Science.gov

Sample records for advanced protein crystal

  1. Advanced Protein Crystallization Facility (APCF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  2. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  3. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  4. Definition study for temperature control in advanced protein crystal growth

    NASA Astrophysics Data System (ADS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-09-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  5. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  6. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  7. Breadboard activities for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.

  8. In situ observation of elementary growth processes of protein crystals by advanced optical microscopy.

    PubMed

    Sazaki, Gen; Van Driessche, Alexander E S; Dai, Guoliang; Okada, Masashi; Matsui, Takuro; Otálora, Fermin; Tsukamoto, Katsuo; Nakajima, Kazuo

    2012-07-01

    To start systematically investigating the quality improvement of protein crystals, the elementary growth processes of protein crystals must be first clarified comprehensively. Atomic force microscopy (AFM) has made a tremendous contribution toward elucidating the elementary growth processes of protein crystals and has confirmed that protein crystals grow layer by layer utilizing kinks on steps, as in the case of inorganic and low-molecular-weight compound crystals. However, the scanning of the AFM cantilever greatly disturbs the concentration distribution and solution flow in the vicinity of growing protein crystals. AFM also cannot visualize the dynamic behavior of mobile solute and impurity molecules on protein crystal surfaces. To compensate for these disadvantages of AFM, in situ observation by two types of advanced optical microscopy has been recently performed. To observe the elementary steps of protein crystals noninvasively, laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM) was developed. To visualize individual mobile protein molecules, total internal reflection fluorescent (TIRF) microscopy, which is widely used in the field of biological physics, was applied to the visualization of protein crystal surfaces. In this review, recent progress in the noninvasive in situ observation of elementary steps and individual mobile protein molecules on protein crystal surfaces is outlined.

  9. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  10. [Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology].

    PubMed

    Zhou, Xue-Yong; Liu, Ning; Zhao, Man; Li, He; Zhou, Lang; Tang, Zong-Wen; Cao, Fei; Li, Wei

    2011-05-01

    With the large scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystal proteins in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. These insecticidal crystal proteins can be released into the soil continuously in the growing period of Bt plants. If their accumulation of the insecticidal crystal proteins exceeds consumption by insect larvae and degradation by the environmental factors, these insecticidal crystal proteins could constitute a hazard to non-target insects and soil microbiota. There are three main ways to release insecticidal crystal proteins into soil for Bt plants: root exudates, pollen falling, and crop reside returning. The Bt insecticidal crystal proteins released into soil can be adsorbed rapidly by active soil particles and the absorption equilibrium attained within 1-3 h. The adsorption protects Bt insecticidal crystal proteins against soil microbial degradation or enzyme degradation, which leads to remarkable prolong of the persistence of insecticidal activity. The change of soil microorganism species is an important index for evaluating the effect of Bt plants on soil ecology. The research showed that these insecticidal crystal proteins released by the Bt plant root exudates or Bt organism had no toxicity to the soil earthworms, nematodes, protozoa, bacteria and fungi; however, it could reduce the mycelium length of the arbuscular mycorrhizal fungi (AMF) and restrain AMF to form invasion unit. The influencing degree of Bt protein on soil enzyme activity varied with the releasing modes or growth period of Bt crops. Bt Cry1Ab protein can be taken up from soil by parts of following crops; however, different results were obtained with different commercial kits. To better understand the soil ecological evaluation about the insecticidal crystal proteins released from transgenic Bt crops, this review provides a comprehensive overview about the release

  11. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  12. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  13. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  14. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  15. Approaches to automated protein crystal harvesting

    SciTech Connect

    Deller, Marc C. Rupp, Bernhard

    2014-01-28

    Approaches to automated and robot-assisted harvesting of protein crystals are critically reviewed. While no true turn-key solutions for automation of protein crystal harvesting are currently available, systems incorporating advanced robotics and micro-electromechanical systems represent exciting developments with the potential to revolutionize the way in which protein crystals are harvested.

