs treated with everolimus were enrolled, including 85 with pancreatic NETs (pNETs) and 84 with nonpancreatic NETs (non-pNETs). Previous treatments included somatostatin analogs (92.9%), peptide receptor radionuclide therapy (PRRT; 50.3%), chemotherapy (49.7%), and PRRT and chemotherapy (22.8%). Overall, 85.2% of patients experienced adverse events (AEs), which were severe (grade 3-4) in 46.1%. The most frequent severe AEs were pneumonitis (8.3%), thrombocytopenia (7.7%), anemia (5.3%), and renal failure (3.5%). In patients previously treated with PRRT and chemotherapy, a 12-fold increased risk for severe toxicity was observed, with grade 3-4 AEs reported in 86.8% (vs. 34.3% in other patients). In addition, 63.3% of patients required temporarily everolimus discontinuation due to toxicity. Overall, 27.8% of patients died during a median follow-up of 12 months. Median progression-free survival (PFS) and overall survival (OS) were 12 months and 32 months, respectively. Similar disease control rates, PFS, and OS were reported in pNETs and non-pNETs. In the real-world setting, everolimus is safe and effective for the treatment of NETs of different origins. Higher severe toxicity occurred in patients previously treated with systemic chemotherapy and PRRT. This finding prompts caution when using this drug in pretreated patients and raises the issue of planning for everolimus before PRRT and chemotherapy in the therapeutic algorithm for advanced NETs.

  18. Real-world study of everolimus in advanced progressive neuroendocrine tumors.

    PubMed

    Panzuto, Francesco; Rinzivillo, Maria; Fazio, Nicola; de Braud, Filippo; Luppi, Gabriele; Zatelli, Maria Chiara; Lugli, Francesca; Tomassetti, Paola; Riccardi, Ferdinando; Nuzzo, Carmen; Brizzi, Maria Pia; Faggiano, Antongiulio; Zaniboni, Alberto; Nobili, Elisabetta; Pastorelli, Davide; Cascinu, Stefano; Merlano, Marco; Chiara, Silvana; Antonuzzo, Lorenzo; Funaioli, Chiara; Spada, Francesca; Pusceddu, Sara; Fontana, Annalisa; Ambrosio, Maria Rosaria; Cassano, Alessandra; Campana, Davide; Cartenì, Giacomo; Appetecchia, Marialuisa; Berruti, Alfredo; Colao, Annamaria; Falconi, Massimo; Delle Fave, Gianfranco

    2014-09-01

    Everolimus is a valid therapeutic option for neuroendocrine tumors (NETs); however, data in a real-world setting outside regulatory trials are sparse. The aim of this study was to determine everolimus tolerability and efficacy, in relation to previous treatments, in a compassionate use program. A total of 169 patients with advanced progressive NETs treated with everolimus were enrolled, including 85 with pancreatic NETs (pNETs) and 84 with nonpancreatic NETs (non-pNETs). Previous treatments included somatostatin analogs (92.9%), peptide receptor radionuclide therapy (PRRT; 50.3%), chemotherapy (49.7%), and PRRT and chemotherapy (22.8%). Overall, 85.2% of patients experienced adverse events (AEs), which were severe (grade 3-4) in 46.1%. The most frequent severe AEs were pneumonitis (8.3%), thrombocytopenia (7.7%), anemia (5.3%), and renal failure (3.5%). In patients previously treated with PRRT and chemotherapy, a 12-fold increased risk for severe toxicity was observed, with grade 3-4 AEs reported in 86.8% (vs. 34.3% in other patients). In addition, 63.3% of patients required temporarily everolimus discontinuation due to toxicity. Overall, 27.8% of patients died during a median follow-up of 12 months. Median progression-free survival (PFS) and overall survival (OS) were 12 months and 32 months, respectively. Similar disease control rates, PFS, and OS were reported in pNETs and non-pNETs. In the real-world setting, everolimus is safe and effective for the treatment of NETs of different origins. Higher severe toxicity occurred in patients previously treated with systemic chemotherapy and PRRT. This finding prompts caution when using this drug in pretreated patients and raises the issue of planning for everolimus before PRRT and chemotherapy in the therapeutic algorithm for advanced NETs. PMID:25117065

  19. A Combined Method for Segmentation and Registration for an Advanced and Progressive Evaluation of Thermal Images

    PubMed Central

    Barcelos, Emilio Z.; Caminhas, Walmir M.; Ribeiro, Eraldo; Pimenta, Eduardo M.; Palhares, Reinaldo M.

    2014-01-01

    In this paper, a method that combines image analysis techniques, such as segmentation and registration, is proposed for an advanced and progressive evaluation of thermograms. The method is applied for the prevention of muscle injury in high-performance athletes, in collaboration with a Brazilian professional soccer club. The goal is to produce information on spatio-temporal variations of thermograms favoring the investigation of the athletes' conditions along the competition. The proposed method improves on current practice by providing a means for automatically detecting adaptive body-shaped regions of interest, instead of the manual selection of simple shapes. Specifically, our approach combines the optimization features in Otsu's method with a correction factor and post-processing techniques, enhancing thermal-image segmentation when compared to other methods. Additional contributions resulting from the combination of the segmentation and registration steps of our approach are the progressive analyses of thermograms in a unique spatial coordinate system and the accurate extraction of measurements and isotherms. PMID:25414972

  20. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  1. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  2. Progress in Materials and Component Development for Advanced Lithium-ion Cells for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha, M.; Reid, Concha M.

    2011-01-01

    Vehicles and stand-alone power systems that enable the next generation of human missions to the Moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the- art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance the power systems for the Altair Lunar Lander, Extravehicular Activities spacesuit, and rovers and portable utility pallets for Lunar Surface Systems. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This report on interim progress of the development efforts will elaborate on the challenges of the development activities, proposed strategies to overcome technical issues, and present performance of materials and cell components.

  3. Persistent Uroplakin Expression in Advanced Urothelial Carcinomas: Implications in Urothelial Tumor Progression and Clinical Outcome

    PubMed Central

    Huang, Hong-Ying; Shariat, Shahrokh F.; Sun, Tung-Tien; Lepor, Herbert; Shapiro, Ellen; Hsieh, Jer-Tsong; Ashfaq, Raheela; Lotan, Yair; Wu, Xue-Ru

    2007-01-01

    As the terminal differentiation products of human urothelium, uroplakins (UPs) would be expected to diminish during urothelial tumorigenesis. Surprisingly, recent studies found UPs to be retained even by well-advanced urothelial carcinomas, suggesting that the loss of UPs does not strictly parallel urothelial transformation. Little is known, however, about whether the status of UPs is associated with a particular pathological parameter, tumor’s biological behavior or patient outcome. Here we assessed UP expression by immunohistochemistry on tissue arrays from 285 patients with bladder urothelial carcinomas or non-tumor conditions. UPs were expressed in all 9 normal urothelial specimens, 63/74 (85%) patients with non-muscle-invasive urothelial carcinomas on transurethral resection, 104/202 (51.5%) patients who underwent radical cystectomy for advanced urothelial carcinomas, and 33/50 (66%) lymph node metastases. Normally associated with urothelial apical surface, UPs were localized aberrantly in tumors, including micro-luminal, basal-laminal, cytoplasmic or uniform patterns. In non-muscle-invasive diseases, there was no association between UP expression and disease recurrence, progression or mortality. In contrast, in invasive diseases, absent UP expression was significantly associated with advanced pathologic stage, lymph node metastases, disease recurrence and bladder cancer-specific mortality (p=0.042, p=0.035, p=0.023 and p=0.022, respectively) in univariate analyses. Furthermore, UP status was independent of key cell-cycle regulators, including p53, pRb, p27 and cyclin D1, thus excluding a functional link between these two groups of proteins. Our data demonstrate for the first time that persistent UP expression is associated with a favorable clinical outcome and that UPs may be used as adjunct markers for predicting the prognoses of patients with invasive and metastatic bladder carcinomas. Our results also suggest that UP-positive and –negative carcinomas

  4. Random cyclic matrices.

    PubMed

    Jain, Sudhir R; Srivastava, Shashi C L

    2008-09-01

    We present a Gaussian ensemble of random cyclic matrices on the real field and study their spectral fluctuations. These cyclic matrices are shown to be pseudosymmetric with respect to generalized parity. We calculate the joint probability distribution function of eigenvalues and the spacing distributions analytically and numerically. For small spacings, the level spacing distribution exhibits either a Gaussian or a linear form. Furthermore, for the general case of two arbitrary complex eigenvalues, leaving out the spacings among real eigenvalues, and, among complex conjugate pairs, we find that the spacing distribution agrees completely with the Wigner distribution for a Poisson process on a plane. The cyclic matrices occur in a wide variety of physical situations, including disordered linear atomic chains and the Ising model in two dimensions. These exact results are also relevant to two-dimensional statistical mechanics and nu -parametrized quantum chromodynamics. PMID:18851127

  5. Depolarizing differential Mueller matrices.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-07-01

    The evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the 16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical implications of each of them. Group theory is applied to establish the relationship between the differential matrix and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular subgroup. PMID:21725434

  6. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  7. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed. PMID:27711259

  8. Therapeutic Rationales, Progresses, Failures, and Future Directions for Advanced Prostate Cancer

    PubMed Central

    Wadosky, Kristine M; Koochekpour, Shahriar

    2016-01-01

    Patients with localized prostate cancer (PCa) have several therapeutic options with good prognosis. However, survival of patients with high-risk, advanced PCa is significantly less than patients with early-stage, organ-confined disease. Testosterone and other androgens have been directly linked to PCa progression since 1941. In this review, we chronicle the discoveries that led to modern therapeutic strategies for PCa. Specifically highlighted is the biology of androgen receptor (AR), the nuclear receptor transcription factor largely responsible for androgen-stimulated and castrate-recurrent (CR) PCa. Current PCa treatment paradigms can be classified into three distinct but interrelated categories: targeting AR at pre-receptor, receptor, or post-receptor signaling. The continuing challenge of disease relapse as CR and/or metastatic tumors, destined to occur within three years of the initial treatment, is also discussed. We conclude that the success of PCa therapies in the future depends on targeting molecular mechanisms underlying tumor recurrence that still may affect AR at pre-receptor, receptor, and post-receptor levels. PMID:27019626

  9. Advanced coal liquefaction research. Quarterly technical progress report, January 1-March 31, 1983

    SciTech Connect

    Not Available

    1983-12-01

    This report describes progress on the Advanced Coal Liquefaction project by the Gulf Research and Development Company's Merriam Laboratory during the months of January through March 1983. The liquefaction behavior of Illinois No. 6 coal beneficiated in various ways was studied in both single-stage recycle (SRC II) and short contact time (SCT) modes of operation. The distillate yield increased as the iron level in the feed slurry increased in both modes of operation. In the SCT mode, the conversion increased at greater depths of cleaning. In the SRC II mode, the distillate yield and conversion were much higher with deep cleaning and add-back of pyrite than with conventional cleaning. Pyrite addition resulted in a significant increase in short contact time conversion of subbituminous Belle Ayr coal in both high and low quality solvents. Solvent quality itself, however, had little effect on conversion. With Loveridge coal, the hydrocarbon gas yield and conversion decreased as the residence time was reduced in the range of 3 to 8 minutes. The bottoms product was filterable only at residence times of 6 minutes or greater. Addition of a small amount of nickel to a molybdenum emulsion catalyst improved yields slightly with Belle Ayr coal in the SRC II mode. Higher levels of nickel resulted in the same oil yield as with none at all.

  10. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed.

  11. DOE Advanced Thermionic Technology Program. Progress report No. 48, July, August, September 1981

    SciTech Connect

    Not Available

    1981-01-01

    The advanced Thermionic Technology Program at Thermo Electron Corporation is sponsored by the Department of Energy (DOE). The primary long-term goal is to improve thermionic performance to the level that thermionic topping of fossil-fuel powerplants becomes technically possible and economically attractive. An intermediate goal is to operate a thermionic module in a powerplant during the mid-1980's. A short-term goal is to demonstrate reliable thermionic operation in a combustion environment. Progress made during the three-month period from July through September 1981 is reported. Significant accomplishments include: (1) continuing stable output from the combustion test of the one-inch diameter hemispherical silicon carbide diode (Converter No. 239) at an emitter temperature of 1730/sup 0/K for a period of over 9800 hours; (2) measurement of a barrier index of 2.15 eV during the initial testing of Converter No. 266 (two-inch diameter torispherical silicon carbide diode); and (3) successful thermal cycle test of a CVD silicon carbide coating inside a sintered molybdenum tube.

  12. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  13. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  14. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  15. Singular Mueller matrices.

    PubMed

    Gil, José J; Ossikovski, Razvigor; José, Ignacio San

    2016-04-01

    Singular Mueller matrices play an important role in polarization algebra and have peculiar properties that stem from the fact that either the medium exhibits maximum diattenuation and/or polarizance or because its associated canonical depolarizer has the property of fully randomizing the circular component (at least) of the states of polarization of light incident on it. The formal reasons for which the Mueller matrix M of a given medium is singular are systematically investigated, analyzed, and interpreted in the framework of the serial decompositions and the characteristic ellipsoids of M. The analysis allows for a general classification and geometric representation of singular Mueller matrices, which are of potential usefulness to experimentalists dealing with such media. PMID:27140769

  16. Singular Mueller matrices.

    PubMed

    Gil, José J; Ossikovski, Razvigor; José, Ignacio San

    2016-04-01

    Singular Mueller matrices play an important role in polarization algebra and have peculiar properties that stem from the fact that either the medium exhibits maximum diattenuation and/or polarizance or because its associated canonical depolarizer has the property of fully randomizing the circular component (at least) of the states of polarization of light incident on it. The formal reasons for which the Mueller matrix M of a given medium is singular are systematically investigated, analyzed, and interpreted in the framework of the serial decompositions and the characteristic ellipsoids of M. The analysis allows for a general classification and geometric representation of singular Mueller matrices, which are of potential usefulness to experimentalists dealing with such media.

  17. Stable lepton mass matrices

    NASA Astrophysics Data System (ADS)

    Domcke, Valerie; Romanino, Andrea

    2016-06-01

    We study natural lepton mass matrices, obtained assuming the stability of physical flavour observables with respect to the variations of individual matrix elements. We identify all four possible stable neutrino textures from algebraic conditions on their entries. Two of them turn out to be uniquely associated to specific neutrino mass patterns. We then concentrate on the semi-degenerate pattern, corresponding to an overall neutrino mass scale within the reach of future experiments. In this context we show that i) the neutrino and charged lepton mixings and mass matrices are largely constrained by the requirement of stability, ii) naturalness considerations give a mild preference for the Majorana phase most relevant for neutrinoless double- β decay, α ˜ π/2, and iii) SU(5) unification allows to extend the implications of stability to the down quark sector. The above considerations would benefit from an experimental determination of the PMNS ratio | U 32 /U 31|, i.e. of the Dirac phase δ.

  18. Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998

    SciTech Connect

    1999-01-19

    Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual

  19. Recent progress toward an advanced spherical torus operating point in NSTX

    DOE PAGES

    S. P. Gerhardt; Gates, D. A.; Kaye, S.; Maingi, R.; Menard, J. E.; Sabbagh, S. A.; Soukhanovskii, V.; Bell, M. G.; Bell, R. E.; Canik, J. M.; et al

    2011-05-13

    Progress in the development of integrated advanced ST plasma scenarios in NSTX (Ono et al., 2000 Nucl. Fusion 40 557) is reported. Recent high-performance plasmas in NSTX following lithium coating of the plasma facing surfaces have achieved higher elongation and lower internal inductance than previously. Analysis of the thermal confinement in these lithiumized discharges shows a stronger plasma current and weaker toroidal field dependence than in previous ST confinement scaling studies; the ITER-98(y, 2) scaling expression describes these scenarios reasonably well. Analysis during periods free of MHD activity has shown that the reconstructed current profile can be understood as themore » sum of pressure driven, inductive and neutral beam driven currents, without requiring any anomalous fast-ion transport. Non-inductive fractions of 65–70%, and βP > 2, have been achieved at lower plasma current. Some of these low-inductance discharges have a significantly reduced no-wall βN limit, and often have βN at or near the with-wall limit. Coupled m/n = 1/1 + 2/1 kink/tearing modes can limit the sustained β values when rapidly growing ideal modes are avoided. A βN controller has been commissioned and utilized in sustaining high-performance plasmas. 'Snowflake' divertors compatible with high-performance plasmas have been developed. Scenarios with significantly larger aspect ratios have also been developed, in support of next-step ST devices. Furthermore, these NSTX plasmas have many characteristics required for next-step ST devices.« less

  20. Advanced coal-liquefaction research. Technical progress report, August 1, 1982-December 31, 1982

    SciTech Connect

    Not Available

    1983-07-01

    This report describes progress on the Advanced Coal-Liquefaction Project by the Gulf Research and Development Company's Merriam Laboratory. It was demonstrated that all oil products from the SRC II Processing of Powhatan No. 3 (Pittsburgh seam), Elkol-Sorensen or Belle Ayr coals boiling above 270/sup 0/C (518/sup 0/F) can be recycled to extinction. There was no loss in liquid yield, no increase in gas make and no significant change in hydrogen requirement. It has also been demonstrated that the net C/sub 5/-270/sup 0/C (518/sup 0/F) product is inactive in the Ames test and presumably poses substantially less threat than the conventional product as a potential carcinogen. The potential impact of coal cleaning and pyrite addition on liquefaction were determined with a high-reactivity Pittsburgh seam coal from the Ireland Mine. The results indicate that deep cleaning (to 6-8 wt % ash) by heavy media separation with add back of pyrite would give a better yield structure than the normal cleaning (to 12 wt % ash) envisioned for liquefaction plants. Screening of feedstocks for liquefaction processes was extended to the low-ash (5 wt % MF basis), subbituminous Elkol-Sorensen coal. Although the low ash content allowed increased recycle of bottoms product, the relatively low reactivity of the organic matrix resulted in a lower oil yield than with subbituminous Belle Ayr coal. A simulation of staged liquefaction was carried out by preparing filtrate in the SRC I mode and then studying the production of gas and distillate at lower temperature (420/sup 0/C, 788/sup 0/F) using a molybdenum emulsion catalyst. Distillate yields were low (29 wt %, based on MF coal) compared to single-stage, high temperature runs. Multiple-pass operations indicated no mechanistic barriers to high distillate yields although reaction rates were unacceptably low at the conditions employed in these preliminary experiments.

  1. 60 years of advances in neuropsychopharmacology for improving brain health, renewed hope for progress.

    PubMed

    Millan, Mark J; Goodwin, Guy M; Meyer-Lindenberg, Andreas; Ögren, Sven Ove

    2015-05-01

    Pharmacotherapy is effective in helping many patients suffering from psychiatric and neurological disorders, and both psychotherapeutic and stimulation-based techniques likewise have important roles to play in their treatment. However, therapeutic progress has recently been slow. Future success for improving the control and prevention of brain disorders will depend upon deeper insights into their causes and pathophysiological substrates. It will also necessitate new and more rigorous methods for identifying, validating, developing and clinically deploying new treatments. A field of Research and Development (R and D) that remains critical to this endeavour is Neuropsychopharmacology which transformed the lives of patients by introducing pharmacological treatments for psychiatric disorder some 60 years ago. For about half of this time, the European College of Neuropsychopharmacology (ECNP) has fostered efforts to enhance our understanding of the brain, and to improve the management of psychiatric disorders. Further, together with partners in academia and industry, and in discussions with regulators and patients, the ECNP is implicated in new initiatives to achieve this goal. This is then an opportune moment to survey the field, to analyse what we have learned from the achievements and failures of the past, and to identify major challenges for the future. It is also important to highlight strategies that are being put in place in the quest for more effective treatment of brain disorders: from experimental research and drug discovery to clinical development and collaborative ventures for reinforcing "R and D". The present article sets the scene, then introduces and interlinks the eight articles that comprise this Special Volume of European Neuropsychopharmacology. A broad-based suite of themes is covered embracing: the past, present and future of "R and D" for psychiatric disorders; complementary contributions of genetics and epigenetics; efforts to improve the

  2. Recent progress toward an advanced spherical torus operating point in NSTX

    SciTech Connect

    S. P. Gerhardt; Gates, D. A.; Kaye, S.; Maingi, R.; Menard, J. E.; Sabbagh, S. A.; Soukhanovskii, V.; Bell, M. G.; Bell, R. E.; Canik, J. M.; Fredrickson, E.; Kaita, R.; Kolemen, E.; Kugel, H.; Le Blanc, B. P.; Mastrovito, D.; Mueller, D.; Yuh, H.

    2011-05-13

    Progress in the development of integrated advanced ST plasma scenarios in NSTX (Ono et al., 2000 Nucl. Fusion 40 557) is reported. Recent high-performance plasmas in NSTX following lithium coating of the plasma facing surfaces have achieved higher elongation and lower internal inductance than previously. Analysis of the thermal confinement in these lithiumized discharges shows a stronger plasma current and weaker toroidal field dependence than in previous ST confinement scaling studies; the ITER-98(y, 2) scaling expression describes these scenarios reasonably well. Analysis during periods free of MHD activity has shown that the reconstructed current profile can be understood as the sum of pressure driven, inductive and neutral beam driven currents, without requiring any anomalous fast-ion transport. Non-inductive fractions of 65–70%, and βP > 2, have been achieved at lower plasma current. Some of these low-inductance discharges have a significantly reduced no-wall βN limit, and often have βN at or near the with-wall limit. Coupled m/n = 1/1 + 2/1 kink/tearing modes can limit the sustained β values when rapidly growing ideal modes are avoided. A βN controller has been commissioned and utilized in sustaining high-performance plasmas. 'Snowflake' divertors compatible with high-performance plasmas have been developed. Scenarios with significantly larger aspect ratios have also been developed, in support of next-step ST devices. Furthermore, these NSTX plasmas have many characteristics required for next-step ST devices.

  3. FY2012 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-02-01

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  4. Recent advances in molecular genetics of melanoma progression: implications for diagnosis and treatment.

    PubMed

    Yeh, Iwei

    2016-01-01

    According to the multi-step carcinogenesis model of cancer, initiation results in a benign tumor and subsequent genetic alterations lead to tumor progression and the acquisition of the hallmarks of cancer. This article will review recent discoveries in our understanding of initiation and progression in melanocytic neoplasia and the impact on diagnostic dermatopathology. PMID:27408703

  5. Recent advances in molecular genetics of melanoma progression: implications for diagnosis and treatment

    PubMed Central

    Yeh, Iwei

    2016-01-01

    According to the multi-step carcinogenesis model of cancer, initiation results in a benign tumor and subsequent genetic alterations lead to tumor progression and the acquisition of the hallmarks of cancer. This article will review recent discoveries in our understanding of initiation and progression in melanocytic neoplasia and the impact on diagnostic dermatopathology. PMID:27408703

  6. Advances in materials science, Metals and Ceramics Division. Triannual progress report, October 1979-January 1980

    SciTech Connect

    Not Available

    1980-03-31

    Progress is summarized concerning magnetic fusion energy materials, laser fusion energy, aluminium-air battery and vehicle, geothermal research, oil-shale research, nuclear waste management, office of basic energy sciences research, and materials research notes. (FS)

  7. Advanced thermal barrier coating system development. Technical progress report, March 1, 1997--May 31, 1997

    SciTech Connect

    1997-06-13

    Objectives of this program are to provide an improved thermal barrier coating system with improved reliability and temperature capability. This report describes progress in manufacturing, bonding, deposition, non-destructive evaluation, repair, and maintenance.

  8. ACAT inhibition reduces the progression of pre-existing, advanced atherosclerotic mouse lesions without plaque or systemic toxicity

    PubMed Central

    Rong, James X.; Blachford, Courtney; Feig, Jonathan E.; Bander, Ilda; Mayne, Jeffrey; Kusunoki, Jun; Miller, Christine; Davis, Matthew; Wilson, Martha; Dehn, Shirley; Thorp, Edward; Tabas, Ira; Taubman, Mark B.; Rudel, Lawrence L.; Fisher, Edward A.

    2013-01-01

    Objective Acyl-CoA:cholesterol acyltransferase (ACAT) converts cholesterol to cholesteryl esters in plaque foam cells. Complete deficiency of macrophage ACAT has been shown to increase atherosclerosis in hypercholesterolemic mice due to cytotoxicity from free cholesterol accumulation, while we previously showed that partial ACAT inhibition by Fujirebio compound F1394 decreased early atherosclerosis development. In this report, we tested F1394 effects on pre-established, advanced lesions of apoE-/- mice. Methods & Results ApoE-/- mice on Western diet for 14 weeks developed advanced plaques, and were either sacrificed (“Baseline”), or continued on Western diet without or with F1394 and sacrificed after 14 more weeks. F1394 was not associated with systemic toxicity. Compared to the baseline group, lesion size progressed in both groups; however, F1394 significantly retarded plaque progression, and reduced plaque macrophage, free and esterified cholesterol, and tissue factor contents compared to the untreated group. Apoptosis of plaque cells was not increased, consistent with the decrease in lesional free cholesterol, plaque necrosis was not increased, and efferocytosis (phagocytic clearance of apoptotic cells) was not impaired. The effects of F1394 were independent of changes in plasma cholesterol levels. Conclusions Partial ACAT inhibition by F1394 lowered plaque cholesterol content and had other antiatherogenic effects in advanced lesions in apoE-/- mice without overt systemic or plaque toxicity, suggesting the continued potential of ACAT inhibition for the clinical treatment of atherosclerosis in spite of recent trial data. PMID:23139293

  9. Advanced thermal barrier coating system development. Technical progress report, June 1, 1997--August 31, 1997

    SciTech Connect

    1997-09-12

    Objectives of this program are to provide an advanced thermal barrier coating system with improved reliability and temperature capabilities. This report describes the manufacturing, deposition, bonding, non-destructive analysis; maintenance, and repair.

  10. Generating random density matrices

    NASA Astrophysics Data System (ADS)

    Życzkowski, Karol; Penson, Karol A.; Nechita, Ion; Collins, Benoît

    2011-06-01

    We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi-partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N → ∞, by the Marchenko-Pastur distribution.

  11. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    Singh, Gurpreet

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  12. Enhancing Understanding of Transformation Matrices

    ERIC Educational Resources Information Center

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  13. Cyproheptadine significantly improves the overall and progression-free survival of sorafenib-treated advanced HCC patients

    PubMed Central

    Feng, Yu-Min; Feng, Chin-Wen; Lu, Chin-Li; Lee, Ming-Yang; Chen, Chi-Yi; Chen, Solomon Chih-Cheng

    2015-01-01

    Objective Sorafenib is a recommended treatment for advanced hepatocellular carcinoma. The study is to evaluate the efficacy of sorafenib plus cyproheptadine compared with sorafenib alone in patients with advanced hepatocellular carcinoma. Methods A retrospective cohort study reviewed all consecutive advanced hepatocellular carcinoma cases with Child-Pugh Class A disease starting sorafenib treatment at our hospital from August 2012 to March 2013. They were followed up until 31 December 2013. A total of 52 patients were enrolled: 32 patients in the combination (sorafenib–cyproheptadine) group and 20 patients in the control (sorafenib alone) group. The response to treatment, overall survival and progression-free survival were compared. Results The median overall survival was 11.0 months (95% confidence interval: 6.8–15.1 months) in the combination group compared with 4.8 months (95% confidence interval: 3.1–6.6 months) in the control group (crude hazard ratio = 0.45, 95% confidence interval: 0.22–0.82). The median progression-free survival time was 7.5 months (95% confidence interval: 5.1–10.0 months) in the combination group compared with 1.7 months (95% confidence interval: 1.4–2.1 months) in the control group (crude hazard ratio = 0.43, 95% confidence interval: 0.22–0.86). Kaplan–Meier survival analysis revealed that both overall survival and progression-free survival in the combination group were significantly longer than that in the control group. The multivariate model found patients in the combination group were 76% less likely to die (adjusted hazard ratio = 0.24, 95% confidence interval: 0.10–0.58) and 82% less likely to have progression (adjusted hazard ratio = 0.18, 95% confidence interval: 0.08–0.44) during the 17 months of follow-up. Conclusion Cyproheptadine may significantly improve survival outcomes of sorafenib-treated advanced hepatocellular carcinoma patients. PMID:25646358

  14. Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review.

    PubMed

    Lawal, Abdulazeez T; Adeloju, Samuel B

    2012-10-15

    This review provides an update on the research conducted on the fabrication and utilization of hypoxanthine (Hx) biosensors published over the past four decades. In particular, the review focuses on progress made in the development and use of Hx biosensors for the assessment of fish and meat quality which has dominated research in this area. The various fish and meat freshness indexes that have been proposed over this period are highlighted. Furthermore, recent developments and future advances in the use of screen-printed electrodes and nanomaterials for achieving improved performances for the reliable determination of Hx in fish and meat are discussed.

  15. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  16. Monitoring Progress toward Successful K-12 STEM Education: A Nation Advancing?

    ERIC Educational Resources Information Center

    National Academies Press, 2012

    2012-01-01

    Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework…

  17. Progress toward an advanced condition monitoring system for reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Maram, J.; Barkhoudarian, S.

    1987-01-01

    A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.

  18. On Some Properties of Gamma Matrices

    ERIC Educational Resources Information Center

    Dumais, Jean-Francois

    1977-01-01

    Discusses the problem of the order, reducibility, and equivalence of systems of Dirac gamma matrices. Gives a simple systematic method for finding the matrices connecting different systems of 4 x 4 gamma matrices. (MLH)

  19. Identification of Genes Associated With Progression and Metastasis of Advanced Cervical Cancers After Radiotherapy by cDNA Microarray Analysis

    SciTech Connect

    Harima, Yoko; Ikeda, Koshi; Utsunomiya, Keita; Shiga, Toshiko; Komemushi, Atsushi; Kojima, Hiroyuki; Nomura, Motoo; Kamata, Minoru; Sawada, Satoshi

    2009-11-15

    Purpose: To identify a set of genes related to the progression and metastasis of advanced cervical cancer after radiotherapy and to establish a predictive method. Methods and Materials: A total of 28 patients with cervical cancer (15 stage IIIB, 13 stage IVA patients) who underwent definitive radiotherapy between May 1995 and April 2001 were included in this study. All patients were positive for human papillomavirus infection and harbored the wild-type p53 gene. The expression profiles of 14 tumors with local failure and multiple distant metastasis and 14 tumors without metastasis (cancer free) obtained by punch biopsy were compared before treatment, using a cDNA microarray consisting of 23,040 human genes. Results: Sixty-three genes were selected on the basis of a clustering analysis, and the validity of these genes was confirmed using a cross-validation test. The most accurate prediction was achieved for 63 genes (sensitivity, 78.8%; specificity, 38.1%). Some of these genes were already known to be associated with metastasis via chromosomal instability (TTK, BUB1B), extracellular matrix components (matrix metalloproteinase 1 [MMP-1]), and carcinogenesis (protein phosphatase 1 regulatory subunit 7 [PPP1R7]). A 'predictive score' system was developed that could predict the probability for development of metastases using leave-one-out cross-validation methods. Conclusions: The present results may provide valuable information for identified predictive markers and novel therapeutic target molecules for progression and metastasis of advanced cervical cancer.