  16. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  17. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  18. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  19. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  20. Protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1988-01-01

    Protein crystal growth is a major experimental problem and is the bottleneck in widespread applications of protein crystallography. Research efforts now being pursued and sponsored by NASA are making fundamental contributions to the understanding of the science of protein crystal growth. Microgravity environments offer the possibility of performing new types of experiments that may produce a better understanding of protein crystal growth processes and may permit growth environments that are more favorable for obtaining high quality protein crystals. A series of protein crystal growth experiments using the space shuttle was initiated. The first phase of these experiments was focused on the development of micro-methods for protein crystal growth by vapor diffusion techniques, using a space version of the hanging drop method. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth.

  1. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  2. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  3. Which strategy for a protein crystallization project?

    NASA Technical Reports Server (NTRS)

    Kundrot, C. E.

    2004-01-01

    The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryocrystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.

  4. Which Strategy for a Protein Crystallization Project?

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.

    2003-01-01

    The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryo-crystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.

  5. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  6. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  7. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  8. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  9. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  10. Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug.

    PubMed

    Han, Rui-Zhi; Xu, Guo-Chao; Dong, Jin-Jun; Ni, Ye

    2016-06-01

    Arginine deiminase (ADI) is an important arginine-degrading enzyme with wide applications, in particular as an anti-cancer agent for the therapy of arginine-auxotrophic tumors. In recent years, novel ADIs with excellent properties have been identified from various organisms, and crystal structures of ADI were investigated. To satisfy the requirements of potential therapeutic applications, protein engineering has been performed to improve the activity and properties of ADIs. In this mini-review, we systematically summarized the latest progress on identification and crystal structure of ADIs, and protein engineering strategies for improved enzymatic properties, such as pH optimum, K m and k cat values, and thermostability. We also outlined the PEGylation of ADI for improved circulating half-life and immunogenicity, as well as their performance in clinical trials. Finally, perspectives on extracellular secretion and property improvement of ADI were discussed.

  11. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  12. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  13. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  14. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  15. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  16. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  17. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  18. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  19. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment.

  20. Protein Crystallization Apparatus for Microgravity

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Protein Crystallization for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A droplet of solution with protein molecules dissolved in it is isolated in the center of a small well. In orbit, an elastomer seal is lifted so the solution can evaporate and be absorbed by a wick material. This raises the concentration of the solution, thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.

  1. Protein crystallization apparatus for microgravity

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Protein Crystallization for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A droplet of solution with protein molecules dissolved in it is isolated in the center of a small well. In orbit, an elastomer seal is lifted so the solution can evaporate and be absorbed by a wick material. This raises the concentration of the solution, thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.

  2. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  3. Surface Relaxation in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Boutet, S.; Robinson, I. K.; Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2002-01-01

    Surface X-ray diffraction measurements were performed on (111) growth faces of crystals of the Cellular iron-storage protein horse spleen ferritin. Crystal Trunkation Rods (CTR) were measured. A fit of the measured profile of the CTR revealed a surface roughness of 48 +/- 4.5 A and a top layer spacing contraction of 3.9 +/- 1.5%. In addition to the peak from the CTR, the rocking curves of the crystals displayed unexpected extra peaks. Multiple-scattering is demonstrated to account for them. Future applications of the method could allow the exploration of hydration effects on the growth of protein crystals.

  4. Thermal crystallization mechanism of silk fibroin protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao

    stage before crystallization. (3) The beta-sheet crystallization kinetics in silk fibroin protein were measured using X-ray, FTIR and heat flow, and the structure reveals the formation mechanism of the silk crystal network. Avrami kinetics theories, which were established for studies of synthetic polymer crystal growth, were for the first time extended to investigate protein self-assembly in multiblock silk fibroin samples. The Avrami exponent, n, was close to two for all methods, indicating formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in most synthetic homopolymers. A microphase separation pattern after chymotrypsin enzyme biodegradation was shown in the protein structures using scanning electron microscopy. A model was then used to explain the crystallization of silk fibroin protein by analogy to block copolymers. (4) The effects of metal ions during the crystallization of silk fibroin was investigated using thermal analysis. Advanced thermal analysis methods were used to analyze the thermal protein-metallic ion interactions in silk fibroin proteins. Results show that K+ and Ca2+ metallic salts play different roles in silk fibroin proteins, which either reduce (K+) or increase (Ca2+ ) the glass transition (Tg) of pure silk protein and affect the thermal stability of this structure.