  20. Association of BP with Death, Cardiovascular Events, and Progression to Chronic Dialysis in Patients with Advanced Kidney Disease

    PubMed Central

    Palit, Shyamal; Chonchol, Michel; Cheung, Alfred K.; Kaufman, James; Smits, Gerard

    2015-01-01

    Background and objective The optimal BP target to reduce adverse clinical outcomes in patients with CKD is unclear. This study examined the relationship between BP and death, cardiovascular events (CVEs), and kidney disease progression in patients with advanced kidney disease. Design, setting, participants, & measurements The relationship of systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) with death, CVE, and progression to long-term dialysis was examined in 1099 patients with advanced CKD (eGFR≤30 ml/min per 1.7 3m2; not receiving dialysis) who participated in the Homocysteine in Kidney and ESRD study. That study enrolled participants from 2001 to 2003. Cox proportional hazard models were used to examine the association between BP and adverse outcomes. Results The mean±SD baseline eGFR was 18±7 ml/min per 1.73 m2. During a median follow-up of 2.9 years, 453 patients died, 215 had a CVE, and 615 initiated long-term dialysis. After adjustment for demographic characteristics and confounders, SBP, DBP, and PP were not associated with a higher risk of death. SBP and DBP were also not associated with CVE. The highest quartile of PP was associated with a substantial higher risk of CVE compared with the lowest quartile (hazard ratio [HR], 1.67; 95% confidence interval [95% CI], 1.10 to 2.52). The highest quartiles of SBP (HR, 1.28; 95% CI, 1.01 to 1.61) and DBP (HR, 1.36; 95% CI, 1.07 to 1.73), but not PP, were associated with a higher risk of progression to long-term dialysis compared with the lowest quartile. Conclusions In patients with advanced kidney disease not undergoing dialysis, higher PP was strongly associated with CVE whereas higher SBP and DBP were associated with progression to long-term dialysis. These results suggest that SBP and DBP should not be the only factors considered in determining antihypertensive therapy; elevated PP should also be considered. PMID:25979975

  1. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  2. A Comparison between Element Salience versus Context as Item Difficulty Factors in Raven's Matrices

    ERIC Educational Resources Information Center

    Perez-Salas, Claudia P.; Streiner, David L.; Roberts, Maxwell J.

    2012-01-01

    The nature of contextual facilitation effects for items derived from Raven's Progressive Matrices was investigated in two experiments. For these, the original matrices were modified, creating either abstract versions with high element salience, or versions which comprised realistic entities set in familiar contexts. In order to replicate and…

  3. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  4. Progress in the Development of Direct Osmotic Concentration Wastewater Recovery Process for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael

    2005-01-01

    Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.

  5. Research directions and progress in the SERI advanced high efficiency concept program

    SciTech Connect

    Cole, L A; Benner, J P

    1984-06-01

    The inherent electro-optical properties of gallium arsenide (GaAs) and related III-V compounds make this class of semiconductors an optimum choice for use in very high efficiency solar cells. The ability to alloy GaAs with other column III and V elements while maintaining the single crystal zincblende structure allows the photovoltaic properties to be tailored to specific needs. The current understanding and control of the properties of these materials is more advanced than for any other semiconductor except single crystal silicon. For these reasons, the Advanced High Efficiency Concepts Program supports materials research to improve the properties of III-V semiconductors needed to achieve the maximum attainable photovoltaic conversion efficiencies.

  6. Research directions and progress in the SERI Advanced High Efficiency Concept Program

    SciTech Connect

    Cole, L.A.; Benner, J.P.; US

    1984-05-01

    The inherent electro-optical properties of gallium arsenide (GaAs) and related III-V compounds make this class of semiconductors an optimum choice for use in very high efficiency solar cells. The ability to alloy GaAs with other column III and V elements while maintaining the single crystal zincblende structure allows the photovoltaic properties to be tailored to specific needs. The current understanding and control of the properties of these materials is more advanced than for any other semiconductor except single crystal silicon. For these reasons, the Advanced High Efficiency Concepts Program supports materials research to improve the properties of III-V semiconductors needed to achieve the maximum attainable photovoltaic conversion efficiencies.

  7. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications

    PubMed Central

    Yin, Shen; Niswender, Colleen M.

    2014-01-01

    The metabotropic glutamate (mGlu) receptors are a group of Class C Seven Transmembrane Spanning/G Protein Coupled Receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission in both the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, especially the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members. PMID:24793301

  8. FY 2014 Annual Progress Report - Advanced Combustion Engine Research and Development (Book)

    SciTech Connect

    Not Available

    2014-11-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  9. Computer-Access-Code Matrices

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.

  10. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  11. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    SciTech Connect

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  12. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2013-03-01

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  13. Obstructive Sleep Apnea and Mandibular Advancement Splints: Occlusal Effects and Progression of Changes Associated with a Decade of Treatment

    PubMed Central

    Pliska, Benjamin T.; Nam, Hyejin; Chen, Hui; Lowe, Alan A.; Almeida, Fernanda R.

    2014-01-01

    Study Objectives: To evaluate the magnitude and progression of dental changes associated with long-term mandibular advancement splint (MAS) treatment of obstructive sleep apnea (OSA). Methods: Retrospective study of adults treated for primary snoring or mild to severe OSA with MAS for a minimum of 8 years. The series of dental casts of patients were analyzed with a digital caliper for changes in overbite, overjet, dental arch crowding and width, and inter-arch relationships. The progression of these changes over time was determined and initial patient and dental characteristics were evaluated as predictors of the observed dental side effects of treatment. Results: A total of 77 patients (average age at start of treatment: 47.5 ± 10.2 years, 62 males) were included in this study. The average treatment length was 11.1 ± 2.8 years. Over the total treatment interval evaluated there was a significant (p < 0.001) reduction in the overbite (2.3 ± 1.6 mm), overjet (1.9 ± 1.9 mm), and mandibular crowding (1.3 ± 1.8 mm). A corresponding significant (p < 0.001) increase of mandibular intercanine (0.7 ± 1.5 mm) and intermolar (1.1 ± 1.4 mm) width as well as incidence of anterior crossbite and posterior open bite was observed. Overbite and mandibular intermolar distance were observed to decrease less with time, while overjet, mandibular intercanine distance, and lower arch crowding all decreased continuously at a constant rate. Conclusions: After an average observation period of over 11 years, clinically significant changes in occlusion were observed and were progressive in nature. Rather than reaching a discernible end-point, the dental side effects of MAS therapy continue with ongoing MAS use. Commentary: A commentary on this article appears in this issue on page 1293. Citation: Pliska BT, Nam H, Chen H, Lowe AA, Almeida FR. Obstructive sleep apnea and mandibular advancement splints: occlusal effects and progression of changes associated with a decade of treatment. J

  14. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement

    NASA Astrophysics Data System (ADS)

    Xu, M.; Ivey, D. G.; Xie, Z.; Qu, W.

    2015-06-01

    Zn-air batteries, which are cost-effective and have high energy density, are promising energy storage devices for renewable energy and power sources for electric transportation. Nevertheless, limited charge and discharge cycles and low round-trip efficiency have long been barriers preventing the large-scale deployment of Zn-air batteries in the marketplace. Technology advancements for each battery component and the whole battery/cell assembly are being pursued, with some key milestones reached during the past 20 years. As an example, commercial Zn-air battery products with long lifetimes and high energy efficiencies are being considered for grid-scale energy storage and for automotive markets. In this review, we present our perspectives on improvements in Zn-air battery technology through the exploration and utilization of different electrolyte systems. Recent studies ranging from aqueous electrolytes to nonaqueous electrolytes, including solid polymer electrolytes and ionic liquids, as well as hybrid electrolyte systems adopted in Zn-air batteries have been evaluated. Understanding the benefits and drawbacks of each electrolyte, as well as the fundamental electrochemistry of Zn and air electrodes in different electrolytes, are the focus of this paper. Further consideration is given to detailed Zn-air battery configurations that have been studied and applied in commercial or nearing commercial products, with the purpose of exposing state-of-the-art technology innovations and providing insights into future advancements.

  15. Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

  16. Advanced Fuel Cycle Initiative (AFCI) Repository Impact Evaluation FY-05 Progress Report

    SciTech Connect

    Halsey, W G

    2005-09-12

    An important long-term objective of advanced nuclear fuel cycle (AFC) technologies is to provide improvement in the long-term management of radioactive waste. Compared to a once-thru fuel cycle, it is possible to generate far less waste, and potentially easier waste to manage, with advanced fuel cycles. However, the precise extent and value of these benefits are complex and difficult to quantify. This document presents a status report of efforts within AFCI Systems Analysis to define and quantify the AFC benefits to geologic disposal, development of cooperative efforts with the US repository program, and participation with international evaluations of AFC impacts on waste management. The primary analysis of repository benefits is conducted by ANL. This year repository impact evaluations have included: (1) Continued evaluation of LWR recycle benefits in support of scenario analysis. (2) Extension of repository analyses to consider long-term dose reductions. (3) Developing the opportunity for cooperation with the U.S. repository program. (4) International cooperation with OECD-NEA.

  17. DOE/JPL advanced thermionic technology program. Progress report No. 45, October, November, December 1980

    SciTech Connect

    Not Available

    1980-01-01

    This report covers progress made during the three-month period from October through December 1980. During this period, significant accomplishments include: (1) continuing stable output from the combustion life test of the one-inch diameter hemispherical silicon carbide diode (Converter No. 239) at an emitter temperature of 1730 K for a period of over 4200 hours; (2) construction of four diode module completed; (3) favorable results obtained from TAM combustor-gas turbine system analyses; (4) a FERP work function of 2.3 eV was obtained with the W(100)-O-Zr-C electrode; and (5) the average minimum barrier index of the last six research diodes built with sublimed molybdenum oxide collectors was 2.0 eV.

  18. Advanced biomass research program. Annual report for 1987. Technical progress report

    SciTech Connect

    Smith, W.H.

    1989-01-01

    These results are from an interdisciplinary program researching plant growth and bioconversion processes for enhancing methane from biomass. Modern molecular and cellular biology approaches are being used to characterize the genes and to develop methods for accomplishing transformations to improve biomass quality by regulating plant chemicals. Quality is being emphasized since quantities of 25 Mg/ha can be sustained for five years and conditions for higher yields of some grasses were identified. Breeding has succeeded in the development of hexaploids that produce seeds, and vegetative propagation from tissue cultures for asexual species. Gel seeding of tissue culture derived plantlets inoculated with mycrohizal to improve survivability has shown promise. Biological methane potential assays have revealed the effects of harvesting frequency, storage and the proportion of plant parts on methane yields. Non-hydrolytical depolymerization of polypectate and hydrolytic degradation of cellulose occur more rapidly at near neutral pH's. A gene encoding for the xylan-degrading enzymes was isolated. These enzymes are repressed by glucose. Kinetic modeling of these reactions is progressing. Methods of describing the microbial community structure in digesters are being developed and used to monitor digester health and performance. Polyclonal antibodies for 9 methanogenic bacteria were developed, propionate and butyrate inhibited dissimilation of large organic polymers, the cellular location of key enzyme were revealed and cellulolytic bacteria were found to attack cells from inside the lumen. Controls of formate production and conversion to gas were identified and the genes for the hydrogenase enzymes in the conversions were cloned. System analysis allows the authors to assess the impact of research progress on cost factors. Sixty scientific papers reporting program results were published in 1987.

  19. Advancement of flash hydrogasification. Quarterly technical progress report, January-March 1984

    SciTech Connect

    Falk, A.Y.

    1984-06-25

    This first quarterly report documents technical progress during the period 31 December 1983 through 30 March 1984. The technical effort is 17 months in duration and is divided into two major technical tasks: Task VII, Hardware Fabrication and PDU Modifications, and Task VIII, Performance Testing. The design of test hardware and process development unit modifications had been previously completed as part of Task VI of the current contract. Task VII involves the fabrication of test hardware and modification of an existing 1-ton/h hydroliquefaction PDU at Rockwell's facilities for use as a hydrogasifier test facility. During this report period, fabrication of the test hardware and modifications to the PDU were initiated. Test hardware fabrication is now approximately 80% complete and should be completed by the end of May 1984. PDU modifications are progressing well and should be completed by the end of June 1984. The completed test hardware fabrication and PDU modifications will allow the conduct of short duration (1 to 2 h) hydrogasification tests along with preburner assembly performance evaluation tests in order to fulfill the test program objectives. Separate supplies of hydrogen, oxygen, methane, carbon monoxide, and water (for steam generation) are provided for this purpose. The modified facility is designed to accommodate both 10- and 20-ft-long hydrogasifier reactors so that residence times will be in the range of 2 to 6 s when coal is fed at a nominal 1/2 ton/h into reactors at 1000 psia pressure. Provisions are being made for real-time analysis of the product gases using an on-line gas chromatograph system. Test planning was the only Task VIII effort active during this report period. An initial (preliminary) test matrix has been defined. Preparation of a data analysis plan is underway, and data reduction programs are being programmed. 17 references, 25 figures, 6 tables.

  20. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  1. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    SciTech Connect

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  2. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979

    SciTech Connect

    Not Available

    1980-03-07

    The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  3. A Novel Approach to Material Development for Advanced Reactor Systems. Quarterly progress report, Year 1 - Quarter 2

    SciTech Connect

    2000-03-27

    OAK B188 A Novel Approach to Material Development for Advanced Reactor Systems. Quarterly progress report, Year 1--Quarter 2. Year one of this project had three major goals. First, to specify, order and install a new high current ion source for more rapid and stable proton irradiation. Second, to assess the use low temperature irradiation and chromium pre-enrichment in an effort to isolate a radiation damage microstructure in stainless steels without the effects of RIS. Third, to prepare for the irradiation of reactor pressure vessel steel and Zircaloy. Program goals for Second Quarter, Year One: In year 1 quarter 2, the project goal was to complete an irradiation of an RPV steel sample and begin sample characterization. We also planned to identify sources of Zircaloy for irradiation and characterization.

  4. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  5. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  6. Advanced thermally stable jet fuels. Technical progress report, January 1996--March 1996

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1996-08-01

    A reactive structure index was developed to correlate the molecular structures of saturated hydrocarbons with their reactivities using a linear group contribution method. The index is composed of several sub-indices determined from the structure, including carbon group indices, ring index, and conformation index. The effects on decomposition of ring structure, side-chain length, steric isomers, and branching were examined. Good correlations were obtained for two sets of saturated hydrocarbons. The reactivity of alkanes and cycloalkanes increases with increasing chain or side-chain length. Cycloalkanes are desirable components of advanced jet fuels, in terms of having higher thermal stability and density than n-alkanes of the same carbon number. The cis-isomer is usually more reactive than the trans-isomer, except for cis-1,3-dimethylcyclohexane. which is more stable than its trans-isomer. The presence of a branch or branches appears to decrease the decomposition rate compared to n-alkanes.

  7. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January--March 1992

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  8. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities

    NASA Technical Reports Server (NTRS)

    Liu, Yuqiong; Weerts, A.; Clark, M.; Hendricks Franssen, H.-J; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; van Velzen, N.; He, M.; Lee, H.; Noh, S. J.; Rakovec, O.; Restrepo, P.

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA

  9. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    SciTech Connect

    Schalkoff, R.J.; Geist, R.M.; Dawson, D.M.

    1998-06-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  10. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weerts, A. H.; Clark, M.; Hendricks Franssen, H.-J.; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; van Velzen, N.; He, M.; Lee, H.; Noh, S. J.; Rakovec, O.; Restrepo, P.

    2012-10-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA

  11. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weerts, A. H.; Clark, M.; Hendricks Franssen, H.-J.; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; van Velzen, N.; He, M.; Lee, H.; Noh, S. J.; Rakovec, O.; Restrepo, P.

    2012-03-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented into operational forecast systems to improve the skill of forecasts to better inform real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, The Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical considerations in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modelling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers

  12. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  13. Iron Levels in Hepatocytes and Portal Tract Cells Predict Progression and Outcome of Patients with Advanced Chronic Hepatitis C1

    PubMed Central

    Lambrecht, Richard W.; Sterling, Richard K.; Naishadham, Deepa; Stoddard, Anne M.; Rogers, Thomas; Morishima, Chihiro; Morgan, Timothy R.; Bonkovsky, Herbert L.

    2011-01-01

    Background & Aims Iron might influence severity and progression of non-hemochromatotic liver diseases. We assessed the relationships between iron, variants in HFE, and progression and outcomes using data from the HALT-C Trial. We determined whether therapy with pegylated interferon (PegIFN) affects iron variables. Methods Participants were randomly assigned to groups given long-term therapy with PegIFN (n=400) or no therapy (n=413) for 3.5 y and followed for up to 8.7 y (median 6.0 y). Associations between patient characteristics and iron variables, at baseline and over time, were made using Kaplan-Meier analyses, Cox regression models, and repeated measures analysis of covariance. Iron was detected by Prussian blue staining. Results Patients with poor outcomes (increase in Child-Turcotte-Pugh score to ≥ 7, development of ascites, encephalopathy, variceal bleeding, spontaneous bacterial peritonitis, hepatocellular carcinoma, death) had significantly higher baseline scores for stainable iron in hepatocytes and cells in portal tracts than those without outcomes. Staining for iron in portal triads correlated with lobular and total Ishak inflammatory and fibrosis scores (P<0.0001). High baseline levels of iron in triads increased the risk for poor outcome (hazard ratio=1.35, P=0.02). Iron staining decreased in hepatocytes but increased in portal stromal cells over time (P<0.0001). Serum levels of iron and total iron binding capacity decreased significantly over time (P <0.0001), as did serum ferritin (P=0.0003). Long-term therapy with PegIFN did not affect levels of iron staining. Common variants in HFE did not correlate with outcomes, including development of hepatocellular carcinoma. Conclusions Degree of stainable iron in hepatocytes and portal tract cells predicts progression and clinical and histological outcomes of patients with advanced chronic hepatitis C. Long-term therapy with low-dose PegIFN did not improve outcomes or iron variables. PMID:21335007

  14. A Summary on Progress in Materials Development for Advanced Lithium-ion Cells for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2011-01-01

    Vehicles and stand-alone power systems that enable the next generation of human missions to the moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the-art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance future human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This paper on interim progress of the development efforts will present performance of materials and cell components and will elaborate on the challenges of the development activities and proposed strategies to overcome technical issues.

  15. Progress in burns research: a review of advances in burn pathophysiology

    PubMed Central

    Jewo, P.I.; Fadeyibi, I.O.

    2015-01-01

    Summary Severe burns trigger a wide range of responses in the victim. Initial vascular changes are followed by hypermetabolic, inflammatory and immunologic changes. The prolonged hypermetabolic response is associated with an elevated resting rate of energy consumption, tissue wasting and altered substrate kinetics. There is increased blood glucose though insulin levels are above normal. The cortisol level is raised and, together with catecholamine, drives the metabolic response. The immune system is typically weakened. There is elevation in blood levels of a wide range of cytokines from activated cells. These agents drive a prolonged inflammatory response which can lead to tissue damage and multiple organ failure. Dynamic fluid resuscitation regimens have cut down mortality from shock in the early post-burn period. However, unbalanced activity of pro- and anti-inflammatory cytokines can leave patients in an immuno-suppressed state that affects outcomes. So far, many treatments, such as propranolol, a cardio-protector, and anabolic agents, such as oxandrolone and growth hormone, have been tried with mixed results. This review focuses on research that elucidated burn pathophysiology. Some clinical areas in which treatment centred on correcting altered physiology were also included. We have highlighted both the challenges and significant findings. Finally, this paper draws attention to the gaps between progress in basic research and clinical application and suggests areas where further research and funding could be focused. PMID:27252608

  16. Progress in burns research: a review of advances in burn pathophysiology.

    PubMed

    Jewo, P I; Fadeyibi, I O

    2015-06-30

    Severe burns trigger a wide range of responses in the victim. Initial vascular changes are followed by hypermetabolic, inflammatory and immunologic changes. The prolonged hypermetabolic response is associated with an elevated resting rate of energy consumption, tissue wasting and altered substrate kinetics. There is increased blood glucose though insulin levels are above normal. The cortisol level is raised and, together with catecholamine, drives the metabolic response. The immune system is typically weakened. There is elevation in blood levels of a wide range of cytokines from activated cells. These agents drive a prolonged inflammatory response which can lead to tissue damage and multiple organ failure. Dynamic fluid resuscitation regimens have cut down mortality from shock in the early post-burn period. However, unbalanced activity of pro- and anti-inflammatory cytokines can leave patients in an immuno-suppressed state that affects outcomes. So far, many treatments, such as propranolol, a cardio-protector, and anabolic agents, such as oxandrolone and growth hormone, have been tried with mixed results. This review focuses on research that elucidated burn pathophysiology. Some clinical areas in which treatment centred on correcting altered physiology were also included. We have highlighted both the challenges and significant findings. Finally, this paper draws attention to the gaps between progress in basic research and clinical application and suggests areas where further research and funding could be focused.

  17. DOE/JPL advanced thermionic technology program. Progress report No. 43

    SciTech Connect

    Not Available

    1980-01-01

    Progress made during the three-month period from April through June 1980 is described, significant accomplishments include: 1) demonstration of over 3000 hours of stable operation (Converter No. 228: CVD Silicon Carbide No. 2) in a combustion atmosphere at a hot shell temperature of around 1650 K with a barrier index of 2.1 eV; 2) TRW analysis of the hot shell-emitter temperature of Converter No. 218 (5120 hours of flame-heated operation at emitter temperature at, or above, 1600 K) showed no life-limiting degradation mechanism; 3) Development of a protective coating for the braze between the molybdenum flange and the CVD hot shell-emitter structure for the flame-heated diodes which permits extended operation at cold end temperatures up to 850 K; 4) Completion of a Topical Report by C.C. Wang, The Formation of Double Sheaths and the J-V Characteristics in the Obstructed Region; 5) Demonstration of over 1100 hours of stable operation with Converter No. 232 (JPL Converter No. 4 - Molybdenum Emitter and Sublimed Molybdenum Oxide Collector) at a barrier index < 2.0 eV; and 6) Definition of oxygen transport mechanism from an oxide collector to the emitter.

  18. Advanced thermally stable jet fuels: Technical progress report, July 1994--September 1994

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

    1994-07-01

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 3 subtasks which are described: Pyrolysis of n-alkylbenzenes; Thermal decomposition of n-tetradecane in near-critical region; and Re-examining the effects of reactant and inert gas pressure on tetradecane pyrolysis--Effect of cold volume in batch reactor. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Investigation of the quantitative degradation chemistry of fuels, is subtask, Effects of high surface area activated carbon and decalin on thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Screening potential jet fuel stabilizers using the model compound dodecane; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, is subtask, Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels. 25 refs., 64 figs., 22 tabs.

  19. Advanced Scientific Computing Environment Team new scientific database management task. Progress report

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future ``computer`` will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This ``network computer`` will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of ``Jvv`` concepts and capabilities to distributed and/or parallel computing environments.

  20. Advanced coal liquefaction research. Quarterly technical progress report, April 1-June 30, 1983

    SciTech Connect

    Not Available

    1984-04-01

    Two methods of improving product quality were examined which advance the SRC II process far beyond that envisioned for the original demonstration plant. All distillate product boiling above 310/sup 0/C (590/sup 0/F) was recycled to extinction without loss of total oil yield or significant increase in hydrogen consumption. This product has substantially reduced potential for genetic damage and is more amenable to upgrading. In a further refinement, all of the overhead from the high temperature, high pressure separator was passed through a vapor-phase hydrotreater. This resulted in a dramatic improvement in product quality. A proportional blend of distillate product contained less than 1 ppM of nitrogen. Total oil yield was similar to the low quality product produced in the conventional SRC II process. Coal liquefaction was carried out in three stages to better understand how the variables affect dissolution, hydrogenation and hydrocracking steps. Short contact time dissolution of Illinois No. 6 coal was conducted with minimal hydrocarbon gas yield and hydrogen consumption and high conversion to toluene and pyridine soluble products. In the hydrogenation step, liquid yield increased as temperature was increased to 412/sup 0/C (774/sup 0/F) from 356/sup 0/C (673/sup 0/F). The hydrogen level in the products went through a maximum in the range of 380 to 400/sup 0/C (716 to 752/sup 0/F), however. Very little distillate was made in the subsequent hydrocracking step at a variety of conditions. 33 figures, 10 tables.

  1. Advanced coal liquefaction research. Technical progress report, January 1-April 30, 1984

    SciTech Connect

    Not Available

    1984-07-01

    The significant improvement in product quality reported last year for bituminous and subbituminous coals has been demonstrated with lignite. As discussed previously, use of a vapor-phase hydrotreater and recycle of all heavy distillate advances the SRC II process far beyond that envisioned for the original demonstration plant. As with the other coal ranks, all net distillate product from the lignite boils below 345/sup 0/C (653/sup 0/F) and has a nitrogen concentration on the order of 1 ppM. It was also confirmed that the Texas Big Brown lignite can be processed successfully in this mode without added catalyst. Both subbituminous Belle Ayr and bituminous Illinois No. 6 coals were processed in an integrated two-stage mode, without depressurization or solids separation between stages. Operation was relatively smooth with a fixed-bed second stage employing a high-void-volume (star-shaped) catalyst support, which was operated upflow. There was no evidence that H/sub 2/S addition improved yields with Belle Ayr coal and added pyrite or that H/sub 2/S could be used in place of pyrite to catalyze the reaction. 84 figures, 6 tables.

  2. Progress in physics and control of the resistive wall mode in advanced tokamaks

    SciTech Connect

    Liu Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.; Reimerdes, H.; Villone, F.; Ambrosino, G.; Pironti, A.; Portone, A.

    2009-05-15

    Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K[Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures.

  3. Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration

    PubMed Central

    Dome, Jeffrey S.; Graf, Norbert; Geller, James I.; Fernandez, Conrad V.; Mullen, Elizabeth A.; Spreafico, Filippo; Van den Heuvel-Eibrink, Marry; Pritchard-Jones, Kathy

    2015-01-01

    Clinical trials in Wilms tumor (WT) have resulted in overall survival rates of greater than 90%. This achievement is especially remarkable because improvements in disease-specific survival have occurred concurrently with a reduction of therapy for large patient subgroups. However, the outcomes for certain patient subgroups, including those with unfavorable histologic and molecular features, bilateral disease, and recurrent disease, remain well below the benchmark survival rate of 90%. Therapy for WT has been advanced in part by an increasingly complex risk-stratification system based on patient age; tumor stage, histology, and volume; response to chemotherapy; and loss of heterozygosity at chromosomes 1p and 16q. A consequence of this system has been the apportionment of patients into such small subgroups that only collaboration between large international WT study groups will support clinical trials that are sufficiently powered to answer challenging questions that move the field forward. This article gives an overview of the Children's Oncology Group and International Society of Pediatric Oncology approaches to WT and focuses on four subgroups (stage IV, initially inoperable, bilateral, and relapsed WT) for which international collaboration is pressing. In addition, biologic insights resulting from collaborative laboratory research are discussed. A coordinated expansion of international collaboration in both clinical trials and laboratory science will provide real opportunity to improve the treatment and outcomes for children with renal tumors on a global level. PMID:26304882

  4. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    SciTech Connect

    Lambarski, T.; Minyard, G.

    1998-10-01

    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  5. DOE/NE robotics for advanced reactors. Bimonthly progress report, October--November 1991

    SciTech Connect

    Not Available

    1991-12-31

    This document details activities during this reporting period. The Michigan group has developed, built, and tested a general purpose interface circuit for DC motors and encoders. This interface is based on an advanced microchip, the HCTL 1100 manufactured by Hewlett Packard. The HCTL 1100 can be programmed by a host computer in real-time, allowing sophisticated motion control for DC motors. At the University of Florida, work on modeling the details of the seismic isolators and the jack mechanism has been completed. A separate 3D solid view of the seismic isolator floor, with the full set of isolators shown in detail, has been constructed within IGRIP. ORNL led the robotics team at the ALMR review meeting. Discussions were held with General Electric (GE) engineers and contractors on the robotic needs for the ALMR program. The Tennessee group has completed geometric modeling of the Andros Mark VI mobile platform with two fixed tracks and for articulated tracks, the give degree-of-freedom manipulator and its end-effector, and two cameras. A graphical control of panel was developed which allow the user to operate the simulated robot. The University of Texas team visited ORNL to complete the implementation of computed-torque controller on the CESARm manipulator. This controller was previously developed and computer simulations were carried out specifically for the CESARm robot.

  6. Advanced fuel cell development. Progress Report, April-June 1980. [LiAlO/sub 2/

    SciTech Connect

    Pierce, R.D.; Arons, R.M.; Dusek, J.T.; Fraioli, A.V.; Kucera, G.H.; Poeppel, R.B.; Sim, J.W.; Smith, J.L.

    1980-11-01

    Advanced fuel cell research and development activities at Argonne National Laboratory (ANL) during the period April-June 1980 are described. These efforts have been directed toward understanding and improving components of molten carbonate fuel cells and have included operation of a 10-cm square cell. Studies have continued on the development of electrolyte structures (LiAlO/sub 2/ and Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/). This effort is being concentrated on the preparation of sintered LiAl0/sub 2/ as electrolyte support. Tape casting is presently under investigation as a method for producing green bodies to be sintered; this technique may be an improvement over cold pressing, which was used in the past to produce green bodies. The transition temperature for the ..beta..- to ..gamma..-LiAlO/sub 2/ allotropic transformation is being determined using differential thermal analysis. Work is continuing on the development of preoxidized, prelithiated NiO cathodes. Two techniques, one of which is simpler than the other, have been developed to fabricate plates of Li/sub 0/ /sub 05/Ni/sub 0/ /sub 95/O. In addition, electroless nickel plating is being investigated as a means of providing corrosion protection to structural hardware. To improve its cell testing capability, ANL has constructed a device for improved resistance measurements by the current-interruption technique.

  7. Progressive deformation textures in granite form from incipient to advanced strains

    SciTech Connect

    Koenemann, F.

    1985-01-01

    In the South Mountain Metamorphic Core Complex (Phoenix, Arizona) a Tertiary granite intruded a Precambrian gneiss. Detachment on a low-angle normal fault followed and cut through the slowly cooling intrusion. The resulting tectonic rock types are granitic gneiss, mylonite, and a cataclasite. Quartz is always deformed. At high T a preferred lattice orientation (PLO) developed at incipient strain. The texture suggests grain boundary migration in low-strain areas and recrystallization in local shear zones. Grain boundary orientations due to migration tend to be bidirectional and independent of the orientation of the involved crystals, but are thought to be dependent on local strain axes. At advanced strains and lower T old large grains decay along deformation bands, by recrystallization and subgrain development. At high strains the grain size is small and stable. The PLO is strongly dependent on the distribution of inhomogeneties (e.g. plag), which due to S/C mesofabric causes the fabric outline to be oblique. Biotite tears apart along faults // and perpendicular (001). Open faults are filled with K-spar, leucoxene and opaques. New biotite grows along two-phase boundaries (qz/plag) suggesting efficient diffusion of its components and chemical interaction with plag. This process causes the mylonite to become a layered rock. Pseudotachylite in the cataclastite developed at biotite grade. Chlorite is mainly a post-tectonic-hydrothermal phase. Cataclastic particles are later cut by ductile faults; thus plastic and cataclastic deformation modes were interactive.