  5. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel

    1992-01-01

    The overall scientific goals and rationale for growing protein crystals in microgravity are discussed. Data on the growth of human serum albumin crystals which were produced during the First International Microgravity Laboratory (IML-1) are presented. Potential scientific advantages of the utilization of Space Station Freedom are discussed.

  6. Measuring phonons in protein crystals

    NASA Astrophysics Data System (ADS)

    Niessen, Katherine A.; Snell, Edward; Markelz, A. G.

    2013-03-01

    Using Terahertz near field microscopy we find orientation dependent narrow band absorption features for lysozyme crystals. Here we discuss identification of protein collective modes associated with the observed features. Using normal mode calculations we find good agreement with several of the measured features, suggesting that the modes arise from internal molecular motions and not crystal phonons. Such internal modes have been associated with protein function.

  7. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  8. Protein crystal nucleation in pores

    PubMed Central

    Nanev, Christo N.; Saridakis, Emmanuel; Chayen, Naomi E.

    2017-01-01

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials. PMID:28091515

  9. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  10. Commercial Protein Crystal Growth: Protein Crystallization Facility (CPCG-H)

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    2002-12-01

    Within the human body, there are thousands of different proteins that serve a variety of different functions, such as making it possible for red blood cells to carry oxygen in our bodies. Yet proteins can also be involved in diseases. Each protein has a particular chemical structure, which means it has a unique shape. It is this three-dimensional shape that allows each protein to do its job by interacting with chemicals or binding with other proteins. If researchers can determine the shape, or shapes, of a protein, they can learn how it works. This information can then be used by the pharmaceutical industry to develop new drugs or improve the way medications work. The NASA Commercial Space Center sponsoring this experiment - the Center for Biophysical Sciences and Engineering at the University of Alabama at Birmingham - has more than 60 industry and academic partners who grow protein crystals and use the information in drug design projects.

  11. Compact Apparatus Grows Protein Crystals

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.; Delucas, Lawrence J.; Suddath, Fred L.; Snyder, Robert S.; Herren, Blair J.; Carter, Daniel C.; Yost, Vaughn H.

    1989-01-01

    Laboratory apparatus provides delicately balanced combination of materials and chemical conditions for growth of protein crystals. Apparatus and technique for growth based on hanging-drop method for crystallization of macromolecules. Includes pair of syringes with ganged plungers. One syringe contains protein solution; other contains precipitating-agent solution. Syringes intrude into cavity lined with porous reservoir material saturated with 1 mL or more of similar precipitating-agent solution. Prior to activation, ends of syringes plugged to prevent transport of water vapor among three solutions.

  12. Protein crystallization studies

    NASA Technical Reports Server (NTRS)

    Lyne, James Evans

    1996-01-01

    The Structural Biology laboratory at NASA Marshall Spaceflight Center uses x-ray crystallographic techniques to conduct research into the three-dimensional structure of a wide variety of proteins. A major effort in the laboratory involves an ongoing study of human serum albumin (the principal protein in human plasma) and its interaction with various endogenous substances and pharmaceutical agents. Another focus is on antigenic and functional proteins from several pathogenic organisms including the human immunodeficiency virus (HIV) and the widespread parasitic genus, Schistosoma. My efforts this summer have been twofold: first, to identify clinically significant drug interactions involving albumin binding displacement and to initiate studies of the three-dimensional structure of albumin complexed with these agents, and secondly, to establish collaborative efforts to extend the lab's work on human pathogens.

  13. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  14. Protein and virus crystal growth on international microgravity laboratory-2.

    PubMed Central

    Koszelak, S; Day, J; Leja, C; Cudney, R; McPherson, A

    1995-01-01

    Two T = 1 and one T = 3 plant viruses, along with a protein, were crystallized in microgravity during the International Microgravity Laboratory-2 (IML-2) mission in July of 1994. The method used was liquid-liquid diffusion in the European Space Agency's Advanced Protein Crystallization Facility (APCF). Distinctive alterations in the habits of Turnip Yellow Mosaic Virus (TYMV) crystals and hexagonal canavalin crystals were observed. Crystals of cubic Satellite Tobacco Mosaic Virus (STMV) more than 30 times the volume of crystals grown in the laboratory were produced in microgravity. X-ray diffraction analysis demonstrated that both crystal forms of canavalin and the cubic STMV crystals diffracted to significantly higher resolution and had superior diffraction properties as judged by relative Wilson plots. It is postulated that the establishment of quasi-stable depletion zones around crystals growing in microgravity are responsible for self-regulated and more ordered growth. Images FIGURE 1 FIGURE 2 FIGURE 6 PMID:7669890

  15. The MORPHEUS protein crystallization screen.

    PubMed

    Gorrec, Fabrice

    2009-12-01

    A 96-condition initial screen for protein crystallization, called MORPHEUS, has been developed at the MRC Laboratory of Molecular Biology, Cambridge, England (MRC-LMB). The concept integrates several innovative approaches, such as chemically compatible mixes of potential ligands, new buffer systems and precipitant mixes that also act as cryoprotectants. Instead of gathering a set of crystallization conditions that have already been successful, a selection of molecules frequently observed in the Protein Data Bank (PDB) to co-crystallize with proteins has been made. These have been put together in mixes of similar chemical behaviour and structure, and combined with buffers and precipitant mixes that were also derived from PDB searches, to build the screen de novo. Observations made at the MRC-LMB and many practical aspects were also taken into account when formulating the screen. The resulting screen is easy to use, comprehensive yet small, and has already yielded a list of crystallization hits using both known and novel samples. As an indicator of success, the screen has now become one of the standard screens used routinely at the MRC-LMB when searching initial crystallization conditions for biological macromolecules.

  16. Overexpression, Isolation, and Crystallization of Proteins

    NASA Astrophysics Data System (ADS)

    Skelly, Jane V.; Madden, C. Bernadette

    Rapid developments in recombinant technology have made it possible to overproduce selected proteins of specific interest to the levels required for structural analysis by X-ray crystallography. High-level gene expression has facilitated the purification of many proteins that are normally only expressed at low concentrations, as well as those that have proven difficult to purify to homogeneity from natural sources. Furthermore, advances in oligonucleotide site-directed mutagenesis have enabled proteins to be engineered so as to possess certain features that may confer stability or assist in then isolation. There are several examples of proteins that, despite rigorous purification from their natural source, have defied crystallization attempts, e.g., human growth hormone, but have been successfully crystallized from recombinant sources (1). The lack of posttranslational processing in bacterial expressed proteins can often be an advantage to the crystallographer where microheterogeneity presents a problem. Indeed, certain features or residues of a protein that are believed to impede crystal formation by preventing a close-packing arrangement may be successfully deleted by genetic manipulation without destroying its essential functionality (2).

  17. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  18. Process for Encapsulating Protein Crystals

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin

    2003-01-01

    A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise

  19. Mixing it up for Protein Crystallization

    NASA Astrophysics Data System (ADS)

    Hansen, Carl; Sommer, Morten; Berger, James; Quake, Stephen

    2005-03-01

    In the post-genomic era, X-ray crystallography has emerged as the workhorse of large-scale structural biology initiatives that seek to understand protein function and interaction at the atomic scale. Despite impressive technological advances in X-ray sources, phasing techniques, and computing power, the determination of protein structure continues to be severely hampered by the difficulties in obtaining high-quality protein crystals. Emergent technologies utilizing microfluidics now have the potential to solve these problems on several levels. We will present two microfluidic devices that have been shown to dramatically improve protein crystallization. The first is a formulation device which allows for the rapid combinatorial mixing of reagents to systematically explore protein solubility behavior. A priori solubility mapping allows for the rational design of optimal crystallization screens that are tailored to a specific target. A second screening device allows for massively parallel sample processing while exploiting the properties of mass transport manifest at the micron scale to ensure slow and efficient mixing kinetics that are difficult to achieve in macroscopic reactors.