  8. Advanced thermally stable jet fuels. Technical progress report, April 1994--June 1994

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1994-07-01

    Research continued on coal-based, thermally stable, jet fuels. Significant progress has been made on the detection of polycyclic aromatic hydrocarbons present in highly stressed fuels, using high-performance liquid chromatography (HPLC) with diode-array detection. Gas chromatography is not able to detect compounds with {>=}6 fused aromatic rings, but such compounds can be identified using the HPLC method. The concentration of such compounds is low in comparison to aromatics of 1-3 rings, but the role of the large compounds in the formation of solid deposits may be crucial in determining the thermal stability of a fuel. The unusual properties of fluid fuels in the near-critical region appear to have significant effects on their thermal decomposition reactions. This issue has been investigated in the present reporting period using n-tetradecane as a model compound for fuel decomposition. Temperature-programmed retention indices are very useful for gas chromatographic and gas chromatography/mass spectrometric analysis of coal and petroleum derived jet fuels. We have demonstrated this in the identification of components in two JP-8 fuels and their liquid chromatographic fractions. The role of activated carbon surfaces as catalysts in the thermal stressing of jet fuel was investigated using n-dodecane and n-octane as model compounds. In some cases the reactions were spiked with addition of 5% decalin to test the ability of the carbon to catalyze the transformation of decalin to naphthalene. We have previously shown that benzyl alcohol and 1,4-benzenedimethanol are effective stabilizers at temperatures {>=}400{degrees}C for jet fuels and the model compound dodecane. The addition of ethanol to hydrocarbon/benzyl alcohol mixtures has a significant effect on the thermal stabilization of jet fuels above 400{degrees}C. Ethanol appears to function by reducing the benzaldehyde formed during the degradation of the benzyl alcohol. This reduction regenerates the benzyl alcohol.

  9. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

    1995-02-01

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

  10. Advanced thermally stable jet fuels. Technical progress report, April 1993--June 1993

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.

    1993-10-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Some of our accomplishments and findings are: The product distribution and reaction mechanisms for pyrolysis of alkylcyclohexanes at 450{degree}C have been investigated in detail. In this report we present results of pyrolysis of cyclohexane and a variety of alkylcyclohexanes in nitrogen atmospheres, along with pseudo-first order rate constants, and possible reaction mechanisms for the origin of major pyrolysis products are presented. Addition of PX-21 activated carbon effectively stops the formation of carbonaceous solids on reactor walls during thermal stressing of JPTS. A review of physical and chemical interactions in supercritical fluids has been completed. Work has begun on thermal stability studies of a second generation of fuel additives, 1,2,3,4-tetrahydro-l-naphthol, 9,10-phenanthrenediol, phthalan, and 1,2-benzenedimethanol, and with careful selection of the feedstock, it is possible to achieve 85--95% conversion of coal to liquids, with 40--50% of the dichloromethane-soluble products being naphthalenes. (Further hydrogenation of the naphthalenes should produce the desired highly stable decalins.)

  11. Advanced coal liquefaction research. Technical progress report, January 1, 1983-December 31, 1983

    SciTech Connect

    Not Available

    1984-05-01

    The most significant work this year involved two methods of improving product quality which advanced the SRC II process far beyond that envisioned for the original demonstration plant. With both bituminous and subbituminous feedstocks, all distillate product boiling above 345/sup 0/C (653/sup 0/F) was recycled to extinction without loss of total oil yield or significant increase in hydrogen consumption. In a further refinement, all of the overhead from the high temperature, high pressure separator was passed through a vapor-phase hydrotreater. This resulted in a dramatic improvement in product quality. A proportional blend of distillate product contained less than 1 ppM of nitrogen. Total oil yield was similar to the low quality product produced in the conventional SRC II process. A large number of multiple-stage liquefaction experiments were carried out to better understand each step in the process. These included 3-stage operations; dissolution, hydrogenation and hydrocracking; and several variations of 2-stage processes. Variables investigated were temperature and residence time in each stage and both slurry and fixed-bed catalyst systems. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material was quite high and the limit of conversion was approached in only a few minutes. With a subbituminous coal, however, conversion was much lower and the limit of conversion was approached much more slowly. In other work, the liquefaction of Illinois No. 6 coal beneficiated in various ways was studied in both SRC II and short contact time modes of operation. Additional short contact time experiments explored the effects of solvent quality and catalysts with Belle Ayr coal and the effects of residence time with Loveridge coal. 32 figures, 8 tables.

  12. Advanced coal conversion process demonstration. Technical progress report, April 1--June 30, 1996

    SciTech Connect

    1997-10-01

    This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high moisture, low rank coals to a high quality, low sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep bed stratifier cleaning process to separate the pyrite rich ash from the coal. The SynCoal process enhances low rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 Btu/lb, by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45 ton per hour unit is located adjacent to a unit train load out facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. During this report period the primary focus has been to continue the operation of the demonstration facility. Production has been going to area power plants. Modifications and maintenance work was also performed this quarter.

  13. Advanced glycation end products and the progressive course of renal disease.

    PubMed

    Heidland, A; Sebekova, K; Schinzel, R

    2001-10-01

    In experimental and human diabetic nephropathy (DN), it has been shown that advanced glycation end products (AGEs), in particular, carboxymethyl-lysine and pentosidine, accumulate with malondialdehyde in glomerular lesions in relation to disease severity and in the presence of an upregulated receptor for AGE (RAGE) in podocytes. Toxic effects of AGEs result from structural and functional alterations in plasma and extracellular matrix (ECM) proteins, in particular, from cross-linking of proteins and interaction of AGEs with their receptors and/or binding proteins. In mesangial and endothelial cells, the AGE-RAGE interaction caused enhanced formation of oxygen radicals with subsequent activation of nuclear factor-kappaB and release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor-alpha), growth factors (transforming growth factor-beta1 [TGF-beta1], insulin-like growth factor-1), and adhesion molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1). In tubular cells, incubation with AGE albumin was followed by stimulation of the mitogen-activating protein (MAP) kinase pathway and its downstream target, the activating protien-1 (AP-1) complex, TGF-beta1 overexpression, enhanced protein kinase C activity, decreased cell proliferation, and impaired protein degradation rate, in part caused by decreased cathepsin activities. The pathogenic relevance of AGEs was further verified by in vivo experiments in euglycemic rats and mice by the parenteral administration of AGE albumin, leading in the glomeruli to TGF-beta1 overproduction, enhanced gene expression of ECM proteins, and morphological lesions similar to those of DN. Evidence for the pathogenic relevance of AGEs in DN also comes from experimental studies in which the formation and/or action of AGEs was modulated by aminoguanidine, OPB-9195, pyridoxamine, soluble RAGEs, serine protease trypsin, and antioxidants, resulting in improved cell and/or renal function.

  14. Federal Efforts to Define and Advance Telehealth—A Work in Progress

    PubMed Central

    Pruitt, Sherilyn; Jacobs, Jessica; Harris, Yael; Bott, David M.; Riley, William; Lamer, Christopher; Oliver, Anthony L.

    2014-01-01

    Abstract Background: The integration of telecommunications and information systems in healthcare is not new or novel; indeed, it is the current practice of medicine and has been an integral part of medicine in remote locations for several decades. The U.S. Government has made a significant investment, measured in hundreds of millions of dollars, and therefore has a strong presence in the integration of telehealth/telemedicine in healthcare. However, the terminologies and definitions in the lexicon vary across agencies and departments of the U.S. Government. The objective of our survey was to identify and evaluate the definitions of telehealth/telemedicine across the U.S. Government to provide a better understanding of what each agency or department means when it uses these terms. Methodology: The U.S. Government, under the leadership of the Health Resources and Services Administration in the U.S. Department of Health and Human Services, established the Federal Telemedicine (FedTel) Working Group, through which all members responded to a survey on each agency or department's definition and use of terms associated with telehealth. Results and Conclusions: Twenty-six agencies represented by more than 100 individuals participating in the FedTel Working Group identified seven unique definitions of telehealth in current use across the U.S. Government. Although many definitions are similar, there are nuanced differences that reflect each organization's legislative intent and the population they serve. These definitions affect how telemedicine has been or is being applied across the healthcare landscape, reflecting the U.S. Government's widespread and influential role in healthcare access and service delivery. The evidence base suggests that a common nomenclature for defining telemedicine may benefit efforts to advance the use of this technology to address the changing nature of healthcare and new demands for services expected as a result of health reform. PMID:24502793

  15. Advanced thermally stable jet fuels. Technical progress report, July 1993--September 1993

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

    1993-12-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. An exploratory study was conducted to investigate the pyrolysis of n-butylbenzene in a flow reactor at atmospheric pressure. A number of similarities to trends previously observed in high-pressure static reactions were identified. The product distribution from pyrolysis of n-tetradecane at 400{degrees}C and 425{degrees}C was investigated. The critical temperatures of a suite of petroleum- and coal-derived jet fuels were measured by a rapidly heating sealed tube method. Work has continued on refining the measurements of deposit growth for stressing mixtures of coal-derived JP-8C with tetradecane. Current work has given emphasis to the initial stages of fuel decomposition and the onset of deposition. Pretreatment of JPTS fuel with PX-21 activated carbon (50 mg of PX-21 in 15 mL JPTS) delayed degradation and prevented carbon deposition during thermal stressing at 425{degrees}C for 5 h in nitrogen and air atmospheres. Clear indications of initial and subsequent deposit formation on different metal surfaces have been identified for thermal stressing of dodecane. Seven additives were tested for their ability to retard decomposition of dodecane at 450{degrees}C under nitrogen. Nuclear magnetic resonance data for Dammar resin indicates that structures proposed in the literature are not entirely correct.

  16. Advanced thermally stable jet fuels. Technical progress report, August 1992--October 1992

    SciTech Connect

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.; Bortiatynski, J.; Burgess, C.; Dutta, R.; Gergova, K.; Lai, W.C.; Li, J.; McKinney, D.; Parfitt, D.; Peng, Y.; Sanghani, P.; Yoon, E.

    1993-02-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five borad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and miocrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Pyrolysis of four isomers of butylbenzene was investigated in static microautoclave reactors at 450{degrees}C under 0.69 MPa of UHP N{sub 2}. Thee rates of disappearance of substrates were found to depend upon the bonding energy of C{alpha}-C{beta} bond in the side chain in the initial period of pyrolysis reactions. Possible catalytic effects of metal surfaces on thermal degradation and deposit formation at temperatures >400{degrees}C have been studied. Carbon deposition depends on the composition of the metal surfaces, and also depends on the chemical compositions of the reactants. Thermal stressing of JP-8 was conducted in the presence of alumina, carbonaceous deposits recovered from earlier stressing experiments, activated carbon, carbon black, and graphite. The addition of different solid carbons during thermal stressing leads to different reaction mechanisms. {sup 13}C NMR spectroscopy, along with {sup 13}C-labeling techniques, have been used to examine the thermal stability of a jet fuel sample mixed with 5% benzyl alcohol. Several heterometallic complexes consisting of two transition metals and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous and Pittsburgh No. 8 bituminous coals.

  17. Advanced Technology Lunar Telescopes I. Overview and Progress Report On Ultra-Lightweight Optics

    NASA Astrophysics Data System (ADS)

    Chen, P. C.; Pitts, R. E.; Oliversen, R. J.; Stolarik, J. D.; Segal, K.; Wilson, T. L.; Lin, E. I.; Hull, J. R.; Romeo, R.; Hojaji, H.; Ma, K. B.; Chen, Q. Y.; Chu, W. K.; Chu, C. W.

    1993-12-01

    The materials and technology already exist to build fully functional steerable telescopes for use on the moon, telescopes that are cost effective, that can be deployed using existing launchers, and that can function for extended periods without human maintenance. We describe our concept of advanced technology telescopes (ATT) which combines the elements of i) ultra-lightweight precision optics and structures, ii) non-contact, electronically controlled superconductor bearings and drive mechanisms, and iii) high dynamic range radiation resistant sensors. Unlike previous transit telescope designs, the ATTs can point and track objects anywhere in the sky over the entire lunar night (or day), can be deployed in multiple unit arrays, and can be equipped with standard astronomical instruments including spectrographs, imagers, or even interferometers. We first describe the optics. Lightweight optics are crucial because they minimize the mass of the telescope assembly and its support structure and ultimately the entire payload. By using materials and fabrication technology similar to that already refined by ESA and proven for space applications, we show that it is possible to produce precision optical elements of very low areal density (< 2 kg per sq. m). The process also has much lower per unit cost compared to traditional mirror fabrication techniques. By supporting the optical elements with a class of very lightweight but stiff material already developed by NASA, a telescope assembly can be made that has essentially the minimum possible mass. Such ultra-lightweight construction makes possible astronomical payloads that can be sent to the moon using existing small and medium size rockets. The very low per unit cost permits the production and deployment of multiple units, thereby increasing the versatility and productivity of a lunar observatory while providing good redundancy. We demonstrate a proof-of-concept optical telescope assembly that has a 31 cm diameter primary

  18. Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. First year progress report

    SciTech Connect

    Roden, E.E.; Urrutia, M.M.

    1997-07-01

    'The authors have made considerable progress toward a number of project objectives during the first several months of activity on the project. An exhaustive analysis was made of the growth rate and biomass yield (both derived from measurements of cell protein production) of two representative strains of Fe(III)-reducing bacteria (Shewanellaalga strain BrY and Geobactermetallireducens) growing with different forms of Fe(III) as an electron acceptor. These two fundamentally different types of Fe(III)-reducing bacteria (FeRB) showed comparable rates of Fe(III) reduction, cell growth, and biomass yield during reduction of soluble Fe(III)-citrate and solid-phase amorphous hydrous ferric oxide (HFO). Intrinsic growth rates of the two FeRB were strongly influenced by whether a soluble or a solid-phase source of Fe(III) was provided: growth rates on soluble Fe(III) were 10--20 times higher than those on solid-phase Fe(III) oxide. Intrinsic FeRB growth rates were comparable during reduction of HF0 and a synthetic crystalline Fe(III) oxide (goethite). A distinct lag phase for protein production was observed during the first several days of incubation in solid-phase Fe(III) oxide medium, even though Fe(III) reduction proceeded without any lag. No such lag between protein production and Fe(III) reduction was observed during growth with soluble Fe(III). This result suggested that protein synthesis coupled to solid-phase Fe(III) oxide reduction in batch culture requires an initial investment of energy (generated by Fe(III) reduction), which is probably needed for synthesis of materials (e.g. extracellular polysaccharides) required for attachment of the cells to oxide surfaces. This phenomenon may have important implications for modeling the growth of FeRB in subsurface sedimentary environments, where attachment and continued adhesion to solid-phase materials will be required for maintenance of Fe(III) reduction activity. Despite considerable differences in the rate and pattern

  19. Truncations of random orthogonal matrices.

    PubMed

    Khoruzhenko, Boris A; Sommers, Hans-Jürgen; Życzkowski, Karol

    2010-10-01

    Statistical properties of nonsymmetric real random matrices of size M, obtained as truncations of random orthogonal N×N matrices, are investigated. We derive an exact formula for the density of eigenvalues which consists of two components: finite fraction of eigenvalues are real, while the remaining part of the spectrum is located inside the unit disk symmetrically with respect to the real axis. In the case of strong nonorthogonality, M/N=const, the behavior typical to real Ginibre ensemble is found. In the case M=N-L with fixed L, a universal distribution of resonance widths is recovered.

  20. Truncations of random orthogonal matrices

    NASA Astrophysics Data System (ADS)

    Khoruzhenko, Boris A.; Sommers, Hans-Jürgen; Życzkowski, Karol

    2010-10-01

    Statistical properties of nonsymmetric real random matrices of size M , obtained as truncations of random orthogonal N×N matrices, are investigated. We derive an exact formula for the density of eigenvalues which consists of two components: finite fraction of eigenvalues are real, while the remaining part of the spectrum is located inside the unit disk symmetrically with respect to the real axis. In the case of strong nonorthogonality, M/N=const , the behavior typical to real Ginibre ensemble is found. In the case M=N-L with fixed L , a universal distribution of resonance widths is recovered.

  1. Iterative methods for Toeplitz-like matrices

    SciTech Connect

    Huckle, T.

    1994-12-31

    In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.

  2. Clinical cancer advances 2011: Annual Report on Progress Against Cancer from the American Society of Clinical Oncology.

    PubMed

    Vogelzang, Nicholas J; Benowitz, Steven I; Adams, Sylvia; Aghajanian, Carol; Chang, Susan Marina; Dreyer, Zoann Eckert; Janne, Pasi A; Ko, Andrew H; Masters, Greg A; Odenike, Olatoyosi; Patel, Jyoti D; Roth, Bruce J; Samlowski, Wolfram E; Seidman, Andrew D; Tap, William D; Temel, Jennifer S; Von Roenn, Jamie H; Kris, Mark G

    2012-01-01

    A message from ASCO'S President. It has been forty years since President Richard Nixon signed the National Cancer Act of 1971, which many view as the nation's declaration of the "War on Cancer." The bill has led to major investments in cancer research and significant increases in cancer survival. Today, two-thirds of patients survive at least five years after being diagnosed with cancer compared with just half of all diagnosed patients surviving five years after diagnosis in 1975. The research advances detailed in this year's Clinical Cancer Advances demonstrate that improvements in cancer screening, treatment, and prevention save and improve lives. But although much progress has been made, cancer remains one of the world's most serious health problems. In the United States, the disease is expected to become the nation's leading cause of death in the years ahead as our population ages. I believe we can accelerate the pace of progress, provided that everyone involved in cancer care works together to achieve this goal. It is this viewpoint that has shaped the theme for my presidential term: Collaborating to Conquer Cancer. In practice, this means that physicians and researchers must learn from every patient's experience, ensure greater collaboration between members of a patient's medical team, and involve more patients in the search for cures through clinical trials. Cancer advocates, insurers, and government agencies also have important roles to play. Today, we have an incredible opportunity to improve the quality of cancer care by drawing lessons from the real-world experiences of patients. The American Society of Clinical Oncology (ASCO) is taking the lead in this area, in part through innovative use of health information technology. In addition to our existing quality initiatives, ASCO is working with partners to develop a comprehensive rapid-learning system for cancer care. When complete, this system will provide physicians with personalized, real

  3. National Research Council Dialogue to Assess Progress on NASA's Advanced Modeling, Simulation and Analysis Capability and Systems Engineering Capability Roadmap Development

    NASA Technical Reports Server (NTRS)

    Aikins, Jan

    2005-01-01

    Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).

  4. The Efficacy of Continued Sorafenib Treatment after Radiologic Confirmation of Progressive Disease in Patients with Advanced Hepatocellular Carcinoma

    PubMed Central

    2016-01-01

    Background Whether radiologically detected progressive disease (PD) is an accurate metric for discontinuing sorafenib treatment in patients with hepatocellular carcinoma (HCC) is unclear. We investigated the efficacy of sorafenib treatment after radiologic confirmation of PD in patients with advanced HCC. Methods We retrospectively analyzed HCC patients treated with sorafenib at Kyushu Medical Center. Six of the 92 patients with radiologically confirmed PD were excluded because they were classified as Child-Pugh C or had an Eastern Cooperative Oncology Group (ECOG) performance status (PS) ≥3; 86 patients were ultimately enrolled. Results Among the 86 patients, 47 continued sorafenib treatment after radiologic confirmation of PD (the continuous group), whereas 39 did not (the discontinuous group). The median survival time (MST) in the continuous group after confirmation was 12.9 months compared with 4.5 months in the discontinuous group (p <0.01). The time to progression in the continuous group after confirmation was 2.6 months compared with 1.4 months in the discontinuous group (p <0.01); it was 4.2 months and 2.1 months in patients who had received sorafenib ≥4 months and <4 months, respectively, before confirmation (p = 0.03). In these subgroups, the post-PD MST was 16.7 months and 9.6 months, respectively (p < 0.01). Independent predictors of overall survival after radiologic detection of PD were (hazard ratio, confidence interval): ECOG PS <2 (0.290, 0.107–0.880), Barcelona Clinical Liver Cancer stage B (0.146, 0.047–0.457), serum α-fetoprotein level ≥400 ng/mL (2.801, 1.355–5.691), and post-PD sorafenib administration (0.279, 0.150–0.510). Conclusion Continuing sorafenib treatment after radiologic confirmation of PD increased survival in patients with advanced HCC. Therefore, radiologically detected PD is not a metric for discontinuation of sorafenib treatment in such patients. PMID:26745625

  5. Lenvatinib and other tyrosine kinase inhibitors for the treatment of radioiodine refractory, advanced, and progressive thyroid cancer

    PubMed Central

    Lorusso, Loredana; Pieruzzi, Letizia; Biagini, Agnese; Sabini, Elena; Valerio, Laura; Giani, Carlotta; Passannanti, Paolo; Pontillo-Contillo, Benedetta; Battaglia, Valentina; Mazzeo, Salvatore; Molinaro, Eleonora; Elisei, Rossella

    2016-01-01

    Lenvatinib is a small oral molecule able to inhibit three of the extracellular and intracellular molecules involved in the modulation of angiogenesis and lymphangiogenesis: vascular endothelial growth factor receptor 1–3, fibroblast growth factor receptor 1–4, and platelet-derived growth factor receptor alpha. Since it is also able to inhibit the REarranged during Transfection oncogene and the protooncogene c-KIT, this drug can also be used to control tumor cell proliferation. The maximum tolerated dose, as demonstrated in Phase I studies, is 25 mg daily. The drug is rapidly absorbed with maximum concentrations achieved within 3 and 5 hours after administration in fasting and nonfasting treated patients, respectively. The most common adverse events, reported in Phase I study and confirmed in the subsequent Phase II and III studies, are hypertension, proteinuria, and gastrointestinal symptoms such as nausea, diarrhea, and stomatitis. In Phase I studies, efficacy of lenvatinib in solid tumors was demonstrated, and these encouraging results have led to the development of a Phase II study using lenvatinib in advance radioiodine-refractory differentiated thyroid cancer (DTCs) patients. Since an overall response rate of 50% was reported, this study also confirmed the efficacy of lenvatinib in DTCs patients with an acceptable toxicity profile. Recently, a Phase III study in patients with DTCs (SELECT study) demonstrated the lenvatinib efficacy in prolonging progression-free survival with respect to the placebo (18.3 vs 3.6 months; P<0.001). Although there was no statistically significant difference in the overall survival of the entire group, this result was observed when the analysis was restricted to both the follicular histotype and the group of senior patients (>65 years). The study confirmed that the most common side effects of this drug are hypertension, diarrhea, decreased appetite, weight loss, nausea, and proteinuria. In this review, we report the results of

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  7. Making almost commuting matrices commute

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    Suppose two Hermitian matrices A, B almost commute ({parallel}[A,B]{parallel} {<=} {delta}). Are they close to a commuting pair of Hermitian matrices, A', B', with {parallel}A-A'{parallel},{parallel}B-B'{parallel} {<=} {epsilon}? A theorem of H. Lin shows that this is uniformly true, in that for every {epsilon} > 0 there exists a {delta} > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specifiy how {delta} depends on {epsilon}. We give uniform bounds relating {delta} and {epsilon}. The proof is constructive, giving an explicit algorithm to construct A' and B'. We provide tighter bounds in the case of block tridiagonal and tridiagnonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.

  8. Fibonacci Identities, Matrices, and Graphs

    ERIC Educational Resources Information Center

    Huang, Danrun

    2005-01-01

    General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…

  9. A Novel Approach to Materials Development for Advanced Reactor Systems - Quarterly Progress Report: Year 2; Quarter 1

    SciTech Connect

    G. S. Was; M. Atzmon; L. Wang

    2002-06-25

    OAK B188 A Novel Approach to Materials Development for Advanced Reactor Systems - Quarterly Progress Report: Year 2; Quarter 1. There are three major goals for year two of the program. First, to build on the successful initial experiments on proton irradiation of pressure vessel steel to expand the irradiations to study dose rate and temperature effects, radiation effects on commercial alloys and to better characterize the precipitates. Second, we will begin irradiation and characterization of the Zircaloy alloys. Finally, we will continue low temperature irradiations and begin irradiation of chromium pre-enriched samples and cold-worked samples to assess the role of microstructure in IASCC of austenitic stainless steels. In quarter 1 of year 2, the project goal was to complete irradiation of model alloys of RPV steels for a range of doses and an initial sample characterization. We also planned to begin characterization of Zircalloy alloy samples and to make a set of cold-worked samples of 304 SS that would have a fixed hardness following subsequent irradiation to different doses.

  10. Virial expansion for almost diagonal random matrices

    NASA Astrophysics Data System (ADS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  11. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report

    SciTech Connect

    Murphy, M.B.

    1996-04-22

    The overall objective of this project is to demonstrate that development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. specific goals to attain the objective are (1) to demonstrate that development drilling program and pressure maintenance program, based on advanced reservoir management methods , can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. This is the second quarterly progress report on the project. Results obtained to date are summarized.

  12. S-matrices and integrability

    NASA Astrophysics Data System (ADS)

    Bombardelli, Diego

    2016-08-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU(2), SU(3) chiral Gross–Neveu models. In loving memory of Lilia Grandi.

  13. S-matrices and integrability

    NASA Astrophysics Data System (ADS)

    Bombardelli, Diego

    2016-08-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU(2), SU(3) chiral Gross-Neveu models. In loving memory of Lilia Grandi.

  14. Threaded Operations on Sparse Matrices

    SciTech Connect

    Sneed, Brett

    2015-09-01

    We investigate the use of sparse matrices and OpenMP multi-threading on linear algebra operations involving them. Several sparse matrix data structures are presented. Implementation of the multi- threading primarily occurs in the level one and two BLAS functions used within the four algorithms investigated{the Power Method, Conjugate Gradient, Biconjugate Gradient, and Jacobi's Method. The bene ts of launching threads once per high level algorithm are explored.

  15. Advanced solids NMR studies of coal structure and chemistry. Progress report, September 1, 1995--February 28, 1996

    SciTech Connect

    Zilm, K.W.

    1996-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 129}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  16. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  17. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    SciTech Connect

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-02-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.

  18. Rotationally invariant ensembles of integrable matrices

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.

    2016-05-01

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.

  19. Contemporary phase III clinical trial endpoints in advanced ovarian cancer: assessing the pros and cons of objective response rate, progression-free survival, and overall survival.

    PubMed

    Tate Thigpen, J

    2015-01-01

    Among gynecologic cancers, ovarian cancer provides the greatest challenge because 75% to 80% of patients present with stage III/IV disease. Over the last 40 years, a series of large trials conducted by the Gynecologic Oncology Group and other cooperative groups has produced striking improvements in patient outcome; but the majority still dies of their disease. Further research in both the laboratory and the clinic is essential to continued improvement in patient management. Clinical trials, however, have become a major challenge because of issues with trial endpoints. Historically, overall survival (OS) has been regarded as the "gold standard" of endpoints. Lack of effective treatment for patients who progressed on or recurred after front-line therapy allowed trials to avoid obfuscation of OS by post-progression therapy. More recently, studies have identified over 20 agents active against ovarian cancer. Reasonable evidence shows that effective post-progression therapy with multiple lines of active agents can render the survival endpoint uninterpretable. Two other endpoints avoid this problem. The objective response rate, assessed by the Response Evaluation Criteria in Solid Tumors (RECIST), is an accepted endpoint for accelerated approval in ovarian cancer. More importantly, progression-free survival (PFS), measured from study entry to progression of disease, avoids post-progression therapy completely. Without effective post-progression therapy (prior to 1990), data show that PFS is a surrogate for OS. Recent experience with 4 large trials of bevacizumab shows that PFS can be accurately assessed if progression is clearly defined and if timing of assessments is consistent in all study arms. Acceptance of PFS as the optimal endpoint for ovarian cancer trials by investigators and regulatory agencies is crucial to further advances in management because effective post-progression therapy has rendered differences in OS virtually impossible to assess reliably.

  20. Exposure to ACEI/ARB and β-Blockers Is Associated with Improved Survival and Decreased Tumor Progression and Hospitalizations in Patients with Advanced Colon Cancer1

    PubMed Central

    Engineer, Diana R; Burney, Basil O; Hayes, Teresa G; Garcia, Jose M

    2013-01-01

    BACKGROUND: Advanced colon cancer is associated with weight loss and decreased survival. Studies suggest that angiotensin and β-adrenergic blockade decrease colon cancer progression and ameliorate weight loss. This study aims to determine whether exposure to β-adrenoceptor blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) is associated with decreased mortality, tumor progression, number of hospitalizations, or weight loss in colorectal cancer. METHODS: Retrospective chart review included patients with advanced colorectal cancer. Survival, stage, hospitalization, cancer progression, cancer treatment, and body weight history were collected. RESULTS: Two hundred sixty-two of 425 new stage III to IV colorectal cancer cases reviewed met the study criteria. Those exposed to ACEI/ARB, BB, or both were more likely to have diabetes, hypertension, and stage III colorectal cancer. Adjusting for age, presence of hypertension and diabetes, and stage, ACEI/ARB + BB exposure was associated with decreased mortality compared to unexposed individuals [hazard ratio (HR) = 0.5, confidence interval (CI) = 0.29–0.85; Cox regression, P = .01]. Fewer total and cancer-related hospitalizations and decreased cancer progression in the ACEI/ARB + BB group versus the unexposed group (HR = 0.59, CI = 0.36–0.99, P = .047) were seen. Exposure did not affect weight changes; furthermore, body weight changes from both prediagnosis and at diagnosis to 6, 12, 18, and 24 months postdiagnosis predicted survival. CONCLUSIONS: We have observed an association between exposure to a combination of ACEI/ARB + BB and increased survival, decreased hospitalizations, and decreased tumor progression in advanced colorectal cancer. Future studies will be needed to replicate these results and generalize them to broader populations. Determination of causality will require a randomized controlled trial. PMID:24151534

  1. New Strategies To Promote Stable Employment and Career Progression: An Introduction to the Employment Retention and Advancement Project.

    ERIC Educational Resources Information Center

    Bloom, Dan; Anderson, Jacquelyn; Wavelet, Melissa; Gardiner, Karen N.; Fishman, Michael E.