  20. Slow cooling of protein crystals.

    PubMed

    Warkentin, Matthew; Thorne, Robert E

    2009-10-01

    Cryoprotectant-free thaumatin crystals have been cooled from 300 to 100 K at a rate of 0.1 K s(-1) - 10(3)-10(4) times slower than in conventional flash cooling - while continuously collecting X-ray diffraction data, so as to follow the evolution of protein lattice and solvent properties during cooling. Diffraction patterns show no evidence of crystalline ice at any temperature. This indicates that the lattice of protein molecules is itself an excellent cryoprotectant, and with sodium potassium tartrate incorporated from the 1.5 M mother liquor ice nucleation rates are at least as low as in a 70% glycerol solution. Crystal quality during slow cooling remains high, with an average mosaicity at 100 K of 0.2 degrees . Most of the mosaicity increase occurs above approximately 200 K, where the solvent is still liquid, and is concurrent with an anisotropic contraction of the unit cell. Near 180 K a crossover to solid-like solvent behavior occurs, and on further cooling there is no additional degradation of crystal order. The variation of B factor with temperature shows clear evidence of a protein dynamical transition near 210 K, and at lower temperatures the slope dB/dT is a factor of 3-6 smaller than has been reported for any other protein. These results establish the feasibility of fully temperature controlled studies of protein structure and dynamics between 300 and 100 K.

  1. Microfluidic Approaches for Protein Crystal Structure Analysis.

    PubMed

    Maeki, Masatoshi; Yamaguchi, Hiroshi; Tokeshi, Manabu; Miyazaki, Masaya

    2016-01-01

    This review summarizes two microfluidic-based protein crystallization methods, protein crystallization behavior in the microfluidic devices, and their applications for X-ray crystal structure analysis. Microfluidic devices provide many advantages for protein crystallography; they require small sample volumes, provide high-throughput screening, and allow control of the protein crystallization. A droplet-based protein crystallization method is a useful technique for high-throughput screening and the formation of a single crystal without any complicated device fabrication process. Well-based microfluidic platforms also enable effective protein crystallization. This review also summarizes the protein crystal growth behavior in microfluidic devices as, is known from viewpoints of theoretical and experimental approaches. Finally, we introduce applications of microfluidic devices for on-chip crystal structure analysis.

  2. Protein Crystal Growth With the Aid of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark

    2003-01-01

    Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.

  3. Studying how protein crystals form

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Watching molecules of the iron-storing protein apoferritin come together to form a nucleus reveals some interesting behavior. In this series of images, researchers observed clusters of four molecules at the corners of a diamond shape (top). As more molecules attach to the cluster, they arrange themselves into rods (second from top), and a raft-like configuration of molecules forms the critical nucleus (third from top), suggesting that crystal growth is much slower than it could be were the molecules arranged in a more compact formation. In the final image, a crystallite consisting of three layers containing approximately 60 to 70 molecules each is formed. Atomic force microscopy made visualizing the process of nucleation possible for the first time. The principal investigator is Peter Vekilov, of the University of Alabama in Huntsville. Vekilov's team at UAH studies protein solutions as they change phases from liquids to crystalline solids. They want to know if the molecules in the solution interact with one another, and if so, how, from the perspectives of thermodynamics and kinetics. They want to understand which forces -- electrical, electrostatic, hydrodynamic, or other kinds of forces -- are responsible for the interactions. They also study nucleation, the begirning stage of crystallization. This process is important to understand because it sets the stage for crystal growth in all kinds of solutions and liquid melts that are important in such diverse fields as agriculture, medicine, and the fabrication of metal components. Nucleation can determine the rate of crystal growth, the number of crystals that will be formed, and the quality and size of the crystals.

  4. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  5. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  6. Laser Irradiated Growth of Protein Crystal

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Hosokawa, Youichiroh; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi; Yoshimura, Masashi; Tsunaka, Yasuo; Morikawa, Masaaki; Kanaya, Shigenori; Masuhara, Hiroshi; Kai, Yasushi; Sasaki, Takatomo

    2003-07-01

    We succeeded in the first ever generation of protein crystals by laser irradiation. We call this process Laser Irradiated Growth Technique (LIGHT). Effective crystallization was confirmed by applying an intense femtosecond laser. The crystallization period was dramatically shortened by LIGHT. In addition, protein crystals were obtained by LIGHT from normally uncrystallized conditions. These results indicate that intense femtosecond laser irradiation generates crystal nuclei; protein crystals can then be grown from the nuclei that act as seeds in a supersaturated solution. The nuclei formation is possible primarily due to nonlinear nucleation processes of an intense femtosecond laser with a peak intensity of over a gigawatt (GW).

  7. Integrated Protein-Crystal-Growing Apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Pusey, Marc L.

    1991-01-01

    Proposed apparatus for research on growth of protein crystals dispenses drops of protein and precipitating solutions, provides controlled environment for crystalization, and stores crystals. Intended for use in microgravity of outer space, concept of apparatus also useful in design of self-contained terrestrial experiments for remote and/or automatic execution.

  8. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1991-01-01

    The objective of this research is to study the effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality. The application of graphoepitaxy (artificial epitaxy) to proteins is detailed. The development of a method for the control of nucleation is discussed. The factor affecting the morphology of isocitrate lyase crystals is presented.

  9. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  10. Classification of protein crystallization imagery.

    PubMed

    Zhu, Xiaoqing; Sun, Shaohua; Bern, Marshall

    2004-01-01

    We investigate automatic classification of protein crystallization imagery, and evaluate the performance of several modern mathematical tools when applied to the problem. For feature extraction, we try a combination of geometric and texture features; for classification algorithms, the support vector machine (SVM) is compared with an automatic decision-tree classifier. Experimental results from 520 images are presented for the binary classification problem: separating successful trials from failed attempts. The best false positive and false negative rates are at 14.6% and 9.6% respectively, achieved by feeding both sets of features to the decision-tree classifier with boosting.

  11. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  12. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  13. Crystal cataracts: Human genetic cataract caused by protein crystallization

    NASA Astrophysics Data System (ADS)

    Pande, Ajay; Pande, Jayanti; Asherie, Neer; Lomakin, Aleksey; Ogun, Olutayo; King, Jonathan; Benedek, George B.

    2001-05-01

    Several human genetic cataracts have been linked recently to point mutations in the D crystallin gene. Here we provide a molecular basis for lens opacity in two genetic cataracts and suggest that the opacity occurs because of the spontaneous crystallization of the mutant proteins. Such crystallization of endogenous proteins leading to pathology is an unusual event. Measurements of the solubility curves of crystals of the Arg-58 to His and Arg-36 to Ser mutants of D crystallin show that the mutations dramatically lower the solubility of the protein. Furthermore, the crystal nucleation rate of the mutants is enhanced considerably relative to that of the wild-type protein. It should be noted that, although there is a marked difference in phase behavior, there is no significant difference in protein conformation among the three proteins.

  14. Protein-crystal growth experiment (planned)

    NASA Technical Reports Server (NTRS)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  15. Control of Protein Crystal Nucleation and Growth Using Stirring Solution

    NASA Astrophysics Data System (ADS)

    Niino, Ai; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-11-01

    We have previously developed a protein crystallization technique using a stirring protein solution and revealed that (i) continuous stirring prevents excess spontaneous nucleation and accelerates the growth of protein crystals and (ii) prestirring (solution stirring in advance) promotes the crystal nucleation of hen egg-white lysozyme. In bovine adenosine deaminase (ADA) crystallization, continuous stirring improves the crystal quality but elongates the nucleation time. In this paper, in order to control both the crystal nucleation and growth of ADA using a Micro-Stirring technique, we carried out five different stirring patterns such as (i) no stirring, (ii) continuous stirring, (iii) prestirring, (iv) poststirring (stirring late in the growth period) and (v) restirring (combined pre- and poststirring). The results showed that high-quality well-shaped crystals were obtained under the continuous stirring and restirring conditions and the nucleation time under the prestirring and restirring conditions was shorter than that under the continuous stirring and poststirring conditions. Consequently, high-quality crystals were promptly obtained under the restirring condition. These results suggest that we are able to control both the nucleation and growth of protein crystals with the stirring techniques.

  16. Method for controlling protein crystallization

    NASA Technical Reports Server (NTRS)

    Noever, David A. (Inventor)

    1993-01-01

    A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.

  17. Gold nanoparticle capture within protein crystal scaffolds

    NASA Astrophysics Data System (ADS)

    Kowalski, Ann E.; Huber, Thaddaus R.; Ni, Thomas W.; Hartje, Luke F.; Appel, Karina L.; Yost, Jarad W.; Ackerson, Christopher J.; Snow, Christopher D.

    2016-06-01

    DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography.DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was

  18. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1989-01-01

    The mechanisms involved in protein crystallization and those parameters which influence the growth process and crystalline perfection were studied. The analysis of the flows around growing crystals is detailed. The preliminary study of the growth of isocitrate lyase and the crystal morphologies found are discussed. Preliminary results of controlled nucleation studies are presented.