    The Employment Retention and Advancement (ERA) project was undertaken to identify effective strategies for helping low-income parents work more steadily and advance in the labor market. The 15 ERA demonstration projects that were operating in nine states (California, Florida, Illinois, Minnesota, New York, Oregon, South Carolina; Tennessee, and…

  2. Local Eigenvalue Density for General MANOVA Matrices

    NASA Astrophysics Data System (ADS)

    Erdős, László; Farrell, Brendan

    2013-09-01

    We consider random n× n matrices of the form where X and Y have independent entries with zero mean and variance one. These matrices are the natural generalization of the Gaussian case, which are known as MANOVA matrices and which have joint eigenvalue density given by the third classical ensemble, the Jacobi ensemble. We show that, away from the spectral edge, the eigenvalue density converges to the limiting density of the Jacobi ensemble even on the shortest possible scales of order 1/ n (up to log n factors). This result is the analogue of the local Wigner semicircle law and the local Marchenko-Pastur law for general MANOVA matrices.

  3. Substituted amylose matrices for oral drug delivery

    NASA Astrophysics Data System (ADS)

    Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.

    2007-03-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.

  4. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Rodgers, L.W.

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  5. Advanced Technology Section semiannual progress report, April 1-September 30, 1977. Volume 1. Biotechnology and environmental programs. [Lead Abstract

    SciTech Connect

    Pitt, W.W. Jr.; Mrochek, J.E.

    1980-06-01

    Research efforts in six areas are reported. They include: centrifugal analyzer development; advanced analytical systems; environmental research; bioengineering research;bioprocess development and demonstration; and, environmental control technology. Individual abstracts were prepared for each section for ERA/EDB. (JCB)

  6. Advancing precollege science and mathematics education in San Diego County. Progress report, March 1, 1995--June 30, 1996

    SciTech Connect

    Schissel, D.P.

    1996-08-01

    This report discusses advancing precollege science and mathematics education in San Diego Count. Described in this report are: curriculum and teacher development; pre-tour material; facility tour; student workbook; evaluation and assessment; and internet access.

  7. Biocompatibility of Experimental Polymeric Tracheal Matrices.

    PubMed

    Kiselevskii, M V; Chikileva, I O; Vlasenko, R Ya; Sitdikova, S M; Tenchurin, T Kh; Mamagulashvili, V G; Shepelev, A D; Grigoriev, T A; Chvalun, S N

    2016-08-01

    Biocompatibility of a new tracheal matrix is studied. The new matrix is based on polymeric ultra-fiber material colonized by mesenchymal multipotent stromal cells. The experiments demonstrate cytoconductivity of the synthetic matrices and no signs of their degradation within 2 months after their implantation to recipient mice. These data suggest further studies of the synthetic tracheal matrices on large laboratory animals. PMID:27591876

  8. Proper Values of Matrices and Some Applications.

    ERIC Educational Resources Information Center

    Amir-Moez, Ali R.

    1992-01-01

    Presents a short study of proper values of two-by-two matrices with real entries. Gives examples of symmetric matrices and applications to systems of linear equations of perpendicular lines intersecting at the origin and central conics rotated about the origin to eliminate the xy term from its equation. (MDH)

  9. Identifying patients with advanced chronic conditions for a progressive palliative care approach: a cross-sectional study of prognostic indicators related to end-of-life trajectories

    PubMed Central

    Amblàs-Novellas, J; Murray, S A; Espaulella, J; Martinez-Muñoz, M; Blay, C; Gómez-Batiste, X

    2016-01-01

    Objectives 2 innovative concepts have lately been developed to radically improve the care of patients with advanced chronic conditions (PACC): early identification of palliative care (PC) needs and the 3 end-of-life trajectories in chronic illnesses (acute, intermittent and gradual dwindling). It is not clear (1) what indicators work best for this early identification and (2) if specific clinical indicators exist for each of these trajectories. The objectives of this study are to explore these 2 issues. Setting 3 primary care services, an acute care hospital, an intermediate care centre and 4 nursing homes in a mixed urban–rural district in Barcelona, Spain. Participants 782 patients (61.5% women) with a positive NECPAL CCOMS-ICO test, indicating they might benefit from a PC approach. Outcome measures The characteristics and distribution of the indicators of the NECPAL CCOMS-ICO tool are analysed with respect to the 3 trajectories and have been arranged by domain (functional, nutritional and cognitive status, emotional problems, geriatric syndromes, social vulnerability and others) and according to their static (severity) and dynamic (progression) properties. Results The common indicators associated with early end-of-life identification are functional (44.3%) and nutritional (30.7%) progression, emotional distress (21.9%) and geriatric syndromes (15.7% delirium, 11.2% falls). The rest of the indicators showed differences in the associations per illness trajectories (p<0.05). 48.2% of the total cohort was identified as advanced frailty patients with no advanced disease criteria. Conclusions Dynamic indicators are present in the 3 trajectories and are especially useful to identify PACC for a progressive PC approach purpose. Most of the other indicators are typically associated with a specific trajectory. These findings can help clinicians improve the identification of patients for a palliative approach. PMID:27645556

  10. Volumetric tumor growth in advanced NSCLC patients with EGFR mutations during EGFR-TKI therapy: Developing criteria to continue therapy beyond RECIST progression

    PubMed Central

    Nishino, Mizuki; Dahlberg, Suzanne E.; Cardarella, Stephanie; Jackman, David M.; Rabin, Michael S.; Ramaiya, Nikhil H.; Hatabu, Hiroto; Jänne, Pasi A.; Johnson, Bruce E.

    2013-01-01

    Purpose Define volumetric tumor growth rate in advanced NSCLC patients with sensitizing EGFR mutations initially treated with EGFR-TKI therapy beyond progression. Methods The study included 58 advanced NSCLC patients with sensitizing EGFR mutations treated with first-line gefitinib or erlotinib, who had baseline CT showing measurable lung lesion and at least two follow-up CTs while on TKI and experienced volumetric tumor growth. Tumor volume (mm3) of the dominant lung lesion was measured on baseline and follow-up CT scans during therapy. A total of 405 volume measurements were analyzed in a linear mixed effects model, fitting time as a random effect, to define the growth rate of the logarithm of tumor volume (logeV). Results A linear mixed effects model was fitted to predict growth of logeV, adjusting for time in months from baseline. LogeV was estimated as a function of time in months, in patients whose tumors have started growing after nadir: logeV=0.12*time+7.68 In this formula, the regression coefficient for time, 0.12/month, represents the growth rate of logeV (SE: 0.015; p<0.001). When adjusted for baseline volume, logeV0, the growth rate was also 0.12/month (SE: 0.015; p<0.001; logeV =0.12*months+0.72 logeV0+0.61). Conclusion Tumor volume models defined volumetric tumor growth after the nadir in EGFR-mutant advanced NSCLC patients receiving TKI, providing a reference value for the tumor growth rate in patients progressing after the nadir on TKI. The results can be further studied in additional cohorts to develop practical criteria which help to identify patients who are slowly progressing and can safely remain on EGFR-TKIs. PMID:23922022

  11. Treatment and prognosis after progression in long-term responders to EGFR-tyrosine kinase inhibitor in advanced non-small cell lung cancer

    PubMed Central

    Song, Zhengbo

    2016-01-01

    Introduction The aim of this study was to investigate the treatment and prognosis of advanced non-small cell lung cancer (NSCLC) patients after failure of long-term treatment with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). Material and methods We retrospectively analyzed all NSCLC patients with EGFR-TKI (gefitinib or erlotinib) treatment at our institution between 2011 and 2013 who progressed after at least stable disease on erlotinib or gefitinib for more than 6 months. Survival curves were plotted using the Kaplan-Meier method. The Cox proportional hazard model was used for multivariate analysis. Results In total, 521 patients were administered EGFR-TKI. Of these, 298 patients received EGFR-TKI with progression-free survival less than 6 months (group A), and the other 223 patients more than 6 months (group B). There was a significant difference in overall survival (OS) between group A and group B (7.2 months vs. 5.0 months, p < 0.0001). The median OS for group B patients was 5.0 months. Among the 223 patients in group B, 38 patients received chemotherapy with continued EGFR-TKI after failure of prior gefitinib or erlotinib treatment, 92 with chemotherapy alone and 93 with best supportive care. Patients who continued gefitinib or erlotinib had a significantly longer OS (median: 7.5 months), followed by chemotherapy (5.5 months) and best supportive care (4.0 months) (p < 0.001). Conclusions The prognosis of advanced NSCLC patients after failure of long-term treatment with EGFR-TKI was poor. Chemotherapy with continued EGFR-TKI beyond progression of long-term responders was feasible and led to prolonged OS in advanced NSCLC patients. PMID:26925125

  12. Current concepts on burn wound conversion-A review of recent advances in understanding the secondary progressions of burns.

    PubMed

    Salibian, Ara A; Rosario, Angelica Tan Del; Severo, Lucio De Almeida Moura; Nguyen, Long; Banyard, Derek A; Toranto, Jason D; Evans, Gregory R D; Widgerow, Alan D

    2016-08-01

    Burn wound conversion describes the process by which superficial partial thickness burns convert into deeper burns necessitating surgical intervention. Fully understanding and thus controlling this phenomenon continues to defy burn surgeons. However, potentially guiding burn wound progression so as to obviate the need for surgery while still bringing about healing with limited scarring is the major unmet challenge. Comprehending the pathophysiologic background contributing to deeper progression of these burns is an essential prerequisite to planning any intervention. In this study, a review of articles examining burn wound progression over the last five years was conducted to analyze trends in recent burn progression research, determine changes in understanding of the pathogenesis of burn conversion, and subsequently examine the direction for future research in developing therapies. The majority of recent research focuses on applying therapies from other disease processes to common underlying pathogenic mechanisms in burn conversion. While ischemia, inflammation, and free oxygen radicals continue to demonstrate a critical role in secondary necrosis, novel mechanisms such as autophagy have also been shown to contribute affect significantly burn progression significantly. Further research will have to determine whether multiple mechanisms should be targeted when developing clinical therapies.

  13. Efficacy and safety of trastuzumab combined with chemotherapy for first-line treatment and beyond progression of HER2-overexpressing advanced breast cancer

    PubMed Central

    Shao, Bin; Yan,, Yin; Song, Guohong; Liu, Xiaoran; Wang, Jing; Liang, Xu

    2016-01-01

    Objective To observe the efficacy and safety of trastuzumab combined with chemotherapy in patients with human epidermal growth factor receptor 2 (HER2)-overexpressing advanced breast cancer. Methods A total of 90 patients with HER2-overexpressing advanced breast cancer were enrolled in this study. All patients were diagnosed with ductal invasive breast cancer by pathological analysis, and were aged between 31–73 years with a median of 51 years. HER2-positivity was defined as 3(+) staining in immunochemistry or amplification of fluorescence in situ hybridization (FISH, ratio ≥2.0). Trastuzumab was administered in combination with chemotherapy as first-line treatment and beyond progression as a secondline, third-line, and above treatment in 90, 34, 14, and 6 patients, respectively. The chemotherapy regimen was given according to normal clinical practice. The response rate was evaluated every two cycles, and the primary endpoints were progression-free survival (PFS) and overall survival (OS). Survival curves were estimated by using Kaplan-Meier graphs and were compared by using log-rank test statistics. Multivariate analysis was done using Cox’s proportional hazards regression model, and the level of significance was P<0.05. Results All 90 patients received at least one dose of trastuzumab, and efficacy could be evaluated in 85 patients. The median follow-up was 50 months. In total, 72 (80.00%) patients had visceral metastasis, and 43 (47.78%) patients had progressed after one or more extensive chemotherapy regimens for metastatic diseases. The median PFS for first-line trastuzumab was 10 months (range, 2–59 months), and the median OS after metastasis or initially local advanced disease was 22 months (range, 2–116 months). Conclusions Trastuzumab combined with chemotherapy was active and well-tolerated as a first-line treatment and even beyond progression in HER2-overexpressing advanced breast cancer as a second-line or third-line treatment. However, its

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  15. Products of Independent Elliptic Random Matrices

    NASA Astrophysics Data System (ADS)

    O'Rourke, Sean; Renfrew, David; Soshnikov, Alexander; Vu, Van

    2015-07-01

    For fixed , we study the product of independent elliptic random matrices as tends to infinity. Our main result shows that the empirical spectral distribution of the product converges, with probability , to the -th power of the circular law, regardless of the joint distribution of the mirror entries in each matrix. This leads to a new kind of universality phenomenon: the limit law for the product of independent random matrices is independent of the limit laws for the individual matrices themselves. Our result also generalizes earlier results of Götze-Tikhomirov (On the asymptotic spectrum of products of independent random matrices, available at http://arxiv.org/abs/1012.2710) and O'Rourke-Soshnikov (J Probab 16(81):2219-2245, 2011) concerning the product of independent iid random matrices.

  16. Planned FDG PET-CT Scan in Follow-Up Detects Disease Progression in Patients With Locally Advanced NSCLC Receiving Curative Chemoradiotherapy Earlier Than Standard CT

    PubMed Central

    Pan, Yi; Brink, Carsten; Schytte, Tine; Petersen, Henrik; Wu, Yi-long; Hansen, Olfred

    2015-01-01

    Abstract The role of positron emission tomography-computed tomography (PET-CT) in surveillance of patients with nonsmall cell lung cancer (NSCLC) treated with curatively intended chemoradiotherapy remains controversial. However, conventional chest X-ray and computed tomography (CT) are of limited value in discriminating postradiotherapy changes from tumor relapse. The aim of this study was to evaluate the clinical value of PET-CT scan in the follow-up for patients with locally advanced (LA) NSCLC receiving concomitant chemoradiotherapy (CCRT). Between 2009 and 2013, eligible patients with stages IIB–IIIB NSCLC were enrolled in the clinical trial NARLAL and treated in Odense University Hospital (OUH). All patients had a PET-CT scan scheduled 9 months (PET-CT9) after the start of the radiation treatment in addition to standard follow-up (group A). Patients who presented with same clinical stage of NSCLC and received similar treatment, but outside protocol in OUH during this period were selected as control group (group B). Patients in group B were followed in a conventional way without PET-CT9. All patients were treated with induction chemotherapy followed by CCRT. Group A included 37 and group B 55 patients. The median follow-up was 16 months. Sixty-six (72%) patients were diagnosed with progression after treatment. At the time of tumor progression, patients in group A had better performance status (PS) than those in group B (P = 0.02). Because of death (2 patients), poor PS (3) or retreatment of relapse (9), only 23 patients had PET-CT9 in group A. Eleven (48%) patients were firstly diagnosed with progression by PET-CT9 without any clinical symptoms of progression. The median progression-free survival (PFS) was 8.8 months in group A and 12.5 months in group B (P = 0.04). Hazard function PFS showed that patients in group A had higher risk of relapse than in group B. Additional FDG PET-CT scan at 9 months in surveillance increases probability of early

  17. Reproducible quantitative proteotype data matrices for systems biology

    PubMed Central

    Röst, Hannes L.; Malmström, Lars; Aebersold, Ruedi

    2015-01-01

    Historically, many mass spectrometry–based proteomic studies have aimed at compiling an inventory of protein compounds present in a biological sample, with the long-term objective of creating a proteome map of a species. However, to answer fundamental questions about the behavior of biological systems at the protein level, accurate and unbiased quantitative data are required in addition to a list of all protein components. Fueled by advances in mass spectrometry, the proteomics field has thus recently shifted focus toward the reproducible quantification of proteins across a large number of biological samples. This provides the foundation to move away from pure enumeration of identified proteins toward quantitative matrices of many proteins measured across multiple samples. It is argued here that data matrices consisting of highly reproducible, quantitative, and unbiased proteomic measurements across a high number of conditions, referred to here as quantitative proteotype maps, will become the fundamental currency in the field and provide the starting point for downstream biological analysis. Such proteotype data matrices, for example, are generated by the measurement of large patient cohorts, time series, or multiple experimental perturbations. They are expected to have a large effect on systems biology and personalized medicine approaches that investigate the dynamic behavior of biological systems across multiple perturbations, time points, and individuals. PMID:26543201

  18. Reproducible quantitative proteotype data matrices for systems biology.

    PubMed

    Röst, Hannes L; Malmström, Lars; Aebersold, Ruedi

    2015-11-01

    Historically, many mass spectrometry-based proteomic studies have aimed at compiling an inventory of protein compounds present in a biological sample, with the long-term objective of creating a proteome map of a species. However, to answer fundamental questions about the behavior of biological systems at the protein level, accurate and unbiased quantitative data are required in addition to a list of all protein components. Fueled by advances in mass spectrometry, the proteomics field has thus recently shifted focus toward the reproducible quantification of proteins across a large number of biological samples. This provides the foundation to move away from pure enumeration of identified proteins toward quantitative matrices of many proteins measured across multiple samples. It is argued here that data matrices consisting of highly reproducible, quantitative, and unbiased proteomic measurements across a high number of conditions, referred to here as quantitative proteotype maps, will become the fundamental currency in the field and provide the starting point for downstream biological analysis. Such proteotype data matrices, for example, are generated by the measurement of large patient cohorts, time series, or multiple experimental perturbations. They are expected to have a large effect on systems biology and personalized medicine approaches that investigate the dynamic behavior of biological systems across multiple perturbations, time points, and individuals.

  19. JTEC panel report on advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.; Grisaffe, S. J.; Hillig, W. B.; Perepezko, J. H.; Pipes, R. B.; Sheehan, J. E.

    1991-01-01

    The JTEC Panel on Advanced Composites visited Japan and surveyed the status and future directions of Japanese high performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic and carbon matrices. The panel's interests included not only what composite systems were chosen, but also how these systems were developed. A strong carbon and fiber industry makes Japan the leader in carbon fiber technology. Japan has initiated an oxidation resistant carbon/carbon composite program. The goals for this program are ambitious, and it is just starting, but its progress should be closely monitored in the United States.

  20. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report: April--June 1993

    SciTech Connect

    Not Available

    1993-12-31

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. There has been considerable research on the characteristics and laboratory leaching behavior of coal wastes -- a lesser amount on wastes from advanced coal processes. However, very little information exists on the field disposal behavior of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.

  1. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  2. Dissolution of phosphate matrices based on the thorium phosphate diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    2000-07-01

    Several authors have reported the use of phosphate matrices like apatites, monazites or NZP for the immobilization of actinides coming from an advanced reprocessing or for the final disposal of the excess plutonium from dismantled nuclear weapons. The thorium phosphate diphosphate Th4(PO4)4P2O7 (namely TPD) was also proposed for this purpose. Indeed, its structure allows the replacement of large amounts of tetravalent actinides like uranium, neptunium or plutonium leading to the obtention of solid solutions. The maximum weight loading was estimated to be equal to about 48% for uranium, 33% for neptunium and 26% for plutonium.

  3. Community Detection for Correlation Matrices

    NASA Astrophysics Data System (ADS)

    MacMahon, Mel; Garlaschelli, Diego

    2015-04-01

    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.

  4. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994

    SciTech Connect

    Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

    1994-05-06

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  5. Advanced alternate planar geometry solid oxide fuel cells. Interim quarterly technical progress report, November 1, 1988--January 31, 1989

    SciTech Connect

    Prouse, D.; Elangovan, S.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1989-12-31

    During this quarter, progress was made at Ceramatec in seal development and conductivity measurements of YIG compositions. A creep test was completed on the porous/dense/porous triilayer. IGT provided a discussion on possible interconnect materials. The following tasks are reported on: cell design analysis, program liaison and test facility preparation, cell component fabrication/development, out-of-cell tests. 9 figs, 2 tabs.

  6. Kerov's interlacing sequences and random matrices

    SciTech Connect

    Bufetov, Alexey

    2013-11-15

    To a N × N real symmetric matrix Kerov assigns a piecewise linear function whose local minima are the eigenvalues of this matrix and whose local maxima are the eigenvalues of its (N − 1) × (N − 1) submatrix. We study the scaling limit of Kerov's piecewise linear functions for Wigner and Wishart matrices. For Wigner matrices the scaling limit is given by the Verhik-Kerov-Logan-Shepp curve which is known from asymptotic representation theory. For Wishart matrices the scaling limit is also explicitly found, and we explain its relation to the Marchenko-Pastur limit spectral law.

  7. Coaching and Teaching in Retardates: The Raven Matrices as a Learning Situation. Final Report.

    ERIC Educational Resources Information Center

    Wortman, Richard A.

    In order to determine the differential ability of mildly retarded school children to profit from coaching on non-verbal, non-academic reasoning problems and to study their problem solving and conceptual behavior, the Raven Coloured Progressive Matrices Test was given to 72 educable students (IQ 55 to 80) in socioeconomically homogeneous suburban…

  8. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  9. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, January to April 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal solid processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.This study is organized into four major Tasks. Task 1 and 2 were devoted to planning the Task 3 field study. Task 4 uses the results of the field testing to produce an Engineering Design Manual for the utilities and industrial users who manage wastes from advanced coal combustion technologies.

  10. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, May--July 1989

    SciTech Connect

    1989-12-31

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Mineral Research Center (EMRC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. The specific objectives for the reporting period were as follows: review fourth site candidates; obtain site access for the Freeman United site; select an ash supplier for the Illinois site and initiate subcontracts for on-site work; commence construction of the Freeman United test cell; and obtain waste for the Colorado Ute test site. Accomplishments under each task are discussed.

  11. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  12. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  13. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  14. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  15. Synchronous correlation matrices and Connes' embedding conjecture

    NASA Astrophysics Data System (ADS)

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-01

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes' embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes' embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  16. A Computer Program for Clustering Large Matrices

    ERIC Educational Resources Information Center

    Koch, Valerie L.

    1976-01-01

    A Fortran V program is described derived for the Univac 1100 Series Computer for clustering into hierarchical structures large matrices, up to 1000 x 1000 and larger, of interassociations between objects. (RC)

  17. Time-to-Progression of NSCLC from Early to Advanced Stages: An Analysis of data from SEER Registry and a Single Institute

    PubMed Central

    Yuan, Ping; Cao, Jin Lin; Rustam, Azmat; Zhang, Chong; Yuan, Xiao Shuai; Bao, Fei Chao; Lv, Wang; Hu, Jian

    2016-01-01

    The average time required for cancers to progress through stages can be reflected in the average age of the patients diagnosed at each stage of disease. To estimate the time it takes for non-small-cell lung cancer (NSCLC) to progress through different tumor, node and metastasis (TNM) stages and sizes, we compared the mean adjusted age of 45904 NSCLC patients with different stages and tumor sizes from Surveillance, Epidemiology and End Results (SEER) cancer registry database and our institute. Multiple-linear-regression models for age were generated adjusting for various factors. Caucasian, African-American and Asian patients with stage IA cancers were on average 0.8, 1.0 and 1.38 adjusted years younger, respectively, than those with stage IIIB cancers (p < 0.001). And these with T1a cancers were on average 0.84, 0.92 and 1.21 adjusted years younger, respectively, than patients with T3 cancers (p < 0.001). Patients with tumors measuring larger than 8 cm in diameter were on average 0.85 adjusted years older than these with tumors smaller than 1 cm (p < 0.001), with Caucasian demonstrating the shortest age span (0.79 years, P < 0.001). In conclusion, the time-to-progression of NSCLC from early to advanced stages varied among ethnicities, Caucasian patients demonstrating a more rapid progression nature of tumor than their African-American and Asian counterparts. PMID:27346236

  18. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, October 1, 1979-December 31, 1979

    SciTech Connect

    Not Available

    1980-04-18

    This report presents the results of work performed from October 1, 1979 through December 31, 1979. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described. This includes: screening creep results, weight gain and post-exposure mechanical properties for materials thermally exposed at 750/sup 0/ and 850/sup 0/C (1382/sup 0/ and 1562/sup 0/F). In addition, the status of the data management system is described.

  19. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    SciTech Connect

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 3, April--June 1993

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-07-28

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the quarter from April 1 to June 30, 1993. The project has three major objectives: (1) the primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) a secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics; and (3) a third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  1. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997

    SciTech Connect

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

  2. Development of advanced in situ techniques for chemistry monitoring and corrosion mitigation in SCWO environments. 1997 annual progress report

    SciTech Connect

    Meng, Z.; Zhou, X.Y.; Lvov, S.N.; Macdonald, D.D.

    1997-10-01

    'This report evaluates the first year''s results of the research on the development of advanced electrochemical sensors for use in high subcritical and supercritical aqueous environments. The work has emphasized the designing of an advanced reference electrode, and the development of high-temperature pH and redox sensors for characterizing the fundamental properties of supercritical aqueous solutions. Also, electrochemical noise sensors have been designed for characterizing metal/water interactions, including corrosion processes. A test loop has been designed and constructed to meet the expected operation conditions. The authors have also developed an approach to define a practical pH scale for use with supercritical aqueous systems and an operational electrochemical thermocell was tested for pH measurements in HCl + NaCl aqueous solutions. The potentials of the thermocell for several HCl(aq) solutions of different concentrations have been measured over wide ranges of temperature from 25 to 400 C and for flow rates from 0.1 to 1.5 cm min{sup -1} . The corresponding pH differences ({Delta}pH) for two HCl(aq) concentrations in 0.1 NaCl(aq) solution have been experimentally derived and thermodynamically analyzed. Their first experimental measurements, and subsequent theoretical analysis, clearly demonstrate the viability of pH measurements in high subcritical and supercritical aqueous solutions with a high accuracy of \\2610.02 to 0.05 units.'

  3. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, November 1991--January 1992

    SciTech Connect

    Not Available

    1992-08-01

    The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Accomplishments for this past quarter are as follows: The 9th quarterly measurements at the Colorado site took place in December, 1991. Permeability and neutron absorption moisture content measurements were made and on site data was collected from the data logger; The 9th quarterly sampling at the Ohio site took place in November 1991. Permeability and moisture content measurements were made, and water samples were collected from the wells and lysimeters; The second quarterly core and water samples from the first Illinois test case were collected in mid November, and field data were collected from the data logger; Chemical analysis of all core and water samples continued; all chemical analyses except for some tests on Illinois second quarter cores are now complete.

  4. Development of an advanced finite-difference atmospheric general circulation model. Progress report, September 1, 1991--August 31, 1992

    SciTech Connect

    Randall, D.A.

    1992-03-01

    We have proposed to provide and further develop an advanced finite-difference climate model for use in CHAMMP. The model includes advanced parameterizations of cumulus convection, boundary-layer processes, cloud formation, and land-surface vegetation, as well as parameterizations of radiative transfer and gravity wave drag. Postprocessing codes and a user`s guide will also be provided. This research is being conducted in collaboration with Professors C.R. Mechoso and A. Arakawa at the University of California at Los Angeles (UCLA). The following research tasks are being carried out in support of CHAMMP: (1) Provide to CHAMMP a base-line finite-difference model and postprocessing codes for further development by the CHAMMP Science Team; (2) Provide to CHAMMP improved model physics to be developed in the course of our research project; (3) Provide to CHAMMP improved computational methods for use in the model; and, (4) Investigate the performance of current and to-be-developed physical parameterizations and computational methods at very high resolution.

  5. Evaluation, engineering and development of advanced cyclone processes. Quarterly progress report, July 30, 1995--September 30, 1995

    SciTech Connect

    1995-12-31

    The project goal is to develop an advanced coal beneficiation technology that can achieve high recovery of the parent coal`s calorific value, while maximizing pyritic sulfur removal. Coal cleaning is to be accomplished by physical means incorporating an advanced gravimetric process. Evaluation of different media types and their attendant systems for recovery, concentration and regeneration is to be completed. Phase I, media evaluation, now completed, involved a paper study and a number of laboratory tests to eliminate all but the best media options. Phase II, media testing, involved detailed testing of the more promising media and separators in a closed-loop pilot facility. In the final phase, phase III, the optimum medium, separator, and medium recovery system(s) will be tested with commercial-size equipment. The ceramic capillary action filter was plumed and connected to power. Process chutes, sumps, piping and motors were installed and connected. Plain water was circulated through the system. Sumps were sandblasted, primed and painted with urethane paint.

  6. Predicting performance on the Raven’s Matrices: The roles of associative learning and retrieval efficiency

    PubMed Central

    Lilienthal, Lindsey; Tamez, Elaine; Myerson, Joel; Hale, Sandra

    2013-01-01

    Previous studies have shown that performance on Williams and Pearlberg’s (2006) complex associative learning task is a good predictor of fluid intelligence. This task is similar in structure to that used in studying the fan effect (Anderson, 1974), as both tasks involve forming multiple associations and require retrieval in the face of interference. The purpose of the present study was to investigate the relations among complex associative learning, working memory, and fluid intelligence. Specifically, we asked whether retrieval efficiency, as measured by the fan effect, could account for the relation between complex associative learning and performance on Raven’s Advanced Progressive Matrices. Consistent with previous findings, complex associative learning predicted Raven’s performance, but the fan effect did not account for this relation. Notably, the learning phase of the fan effect task was significantly correlated with both complex associative learning and Raven’s performance, providing further support for the importance of learning as a predictor of fluid intelligence. PMID:24187609

  7. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    SciTech Connect

    Not Available

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  8. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-11-04

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

  9. Progressive Wallerian Degeneration of the Corpus Callosal Splenium in a Patient with Alexia Without Agraphia: Advanced MR Findings.

    PubMed

    Gandhi, Kriti; Gillihan, Laura; Wozniak, Marcella A; Zhuo, Jiachen; Raghavan, Prashant

    2014-12-01

    The corpus callosal splenium is an uncommon location for Wallerian degeneration (WD), which may be mistaken for new pathology on magnetic resonance imaging (MRI). We describe the case of a 69-year-old woman with a left posterior cerebral artery infarct in whom progressive WD of the splenium of the corpus callosum seen on MRI was misinterpreted as new infarction or neoplasm. We address how magnetic resonance spectroscopy, perfusion MRI, diffusion tensor MRI, and serial imaging were utilized in establishing the correct diagnosis. Interestingly, the patient also presented with alexia without agraphia, which has never been reported in association with splenial WD. It is conceivable that WD affected critical splenial association fibers resulting in this uncommon dissociation syndrome. PMID:25489886

  10. Summary of progress in laser fusion; advanced technology developments: National Laser Users Facility news; and a laser system report

    NASA Astrophysics Data System (ADS)

    1993-01-01

    This is an annual report covering research progress on laser fusion and the OMEGA Upgrade design and development. In laser fusion, line-spectroscopy methods were demonstrated to be useful in diagnosing the core temperature and densities of polymer-shell targets; a theoretical analysis of nonlocal heat transport effects on filamentation of light in plasmas confirms that the principle mechanism driving filamentation is kinetic thermal rather than ponderomotive; a new method (spatial beam deflection) to produce laser pulses of arbitrary shape was developed; laser-plasma x-ray emission was measured using photodiode arrays; experiments on long-scale-length plasmas have shown that smoothing by spectral dispersion has proven effective in reducing Raman scattering; a method for increasing the gas-retention time of polymer shell targets was developed by overcoating them with aluminum. Experiments relating to the OMEGA Upgrade are described.

  11. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  12. Time-variant structured matrices: an application to instrumental variable methods

    NASA Astrophysics Data System (ADS)

    Sayed, Ali H.

    1994-10-01

    We derive a recursive algorithm for the time-update of the triangular factors of non-Hermitian time-variant matrices with structure. These are matrices that undergo low-rank modifications as time progresses. special cases of which often arise in adaptive filtering and instrumental variable (IV) methods. A natural implementation of the algorithm is via two coupled triangular arrays of processing elements. We consider, in particular, an IV parameter estimation problem and show how the arrays collapse to a coupled parallelizable solution of the identification problem.

  13. Modelling and assessment of advanced processes for integrated environmental control of coal-fired power plants. Technical progress report

    SciTech Connect

    Barrett, J.G.; Bloyd, C.N.; McMichael, F.C.; Rubin, E.S.

    1984-07-01

    The key objective of this research is the development of a computer based model for the assessment of integrated environmental control (IEC) systems for conventional and advanced coal fired power plant designs. Efforts during the period April 1-June 30, 1984 focused on, (1) testing of a preliminary integrated model linking pre-combustion and post-combustion control options for conventional plants; (2) documentation of the analytical models of existing control technology options; (3) development and preliminary testing of a second model design for the propagation and analysis of uncertainty; and (4) development of new analytical models needed for IEC assessments. Activities and accomplishments in each of these areas are described. 4 references, 13 figures, 4 tables.

  14. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  15. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    SciTech Connect

    Wesnor, J.D.; Bakke, E.; Bender, D.J.; Kaminski, R.S.

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  16. The Real-World Problem of Care Coordination: A Longitudinal Qualitative Study with Patients Living with Advanced Progressive Illness and Their Unpaid Caregivers

    PubMed Central

    Daveson, Barbara A.; Harding, Richard; Shipman, Cathy; Mason, Bruce L.; Epiphaniou, Eleni; Higginson, Irene J.; Ellis-Smith, Clare; Henson, Lesley; Munday, Dan; Nanton, Veronica; Dale, Jeremy R.; Boyd, Kirsty; Worth, Allison; Barclay, Stephen; Donaldson, Anne; Murray, Scott

    2014-01-01

    Objectives To develop a model of care coordination for patients living with advanced progressive illness and their unpaid caregivers, and to understand their perspective regarding care coordination. Design A prospective longitudinal, multi-perspective qualitative study involving a case-study approach. Methods Serial in-depth interviews were conducted, transcribed verbatim and then analyzed through open and axial coding in order to construct categories for three cases (sites). This was followed by continued thematic analysis to identify underlying conceptual coherence across all cases in order to produce one coherent care coordination model. Participants Fifty-six purposively sampled patients and 27 case-linked unpaid caregivers. Settings Three cases from contrasting primary, secondary and tertiary settings within Britain. Results Coordination is a deliberate cross-cutting action that involves high-quality, caring and well-informed staff, patients and unpaid caregivers who must work in partnership together across health and social care settings. For coordination to occur, it must be adequately resourced with efficient systems and services that communicate. Patients and unpaid caregivers contribute substantially to the coordination of their care, which is sometimes volunteered at a personal cost to them. Coordination is facilitated through flexible and patient-centered care, characterized by accurate and timely information communicated in a way that considers patients’ and caregivers’ needs, preferences, circumstances and abilities. Conclusions Within the midst of advanced progressive illness, coordination is a shared and complex intervention involving relational, structural and information components. Our study is one of the first to extensively examine patients’ and caregivers’ views about coordination, thus aiding conceptual fidelity. These findings can be used to help avoid oversimplifying a real-world problem, such as care coordination. Avoiding

  17. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  18. A phase 2 trial of lenvatinib (E7080) in advanced progressive radioiodine-refractory differentiated thyroid cancer: a clinical outcomes and biomarker assessment

    PubMed Central

    Cabanillas, Maria E.; Schlumberger, Martin; Jarzab, Barbara; Martins, Renato G.; Pacini, Furio; Robinson, Bruce; McCaffrey, Judith C.; Shah, Manisha H.; Bodenner, Donald L.; Topliss, Duncan; Andresen, Corina; O'Brien, James P.; Ren, Min; Funahashi, Yasuhiro; Allison, Roger; Elisei, Rossella; Newbold, Kate; Licitra, Lisa F.; Sherman, Steven I.; Ball, Douglas W.

    2016-01-01

    Background Lenvatinib is an oral, multitargeted tyrosine kinase inhibitor of VEGFR1–3, FGFR1–4, PDGFRα, RET, and KIT signaling networks implicated in tumor angiogenesis. Positive phase 1 results in solid tumors prompted a phase 2 trial in advanced radioiodine-refractory differentiated thyroid cancer (RR-DTC). Methods Fifty-eight patients with RR-DTC and disease progression during the prior 12 months were administered lenvatinib 24-mg once daily in 28-day cycles until disease progression, unmanageable toxicity, withdrawal, or death. Prior VEGFR-targeted therapy was permitted. The primary endpoint was objective response rate (ORR) based upon independent imaging review (IIR). Secondary endpoints included progression-free survival (PFS) and safety. Serum levels of 51 circulating cytokines and angiogenic factors were also assessed. Results After ≥14 months of follow-up, patients had ORR of 50% (95% confidence interval [CI] 37–63) with only partial responses reported. Median time to response was 3.6 months; median duration of response was 12.7 months; median PFS was 12.6 months (95% CI 9.9–16.1). ORR for patients with prior VEGF therapy (n=17) was 59% (95% CI 33–82). Lower baseline levels of angiopoietin-2 were suggestive of tumor response and longer PFS. Grade 3/4 treatment-emergent adverse events regardless of relation to treatment occurred in 72% of patients, most frequently weight loss (12%), hypertension (10%), proteinuria (10%), and diarrhea (10%). Conclusion In patients with and without prior exposure to VEGF therapy, the encouraging response rates, median time to response, and PFS for lenvatinib have prompted further investigation in a phase 3 trial. PMID:25913680

  19. Investigation of heat transfer and combustion in the advanced Fluidized Bed Combustor (FBC). Technical progress report No. 9 [October 1, 1995--December 31, 1995

    SciTech Connect

    Lee, Seong W.

    1996-01-01

    This technical report summarizes the research performed and progress achieved during the period of October 1, 1995 to December 31, 1995. The measurements of gas flow in the advanced FBC test chamber (10 in. I.D.) was continued to better understand and utilize the fluid dynamics of gas and particle flows in the advanced FBC. Measurements showed that the gas flow field in the test chamber is characterized by strongly swirling flow in tangential direction and developing flow in axial and radial directions. In addition, multiple secondary air injection caused significant effects on gas flow in the freeboard of the test chamber. Numerical simulation of typical gas flow patterns in the freeboard was conducted using a computational fluid dynamics (CFD) code, FLUENT. The axial velocities resulting from theoretical prediction were smaller than the tested results. However, the predicted radial velocities at the exit zone of the test chamber were greater than that of the tested results. The calculated results showed the non-isotropic structure with vigorous fluctuating in axial and radial directions. Generally speaking, the predictions of the theoretical calculation agreed with the experimental results. The measurements of gas and particle flows will be continued under different test conditions. In addition, the numerical simulation on gas and particle flows will be continued, which will be compared with the experimental results.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 25, October 1, 1994--December 31, 1994

    SciTech Connect

    1994-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  1. Xanthohumol Impairs Human Prostate Cancer Cell Growth and Invasion and Diminishes the Incidence and Progression of Advanced Tumors in TRAMP Mice

    PubMed Central

    Venè, Roberta; Benelli, Roberto; Minghelli, Simona; Astigiano, Simonetta; Tosetti, Francesca; Ferrari, Nicoletta

    2012-01-01

    Despite recent advances in understanding the biological basis of prostate cancer, management of the disease, especially in the phase resistant to androgen ablation, remains a significant challenge. The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention to prevent or eradicate prostate malignancies. In this study, we have used human hormone-resistant prostate cancer cells, DU145 and PC3, as an in vitro model to assess the efficacy of xanthohumol (XN) against cell growth, motility and invasion. We observed that treatment of prostate cancer cells with low micromolar doses of XN inhibits proliferation and modulates focal adhesion kinase (FAK) and AKT phosphorylation leading to reduced cell migration and invasion. Oxidative stress by increased production of reactive oxygen species (ROS) was associated with these effects. Transgenic adenocarcinoma of the mouse prostate (TRAMP) transgenic mice were used as an in vivo model of prostate adenocarcinoma. Oral gavage of XN, three times per week, beginning at 4 wks of age, induced a decrease in the average weight of the urogenital (UG) tract, delayed advanced tumor progression and inhibited the growth of poorly differentiated prostate carcinoma. The ability of XN to inhibit prostate cancer in vitro and in vivo suggests that XN may be a novel agent for the management of prostate cancer. PMID:22952060

  2. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report for period October--December 1995

    SciTech Connect

    1996-02-01

    Progress reports are presented for: Task 1 management plan; Task 2.1 laboratory support (University of Kentucky/Center for Applied Energy Research); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.); Task 4.1 process modeling; and Task 4.4 preliminary technical assessment (LDP Associates). Some of the high points for this period are: the activity of the base catalyst prepared by pressure filtration of the Wilsonville Run 262E V-1082 ashy resid was determined and compared with the conversion of coal in the absence of any added catalyst; this material was found to contain 740 mg Mo/kg; in the catalyst screening test, the pressure filtered solids that had been added to the reaction mixture to a level equivalent to the solids contained in Wilsonville Run 263J gave coal conversion of 98.2% with a resid conversion of 24%; and the effect of presulfiding conditions on activating a Mo-impregnated coal with different H{sub 2}S/H{sub 2} mixtures at different temperatures and reaction times was investigated.

  3. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1980-September 30, 1980

    SciTech Connect

    Not Available

    1980-12-12

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, 950 and 1050/sup 0/C. Initiation of controlled purity helium creep-rupture testing in the intensive screening test program is discussed. In addition, the results of 1000-hour exposures at 750 and 850/sup 0/C on several experimental alloys are discussed.

  4. Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Wade, M. R.; Luce, T. C.; Politzer, P. A.; Ferron, J. R.; Allen, S. L.; Austin, M. E.; Baker, D. R.; Bray, B.; Brennen, D. P.; Burrell, K. H.; Casper, T. A.; Chu, M. S.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gohil, P.; Gorelov, I. A.; Greenfield, C. M.; Groebner, R. J.; Heidbrink, W. W.; Hsieh, C.-L.; Hyatt, A. W.; Jayakumar, R.; Kinsey, J. E.; La Haye, R. J.; Lao, L. L.; Lasnier, C. J.; Lazarus, E. A.; Leonard, A. W.; Lin-Liu, Y. R.; Lohr, J.; Mahdavi, M. A.; Makowski, M. A.; Murakami, M.; Petty, C. C.; Pinsker, R. I.; Prater, R.; Rettig, C. L.; Rhodes, T. L.; Rice, B. W.; Strait, E. J.; Taylor, T. S.; Thomas, D. M.; Turnbull, A. D.; Watkins, J. G.; West, W. P.; Wong, K.-L.

    2001-05-01

    Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ˜10 has been sustained for >5 τE with qmin>1.5. These edge localized modes (ELMing) H-mode discharges have β˜5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89˜7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges.

  5. The APOE locus advances disease progression in late onset familial Alzheimer`s disease but is not causative

    SciTech Connect

    Crawford, F.; Bennett, C.; Osborne, A.

    1994-09-01

    An association has been observed in several independent data sets between late onset Alzheimer`s disease (AD) and the APOE locus on chromosomes 19. We have examined the genotype in family history positive (FHP) and family history negative (FHN) cases and find a distortion of the APOE allele frequencies in accord with previous studies. However, when we examined the allele distribution of the at-risk siblings of the FHP group we found an excess of the {epsilon}4 allele which also differs significantly from historic controls but not from the affected siblings. The age distribution of the affected and unaffected siblings was similar, suggesting that the allelic frequency distortion in the unaffected siblings was not due to their being below the mean age of onset. Lod score linkage analysis, with age dependent onset and nonstringent specification of the genetic parameters, did not suggest linkage to the APOE locus. Furthermore, an analysis of variance of the age of disease-free survival suggested that APOE genotype contributes a small fraction of the total variance, indicating that the APOE locus is a poor predictor of disease-free survival time within late onset families. We suggest that the APOE locus enhances the rate of progression of the disease in otherwise predisposed individuals and that variation at this locus is not able in and of itself to cause this disease.

  6. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980

    SciTech Connect

    Not Available

    1980-11-14

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

  7. Basic Fibroblast Growth Factor-2/beta3 Integrin Expression Profile: Signature of Local Progression After Chemoradiotherapy for Patients With Locally Advanced Non-Small-Cell Lung Cancer

    SciTech Connect

    Massabeau, Carole; Rouquette, Isabelle; Lauwers-Cances, Valerie; Mazieres, Julien; Bachaud, Jean-Marc; Armand, Jean-Pierre; Delisle, Marie-Bernadette; Favre, Gilles; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2009-11-01

    Purpose: No biologic signature of chemoradiotherapy sensitivity has been reported for patients with locally advanced non-small-cell lung cancer (NSCLC). We have previously demonstrated that basic fibroblast growth factor (FGF-2) and alphavbeta3 integrin pathways control tumor radioresistance. We investigated whether the expression of the proteins involved in these pathways might be associated with the response to treatment and, therefore, the clinical outcome. Methods and Materials: FGF-2, beta3 integrin, angiopoietin-2, and syndecan-1 expression was studied using immunohistochemistry performed on biopsies obtained, before any treatment, from 65 patients exclusively treated with chemoradiotherapy for locally advanced NSCLC. The response to treatment was evaluated according to the Response Evaluation Criteria in Solid Tumors criteria using computed tomography at least 6 weeks after the end of the chemoradiotherapy. Local progression-free survival, metastasis-free survival, and disease-free survival were studied using the log-rank test and Cox proportional hazard analysis. Results: Among this NSCLC biopsy population, 43.7% overexpressed beta3 integrin (beta3{sup +}), 43% FGF-2 (FGF-2{sup +}), 41.5% syndecan-1, and 59.4% angiopoietin-2. Our results showed a strong association between FGF-2 and beta3 integrin expression (p = .001). The adjusted hazard ratio of local recurrence for FGF-2{sup +}/beta3{sup +} tumors compared with FGF-2{sup -}/beta3{sup -} tumors was 6.1 (95% confidence interval, 2.6-14.6, p = .005). However, the risk of local recurrence was not increased when tumors overexpressed beta3 integrin or FGF-2 alone. Moreover, the co-expression of these two proteins was marginally associated with the response to chemoradiotherapy and metastasis-free survival. Conclusion: The results of this study have identified the combined profile FGF-2/beta3 integrin expression as a signature of local control in patients treated with chemoradiotherapy for locally advanced

  8. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    PubMed

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms. PMID:27046838

  9. Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management. Progress report

    SciTech Connect

    Jones, B.; Shaheen, S.; Moray, N.; Sanderson, P.; Reising, D.V.

    1993-05-21

    With recent theoretical and empirical research in basic and applied psychology, human factors, and engineering, it is now sufficient to define an integrated approach to the deign of advanced displays for present and future nuclear power plants. Traditionally, the conventional displays have shown operators the individual variables on gauges, meters, strip charts, etc. This design approach requires the operators to mentally integrate the separately displayed variables and determine the implications for the plant state. This traditional approach has been known as the single-sensor-single-indicator display design and it places an intolerable amount of mental workload on operators during transients and abnormal conditions. This report discusses a new alternative approach which is the use of direct perception interfaces. Direct perception a interfaces display the underlying physical and system constraints of the situation in a directly perceptual way, such that the viewer need not reason about what is seen to identify system states, but can identify the state of the system perceptually. It is expected that displays which show the dynamics of fundamental physical laws should better support operator decisions and diagnoses of plant states. The purpose of this research project is to develop a suite of direct perception displays for PWR nuclear power plant operations.

  10. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MF coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.

  11. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 260 with Black Thunder Mine subbituminous coal: Technical progress report

    SciTech Connect

    Not Available

    1992-01-01

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In order to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)

  12. Advanced photovoltaic concentrator cells. Quarterly technical progress report No. 2, 1 December 1979-29 February 1980

    SciTech Connect

    Zehr, S.W.; Yang, H.T.; Yang, J.J.; Harris, J.S. Jr.

    1980-01-01

    This report describes second quarter activities for a project aimed at demonstrating the technical feasibility of advanced high efficiency concentrator solar converters. The goal of the program is to achieve 30% conversion efficiency with a converter operating at 30/sup 0/C under 500 to 1000 SUN AM2 illumination and 25% conversion efficiency with a converter operating at 150/sup 0/C under 500 to 1000 SUN AM2 illumination. The approach is to fabricate two cell, non-lattice matched, monolithic stacked converters using optimum pairs of cells having bandgaps in the range of 1.6 to 1.7 eV and 0.95 to 1.1 eV. The high bandgap cells are to be fabricated using MOCVD or LPE to produce the needed AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap cells are to be similarly fabricated from AlGaSb(As) compositions by LPE. These subcells are then to be joined into a monolithic structure by an appropriate thermal bonding technique which will also form the needed transparent intercell ohmic contact (IOC) between the two subcells. The activities this quarter have been largely focused on the development and study of low bandgap cell structures and attempts to develop suitable techniques for the thermal bonding operation.

  13. [ADVANCE: America`s economic Development Venture for Area Neighborhoods, Communities, and Enterprises]. Quarterly progress report -- Year two

    SciTech Connect

    McDavid, R.A.

    1998-12-01

    The US Department of Energy (DOE) has a mission to foster a secure and reliable energy system that is environmentally and economically sustainable, to be a responsible steward of the Nation`s nuclear weapons, to clean up decommissioned facilities, and to support continued US leadership in science and technology. To effectively utilize and integrate its mission, DOE has created the Regional Environmental Technology and Business Development Office (RETBDO) serving as a Community Reuse Organization, a stakeholder organization, which represents interests and economic concerns of communities surrounding DOE sites that are being closed or reconfigured. RETBDO is a branch office of ADVANCE, a 501(c) (3) non-profit organization established in 1994. The mission of RETBDO is to diversify the economy by creating an environment conductive to improve the representation of minorities and small businesses in the region and to assure fair business participation in major environmental decision-making, technology based start-ups, expansion management, and the attractive of new ventures to the Southwest region, including, bu not limited to, California, Nevada, Utah, Colorado, Arizona, New Mexico, and Texas. This report describes the RETBDO program and its implementation.

  14. Advanced direct liquefaction concepts for PETC generic units: Phase 2. Quarterly technical progress report, July--September, 1996

    SciTech Connect

    1996-11-01

    The Advanced Direct Liquefaction Concepts Program sponsored by the DOE Pittsburgh Energy Technology Center was initiated in 1991 with the objective of promoting the development of new and emerging technology that has the potential for reducing the cost of producing liquid fuels by direct coal liquefaction. The laboratory research program (Phase I) was completed in 1995 by UK/CAER, CONSOL, Sandia National Laboratories and LDP Associates. A three year extension was subsequently awarded in October 1995 to further develop several promising concepts derived from the laboratory program. During Phase II, four continuous bench scale runs will be conducted at Hydrocarbon Technologies, Inc. using a 2 kg/hr continuous bench scale unit located at their facility in Lawrenceville, NJ. The first run in this program (ALC-1), conducted between April 19 and May 14, 1996, consisted of five test conditions to evaluate the affect of coal cleaning and recycle solvent modification. A detailed discussion of this run is included in Section Two of this report. Results obtained during this reporting period for all participants in this program are summarized.

  15. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  16. Advanced emissions control development program. Quarterly technical progress report {number_sign}8, July 1--September 30, 1996

    SciTech Connect

    Evans, A.P.

    1996-12-31

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in Babcock and Wilcox`s state-of-the-art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. The specific objectives of the project are to: measure and understand production and partitioning of air toxics species in coal-fired power plant systems; optimize the air toxics removal performance of conventional flue gas cleanup systems; quantify the impacts of coal cleaning on air toxics emissions; identify and/or develop advanced air toxics emissions control concepts; develop and validate air toxics emissions measurement and monitoring techniques; and establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  17. An Advanced Control System for Fine Coal Flotation. Sixth quarter, technical progress report, July 1-September 30, 1997

    SciTech Connect

    Adel, G.T.; Luttrell, G.H.

    1997-10-27

    Over the past thirty years, process control has spread from the chemical industry into the fields of mineral and coal processing. Today, process control computers, combined with improved instrumentation, are capable of effective control in many modem flotation circuits. Unfortunately, the classical methods used in most control strategies have severe limitations when used in froth flotation. For example, the nonlinear nature of the flotation process can cause single-input, single-output lines to battle each other in attempts to achieve a given objective. Other problems experienced in classical control schemes include noisy signals from sensors and the inability to measure certain process variables. For example, factors related to ore type or water chemistry, such as liberation, froth stability, and floatability, cannot be measured by conventional means. The purpose of this project is to demonstrate an advanced control system for fine coal flotation. The demonstration is being carried out at an existing coal preparation plant by a team consisting of Virginia Polytechnic Institute and State University (VPI&SU) as the prime contractor and J.A. Herbst and Associates as a subcontractor. The objectives of this work are: (1) to identify through sampling, analysis, and simulation those variables which can be manipulated to maintain grades, recoveries, and throughput rates at levels set by management; (2) to develop and implement a model-based computer control strategy that continuously adjusts those variables to maximize revenue subject to various metallurgical, economic, and environmental constraints; and (3) to employ a video-based optical analyzer for on-line analysis of ash content in fine coal slurries.

  18. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  19. Advanced emissions control development program. Quarterly technical progress report {number_sign}4, July 1--September 30, 1995

    SciTech Connect

    Farthing, G.A.

    1995-12-31

    Babcock and Wilcox (B and W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the US Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B and W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  20. Bioresponsive matrices in drug delivery

    PubMed Central

    2010-01-01

    For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli. PMID:21114841

  1. Origin of symmetric PMNS and CKM matrices

    NASA Astrophysics Data System (ADS)

    Rodejohann, Werner; Xu, Xun-Jie

    2015-03-01

    The Pontecorvo-Maki-Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa matrices are phenomenologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric mixing matrices. Those properties are actually very common in discrete groups such as A4 , S4 , or Δ (96 ) . As an application of our theorem, we generate a symmetric lepton mixing scheme with θ12=θ23=36.21 ° ; θ13=12.20 ° , and δ =0 , realized with the group Δ (96 ) .

  2. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer

  3. Trends in drug testing in oral fluid and hair as alternative matrices.

    PubMed

    Wille, Sarah M R; Baumgartner, Markus R; Fazio, Vincent Di; Samyn, Nele; Kraemer, Thomas

    2014-08-01

    The use of alternative matrices such as oral fluid and hair has increased in the past decades because of advances in analytical technology. However, there are still many issues that need to be resolved. Standardized protocols of sample pretreatment are needed to link the detected concentrations to final conclusions. The development of suitable proficiency testing schemes is required. Finally, interpretation issues such as link to effect, adulteration, detection markers and thresholds will hamper the vast use of these matrices. Today, several niche areas apply these matrices with success, such as drugs and driving for oral fluid and drug-facilitated crimes for hair. Once those issues are resolved, the number of applications will markedly grow in the future. PMID:25383732

  4. Transplantation of rat hepatic stem-like (HSL) cells with collagen matrices.

    PubMed

    Ueno, Yasuharu; Nagai, Hirokazu; Watanabe, Go; Ishikawa, Kiyoshi; Yoshikawa, Kiwamu; Koizumi, Yukio; Kameda, Takashi; Sugiyama, Toshihiro

    2005-12-01

    Organ restitution using somatic stem cells is of great clinical interest. Recent advances in the field of tissue engineering have demonstrated that the use of collagen matrices as scaffolds facilitates tissue reconstruction. Here, we examine the efficacy of transplantation of HSL cells, a previously established liver epithelial cell line with a potential for differentiation, using collagen scaffolds. To this end, HSL cells were transplanted into Nagase's analbuminemic rat with spongy or gelatinous type I collagen matrices. Consequently, immunohistochemical analyses and genomic PCR experiments revealed engraftment of the transplanted cells. Furthermore, the levels of serum albumin in recipient rats were found to increase up to 2.5-fold relative to controls after transplantation. These findings suggest that HSL cells are able to differentiate into functional hepatocytes in vivo, and that biodegradable collagen matrices enhance this phenomenon by providing an appropriate microenvironment for hepatocytic repopulation.

  5. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  6. Spectral properties of ghost Neumann matrices

    SciTech Connect

    Bonora, L.; Santos, R. J. Scherer; Tolla, D. D.

    2008-05-15

    We continue the analysis of the ghost wedge states in the oscillator formalism by studying the spectral properties of the ghost matrices of Neumann coefficients. We show that the traditional spectral representation is not valid for these matrices and propose a new heuristic formula that allows one to reconstruct them from the knowledge of their eigenvalues and eigenvectors. It turns out that additional data, which we call boundary data, are needed in order to actually implement the reconstruction. In particular our result lends support to the conjecture that there exists a ghost three strings vertex with properties parallel to those of the matter three strings vertex.

  7. Factorization Of Positive Definite, Banded Hermitian Matrices

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Utku, Senol; Melosh, Robert

    1989-01-01

    Report discusses application of Cholesky factorization algorithm to positive definite, banded Hermitian matrices. Begins by extending Cholesky factorization algorithm to cover uniformly-partitioned, banded, positive definite matrices of rank n that is real symmetric or Hermitian. Then two stratagems given for use of algorithm in concurrent-processing system in which N less than it has to be to enable factorization of matrix in as few serial steps as possible and where uniformly high efficiency expected from all processing elements. One of major purposes of this and related studies to maximize speedup and efficiency in system of concurrent-data-processing elements.

  8. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    PubMed

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.

  9. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    PubMed

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions. PMID:26439175

  10. Oligomers Modulate Interfibril Branching and Mass Transport Properties of Collagen Matrices

    PubMed Central

    Whittington, Catherine F.; Brandner, Eric; Teo, Ka Yaw; Han, Bumsoo; Nauman, Eric; Voytik-Harbin, Sherry L.

    2013-01-01

    Mass transport within collagen-based matrices is critical to tissue development, repair, and pathogenesis as well as the design of next generation tissue engineering strategies. This work shows how collagen precursors, specified by intermolecular cross-link composition, provide independent control of collagen matrix mechanical and transport properties. Collagen matrices were prepared from tissue-extracted monomers or oligomers. Viscoelastic behavior was measured in oscillatory shear and unconfined compression. Matrix permeability and diffusivity were measured using gravity-driven permeametry and integrated optical imaging, respectively. Both collagen types showed an increase in stiffness and permeability hindrance with increasing collagen concentration (fibril density); however, different physical property-concentration relationships were noted. Diffusivity wasn’t affected by concentration for either collagen type over the range tested. In general, oligomer matrices exhibited a substantial increase in stiffness and only a modest decrease in transport properties when compared to monomer matrices prepared at the same concentration. The observed differences in viscoelastic and transport properties were largely attributed to increased levels of interfibril branching within oligomer matrices. The ability to relate physical properties to relevant microstructure parameters, including fibril density and interfibril branching, is expected to advance the understanding of cell-matrix signaling as well as facilitate model-based prediction and design of matrix-based therapeutic strategies. PMID:23842082

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  12. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer.

    PubMed

    Schmalfeldt, B; Prechtel, D; Härting, K; Späthe, K; Rutke, S; Konik, E; Fridman, R; Berger, U; Schmitt, M; Kuhn, W; Lengyel, E

    2001-08-01

    Proteases are linked to the malignant phenotype of different solid tumors. Therefore, the expression of the matrix metalloproteinase (MMP)-2 and MMP-9 and of the serine protease urokinase-type plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor type 1 (PAI-1) in the progression of ovarian cancer was investigated. Gelatinolytic activity and protein expression of MMP-2 and MMP-9 were analyzed in tissue extracts of 19 cystadenomas and 18 low malignant potential (LMP) tumors, as well as 41 primary tumors of advanced ovarian cancer stage International Federation of Gynecology and Obstetrics IIIc/IV and their corresponding omentum metastases by quantitative gelatin zymography and Western blot. In the same tissue extracts, antigen levels of uPA and its inhibitor PAI-1 were determined by ELISA. Protein expression of pro-MMP-2 (72 kDa) and pro-MMP-9 (92 kDa as well as antigen levels of uPA and PAI-1 were low in benign ovarian tumors but increased significantly from LMP tumors to advanced ovarian cancers. The highest values of all of the proteolytic factors were detected in omentum metastases. Active MMP-2 enzyme (62 kDa) was detected only in ovarian cancer (66%) and corresponding metastases (93%) but never in benign or LMP tumors. The activation rate of MMP-2 to its active isoform was higher in the metastases. Comparing both proteolytic systems, higher PAI-1 concentrations were consistently found in cancers with high pro-MMP-9 expression. These data indicate that members of the plasminogen activator system, as well as the metalloproteinases MMP-2/9, increase with growing malignant potential of ovarian tumors. These findings are of particular relevance to the development of protease inhibitors as new therapeutic approaches in ovarian cancer.

  13. {sup 18}Fluorodeoxyglucose PET Is Prognostic of Progression-Free and Overall Survival in Locally Advanced Pancreas Cancer Treated With Stereotactic Radiotherapy

    SciTech Connect

    Schellenberg, Devin; Quon, Andy; Minn, A. Yuriko; Graves, Edward E.; Kunz, Pamela; Ford, James M.; Fisher, George A.; Goodman, Karyn A.; Koong, Albert C.; Chang, Daniel T.

    2010-08-01

    Purpose: This study analyzed the prognostic value of positron emission tomography (PET) for locally advanced pancreas cancer patients undergoing stereotactic body radiotherapy (SBRT). Patients and Methods: Fifty-five previously untreated, unresectable pancreas cancer patients received a single fraction of 25-Gy SBRT sequentially with gemcitabine-based chemotherapy. On the preradiation PET-CT, the tumor was contoured and the maximum standardized uptake value (SUVmax) and metabolic tumor burden (MTB) were calculated using an in-house software application. High-SUVmax and low-SUVmax subgroups were created by categorizing patients above or below the median SUVmax. The analysis was repeated to form high-MTB and low-MTB subgroups as well as clinically relevant subgroups with SUVmax values of <5, 5-10, or >10. Multivariate analysis analyzing SUVmax, MTB, age, chemotherapy cycles, and pretreatment carbohydrate antigen (CA)19-9 was performed. Results: For the entire population, median survival was 12.7 months. Median survival was 9.8 vs.15.3 months for the high- and low- SUVmax subgroups (p <0.01). Similarly, median survival was 10.1 vs. 18.0 months for the high MTB and low MTB subgroups (p <0.01). When clinical SUVmax cutoffs were used, median survival was 6.4 months in those with SUVmax >10, 9.5 months with SUVmax 5.0-10.0, and 17.7 months in those with SUVmax <5 (p <0.01). On multivariate analysis, clinical SUVmax was an independent predictor for overall survival (p = 0.03) and progression-free survival (p = 0.03). Conclusion: PET scan parameters can predict for length of survival in locally advanced pancreas cancer patients.

  14. Malware analysis using visualized image matrices.

    PubMed

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202

  15. Tsirelson's problem and asymptotically commuting unitary matrices

    SciTech Connect

    Ozawa, Narutaka

    2013-03-15

    In this paper, we consider quantum correlations of bipartite systems having a slight interaction, and reinterpret Tsirelson's problem (and hence Kirchberg's and Connes's conjectures) in terms of finite-dimensional asymptotically commuting positive operator valued measures. We also consider the systems of asymptotically commuting unitary matrices and formulate the Stronger Kirchberg Conjecture.