  19. Compact Apparatus For Growth Of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Miller, Teresa Y.

    1991-01-01

    Compact apparatus proposed specifically for growth of protein crystals in microgravity also used in terrestrial laboratories to initiate and terminate growth at prescribed times automatically. Has few moving parts. Also contains no syringes difficult to clean, load, and unload and introduces contaminant silicon grease into crystallization solution. After growth of crystals terminated, specimens retrieved and transported simply.

  20. Improving the Quality of Protein Crystals Using Stirring Crystallization

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Matsumura, Hiroyoshi; Niino, Ai; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-04-01

    Recent reports state that a high magnetic field improves the crystal quality of bovine adenosine deaminase (ADA) with an inhibitor [Kinoshita et al.: Acta Cryst. D59 (2003) 1333]. In this paper, we examine the effect of stirring solution on ADA crystallization using a vapor-diffusion technique with rotary and figure-eight motion shakers. The probability of obtaining high-quality crystals is increased with stirring in a figure-eight pattern. Furthermore, rotary stirring greatly increased the probability of obtaining high-quality crystals, however, nucleation time was also increased. The crystal structure with the inhibitor was determined at a high resolution using a crystal obtained from a stirred solution. These results indicate that stirring with simple equipment is as useful as the high magnetic field technique for protein crystallization.

  1. The MORPHEUS II protein crystallization screen.

    PubMed

    Gorrec, Fabrice

    2015-07-01

    High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions.

  2. Approaches to automated protein crystal harvesting

    PubMed Central

    Deller, Marc C.; Rupp, Bernhard

    2014-01-01

    The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput. PMID:24637746

  3. Effect of Stirring Method on Protein Crystallization

    NASA Astrophysics Data System (ADS)

    Yaoi, Mari; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-10-01

    We previously proposed the use of solution stirring during the growth of protein crystals using the Micro-Stirring technique with a rotary shaker. In this paper, we report on the effects of a new type solution flow on the crystallization of hen egg-white lysozyme (HEWL) using a wave shaker. The time required for nucleation was reduced by wave stirring, but increased by rotary stirring. Nucleation was stimulated by wave stirring. This result indicates that protein crystal growth in a stirred solution is strongly dependent on the stirring method used and the solution flow. Therefore, optimized stirring conditions are essential for producing high-quality protein crystals.

  4. Crystallization of viruses and virus proteins

    NASA Astrophysics Data System (ADS)

    Sehnke, Paul C.; Harrington, Melissa; Hosur, M. V.; Li, Yunge; Usha, R.; Craig Tucker, R.; Bomu, Wu; Stauffacher, Cynthia V.; Johnson, John E.

    1988-07-01

    Methods for crystallizing six isometric plant and insect viruses are presented. Procedures developed for modifying, purifying and crystallizing coat protein subunits isolated from a virus forming asymmetric, spheroidal particles, stabilized almost exclusively by protein-RNA interactions, are also discussed. The tertiary and quaternary structures of small RNA viruses are compared.

  5. Insecticidal crystal proteins of Bacillus thuringiensis.

    PubMed Central

    Höfte, H; Whiteley, H R

    1989-01-01

    A classification for crystal protein genes of Bacillus thuringiensis is presented. Criteria used are the insecticidal spectra and the amino acid sequences of the encoded proteins. Fourteen genes are distinguished, encoding proteins active against either Lepidoptera (cryI), Lepidoptera and Diptera (cryII), Coleoptera (cryIII), or Diptera (cryIV). One gene, cytA, encodes a general cytolytic protein and shows no structural similarities with the other genes. Toxicity studies with single purified proteins demonstrated that every described crystal protein is characterized by a highly specific, and sometimes very restricted, insect host spectrum. Comparison of the deduced amino acid sequences reveals sequence elements which are conserved for Cry proteins. The expression of crystal protein genes is affected by a number of factors. Recently, two distinct sigma subunits regulating transcription during different stages of sporulation have been identified, as well as a protein regulating the expression of a crystal protein at a posttranslational level. Studies on the biochemical mechanisms of toxicity suggest that B. thuringiensis crystal proteins induce the formation of pores in membranes of susceptible cells. In vitro binding studies with radiolabeled toxins demonstrated a strong correlation between the specificity of B. thuringiensis toxins and the interaction with specific binding sites on the insect midgut epithelium. The expression of B. thuringiensis crystal proteins in plant-associated microorganisms and in transgenic plants has been reported. These approaches are potentially powerful strategies for the protection of agriculturally important crops against insect damage. Images PMID:2666844