  16. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  17. Noisy covariance matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, S.; Kondor, I.

    2002-05-01

    According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.

  18. Spectral averaging techniques for Jacobi matrices

    SciTech Connect

    Rio, Rafael del; Martinez, Carmen; Schulz-Baldes, Hermann

    2008-02-15

    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner-type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.

  19. Malware Analysis Using Visualized Image Matrices

    PubMed Central

    Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202

  20. Malware analysis using visualized image matrices.

    PubMed

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  1. The Rank of Reduced Dispersion Matrices.

    ERIC Educational Resources Information Center

    Bekker, Paul A.; de Leeuw, Jan

    1987-01-01

    Psychometricians working in factor analysis and econometricians working in regression with measurement error in all variables are both interested in the rank of dispersion matrices under variation of diagonal elements. This paper reviews both fields; points out various small errors; and presents a methodological comparision of factor analysis and…

  2. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    SciTech Connect

    Hoshiba, Takashi; Tanaka, Masaru

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  3. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 2, January--March 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-04-26

    The main purpose of this project is engineering development of advanced column flotation and selective agglomeration technologies for cleaning coal. Development of these technologies is an important step in the Department of Energy program to show that ultra-clean fuel can be produced from selected United States coals and that this fuel will be a cost-effective replacement for a portion of the premium fuels (oil and natural gas) burned by electric utility and industrial boilers in this country. Capturing a relatively small fraction of the total utility and industrial oil-fired boiler fuel market would have a significant impact on domestic coal production and reduce national dependence on petroleum fuels. Significant potential export markets also exist in Europe and the Pacific Rim for cost-effective premium fuels prepared from ultra-clean coal. The replacement of premium fossil fuels with coal can only be realized if retrofit costs, and boiler derating are kept to a minimum. Also, retrofit boiler emissions must be compatible with national goals for clean air. These concerns establish the specifications for the ash and sulfur levels and combustion properties of ultra-clean coal discussed below. The cost-shared contract effort is for 48 months beginning September 30, 1992, and ending September 30, 1996. This report discusses the technical progress made during the second 3 months of the project, January 1 to March 31, 1993.

  4. A brief historical introduction to matrices and their applications

    NASA Astrophysics Data System (ADS)

    Debnath, L.

    2014-04-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical networks. It contains a wide variety of important materials accessible to college and even high school students and teachers at all levels.

  5. Stiffness and mass matrices for shells of revolution (SAMMSOR II)

    NASA Technical Reports Server (NTRS)

    Tillerson, J. R.; Haisler, W. E.

    1974-01-01

    Utilizing element properties, structural stiffness and mass matrices are generated for as many as twenty harmonics and stored on magnetic tape. Matrices generated constitute input data to be used by other stiffness of revolution programs. Variety of boundary and loading conditions can be employed without having to create new mass and stiffness matrices for each case.

  6. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  7. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  8. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  9. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  10. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  11. Improved Separability Criteria Based on Bloch Representation of Density Matrices

    PubMed Central

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  12. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  13. Characteristic Matrices for Spherical Shell Photonic Systems

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.

    2004-01-01

    We establish a parallel between the transfer matrix used in the study of plane-parallel photonic structures and the matrix characterizing transfer of partial waves in concentric spheres. We derive explicit expressions for the elements of the transfer matrix for concentric spherical layers, and from those expressions derive the scattering coefficients of a multilayered sphere. The transfer matrices are 4x4 block diagonal with only four independent elements. Matrix elements for the case of TM waves are related to those for the case of TE waves through simple interchange and multiplicative constants. In analogy with plane parallel layers, the transfer matrix for concentric multilayers is simply the product of the transfer matrices of the individual layers.

  14. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  15. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    1996-01-22

    Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

  16. Toll-like Receptor 4 Variant D299G Induces Features of Neoplastic Progression in Caco-2 Intestinal Cells and Is Associated With Advanced Human Colon Cancer

    PubMed Central

    Eyking, Annette; Ey, Birgit; Rünzi, Michael; Roig, Andres I.; Reis, Henning; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke

    2012-01-01

    Background & Aims The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. Methods We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. Results Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. Conclusions TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a

  17. Some physical applications of random hierarchical matrices

    SciTech Connect

    Avetisov, V. A.; Bikulov, A. Kh.; Vasilyev, O. A.; Nechaev, S. K.; Chertovich, A. V.

    2009-09-15

    The investigation of spectral properties of random block-hierarchical matrices as applied to dynamic and structural characteristics of complex hierarchical systems with disorder is proposed for the first time. Peculiarities of dynamics on random ultrametric energy landscapes are discussed and the statistical properties of scale-free and polyscale (depending on the topological characteristics under investigation) random hierarchical networks (graphs) obtained by multiple mapping are considered.

  18. Analysis of thematic map classification error matrices.

    USGS Publications Warehouse

    Rosenfield, G.H.

    1986-01-01

    The classification error matrix expresses the counts of agreement and disagreement between the classified categories and their verification. Thematic mapping experiments compare variables such as multiple photointerpretation or scales of mapping, and produce one or more classification error matrices. This paper presents a tutorial to implement a typical problem of a remotely sensed data experiment for solution by the linear model method.-from Author

  19. The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices

    NASA Astrophysics Data System (ADS)

    Benjumea, J. C.; Núñez, J.; Tenorio, Á. F.

    2007-09-01

    We compute the largest dimension of the Abelian Lie subalgebras contained in the Lie algebra mathfrak{g}_n of n×n strictly upper triangular matrices, where n ∈ ℕ {1}. We do this by proving a conjecture, which we previously advanced, about this dimension. We introduce an algorithm and use it first to study the two simplest particular cases and then to study the general case.

  20. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  1. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Ninth quarterly technical progress report, September 1, 1992-- December 31, 1992

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-12-31

    This is the 9th quarterly technical progress report for the project entitled ``Pyrite surface characterization and control for advanced fine coal desulfurization technologies``, DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS{sub 2} + B(OH){sub 4}{sup =} ------> [S{sub 2}Fe-B(OH){sub 4}]{sub surf} + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results.

  2. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    PubMed Central

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  3. Deterministic sensing matrices in compressive sensing: a survey.

    PubMed

    Nguyen, Thu L N; Shin, Yoan

    2013-01-01

    Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.

  4. Decontamination of matrices containing actinide oxides

    SciTech Connect

    Villarreal, Robert

    1997-12-01

    There is provided a method for removing actinides and actinide oxides, particularly fired actinides, from soil and other contaminated matrices, comprising: (a) contacting a contaminated material with a solution of at least one inhibited fluoride and an acid to form a mixture; (b) heating the mixture of contaminated material and solution to a temperature in the range from about 30 C to about 90 C while stirring; (c) separating the solution from any undissolved matrix material in the mixture; (d) washing the undissolved matrix material to remove any residual materials; and (e) drying and returning the treated matrix material to the environment.

  5. Generalized Jones matrices for anisotropic media.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2013-03-25

    The interaction of arbitrary three-dimensional light beams with optical elements is described by the generalized Jones calculus, which has been formally proposed recently [Azzam, J. Opt. Soc. Am. A 28, 2279 (2011)]. In this work we obtain the parametric expression of the 3×3 differential generalized Jones matrix (dGJM) for arbitrary optical media assuming transverse light waves. The dGJM is intimately connected to the Gell-Mann matrices, and we show that it provides a versatile method for obtaining the macroscopic GJM of media with either sequential or simultaneous anisotropic effects. Explicit parametric expressions of the GJM for some relevant optical elements are provided.

  6. Parallel mergs sort using comparison matrices. I

    SciTech Connect

    Romm, Y.E.

    1995-05-01

    The topics discussed in this paper are connected with internal merge sorting by a key (in short, M-sorting or M-sort). Originally developed by von Neumann, this is one of the first sorting methods. It still remains one of the fastest, involving Nlog{sub 2}N comparisons. The purpose of our article is to demonstrate the use of comparison matrices (CMs) for merging in M-sort. While preserving the known advantages of the sequential implementation of M-sort. CMs ensure more efficient use of main memory (one of the known weaknesses of M-sort is its large memory requirements) and effective parallelizability.

  7. The Approximation of Two-Mode Proximity Matrices by Sums of Order-Constrained Matrices.

    ERIC Educational Resources Information Center

    Hubert, Lawrence; Arabie, Phipps

    1995-01-01

    A least-squares strategy is proposed for representing a two-mode proximity matrix as an approximate sum of a small number of matrices that satisfy certain simple order constraints on their entries. The primary class of constraints considered defines Q-forms for particular conditions in a two-mode matrix. (SLD)

  8. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    SciTech Connect

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  9. Median Approximations for Genomes Modeled as Matrices.

    PubMed

    Zanetti, Joao Paulo Pereira; Biller, Priscila; Meidanis, Joao

    2016-04-01

    The genome median problem is an important problem in phylogenetic reconstruction under rearrangement models. It can be stated as follows: Given three genomes, find a fourth that minimizes the sum of the pairwise rearrangement distances between it and the three input genomes. In this paper, we model genomes as matrices and study the matrix median problem using the rank distance. It is known that, for any metric distance, at least one of the corners is a [Formula: see text]-approximation of the median. Our results allow us to compute up to three additional matrix median candidates, all of them with approximation ratios at least as good as the best corner, when the input matrices come from genomes. We also show a class of instances where our candidates are optimal. From the application point of view, it is usually more interesting to locate medians farther from the corners, and therefore, these new candidates are potentially more useful. In addition to the approximation algorithm, we suggest a heuristic to get a genome from an arbitrary square matrix. This is useful to translate the results of our median approximation algorithm back to genomes, and it has good results in our tests. To assess the relevance of our approach in the biological context, we ran simulated evolution tests and compared our solutions to those of an exact DCJ median solver. The results show that our method is capable of producing very good candidates. PMID:27072561

  10. Hydrodynamical spectral evolution for random matrices

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Grela, Jacek

    2016-02-01

    The eigenvalues of the matrix structure X+{X}(0), where X is a random Gaussian Hermitian matrix and {X}(0) is non-random or random independent of X, are closely related to Dyson Brownian motion. Previous works have shown how an infinite hierarchy of equations satisfied by the dynamical correlations become triangular in the infinite density limit, and give rise to the complex Burgers equation for the Green’s function of the corresponding one-point density function. We show how this and analogous partial differential equations, for chiral, circular and Jacobi versions of Dyson Brownian motion follow from a macroscopic hydrodynamical description involving the current density and continuity equation. The method of characteristics gives a systematic approach to solving the PDEs, and in the chiral case we show how this efficiently reclaims the characterization of the global eigenvalue density for non-central Wishart matrices due to Dozier and Silverstein. Collective variables provide another approach to deriving the complex Burgers equation in the Gaussian case, and we show that this approach applies equally as well to chiral matrices. We relate both the Gaussian and chiral cases to the asymptotics of matrix integrals.

  11. Generalized Eigenvalues for pairs on heritian matrices

    NASA Technical Reports Server (NTRS)

    Rublein, George

    1988-01-01

    A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.

  12. Fabrication of reconfigurable protein matrices by cracking

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyue; Mills, Kristen L.; Peters, Portia R.; Bahng, Joong Hwan; Liu, Elizabeth Ho; Shim, Jeongsup; Naruse, Keiji; Csete, Marie E.; Thouless, M. D.; Takayama, Shuichi

    2005-05-01

    The interface between extracellular matrices and cells is a dynamic environment that is crucial for regulating important cellular processes such as signal transduction, growth, differentiation, motility and apoptosis. In vitro cellular studies and the development of new biomaterials would benefit from matrices that allow reversible modulation of the cell adhesive signals at a scale that is commensurate with individual adhesion complexes. Here, we describe the fabrication of substrates containing arrays of cracks in which cell-adhesive proteins are selectively adsorbed. The widths of the cracks (120-3,200 nm) are similar in size to individual adhesion complexes (typically 500-3,000 nm) and can be modulated by adjusting the mechanical strain applied to the substrate. Morphology of cells can be reversibly manipulated multiple times through in situ adjustment of crack widths and hence the amount of the cell-adhesive proteins accessible to the cell. These substrates provide a new tool for assessing cellular responses associated with exposure to matrix proteins.

  13. Bromination of selected pharmaceuticals in water matrices.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Casas, Francisco

    2011-11-01

    The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, phenacetin, and hydrochlorothiazide) was studied with these compounds individually dissolved in ultra-pure water. The apparent rate constants for the bromination reaction were determined as a function of the pH, obtaining the sequence amoxicillin>naproxen>hydrochlorothiazide≈phenacetin≈metoprolol. A kinetic mechanism specifying the dissociation reactions and the species formed for each compound according to its pK(a) value and the pH allowed the intrinsic rate constants to be determined for each elementary reaction. There was fairly good agreement between the experimental and calculated values of the apparent rate constants, confirming the goodness of the proposed reaction mechanism. In a second stage, the bromination of the selected pharmaceuticals simultaneously dissolved in three water matrices (a groundwater, a surface water from a public reservoir, and a secondary effluent from a WWTP) was investigated. The pharmaceutical elimination trend agreed with the previously determined rate constants. The influence of the main operating conditions (pH, initial bromine dose, and characteristics of the water matrix) on the degradation of the pharmaceuticals was established. An elimination concentration profile for each pharmaceutical in the water matrices was proposed based on the use of the previously evaluated apparent rate constants, and the theoretical results agreed satisfactorily with experiment. Finally, chlorination experiments performed in the presence of bromide showed that low bromide concentrations slightly accelerate the oxidation of the selected pharmaceuticals during chlorine disinfection.

  14. Median Approximations for Genomes Modeled as Matrices.

    PubMed

    Zanetti, Joao Paulo Pereira; Biller, Priscila; Meidanis, Joao

    2016-04-01

    The genome median problem is an important problem in phylogenetic reconstruction under rearrangement models. It can be stated as follows: Given three genomes, find a fourth that minimizes the sum of the pairwise rearrangement distances between it and the three input genomes. In this paper, we model genomes as matrices and study the matrix median problem using the rank distance. It is known that, for any metric distance, at least one of the corners is a [Formula: see text]-approximation of the median. Our results allow us to compute up to three additional matrix median candidates, all of them with approximation ratios at least as good as the best corner, when the input matrices come from genomes. We also show a class of instances where our candidates are optimal. From the application point of view, it is usually more interesting to locate medians farther from the corners, and therefore, these new candidates are potentially more useful. In addition to the approximation algorithm, we suggest a heuristic to get a genome from an arbitrary square matrix. This is useful to translate the results of our median approximation algorithm back to genomes, and it has good results in our tests. To assess the relevance of our approach in the biological context, we ran simulated evolution tests and compared our solutions to those of an exact DCJ median solver. The results show that our method is capable of producing very good candidates.

  15. Tensor Dictionary Learning for Positive Definite Matrices.

    PubMed

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2015-11-01

    Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.

  16. Quantum circuits employing roots of the Pauli matrices

    NASA Astrophysics Data System (ADS)

    Soeken, Mathias; Miller, D. Michael; Drechsler, Rolf

    2013-10-01

    The Pauli matrices are a set of three 2×2 complex Hermitian unitary matrices. In this article, we investigate the relationships between certain roots of the Pauli matrices and how gates implementing those roots are used in quantum circuits. Techniques for simplifying such circuits are given. In particular, we show how those techniques can be used to find a circuit of Clifford+T gates starting from a circuit composed of gates from the well-studied NOT, CNOT, V library.

  17. Racah matrices and hidden integrability in evolution of knots

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.; Morozov, An.; Sleptsov, A.

    2016-09-01

    We construct a general procedure to extract the exclusive Racah matrices S and S bar from the inclusive 3-strand mixing matrices by the evolution method and apply it to the first simple representations R = [ 1 ], [2], [3] and [ 2 , 2 ]. The matrices S and S bar relate respectively the maps (R ⊗ R) ⊗ R bar ⟶ R with R ⊗ (R ⊗ R bar) ⟶ R and (R ⊗ R bar) ⊗ R ⟶ R with R ⊗ (R bar ⊗ R) ⟶ R. They are building blocks for the colored HOMFLY polynomials of arbitrary arborescent (double fat) knots. Remarkably, the calculation realizes an unexpected integrability property underlying the evolution matrices.

  18. Association of scattering matrices in quantum networks

    SciTech Connect

    Almeida, F.A.G.; Macêdo, A.M.S.

    2013-06-15

    Algorithms based on operations that associate scattering matrices in series or in parallel (analogous to impedance association in a classical circuit) are developed here. We exemplify their application by calculating the total scattering matrix of several types of quantum networks, such as star graphs and a chain of chaotic quantum dots, obtaining results with good agreement with the literature. Through a computational-time analysis we compare the efficiency of two algorithms for the simulation of a chain of chaotic quantum dots based on series association operations of (i) two-by-two centers and (ii) three-by-three ones. Empirical results point out that the algorithm (ii) is more efficient than (i) for small number of open scattering channels. A direct counting of floating point operations justifies quantitatively the superiority of the algorithm (i) for large number of open scattering channels.

  19. Carbon nanomaterials in silica aerogel matrices

    SciTech Connect

    Hamilton, Christopher E; Chavez, Manuel E; Duque, Juan G; Gupta, Gautam; Doorn, Stephen K; Dattelbaum, Andrew M; Obrey, Kimberly A D

    2010-01-01

    Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

  20. Investigation of degradation mechanisms in composite matrices

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1982-01-01

    Degradation mechanisms were investigated for graphite/polysulfone and graphite/epoxy laminates exposed to ultraviolet and high-energy electron radiations in vacuum up to 960 equivalent sun hours and 10 to the ninth power rads respectively. Based on GC and combined GC/MS analysis of volatile by-products evolved during irradiation, several free radical mechanisms of composite degradation were identified. The radiation resistance of different matrices was compared in terms of G values and quantum yields for gas formation. All the composite materials evaluated show high electron radiation stability and relatively low ultraviolet stability as indicated by low G values and high quantum for gas formation. Mechanical property measurements of irradiated samples did not reveal significant changes, with the possible exception of UV exposed polysulfone laminates. Hydrogen and methane were identified as the main by-products of irradiation, along with unexpectedly high levels of CO and CO2.

  1. Photoluminescence of silver in glassy matrices

    SciTech Connect

    Garcia, M.A.; Garcia-Heras, M.; Cano, E.; Bastidas, J.M.; Villegas, M.A.; Montero, E.; Llopis, J.; Sada, C.; Marchi, G. de; Battaglin, G.; Mazzoldi, P.

    2004-10-01

    This work studies the behavior of Ag{sup +} ions incorporated in different silica-based glassy matrices. To this end, Ag-doped silica coatings, prepared via sol-gel and deposited on pure silica and soda-lime glasses, are investigated by means of structural and optical spectroscopy techniques. Silver tends to segregate towards the interface during the annealing process, but in the case of soda-lime glassy substrates the exchange process favors its diffusion into the substrate. The environment of Ag{sup +} ions during the annealing process determines their final oxidation state. In the pure silica matrix, Ag{sup +} ions are found to be unstable and tend to reduce to Ag{sup 0}, with the subsequent formation of metallic nanoparticles. However, the presence of network formers and modifiers gives rise to the appearance of nonbridging oxygen, which allows the stabilization of Ag{sup +} ions in the matrix.

  2. Robust Generalized Low Rank Approximations of Matrices.

    PubMed

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116

  3. Dirac matrices for Chern-Simons gravity

    SciTech Connect

    Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo

    2012-10-06

    A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  4. Novel Factor-loaded Polyphosphazene Matrices

    PubMed Central

    Oredein-McCoy, Olugbemisola; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Allcock, Harry R.; Laurencin, Cato T.

    2009-01-01

    Currently employed bone tissue engineered scaffolds often lack the potential for vascularization, which may be enhanced through the incorporation of and regulated release of angiogenic factors. For this reason, our objective was to fabricate and characterize protein-loaded amino acid ester polyphosphazene (Pphos)-based scaffolds and evaluate the novel sintering method used for protein incorporation, a method which will ultimately allow for the incorporation of proangiogenic agents. To test the hypothesis, Pphos and their composite microspheres with nanocrystalline hydroxyapatite (Pphos-HAp) were fabricated via the emulsion solvent evaporation method. Next, bovine serum albumin (BSA)-containing microsphere matrices were created using a novel solvent-non solvent approach for protein loading. The resulting protein (BSA) loaded-circular porous microsphere based scaffolds were characterized for morphology, porosity, protein structure, protein distribution, and subsequent protein release pattern. Scanning electron microscopy revealed porous microsphere scaffolds with a smooth surface and sufficient level of sintering, illustrated by fusion of adjacent microspheres. The porosity measured for the PNPhGly and PNPhGly-HAp scaffolds were 23 +/- 0.11% and 18+/- 4.02%, respectively, and within the range of trabecular bone. Circular dichroism confirmed an intact secondary protein structure for BSA following the solvent sintering method used for loading, and confocal microscopy verified that FITC-BSA was successfully entrapped both between adjacent microspheres and within the surface of the microspheres while sintering. For both Pphos and their composite microsphere scaffolds, BSA was released at a steady rate over a 21day time period, following a zero order release profile. HAp particles in the composite scaffolds served to improve the release profile pattern, underscoring the potential of HAp for growth factor delivery. Moreover, the results of this work suggests that the

  5. Robust Generalized Low Rank Approximations of Matrices

    PubMed Central

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116

  6. Photoisomerization of azobenzenes isolated in cryogenic matrices.

    PubMed

    Duarte, Luís; Khriachtchev, Leonid; Fausto, Rui; Reva, Igor

    2016-06-22

    2,2'-Dihydroxyazobenzene (DAB), 2,2'-azotoluene (AT) and azobenzene (AB) were isolated in argon and xenon matrices and their molecular structures and photochemical transformations were characterized by infrared spectroscopy and theoretical calculations. All these compounds can adopt the E and Z isomeric forms around the central CNNC moiety, which can be enriched by several conformational and tautomeric modifications for DAB and AT. A number of DAB and AT isomeric forms were identified for the first time. For DAB, the E azo-enol isomer with two intramolecular six-membered quasi-rings formed via OHN hydrogen bonds was found after deposition. Irradiation with UV light generated a different E azo-enol form with two intramolecular H-bonded five-membered quasi-rings. Phototransformation was shown to be reversible and the forms could be interconverted by irradiation at different wavelengths. The isomerization between these two forms constitutes a direct experimental observation of an E → E isomerization in azobenzene-type molecules. Further irradiation generated a form(s) bearing both OH and NH groups. For AT, two E isomers with the CH3 groups forming five-membered and five/six-membered quasi-rings with the azo group were observed in the as-deposited matrices. Irradiation of AT with UV light generated a Z form that can be converted back to the E form at different irradiation wavelengths. E-AB was deposited in a xenon matrix and both E → Z and Z → E phototransformations were observed (contrary to what was previously reported in an argon matrix where only the Z → E conversion occurred). AB photoisomerization becomes more pronounced at elevated temperatures, thus indicating that the matrix effects responsible for hindering the AB photoisomerization are essentially due to steric restrictions. The different photoisomerization channels observed for these compounds are discussed in terms of a small-amplitude pedal motion. PMID:27279432

  7. Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices.

    PubMed

    Castaneto, Marisol S; Wohlfarth, Ariane; Desrosiers, Nathalie A; Hartman, Rebecca L; Gorelick, David A; Huestis, Marilyn A

    2015-05-01

    Synthetic cannabinoids (SC), originally developed as research tools, are now highly abused novel psychoactive substances. We present a comprehensive systematic review covering in vivo and in vitro animal and human pharmacokinetics and analytical methods for identifying SC and their metabolites in biological matrices. Of two main phases of SC research, the first investigated therapeutic applications, and the second abuse-related issues. Administration studies showed high lipophilicity and distribution into brain and fat tissue. Metabolite profiling studies, mostly with human liver microsomes and human hepatocytes, structurally elucidated metabolites and identified suitable SC markers. In general, SC underwent hydroxylation at various molecular sites, defluorination of fluorinated analogs and phase II metabolites were almost exclusively glucuronides. Analytical methods are critical for documenting intake, with different strategies applied to adequately address the continuous emergence of new compounds. Immunoassays have different cross-reactivities for different SC classes, but cannot keep pace with changing analyte targets. Gas chromatography and liquid chromatography mass spectrometry assays - first for a few, then numerous analytes - are available but constrained by reference standard availability, and must be continuously updated and revalidated. In blood and oral fluid, parent compounds are frequently present, albeit in low concentrations; for urinary detection, metabolites must be identified and interpretation is complex due to shared metabolic pathways. A new approach is non-targeted HRMS screening that is more flexible and permits retrospective data analysis. We suggest that streamlined assessment of new SC's pharmacokinetics and advanced HRMS screening provide a promising strategy to maintain relevant assays.

  8. Impact of more detailed categorization of shrinkage or progression ratio at initial imaging response after sorafenib treatment in advanced hepatocellular carcinoma patients

    PubMed Central

    Wada, Yoshiyuki; Takami, Yuko; Tateishi, Masaki; Ryu, Tomoki; Mikagi, Kazuhiro; Saitsu, Hideki

    2015-01-01

    Background Sorafenib therapy improves survival in unresectable hepatocellular carcinoma (HCC) patients without an objective response. The present study investigated whether the initial imaging response might be a prognostic indicator after administration of sorafenib therapy in HCC patients. Patients and methods This retrospective study reviewed unresectable HCC patients undergoing sorafenib therapy. Patients evaluated without complete response, partial response (PR), or progressive disease (PD) at the initial imaging response evaluation by modified Response Evaluation Criteria in Solid Tumors were divided into three groups according to more detailed categorization of the shrinkage/progression ratio in initial imaging response. A comparison of progression-free and overall survival among these groups was performed. Results Of the 43 non-PR non-PD patients with target lesions, ten (23.3%) exhibited mild response (MR; −30% to −5%), 14 (32.6%) exhibited no change (NC; −5% to +5%), and 19 (44.2%) exhibited mild-PD (MPD; +5% to +20%). There was no statistical difference in progression-free or overall survival between MR and NC patients. The median progression-free survivals in NC+MR and mild-PD patients were 15.0 and 5.3 months, respectively (P<0.01), and the median survival times were 31.9 and 17.1 months, respectively (P<0.001). In multivariate analysis, etiology (hepatitis C virus) and initial imaging response (MR+NC) was identified as an independently good prognostic factor. Conclusion More detailed categorization of shrinkage or progression at the initial imaging response evaluation may be a useful marker for predicting sorafenib treatment outcomes in HCC patients. If the initial imaging response is not progression but stability, sorafenib may have a survival benefit. PMID:26586953

  9. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  10. Some Interesting Characteristics of Markov Chain Transition Matrices.

    ERIC Educational Resources Information Center

    Egelston, Richard L.

    A Monte Carlo investigation of Markov chain matrices was conducted to create empirical distributions for two statistics created from the transition matrices. Curve fitting techniques developed by Karl Pearson were used to deduce if theoretical equations could be fit to the two sets of distributions. The set of distributions which describe the…

  11. Efficient quantum circuits for Toeplitz and Hankel matrices

    NASA Astrophysics Data System (ADS)

    Mahasinghe, A.; Wang, J. B.

    2016-07-01

    Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.

  12. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  13. Matric Potential of Several Plant Tissues and Biocolloids 1

    PubMed Central

    Wiebe, Herman H.

    1966-01-01

    The pressure membrane apparatus was used to study the matric potential (imbibition pressure or moisture tension) of plant tissues and of several organic colloidal preparations. The moisture release curves of aqueous 2% agar, 12% gelatin, and filter paper were smooth parabolic curves between matric potentials of −0.1 and −15 bars. When logarithms of the matric potentials were plotted against logarithms of the moisture content, the data yielded straight lines for agar and filter paper. Slices of fresh tissue lost little water after 2 days in the apparatus at maximum pressure of 15 bars. Osmotic forces in conjunction with cell membranes are able to retain moisture against pressure of this magnitude. After the cells were disrupted by freezing and thawing, up to 90% of the original moisture was removed by a 15 bar pressure, with lesser amounts removed at lower pressures. The results gave a parabolic relationship, and straight lines could be fitted to log—log plots of data from potato tuber and young asparagus stem slices. Sections from the tips of asparagus stems held less moisture at all matric potentials than more basal sections. The method permits the study of the matric potential of tissues independently of the osmotic potential. As measured, however, the matric potential is a composite of matric potentials of colloidal substances in the protoplasm and cell walls after disruption of cells by freezing and mixing of the contents. The value is therefore only an approximation of the matric potentials occurring in the living tissues. PMID:16656421

  14. Time series, correlation matrices and random matrix models

    SciTech Connect

    Vinayak; Seligman, Thomas H.

    2014-01-08

    In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series. By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.

  15. From innovative polymers to advanced nanomedicine: key challenges, recent progress and future perspectives: the second Symposium on Innovative Polymers for Controlled Delivery Suzhou, China, 11–14 September 2012 .

    PubMed

    Feijen, Jan; Hennink, Wim E; Zhong, Zhiyuan

    2013-02-01

    Recent developments in polymer-based controlled delivery systems have made a significant clinical impact. The second Symposium on Innovative Polymers for Controlled Delivery (SIPCD) was held in Suzhou, China to address the key challenges and provide up-to-date progress and future perspectives in the innovation of polymer-based therapeutics. At SIPCD, a stimulating panel discussion was introduced for the first time on "What is the future of nanomedicine?" This report highlights the most recent research and developments in biomedical polymers and nanomedicine made by 29 invited scientists from around the world, as well as important issues regarding clinical advancements of nanomedicine conferred during the panel discussion.

  16. CEA and CA19.9 as early predictors of progression in advanced/metastatic colorectal cancer patients receiving oxaliplatin-based chemotherapy and bevacizumab.

    PubMed

    Petrioli, Roberto; Licchetta, Antonella; Roviello, Giandomenico; Pascucci, Alessandra; Francini, Edoardo; Bargagli, Gianluca; Conca, Raffaele; Miano, Salvatora Tindara; Marzocca, Giuseppe; Francini, Guido

    2012-01-01

    We evaluated the changes of the tumor markers CEA and CA19.9 as early predictors of progression in metastatic colorectal cancer (mCRC) patients participating in a clinical study and receiving chemotherapy and bevacizumab (Bev). Seventy-two patients had high baseline CEA or CA19.9 serum levels. By ROC analyses, the areas under the curves were 0.83 for variable CEA cutoff values for distinguishing progressive disease (PD) versus stable disease (SD)/partial remission (PR)/complete remission (CR), and 0.80 for variable CA19.9 cutoff values for distinguishing PD versus SD/PR/CR. Rises in CEA and CA19.9 may early signal the occurrence of progression in mCRC patients receiving chemotherapy and Bev. PMID:22236191

  17. Gels from soft hairy nanoparticles in polymeric matrices

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    2013-03-01

    Hairy particles represent a huge class of soft colloids with tunable interactions and properties. Advances in synthetic chemistry have enabled obtaining well-characterized such systems for specific needs. In this talk we present two model hairy soft particles with diameters of the order of tens of nanometers, star polymers and polymerically grafted spherical particles. In particular, we discuss design strategies for dispersing them in polymeric matrices and eventually creating and breaking gels. Control parameters are the matrix molar mass, the grafting density (or functionality) and the size of the grafts (or arms). The linear viscoelastic properties and slow time evolution of the gels are examined in view of the existing knowledge from colloidal gels consisting of micron-sized particles, and compared. In the case of stars we start from a concentrated glassy suspension in molecular solvent and add homopolymer at increasing concentration, and as a result of the induced osmotic pressure the stars shrink and a depletion gel is formed. For the grafted colloidal particles, they are added at low concentration to a polymer matrix, and it has been shown that under certain conditions the anisotropy of interactions gives rise to network formation. We then focus on the nonlinear rheological response and in particular the effect of shear flow in inducing a solid to liquid transition. Our studies show that the yielding process is gradual and shares many common features with that of flocculated colloidal suspensions, irrespectively of the shape of the building block of the gel. Whereas shear can melt such a gel, it cannot break it into its constituent blocks and hence fully disperse the hairy nanoparticles. On the other hand, the hairy particles are intrinsically hybrid. We show how this important feature is reflected on the heating of the gels. In that case, the mismatch of thermal expansion coefficients of core and shell appears to play a role on the particle response as it

  18. [Synthesis and application of the polyacrylamide beads acting as LDL adsorbent's matrices].

    PubMed

    Yu, Xixun; Li, Li; Yue, Yilun; Chen, Huaiqing

    2004-08-01

    This study in pursuit of the synthetic technologies and structure characterization of polyacrylamide-based matrices (PAM beads) for low density lipoprotein (LDL) adsorbent and their adsorbability for LDL was intended for an experimental evidence of developing advanced matrices for LDL adsorbent. PAM beads were synthesized by inverse suspension polymerization, and their structure characterization was characterized by SEM, image analyzer and small angle X-ray scattering. The tripeptide serine-aspartic-glutamic acid (SDE) was coupled on the PAM beads to prepare the LDL adsorbents whose adsorbability for LDL was determined in vitro. The results showed that the PAM beads with the average size diameter 142.1 microm and the average pore diameter 119.8 nm could act as the matrices in accordance with the requirement of adsorbent for LDL. When the amount of acrylamide and the crosslinking agent N,N'-methylene-bis(acrylamide) was fixed, the average pore diameter decreased with the increase of the crosslinking agent content. Although the nonspecific binding of PAM beads for LDL was low, they could selectively adsorb LDL after coupling the SDE on the PAM beads.

  19. TDOA Matrices: Algebraic Properties and Their Application to Robust Denoising With Missing Data

    NASA Astrophysics Data System (ADS)

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier; Asaei, Afsaneh

    2016-10-01

    Measuring the Time delay of Arrival (TDOA) between a set of sensors is the basic setup for many applications, such as localization or signal beamforming. This paper presents the set of TDOA matrices, which are built from noise-free TDOA measurements, not requiring knowledge of the sensor array geometry. We prove that TDOA matrices are rank-two and have a special SVD decomposition that leads to a compact linear parametric representation. Properties of TDOA matrices are applied in this paper to perform denoising, by finding the TDOA matrix closest to the matrix composed with noisy measurements. The paper shows that this problem admits a closed-form solution for TDOA measurements contaminated with Gaussian noise which extends to the case of having missing data. The paper also proposes a novel robust denoising method resistant to outliers, missing data and inspired in recent advances in robust low-rank estimation. Experiments in synthetic and real datasets show TDOA-based localization, both in terms of TDOA accuracy estimation and localization error.

  20. [Synthesis and application of the polyacrylamide beads acting as LDL adsorbent's matrices].

    PubMed

    Yu, Xixun; Li, Li; Yue, Yilun; Chen, Huaiqing

    2004-08-01

    This study in pursuit of the synthetic technologies and structure characterization of polyacrylamide-based matrices (PAM beads) for low density lipoprotein (LDL) adsorbent and their adsorbability for LDL was intended for an experimental evidence of developing advanced matrices for LDL adsorbent. PAM beads were synthesized by inverse suspension polymerization, and their structure characterization was characterized by SEM, image analyzer and small angle X-ray scattering. The tripeptide serine-aspartic-glutamic acid (SDE) was coupled on the PAM beads to prepare the LDL adsorbents whose adsorbability for LDL was determined in vitro. The results showed that the PAM beads with the average size diameter 142.1 microm and the average pore diameter 119.8 nm could act as the matrices in accordance with the requirement of adsorbent for LDL. When the amount of acrylamide and the crosslinking agent N,N'-methylene-bis(acrylamide) was fixed, the average pore diameter decreased with the increase of the crosslinking agent content. Although the nonspecific binding of PAM beads for LDL was low, they could selectively adsorb LDL after coupling the SDE on the PAM beads. PMID:15357437

  1. Minimum Contradiction Matrices in Whole Genome Phylogenies

    PubMed Central

    Thuillard, Marc

    2008-01-01

    Minimum contradiction matrices are a useful complement to distance-based phylogenies. A minimum contradiction matrix represents phylogenetic information under the form of an ordered distance matrix Yi, jn. A matrix element corresponds to the distance from a reference vertex n to the path (i, j). For an X-tree or a split network, the minimum contradiction matrix is a Robinson matrix. It therefore fulfills all the inequalities defining perfect order: Yi, jn ≥ Yi,kn, Yk jn ≥ Yk, In, i ≤ j ≤ k < n. In real phylogenetic data, some taxa may contradict the inequalities for perfect order. Contradictions to perfect order correspond to deviations from a tree or from a split network topology. Efficient algorithms that search for the best order are presented and tested on whole genome phylogenies with 184 taxa including many Bacteria, Archaea and Eukaryota. After optimization, taxa are classified in their correct domain and phyla. Several significant deviations from perfect order correspond to well-documented evolutionary events. PMID:19204821

  2. On polynomial preconditioning for indefinite Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1989-01-01

    The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.

  3. Photochemistry of glycolaldehyde in cryogenic matrices

    SciTech Connect

    Chin, W. Chevalier, M.; Thon, R.; Crépin, C.; Pollet, R.

    2014-06-14

    The photochemistry of glycolaldehyde (GA) upon irradiation at 266 nm is investigated in argon, nitrogen, neon, and para-hydrogen matrices by IR spectroscopy. Isomerization and fragmentation processes are found to compete. The hydrogen-bonded Cis-Cis form of GA is transformed mainly to the open Trans-Trans conformer and to CO and CH{sub 3}OH fragments and their mixed complexes. Different photo-induced behaviours appear depending on the matrix. In nitrogen, small amounts of Trans-Gauche and Trans-Trans conformers are detected after deposition and grow together upon irradiation. The Trans-Gauche conformer is characterized for the first time. In para-hydrogen due to a weaker cage effect additional H{sub 2}CO and HCO fragments are seen. Calculations of the potential energy surfaces of S{sub 0}, S{sub 1}, and T{sub 1} states – to analyse the torsional deformations which are involved in the isomerization process – and a kinetic analysis are presented to investigate the different relaxation pathways of GA. Fragmentation of GA under UV irradiation through the CO+CH{sub 3}OH molecular channel is a minor process, as in the gas phase.

  4. Osteogenic signaling on silk-based matrices.

    PubMed

    Midha, Swati; Murab, Sumit; Ghosh, Sourabh

    2016-08-01

    Bone tissue engineering has mainly focused on generating 3D grafts to repair bone defects. However, the underlying signaling mechanisms responsible for development of such 3D bone equivalents have largely been ignored. Here we describe the crucial aspects of embryonic osteogenesis and bone development including cell sources and general signaling cascades that guide mesenchymal progenitors towards osteogenic lineage. Drawing from the knowledge of developmental biology, we then review how silk biomaterial can regulate osteogenic signaling by focusing on the expression of cell surface markers, functional genomic information (mRNA) of stem cells cultured on silk matrices. In an attempt to recapitulate exact in vivo microenvironment of osteogenesis, role of scaffold architecture and material chemistry in regulating cellular differentiation is elaborated. The generated knowledge will not only improve our understanding of cell-material interactions but reveal newer strategies beyond a conventional tissue engineering paradigm and open new prospects for developing silk-based therapies against clinically relevant bone disorders. PMID:27163625

  5. Generalized graph states based on Hadamard matrices

    SciTech Connect

    Cui, Shawn X.; Yu, Nengkun; Zeng, Bei

    2015-07-15

    Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study the entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.

  6. Occam's razor in quark mass matrices

    NASA Astrophysics Data System (ADS)

    Tanimoto, Morimitsu; Yanagida, Tsutomu T.

    2016-04-01

    From the standpoint of the Occam's razor approach, we consider the minimum number of parameters in the quark mass matrices needed for successful CKM mixing and CP violation. We impose three zeros in the down-quark mass matrix while taking the diagonal up-quark mass matrix to reduce the number of free parameters. The three zeros are maximal zeros in order to have a CP-violating phase in the quark mass matrix. Then, there remain six real parameters and one CP-violating phase, which is the minimal number needed to reproduce the observed data of the down-quark masses and the CKM parameters. Twenty textures with three zeros are examined. Among these, thirteen textures are viable for the down-quark mass matrix. As a representative of these textures, we discuss a texture Md^{(1)} in detail. By using the experimental data on sin 2β , θ _{13}, and θ _{23}, together with the observed quark masses, the Cabibbo angle is predicted to be close to the experimental data. It is found that this surprising result remains unchanged in all other viable textures. We also investigate the correlations between |V_{ub}/V_{cb}|, sin 2β , and J_CP. For all textures, the maximal value of the ratio |V_{ub}/V_{cb}| is 0.09, which is smaller than the upper bound of the experimental data, 0.094. We hope that this prediction will be tested in future experiments.

  7. Decellularized matrices for cardiovascular tissue engineering.

    PubMed

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  8. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  9. Decellularized matrices for cardiovascular tissue engineering

    PubMed Central

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950’s. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to “biointegration”. Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption. PMID:24660110

  10. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  11. Progress report on understanding AFIS seed coat nep levels in pre-opened slivers on the Advanced Fiber Information System (AFIS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Advanced Fiber Information System (AFIS) is utilized in this segment of the research project to study how seed coat neps are measured. A patent search was conducted, and studied to assist with the understanding of the AFIS measurement of this impurity in raw cotton. The older AFIS 2 is primari...

  12. Engineereing development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 5, October--December 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1994-02-18

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. The project has three major objectives: The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 1, October--December 1992

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy`s program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research & Development Center (Amax R&D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  14. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  15. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  16. Enhanced External Counterpulsation Treatment May Intervene The Advanced Atherosclerotic Plaque Progression by Inducing The Variations of Mechanical Factors: A 3D FSI Study Based on in vivo Animal Experiment.

    PubMed

    Du, Jianhang; Wang, Liang

    2015-12-01

    Growing evidences suggest that long-term enhanced external counter-pulsation (EECP) treatment can inhibit the initiation of atherosclerotic lesion by improving the hemodynamic environment in aortas. However, whether this kind procedure will intervene the progression of advanced atherosclerotic plaque remains elusive and causes great concern in its clinical application presently. In the current paper, a pilot study combining animal experiment and numerical simulation was conducted to investigate the acute mechanical stress variations during EECP intervention, and then to assess the possible chronic effects. An experimentally induced hypercholesterolemic porcine model was developed and the basic hemodynamic measurement was performed in vivo before and during EECP treatment. Meanwhile, A 3D fluid-structure interaction (FSI) model of blood vessel with symmetric local stenosis was developed for the numerical calculation of some important mechanical factors. The results show that EECP augmented 12.21% of the plaque wall stress (PWS), 57.72% of the time average wall shear stress (AWSS) and 43.67% of the non-dimensional wall shear stress gradient (WSSGnd) at throat site of the stenosis. We suggest that long-term EECP treatment may intervene the advanced plaque progression by inducing the significant variations of some important mechanical factors, but its proper effects will need a further research combined follow-up observation in clinic. PMID:27263260

  17. Random matrices as models for the statistics of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Guarneri, Italo; Mantica, Giorgio

    1986-05-01

    Random matrices from the Gaussian unitary ensemble generate in a natural way unitary groups of evolution in finite-dimensional spaces. The statistical properties of this time evolution can be investigated by studying the time autocorrelation functions of dynamical variables. We prove general results on the decay properties of such autocorrelation functions in the limit of infinite-dimensional matrices. We discuss the relevance of random matrices as models for the dynamics of quantum systems that are chaotic in the classical limit. Permanent address: Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.

  18. UV-laser ablation of ionic liquid matrices.

    PubMed

    Hellwig, Nils; Thrun, Alexander; Muskat, Tassilo; Grotemeyer, Jürgen

    2009-12-01

    Ionic liquid matrices are a new class of matrices used in MALDI mass spectrometry. The ablation process of several ionic liquid matrices was studied by determining the velocity distribution of ablated neutral matrix molecules. This was done by a postionization approach, where the neutrals were ionized in the ablation plume by a second laser pulse. It was found that a second, time-delayed ablation event occurs consisting completely of neutral molecules. To explain this, the reflected-shockwave model is used, which assumes that the shockwave emerging from the laser ablation is reflected at the sample holder surface. When the shockwave arrives at the sample surface it causes a second ablation.

  19. Birkhoff's Polytope and Unistochastic Matrices, N = 3 and N = 4

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar; Ericsson, Åsa; Kuś, Marek; Tadej, Wojciech; Życzkowski, Karol

    2005-10-01

    The set of bistochastic or doubly stochastic N×N matrices is a convex set called Birkhoff’s polytope, which we describe in some detail. Our problem is to characterize the set of unistochastic matrices as a subset of Birkhoff’s polytope. For N=3 we present fairly complete results. For N=4 partial results are obtained. An interesting difference between the two cases is that there is a ball of unistochastic matrices around the van der Waerden matrix for N=3, while this is not the case for N=4.

  20. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  1. Overall Response Rate, Progression-Free Survival, and Overall Survival With Targeted and Standard Therapies in Advanced Non–Small-Cell Lung Cancer: US Food and Drug Administration Trial-Level and Patient-Level Analyses

    PubMed Central

    Blumenthal, Gideon M.; Karuri, Stella W.; Zhang, Hui; Zhang, Lijun; Khozin, Sean; Kazandjian, Dickran; Tang, Shenghui; Sridhara, Rajeshwari; Keegan, Patricia; Pazdur, Richard

    2015-01-01

    Purpose To conduct analyses exploring trial-level and patient-level associations between overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) in advanced non–small-cell lung cancer (NSCLC) trials. Methods We identified 14 trials (N = 12,567) submitted to US Food and Drug Administration since 2003 of treatments for advanced NSCLC. Only randomized, active-controlled trials with more than 150 patients were included. Associations between trial-level PFS hazard ratio (HR), OS HR, and ORR odds ratio were analyzed using a weighted linear regression model. Patient-level responder analyses comparing PFS and OS between patients with and without an objective response were performed using pooled data from all studies. Results In the trial-level analysis, the association between PFS and ORR was strong (R2 = 0.89; 95% CI, 0.80 to 0.98). There was no association between OS and ORR (R2 = 0.09; 95% CI, 0 to 0.33) and OS and PFS (R2 = 0.08; 95% CI, 0 to 0.31). In the patient-level responder analyses, patients who achieved a response had better PFS and OS compared with nonresponders (PFS: HR, 0.40; 95% CI, 0.38 to 0.42; OS: HR, 0.40; 95% CI, 0.38 to 0.43). Conclusion On a trial level, there is a strong association between ORR and PFS. An association between ORR and OS and between PFS and OS was not established, possibly because of cross-over and longer survival after progression in the targeted therapy and first-line trials. The patient-level analysis showed that responders have a better PFS and OS compared with nonresponders. A therapy in advanced NSCLC with a large magnitude of effect on ORR may have a large PFS effect. PMID:25667291

  2. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Quarterly technical progress report, [July--September 1995

    SciTech Connect

    1995-12-31

    This project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: Advanced overfire air (AOFA), Low NO{sub x} burners (LNB), LNB with AOFA, and advanced digital controls and optimization strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Phase 4 of the project, demonstration of advanced control/optimization methodologies for NO{sub x} abatement, is now in progress. The methodology selected for demonstration at Hammond Unit 4 is the Generic NO{sub x} Control Intelligent System (GNOCIS), which is being developed by a consortium consisting of the Electric Power Research Institute, PowerGen, Southern Company, Radian Corporation, U.K. Department of Trade and Industry, and U.S. Department of Energy. GNOCIS is a methodology that can result in improved boiler efficiency and reduced NO{sub x} emissions from fossil fuel fired boilers. Using a numerical model of the combustion process, GNOCIS applies an optimizing procedure to identify the best set points for the plant on a continuous basis. GNOCIS is in progress at Alabama Power`s Gaston Unit 4 and PowerGen`s Kingsnorth Unit 1. The first commercial demonstration of GNOCIS will be at Hammond 4.

  3. Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 1, August--December 1992

    SciTech Connect

    Not Available

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO{sub x} emissions not greater than one-third NSPS; SO{sub x} emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  4. Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 23, April 1, 1994--June 30, 1994

    SciTech Connect

    1995-04-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  5. Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995

    SciTech Connect

    1997-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

  6. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 16, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  7. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 14, January 1, 1992--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development`s facility near Beverly, Ohio. OCDO`s facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  8. Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report No. 17, October 1, 1996--December 31, 1996

    SciTech Connect

    Regan, J.W.; Bender, D.J.; Clark, J.P.; Wesnor, J.D.

    1997-01-01

    This report describes the work performed between October 1 and December 31, 1996 by the ABB team on U.S. Department of Energy project ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` (LEBS), which is part of the DOE`s Combustion 2000 Program. The overall objective of the LEBS Project is to dramatically improve environmental performance of future coal-fired power plants without adversely impacting efficiency or the cost of electricity. Near-term technologies, i.e., advanced technologies that are partially developed, will be used to reduce NO{sub x} and SO{sub 2} emission to one-sixth current NSPS limits and particulates to one- third current NSPS limits.

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996

    SciTech Connect

    Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

    1996-10-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

  10. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996

    SciTech Connect

    1996-08-19

    The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

  11. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Quarterly progress report, January 1--March 31, 1998

    SciTech Connect

    Morea, M.F.

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project focused on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field. Progress to date is described.

  12. Methylenetetrahydrofolate reductase C677T polymorphism predicts response and time to progression to gemcitabine-based chemotherapy for advanced non-small cell lung cancer in a Chinese Han population*

    PubMed Central

    Hong, Wei; Wang, Kai; Zhang, Yi-ping; Kou, Jun-yan; Hong, Dan; Su, Dan; Mao, Wei-min; Yu, Xin-min; Xie, Fa-jun; Wang, Xiao-jian

    2013-01-01

    Objective: The aim of this study was to evaluate the association between the methylenetetrahydrofolate reductase (MTHFR) C677T excision repair cross-complementation group 1 (ERCC1) genetic polymorphisms and the clinical efficacy of gemcitabine-based chemotherapy in advanced non-small cell lung cancer (NSCLC). Methods: A total of 135 chemonaive patients with unresectable advanced NSCLC were treated with gemcitabine/platinum regimens. The polymorphisms of MTHFR C677T, ERCC1 C8092A, and ERCC1 C118T were genotyped using the TaqMan methods. Results: The overall response rate was 28.9%. Patients with MTHFR CC genotype had a higher rate of objective response than patients with variant genotype (TT or CT) (41.2% versus 19.1%, P=0.01). Median time to progression (TTP) of patients with MTHFR CC genotype was longer than that of patients with variant genotype (7.6 months versus 5.0 months, P=0.003). No significant associations were obtained between ERCC1 C118T and C8092A polymorphisms and both response and survival. Conclusions: Our data suggest the value of MTHFR C677T polymorphism as a possible predictive marker of response and TTP in advanced NSCLC patients treated with gemcitabine/platinum. PMID:23463763

  13. Nomograms Predicting Progression-Free Survival, Overall Survival, and Pelvic Recurrence in Locally Advanced Cervical Cancer Developed From an Analysis of Identifiable Prognostic Factors in Patients From NRG Oncology/Gynecologic Oncology Group Randomized Trials of Chemoradiotherapy

    PubMed Central

    Rose, Peter G.; Java, James; Whitney, Charles W.; Stehman, Frederick B.; Lanciano, Rachelle; Thomas, Gillian M.; DiSilvestro, Paul A.

    2015-01-01

    Purpose To evaluate the prognostic factors in locally advanced cervical cancer limited to the pelvis and develop nomograms for 2-year progression-free survival (PFS), 5-year overall survival (OS), and pelvic recurrence. Patients and Methods We retrospectively reviewed 2,042 patients with locally advanced cervical carcinoma enrolled onto Gynecologic Oncology Group clinical trials of concurrent cisplatin-based chemotherapy and radiotherapy. Nomograms for 2-year PFS, five-year OS, and pelvic recurrence were created as visualizations of Cox proportional hazards regression models. The models were validated by bootstrap-corrected, relatively unbiased estimates of discrimination and calibration. Results Multivariable analysis identified prognostic factors including histology, race/ethnicity, performance status, tumor size, International Federation of Gynecology and Obstetrics stage, tumor grade, pelvic node status, and treatment with concurrent cisplatin-based chemotherapy. PFS, OS, and pelvic recurrence nomograms had bootstrap-corrected concordance indices of 0.62, 0.64, and 0.73, respectively, and were well calibrated. Conclusion Prognostic factors were used to develop nomograms for 2-year PFS, 5-year OS, and pelvic recurrence for locally advanced cervical cancer clinically limited to the pelvis treated with concurrent cisplatin-based chemotherapy and radiotherapy. These nomograms can be used to better estimate individual and collective outcomes. PMID:25732170

  14. P03-based precession-nutation matrices

    NASA Astrophysics Data System (ADS)

    Wallace, P.; Capitaine, N.

    2006-10-01

    The IAU WG on precession and the ecliptic has recommended the adoption of the P03 models of Capitaine et al. (2003). We discuss methods for generating the rotation matrices that transform celestial to terrestrial coordinates, taking into account frame bias (B), P03 precession (P), P03-adjusted IAU 2000A nutation (N) and Earth rotation. The NPB portion can refer either to the equinox or the celestial intermediate origin (CIO), requiring either the Greenwich sidereal time (GST) or the Earth rotation angle (ERA) as the measure of Earth rotation. The equinox based NPB transformation can be formed using various sequences of rotations, while the CIO based transformation can be formed using series for the X, Y coordinates of the celestial intermediate pole (CIP) and for the CIO locator s; also, either matrix can be computing using series for the x, y, z components of the "rotation vector". Common to both methods is the CIP, which forms the bottom row of the transformation matrix. In the case of the CIO based transformation, the CIO is the top row of the NPB matrix, whereas in the equinox based case it enters via the GST formulation in the form of the equation of the origins (EO). The EO is the difference between ERA and GST and equivalently the distance between the CIO and equinox. The choice of method is dictated by considerations of internal consistency, flexibility and ease of use; the different ways agree at the level of a few microarcseconds over several centuries, and consume similar computing resources.

  15. Comparison of eigensolvers for symmetric band matrices

    PubMed Central

    Moldaschl, Michael; Gansterer, Wilfried N.

    2014-01-01

    We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size. PMID:26594079

  16. Invariant functions for the Lyapunov exponents of random matrices

    SciTech Connect

    Protasov, Vladimir Yu

    2011-01-31

    A new approach to the study of Lyapunov exponents of random matrices is presented. We prove that any family of nonnegative (dxd)-matrices has a continuous concave invariant functional on R{sup d}{sub +}. Under some standard assumptions on the matrices, this functional is strictly positive, and the coefficient corresponding to it is equal to the largest Lyapunov exponent. As a corollary we obtain asymptotics for the expected value of the logarithm of norms of matrix products and of their spectral radii. Another corollary gives new upper and lower bounds for the Lyapunov exponent, and an algorithm for computing it for families of nonnegative matrices. We consider possible extensions of our results to general nonnegative matrix families and present several applications and examples. Bibliography: 29 titles.

  17. Synbiotic matrices derived from plant oligosaccharides and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A porous synbiotic matrix was prepared by lyophilization of alginate and pectin or fructan oligosaccharides and polysaccharides cross-linked with calcium. These synbiotic matrices were excellent physical structures to support the growth of Lactobacillus acidophilus (1426) and Lactobacillus reuteri (...

  18. Portal frame inertia and stiffness matrices by substructure synthesis

    NASA Astrophysics Data System (ADS)

    Morales, C. A.

    2005-05-01

    Generic expressions of mass and stiffness matrices of the portal frame are presented. These are derived by means of the substructure synthesis method. This method is exceptionally characterised by low-order eigenvalue problems and highly accurate eigensolutions.

  19. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    ERIC Educational Resources Information Center

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  20. ALGORITHM FOR THE EVALUATION OF REDUCED WIGNER MATRICES

    SciTech Connect

    Prezeau, G.; Reinecke, M.

    2010-10-15

    Algorithms for the fast and exact computation of Wigner matrices are described and their application to a fast and massively parallel 4{pi} convolution code between a beam and a sky is also presented.

  1. Separation of traces of metal ions from sodium matrices

    NASA Technical Reports Server (NTRS)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  2. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  3. Boundary transfer matrices and boundary quantum KZ equations

    SciTech Connect

    Vlaar, Bart

    2015-07-15

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin’s boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  4. QSAR models for the removal of organic micropollutants in four different river water matrices.

    PubMed

    Sudhakaran, Sairam; Calvin, James; Amy, Gary L

    2012-04-01

    Ozonation is an advanced water treatment process used to remove organic micropollutants (OMPs) such as pharmaceuticals and personal care products (PPCPs). In this study, Quantitative Structure Activity Relationship (QSAR) models, for ozonation and advanced oxidation process (AOP), were developed with percent-removal of OMPs by ozonation as the criterion variable. The models focused on PPCPs and pesticides elimination in bench-scale studies done within natural water matrices: Colorado River, Passaic River, Ohio River and Suwannee synthetic water. The OMPs removal for the different water matrices varied depending on the water quality conditions such as pH, DOC, alkalinity. The molecular descriptors used to define the OMPs physico-chemical properties range from one-dimensional (atom counts) to three-dimensional (quantum-chemical). Based on a statistical modeling approach using more than 40 molecular descriptors as predictors, descriptors influencing ozonation/AOP were chosen for inclusion in the QSAR models. The modeling approach was based on multiple linear regression (MLR). Also, a global model based on neural networks was created, compiling OMPs from all the four river water matrices. The chemically relevant molecular descriptors involved in the QSAR models were: energy difference between lowest unoccupied and highest occupied molecular orbital (E(LUMO)-E(HOMO)), electron-affinity (EA), number of halogen atoms (#X), number of ring atoms (#ring atoms), weakly polar component of the solvent accessible surface area (WPSA) and oxygen to carbon ratio (O/C). All the QSAR models resulted in a goodness-of-fit, R(2), greater than 0.8. Internal and external validations were performed on the models. PMID:22245076

  5. On Fluctuations of Eigenvalues of Random Band Matrices

    NASA Astrophysics Data System (ADS)

    Shcherbina, M.

    2015-10-01

    We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.

  6. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect

    Clarke, D.; Ershaghi, I.; Davies, D.; Phillips, C.; Mondragon, J.

    1995-07-28

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  7. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly progress report No. 10, January--March 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-04-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and benchscale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by June, 1997. During Quarter 10 (January--March, 1995), preliminary work continued for the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant. Towards this end, laboratory flotation testing and refurbishing of the column have been started. The final version of the Subtask 4.2 Advanced Flotation Process Optimization Research topical report was issued, as was a draft version of the Subtask 4.3 report discussing the formulation of coal-water slurry fuels (CWF) from advanced flotation products. A number of product samples from Subtask 4.4 testing were sent to both Combustion Engineering and Penn State for combustion testing. The evaluation of toxic trace element analyses of column flotation products also continued. The detailed design of the 2 t/hr PDU was essentially completed with the approval of various process flow, plant layout, electrical, and vendor equipment drawings. The final version of the Subtask 6.5 -- Selective Agglomeration Bench-Scale Design and Test Plan Report was issued during this reporting quarter. Design and construction of this 25 lb/hr selective agglomeration test unit was completed and preliminary testing started. Construction of the 2 t/hr PDU began following the selection of TIC. The Industrial Company as the construction subcontractor.

  8. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Hara, S. , Casteel, J.

    1997-05-11

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  9. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 4, July--September 1993

    SciTech Connect

    Not Available

    1993-12-29

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NOx emissions not greater than one-third NSPS; SOx emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: improved ash disposability and reduced waste generation; reduced air toxics emissions; and increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  10. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    SciTech Connect

    Judkins, R.R.; Cole, N.C.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  11. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    SciTech Connect

    Judkins, R.R.; Cole, N.C.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  12. Inorganic Nanoparticle Nucleation on Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Kosteleski, Adrian John

    dressing applications. PAA's ability to nucleate nanoparticles in a solid matrix was displayed. Interestingly enough PAA retains its ability to nucleate nanoparticle even when its reactive functional groups are used in the crosslinking process. Silver nanoparticle composition and size on the solid polymer matrices was controlled by varying the composition of PAA. PAA and silver nanoparticles effect on the mechanical properties of the calcium alginate hydrogels were also studied. Physically crosslinking PAA with calcium alginate gels enables the development of intricate gel structures that are decorated with nucleated silver; yielding a composite biomaterial with improved and enhanced antimicrobial properties.

  13. Estimated correlation matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2004-11-01

    Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs

  14. Rapidly Progressive Dementia

    PubMed Central

    Geschwind, Michael D.; Shu, Huidy; Haman, Aissa; Sejvar, James J.; Miller, Bruce L.

    2009-01-01

    In contrast with more common dementing conditions that typically develop over years, rapidly progressive dementias can develop subacutely over months, weeks, or even days and be quickly fatal. Because many rapidly progressive dementias are treatable, it is paramount to evaluate and diagnose these patients quickly. This review summarizes recent advances in the understanding of the major categories of RPD and outlines efficient approaches to the diagnosis of the various neurodegenerative, toxic-metabolic, infectious, autoimmune, neoplastic, and other conditions that may progress rapidly. PMID:18668637

  15. Engineering development of advanced coal-fired low-emission boiler systems: Technical progress report No. 16, July-September 1996

    SciTech Connect

    Barcikowski, G.F.; Borio, R.W.; Bozzuto, C.R.; Burr, D.H.; Cellilli, L.; Fox, J.D.; Gibbons, T.B.; Hargrove, M.J.; Jukkola, G.D.; King, A.M.

    1996-11-27

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The Project is under budget and generally on schedule. The current status is shown in the Milestone Schedule Status Report included as Appendix A. Under Task 7--Component development and optimization, the CeraMem filter testing was completed. Due to an unacceptably high flue gas draft loss, which will not be resolved in the POCTF timeframe, a decision was made to change the design of the flue gas cleaning system from Hot SNO{sub x}{sup {trademark}} to an advanced dry scrubber called New Integrated Desulfurization (NID). However, it is recognized that the CeraMem filter still has the potential to be viable in pulverized coal systems. In Task 8-- Preliminary POCTF design, integrating and optimizing the performance and design of the boiler, turbine/generator and heat exchangers of the Kalina cycle as well as the balance of plant design were completed. Licensing activities continued. A NID system was substituted for the SNO{sub x} Hot Process.

  16. Engineering Development of Advanced Physical Fine Coal Cleaning Technologies: Froth flotation. Quarterly technical progress report No. 21, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate.

  17. Second generation advanced reburning for high efficiency NO{sub x} control. Progress report No. 2, January 1--March 31, 1996

    SciTech Connect

    Zamansky, V.M.

    1996-04-25

    Existing NO{sub x} control technologies have limitations which may prevent them from successfully achieving commercial, cost effective application in the near future. This project develops a family of novel NO{sub x} control technologies, Second Generation Advanced Reburning (SGAR), which have a potential to achieve 90+% NO{sub x} control at a significantly lower cost than Selective Catalytic Reduction (SCR). Phase I consists of six tasks: Task 1.1, project coordination and reporting deliverables; Task 1.2, kinetics of Na{sub 2}CO{sub 3} reactions with flue gas components; Task 1.3, 0.1 {times} 10{sup 6} Btu/hr optimization studies; Task 1.4, 1.0 {times} 10{sup 6} Btu/hr process development tests; Task 1.5, mechanism development and modeling; and Task 1.6, design methodology and application. This second reporting period included both modeling and experimental activities. Modeling was focused on evaluation of ammonia injection into the reburning zone and on the effect of various additives on promotion of the NO-NH{sub 3} interaction in the reburning zone. First bench scale Controlled Temperature Tower (CTT) experiments have been performed on different variants of the Advanced Returning technology. The tests are continued, and the results will be reduced and reported in the next quarter.

  18. Continuous Progress Schools See the "Whole Child"

    ERIC Educational Resources Information Center

    Mack, Jamie

    2008-01-01

    It has been called many names: Continuous Progress Format, Advancement Based on Competency (ABC), Continuous Progress Schools, and Continuous Progress Education. The idea of "Continuous Progress" refers to academic and developmental growth of students in a multi-age program. Students learn new materials as they are ready, regardless of their age,…

  19. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-07-25

    Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 15, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled ``Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation``, to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  1. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report: First quarter 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, long-term testing of the LNB + AOFA configuration continued and no parametric testing was performed. Further full-load optimization of the LNB + AOFA system began on March 30, 1993. Following completion of this optimization, comprehensive testing in this configuration will be performed including diagnostic, performance, verification, long-term, and chemical emissions testing. These tests are scheduled to start in May 1993 and continue through August 1993. Preliminary engineering and procurement are progressing on the Advanced Low NOx Digital Controls scope addition to the wall-fired project. The primary activities during this quarter include (1) refinement of the input/output lists, (2) procurement of the distributed digital control system, (3) configuration training, and (4) revision of schedule to accommodate project approval cycle and change in unit outage dates.

  2. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 11, April 1995--June 1995

    SciTech Connect

    1995-08-30

    The Pittsburgh Energy Technology Center of the U.S. Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quotes} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: (1) NO{sub x} emissions not greater than one-third NSPS. (2) SO{sub x} emissions not greater than one-third NSPS. (3) Particulate emissions not greater than one-half NSPS. The specific secondary objectives are: (1) Improved ash disposability and reduced waste generation. (2) Reduced air toxics emissions. (3) Increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24-month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36-month period and will include POCTF detailed design, construction, testing, and evaluation.

  3. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  4. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report No. 9, October 1996--December 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1997-01-21

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter in the laboratory dewatering studies were conducted using copper and aluminum ions showed that for the low sulfur clean coal slurry addition of 0.1 Kg/t of copper ions was effective in lowering the filter cake moisture from 29 percent to 26.3 percent. Addition of 0.3 Kg/t of aluminum ions provided filter cake with 28 percent moisture. For the high sulfur clean coal slurry 0.5 Kg/t of copper and 0.1 Kg/t of aluminum ions reduced cake moisture from 30.5 percent to 28 percent respectively. Combined addition of anionic (10 g/t) and cationic (10 g/t) flocculants was effective in providing a filter cake with 29.8 percent moisture. Addition of flocculants was not effective in centrifuge dewatering. In pilot scale screen bowl centrifuge dewatering studies it was found that the clean coal slurry feed rate of 30 gpm was optimum to the centrifuge, which provided 65 percent solids capture. Addition of anionic or cationic flocculants was not effective in lowering of filter cake moisture, which remained close to 30 percent for both clean coal slurries.

  5. Advanced radiation detector development: Advanced semiconductor detector development: Development of a room-temperature, gamma ray detector using gallium arsenide to develop an electrode detector. Annual progress report, September 30, 1994--September 29, 1995

    SciTech Connect

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. The general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, the authors have worked primarily in the development of semiconductor spectrometers with ``single carrier`` response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. They have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in the laboratory in the Phoenix Building on the North Campus.

  6. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  7. Using SAR and GPS for Hazard Management and Response: Progress and Examples from the Advanced Rapid Imaging and Analysis (ARIA) Project

    NASA Astrophysics Data System (ADS)

    Owen, S. E.; Simons, M.; Hua, H.; Yun, S. H.; Agram, P. S.; Milillo, P.; Sacco, G. F.; Webb, F.; Rosen, P. A.; Lundgren, P.; Milillo, G.; Manipon, G. J. M.; Moore, A. W.; Liu, Z.; Polet, J.; Cruz, J.

    2014-12-01

    ARIA is a joint JPL/Caltech project to automate synthetic aperture radar (SAR) and GPS imaging capabilities for scientific understanding, hazard response, and societal benefit. We have built a prototype SAR and GPS data system that forms the foundation for hazard monitoring and response capability, as well as providing imaging capabilities important for science studies. Together, InSAR and GPS have the ability to capture surface deformation in high spatial and temporal resolution. For earthquakes, this deformation provides information that is complementary to seismic data on location, geometry and magnitude of earthquakes. Accurate location information is critical for understanding the regions affected by damaging shaking. Regular surface deformation measurements from SAR and GPS are useful for monitoring changes related to many processes that are important for hazard and resource management such as volcanic deformation, groundwater withdrawal, and landsliding. Observations of SAR coherence change have a demonstrated use for damage assessment for hazards such as earthquakes, tsunamis, hurricanes, and volcanic eruptions. These damage assessment maps can be made from imagery taken day or night and are not affected by clouds, making them valuable complements to optical imagery. The coherence change caused by the damage from hazards (building collapse, flooding, ash fall) is also detectable with intelligent algorithms, allowing for rapid generation of damage assessment maps over large areas at fine resolution, down to the spatial scale of single family homes. We will present the progress and results we have made on automating the analysis of SAR data for hazard monitoring and response using data from the Italian Space Agency's (ASI) COSMO-SkyMed constellation of X-band SAR satellites. Since the beginning of our project with ASI, our team has imaged deformation and coherence change caused by many natural hazard events around the world. We will present progress on our

  8. Randomized Algorithms for Matrices and Data

    NASA Astrophysics Data System (ADS)

    Mahoney, Michael W.

    2012-03-01

    This chapter reviews recent work on randomized matrix algorithms. By “randomized matrix algorithms,” we refer to a class of recently developed random sampling and random projection algorithms for ubiquitous linear algebra problems such as least-squares (LS) regression and low-rank matrix approximation. These developments have been driven by applications in large-scale data analysis—applications which place very different demands on matrices than traditional scientific computing applications. Thus, in this review, we will focus on highlighting the simplicity and generality of several core ideas that underlie the usefulness of these randomized algorithms in scientific applications such as genetics (where these algorithms have already been applied) and astronomy (where, hopefully, in part due to this review they will soon be applied). The work we will review here had its origins within theoretical computer science (TCS). An important feature in the use of randomized algorithms in TCS more generally is that one must identify and then algorithmically deal with relevant “nonuniformity structure” in the data. For the randomized matrix algorithms to be reviewed here and that have proven useful recently in numerical linear algebra (NLA) and large-scale data analysis applications, the relevant nonuniformity structure is defined by the so-called statistical leverage scores. Defined more precisely below, these leverage scores are basically the diagonal elements of the projection matrix onto the dominant part of the spectrum of the input matrix. As such, they have a long history in statistical data analysis, where they have been used for outlier detection in regression diagnostics. More generally, these scores often have a very natural interpretation in terms of the data and processes generating the data. For example, they can be interpreted in terms of the leverage or influence that a given data point has on, say, the best low-rank matrix approximation; and this

  9. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the

  10. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992

    SciTech Connect

    Not Available

    1992-08-24

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  11. Recombinant spider silk matrices for neural stem cell cultures.

    PubMed

    Lewicka, Michalina; Hermanson, Ola; Rising, Anna U

    2012-11-01

    Neural stem cells (NSCs) have the capacity to differentiate into neurons, astrocytes, and oligodendrocytes. Accordingly, NSCs hold great promise in drug screening and treatment of several common diseases. However, a major obstacle in applied stem cell research is the limitation of synthetic matrices for culturing stem cells. The objective of this study was to evaluate the suitability of recombinant spider silk (4RepCT) matrices for growth of NSCs. NSCs isolated from the cerebral cortices of mid-gestation rat embryos were cultured on either 4RepCT matrices or conventional poly-L-ornithine and fibronectin (P + F) coated polystyrene plates. From 48 h of culture, no significant differences in cell proliferation or viability were detected in NSC cultures on 4RepCT compared to control matrices (polystyrene plates coated with P + F). The NSCs retained an undifferentiated state, displaying low or no staining for markers of differentiated cells. Upon stimulation NSCs grown on 4RepCT differentiated efficiently into neuronal and astrocytic cells to virtually the same degree as control cultures, but a slightly less efficient oligodendrocyte differentiation was noted. We suggest that recombinant spider silk matrices provide a functional microenvironment and represent a useful tool for the development of new strategies in neural stem cell research. PMID:22863380

  12. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  13. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  14. Advanced computational methods for nodal diffusion, Monte Carlo, and S{sub N} problems. Progress report, January 1, 1992--March 31, 1993

    SciTech Connect

    Martin, W.R.

    1993-01-01

    This document describes progress on five efforts for improving effectiveness of computational methods for particle diffusion and transport problems in nuclear engineering: (1) Multigrid methods for obtaining rapidly converging solutions of nodal diffusion problems. A alternative line relaxation scheme is being implemented into a nodal diffusion code. Simplified P2 has been implemented into this code. (2) Local Exponential Transform method for variance reduction in Monte Carlo neutron transport calculations. This work yielded predictions for both 1-D and 2-D x-y geometry better than conventional Monte Carlo with splitting and Russian Roulette. (3) Asymptotic Diffusion Synthetic Acceleration methods for obtaining accurate, rapidly converging solutions of multidimensional SN problems. New transport differencing schemes have been obtained that allow solution by the conjugate gradient method, and the convergence of this approach is rapid. (4) Quasidiffusion (QD) methods for obtaining accurate, rapidly converging solutions of multidimensional SN Problems on irregular spatial grids. A symmetrized QD method has been developed in a form that results in a system of two self-adjoint equations that are readily discretized and efficiently solved. (5) Response history method for speeding up the Monte Carlo calculation of electron transport problems. This method was implemented into the MCNP Monte Carlo code. In addition, we have developed and implemented a parallel time-dependent Monte Carlo code on two massively parallel processors.

  15. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 5, October--December 1993

    SciTech Connect

    Not Available

    1994-04-06

    Work continued as planned and scheduled. Total expenditures are below budget. Task 2 is complete. Task 3 is complete except for R, D & T Plan -- Phase II. Task 4 is currently slightly behind schedule but is projected to finish on or ahead of schedule. Task 5 was started early. The following major deliverables were issued: (1) Technical Paper for `93 International Joint Power Generation Conference. (2) Technical Paper for IEA Second International Conference, and (3) Topical Report by EAR on Air Toxics. Subtask 4.1 -- Engineering Analysis in support of the CGU design is nearly complete and partial design specifications are being employed in Task 5. Subtask 4.2 -- Experimental Research efforts consisted of the first series of Drop Tube Furnace tests. Data is being analyzed. Subtask 4.3 -- Modeling work to data resulted in input files for Boiler Simulation Facility and flow pattern convergence was attained. Particle combustion is the next step. This work will be reported on at the next Quarterly Project Review meeting. Task 5 was started early to facilitate Task 6 schedule and quality. Integration of the SNO{sub x} Hot Scheme into the boiler and turbine/feedwater train was optimized and design work on the boiler and ``backend`` is underway. Cost estimating assumptions and methodology were discussed at length and finalized. The RAM analysis is nearly complete. BOP engineering is in progress. No changes to the Work Plan are anticipated for the next quarter.

  16. Investigation of heat transfer and combustion in the advanced Fluidized Bed Combustor (FBC). Technical progress report No. 13, October 1996--December 1996

    SciTech Connect

    Lee, Seong W.

    1997-01-01

    This technical report summarizes the research conducted and progress achieved during the period from October 1, 1996 to December 31, 1996. Numerical simulation was acquired from the particle trajectories by means of the Reynolds Stress Model (REM) with general algebraic expressions. The typical particle trajectories for bunch particle injection were predicted by the top view, the side view, and the isolated 3-dimensional view. The simulation of particle trajectories showed top view, side view, and isolated 3-dimensional view. Numerical simulation for the bunch particle injection will be continued to understand the particle characteristics in the combustion chamber. The system test was conducted on the exploratory hot model. Thermal performance and combustion products of the test results were analyzed and predicted. The effect of cooling water on the combustion chamber was studied using the natural gas as a one of firing fuel. Without a providing of cooling water, overall combustion temperatures are increased. A computer-assisted data acquisition system was employed to measure the flue gas compositions/stack temperature. The measurement of combustion products was conducted by the gas analyzer.

  17. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development program. Progress report, October 1, 1981-December 31, 1981. [Alloy-MA-956; alloy-MA-754

    SciTech Connect

    Kimball, O.F.

    1982-06-15

    Work covered in this report includes the activities associated with the status of the simulated reactor helium supply systems and testing equipment. The progress in the screening test program is descibed; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750/sup 0/, 850/sup 0/, 950/sup 0/ and 1050/sup 0/C (1382/sup 0/, 1562/sup 0/, 1742/sup 0/, and 1922/sup 0/F) in controlled-purity helium. The status of creep-rupture in controlled-purity helium and air and fatigue testing in the controlled-purity helium in the intensive screening test program is discussed. The results of metallographic studies of screening alloys exposed in controlled-purity helium for 3000 hours at 750/sup 0/C and 5500 hours at 950/sup 0/C, 3000 hours at 1050/sup 0/C and 6000 hours at 1050/sup 0/C and for weldments exposed in controlled-purity helium for 6000 hours at 750/sup 0/C and 6000 hours at 1050/sup 0/C are presented and discussed.

  18. A community-based approach to non-communicable chronic disease management within a context of advancing universal health coverage in China: progress and challenges.

    PubMed

    Xiao, Nanzi; Long, Qian; Tang, Xiaojun; Tang, Shenglan

    2014-01-01

    Paralleled with the rapid socio-economic development and demographic transition, an epidemic of non-communicable chronic diseases (NCDs) has emerged in China over the past three decades, resulting in increased disease and economic burdens. Over the past decade, with a political commitment of implementing universal health coverage, China has strengthened its primary healthcare system and increased investment in public health interventions. A community-based approach to address NCDs has been acknowledged and recognized as one of the most cost-effective solutions. Community-based strategies include: financial and health administrative support; social mobilization; community health education and promotion; and the use of community health centers in NCD detection, diagnosis, treatment, and patient management. Although China has made good progress in developing and implementing these strategies and policies for NCD prevention and control, many challenges remain. There are a lack of appropriately qualified health professionals at grass-roots health facilities; it is difficult to retain professionals at that level; there is insufficient public funding for NCD care and management; and NCD patients are economically burdened due to limited benefit packages covering NCD treatment offered by health insurance schemes. To tackle these challenges we propose developing appropriate human resource policies to attract greater numbers of qualified health professionals at the primary healthcare level; adjusting the service benefit packages to encourage the use of community-based health services; and increase government investment in public health interventions, as well as investing more on health insurance schemes.

  19. Sample Preparation Techniques for the Untargeted LC-MS-Based Discovery of Peptides in Complex Biological Matrices

    PubMed Central

    Finoulst, Inez; Pinkse, Martijn; Van Dongen, William; Verhaert, Peter

    2011-01-01

    Although big progress has been made in sample pretreatment over the last years, there are still considerable limitations when it comes to overcoming complexity and dynamic range problems associated with peptide analyses from biological matrices. Being the little brother of proteomics, peptidomics is a relatively new field of research aiming at the direct analysis of the small proteins, called peptides, many of which are not amenable for typical trypsin-based analytics. In this paper, we present an overview of different techniques and methods currently used for reducing a sample's complexity and for concentrating low abundant compounds to enable successful peptidome analysis. We focus on techniques which can be employed prior to liquid chromatography coupled to mass spectrometry for peptide detection and identification and indicate their advantages as well as their shortcomings when it comes to the untargeted analysis of native peptides from complex biological matrices. PMID:22203783

  20. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. First quarterly technical progress report, [January--March 1995

    SciTech Connect

    1995-12-31

    The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: Advanced overfire air (AOFA), Low NO{sub x} burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NO{sub x} emission levels to be near 0.65 lb/MBtu. This NO{sub x} level represents a 48 percent reduction when compared to the baseline, full load value of 1. 24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NO{sub x} emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NO{sub x} level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NO{sub x} emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is in progress. During first quarter 1995, design of the advanced control and optimization software and strategies continued. Process data collected from the DCS is being archived to a server on the plant information network and subsequently transferred to SCS offices in Birmingham for analysis and use in training the neural network combustion models.

  1. Advanced byproduct recovery: Direct catalytic reduction of SO{sub 2} to elemental sulfur. First quarterly technical progress report, [October--December 1995

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1996-02-01

    The team of Arthur D. Little, Tufts University and Engelhard Corporation will be conducting Phase I of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. this catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria or zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an ongoing DOE-sponsored University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicates that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. the performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  2. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 4, July 1, 1991--September 30, 1991

    SciTech Connect

    Evans, A.; Newhall, J.; England, G.; Seeker, W.R.

    1992-06-23

    CombiNO{sub x} is a NO{sub x} reduction process which incorporates three different NO{sub x} control technologies: reburning, selective non-catalytic reduction (SNCR), and methanol injection. Gas reburning is a widely used technology that has been proven to reduce NO{sub x} up to 60% on full-scale applications. The specific goals of the CombiNO{sub x} project are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; Demonstrate coal reburning; Identify all undesirable by-products of the process and their controlling parameters; Demonstrate 95% N0{sub 2} removal in a wet scrubber. Before integrating all three of CombiNO{sub x}`s technologies into a combined process, it is imperative that the chemistry of each individual process is well understood. Pilot-scale SNCR tests and the corresponding computer modeling were studied in detail and discussed in the previous quarterly report. This quarterly report will present the results obtained during the pilot-scale advanced reburning tests performed on EER`s Boiler Simulation Facility (BSF). Since methanol injection is a relatively new NO{sub x} control technology, laboratory-scale tests were performed to better understand the conditions at which methanol is most effective. The experimental set-up and results from these tests will be discussed.

  3. Second generation advanced reburning for high efficiency NO{sub x} control. Quaterly progress report No. 1, October 1--December 31, 1995

    SciTech Connect

    Zamansky, V.M.; Maly, P.M.

    1996-01-22

    Title 1 of the Clean Air Act Amendment (CAAA) of 1990 requires NO{sub x} controls in ozone non- attainment areas. The initial Title 1 regulations, implemented over the last few years, required Reasonably Available Control Technologies (RACT). In most areas, the NO{sub x} levels for RACT are based on Low NO{sub x} Burners (LNB) and are in the range of 0.4 to 0.5 lb/10{sup 6} Btu. As a result, there has been little industry demand for higher efficiency and more expensive NO{sub x} controls such as reburning, Selective Non-Catalytic Reduction (SNCR), and Selective Catalytic Reduction (SCR). However, the current RACT requirements will not be the end of NO{sub x} regulations. Much more stringent NO{sub x} control will be required to bring many of the ozone non-attainment areas into compliance, particularly in the Northeast. This paper describes second generation advanced reburning for nitrogen oxides control.

  4. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 18, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This task is the actual demonstration of the advanced froth flotation technology. All previous work has led to this task. ICF KE technicians and process engineers from the team will operate the plant over a 10 month period to demonstrate the capability of the technology to remove 85% of the pyritic sulfur from three different test coals while recovering at least 85% of the as-mined coal`s energy content. Six major subtasks have been included to better define the overall work scope for this task. The ICF KE team will test the Pittsburgh No. 8 seam, the Illinois No. 6 seam and the Upper Freeport seam; the team will operate the circuit in a continuous run; the team will analyze all samples generated in those runs and will develop a plan to store and dispose of the coal and refuse products. All laboratory data generated will be accessible to all team members and the DOE. The test program for the Pittsburgh No. 8 coal began during March 1, 1993. An arrangement has been made between ICF Kaiser Engineers (ICF KE) and American Electric Power (AEP), who is the host for the DOE POC facility. The arrangement calls for AEP to purchase the raw coal and use the clean coal generated by the DOE POC facility. This arrangement permits the processing of raw coal at a very minimal cost of purchasing the raw coal.

  5. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 12, July 1, 1991--September 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The design criteria for each unit operation have been developed based upon a number of variables. These variables, at this time, are based upon the best engineering design information available to industry. A number of assumptions utilized in the design criteria are uncertain. The uncertainties of inert atmospheres for grinding and flotation as well as pyrite depressants were answered by the Surface Control Project. It was determined that inerting was not required and no ``new`` reagents were presented that improved the flotation results. In addition, Tasks 5 and 6 results indicated the required reagent dosage for conventional flotation and advanced flotation. Task 5 results also indicated the need for a clean coal,thickener, the flocculent dosages for both the clean coal and refuse thickeners, and final dewatering requirements. The results from Tasks 5 and 6 and summarized in Task 7 indicate several uncertainties that require continuous long duration testing. The first is the possibility of producing a grab product for both the Pittsburgh and Illinois No. 6 coals in conventional flotation. Second what does long-term recirculation of clarified water do to the product quality? The verification process and real data obtained from Tasks 5 and 6 greatly reduced the capital and operating costs for the process. This was anticipated and the test work indeed provided confirming data.

  6. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 19, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-11-01

    The first system to test in the advanced DOE POC was the grinding circuit. The grinding circuit consists of the mill classifying cyclones in reverse closed circuit with the ball mill. Reverse closed circuit means the incoming feed and ball mill product are sized in the mill classifying cyclones ahead of the ball mill. This permits removal of natural-sized material and ground-sized material before recirculation through the ball mill. Numerous tests were conducted to establish the correct combination of orifice sizes, pressures and grinding media to meet the design criteria of 95% passing 200 mesh in the column flotation feed. The results from this test work are shown on Table 13.1, Grinding Circuit Test Results and graphically on Figure 13.2 and 13.3. These graphs show the relationship to Column Feed Rate Versus Size of Column Feed and Column Feed Rate Versus Column Feed Mean Particle Size. Our examination of the data indicates that the ball mill must have the smaller grinding media, and the mill classifying cyclone must be arranged as shown in test 93041901. The next step in the test plan was the 16-test resolution IV fractional factorial experiment of a 2{sup 6-2} experiment to determine major interaction of operating parameters. The column flotation independent variables are shown on Table 13.2, and the proposed test matrix is shown on Table 13.3.

  7. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 11, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  8. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  9. Development of advanced NO{sub x} control concepts for coal-fired utility boilers. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO{sub x}, process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayed in Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO{sub x}, by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0{sub 2}. Assuming that 85 percent of the newly formed N0{sub 2} can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO{sub x}, process has been shown capable of reducing NO{sub 2}, by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0{sub 2} formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  10. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 12, July--September 1995

    SciTech Connect

    1995-11-27

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The goals for emissions and plant efficiency are: NO{sub x} emissions not greater than 0.1 lb/million Btu; SO{sub x} emissions not greater than 0.1 lb/million Btu; particulate emissions not greater than 0.01 lb/million Btu; and net plant efficiency (HHV basis) not less than 42%. Other goals include: improved ash disposability and reduced waste generation; and reduced air toxics emissions. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives, and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24- month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36- month period and will include POCTF detailed design, construction, testing, and evaluation.

  11. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect

    1982-10-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  12. Induced Ginibre ensemble of random matrices and quantum operations

    NASA Astrophysics Data System (ADS)

    Fischmann, Jonit; Bruzda, Wojciech; Khoruzhenko, Boris A.; Sommers, Hans-Jürgen; Życzkowski, Karol

    2012-02-01

    A generalization of the Ginibre ensemble of non-Hermitian random square matrices is introduced. The corresponding probability measure is induced by the ensemble of rectangular Gaussian matrices via a quadratization procedure. We derive the joint probability density of eigenvalues for such an induced Ginibre ensemble and study various spectral correlation functions for complex and real matrices, and analyse universal behaviour in the limit of large dimensions. In this limit, the eigenvalues of the induced Ginibre ensemble cover uniformly a ring in the complex plane. The real induced Ginibre ensemble is shown to be useful to describe the statistical properties of evolution operators associated with random quantum operations for which the dimensions of the input state and the output state do differ.

  13. Light activated cell migration in synthetic extracellular matrices.

    PubMed

    Guo, Qiongyu; Wang, Xiaobo; Tibbitt, Mark W; Anseth, Kristi S; Montell, Denise J; Elisseeff, Jennifer H

    2012-11-01

    Synthetic extracellular matrices provide a framework in which cells can be exposed to defined physical and biological cues. However no method exists to manipulate single cells within these matrices. It is desirable to develop such methods in order to understand fundamental principles of cell migration and define conditions that support or inhibit cell movement within these matrices. Here, we present a strategy for manipulating individual mammalian stem cells in defined synthetic hydrogels through selective optical activation of Rac, which is an intracellular signaling protein that plays a key role in cell migration. Photoactivated cell migration in synthetic hydrogels depended on mechanical and biological cues in the biomaterial. Real-time hydrogel photodegradation was employed to create geometrically defined channels and spaces in which cells could be photoactivated to migrate. Cell migration speed was significantly higher in the photo-etched channels and cells could easily change direction of movement compared to the bulk hydrogels.

  14. Further thoughts on the utility of risk matrices.

    PubMed

    Ball, David J; Watt, John

    2013-11-01

    Risk matrices are commonly encountered devices for rating hazards in numerous areas of risk management. Part of their popularity is predicated on their apparent simplicity and transparency. Recent research, however, has identified serious mathematical defects and inconsistencies. This article further examines the reliability and utility of risk matrices for ranking hazards, specifically in the context of public leisure activities including travel. We find that (1) different risk assessors may assign vastly different ratings to the same hazard, (2) even following lengthy reflection and learning scatter remains high, and (3) the underlying drivers of disparate ratings relate to fundamentally different worldviews, beliefs, and a panoply of psychosocial factors that are seldom explicitly acknowledged. It appears that risk matrices when used in this context may be creating no more than an artificial and even untrustworthy picture of the relative importance of hazards, which may be of little or no benefit to those trying to manage risk effectively and rationally.

  15. Parikh matrices of words under a generalized Thue morphism

    NASA Astrophysics Data System (ADS)

    Subramanian, K. G.; Isawasan, Pradeep; Venkat, Ibrahim; Khader, Ahamad Tajudin

    2013-10-01

    Parikh matrix of a word w, which is a sequence of symbols from an alphabet, was introduced by Mateescu et al. (2001) to count certain subwords in the word w. Subsequently, several investigations on various properties of Parikh matrices have been done. Parikh matrices of words that involve certain weak ratio-property are investigated by Subramanian et al (2009). On the other hand a morphism f is a mapping on words u,v whose images f(u), f(v) are also words with the property that f(uv) = f(u)f(v). Thue morphism on a binary alphabet is a special kind of morphism. Here we consider a generalization of Thue morphism, introduced by Seebold (2003) but restricting it to three symbols. We obtain certain properties of images of binary words under this generalized Thue morphism and also of their Parikh matrices, in the context of the weak ratio-property.

  16. Asymmetric correlation matrices: an analysis of financial data

    NASA Astrophysics Data System (ADS)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  17. Stable viscosity matrices for systems of conservation laws

    NASA Astrophysics Data System (ADS)

    Majda, Andrew; Pego, Robert L.

    A natural class of appropriate viscosity matrices for strictly hyperbolic systems of conservation laws in one space dimension, u1 + f( u) x = 0, uɛRm, is studied. These matrices are admissible in the sense that small-amplitude shock wave solutions of the hyperbolic system are shown to be limits of smooth traveling wave solutions of the parabolic system ut + f( u) x = v( Dux) x as ifv → 0 if D is in this class. The class is determined by a linearized stability requirement: The Cauchy problem for the equation u1 + f'( u0) ux = vDuxx should be well posed in L2 uniformly in v as v → 0. Previous examples of inadmissible viscosity matrices are accounted for through violation of the stability criterion.

  18. Large N matrices from a nonlocal spin system

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Hartnoll, Sean A.; Huijse, Liza; Martin, Victoria L.

    2015-10-01

    Large N matrices underpin the best understood models of emergent spacetime. We suggest that large N matrices can themselves be emergent from simple quantum mechanical spin models with finite dimensional Hilbert spaces. We exhibit the emergence of large N matrices in a nonlocal statistical physics model of order N2 Ising spins. The spin partition function is shown to admit a large N saddle described by a matrix integral, which we solve. The matrix saddle is dominant at high temperatures, metastable at intermediate temperatures and ceases to exist below a critical order one temperature. The matrix saddle is disordered in a sense we make precise and competes with ordered low energy states. We verify our analytic results by Monte Carlo simulation of the spin system.

  19. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  20. Evaluation of matrices for the sorption and biodegradation of phenanthrene.

    PubMed

    Leglize, Pierre; Saada, Alain; Berthelin, Jacques; Leyval, Corinne

    2006-07-01

    Permeable reactive barriers (PRBs), a new cost effective technology for the remediation of contaminated groundwater, have rarely been considered for PAH contamination. We evaluated three candidate matrices (activated carbon (AC), pouzzolana coated (PzF) or not (Pz) with heavy fuel oil) for phenanthrene (PHE) sorption capacity and the biodegradation of adsorbed PHE. Adsorption-desorption batch experiments showed higher sorption capacity of AC than PzF (60 fold) and Pz (1,500 fold). Sorption isotherms were not linear for all matrices as described by a Freundlich model. Phenanthrene desorption from AC and PzF within 48 h was limited (1-3%). Mineralization of (14)C-PHE by a PAH-degrading bacterial strain increased in the presence of AC and Pz (+16 and +12%). Among the three matrices, AC may be a good candidate for PRBs due to high adsorption, low desorption and increased PHE degradation.