  6. Protein crystal growth (5-IML-1)

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1992-01-01

    Proteins (enzymes, hormones, immunoglobulins) account for 50 pct. or more of the dry weight of most living systems. A detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting projects have terminated at the crystal growth stage. In principle, there are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor is the elimination of density driven convective flow. Other factors that can be controlled in the absence of gravity is the sedimentation of growing crystals in a gravitational field, and the potential advantage of doing containerless crystal growth. As a result of these theories and facts, one can readily understand why the microgravity environment of an Earth orbiting vehicle seems to offer unique opportunities for the protein crystallographer. This perception has led to the establishment of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project. The results of experiments already performed during STS missions have in many cases resulted in large protein crystals which are structurally correct. Thus, the near term objective of the PCG/ME project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  7. Radiation driven collapse of protein crystals.

    PubMed

    Boutet, Sébastien; Robinson, Ian K

    2006-01-01

    During coherent X-ray diffraction measurements on crystals of ferritin at room temperature using monochromatic undulator radiation from the Advanced Photon Source, a sudden lattice contraction was observed following a characteristic latent period and ultimately leading to the collapse of the crystal. The progression of this collapse is analysed using a two-state Hendricks-Teller model. It reveals that 55% of the layers collapse by 1.6% before the crystal completely stops diffracting.

  8. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1990-01-01

    The effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality was studied. The proper design of the flight hardware and experimental protocols are highly dependent on understanding the factors which influence the nucleation and growth of crystals of biological macromolecules. Thus, those factors are investigated and the body of knowledge which has been built up for small molecule crystallization. These data also provide a basis of comparison for the results obtained from low-g experiments. The flows around growing crystals are detailed. The preliminary study of the growth of isocitrate lyase, the crystal morphologies found and the preliminary x ray results are discussed. The design of two apparatus for protein crystal growth by temperature control are presented along with preliminary results.

  9. The MORPHEUS II protein crystallization screen

    SciTech Connect

    Gorrec, Fabrice

    2015-06-27

    MORPHEUS II is a 96-condition initial crystallization screen formulated de novo. The screen incorporates reagents selected from the Protein Data Bank to yield crystals that are not observed in traditional conditions. In addition, the formulation facilitates the optimization and cryoprotection of crystals. High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions.

  10. Electrostatic Stabilization Of Growing Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1991-01-01

    Proposed technique produces large crystals in compact, economical apparatus. Report presents concept for supporting protein crystals during growth in microgravity. Yields crystals larger and more-nearly perfect than those grown on Earth. Combines best features of sandwich-drop and electrostatic-levitation methods of support. Drop of protein solution inserted between pair of glass or plastic plates, as in sandwich-drop-support method. Electrostatically charged ring confines drop laterally and shapes it, as in electrostatic technique. Apparatus also made to accommodate several drops simultaneously between same pair of supporting plates. Drops can be inserted and crystals removed through ducts in plates.

  11. The Protein Crystallization Facility STS-95

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Protein Crystallization Facility will be used to grow crystals of human insulin. Insulin is the primary treatment for diabetes, the fourth leading cause of death by disease. Research on STS-95 is aimed at producing crystals of even higher quality, which when combined with new analysis techniques will permit a better understanding of the interaction between insulin and its receptor. This has the potential to aid in the development of a new commercially available insulin product with unique time release properties that could reduce fluctuations in a patient's blood sugar level. The Protein Crystallization Facility supports large-scale commercial investigations.

  12. Protein Crystallization Using Room Temperature Ionic Fluids

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Paley, Mark Steve; Turner, Megan B.; Rogers, Robin D.

    2006-01-01

    The ionic liquids (ILs) 1-butyl-3-methylimidizolium chloride (C4mim-C1), 1-butyl-3- methylimidizolium diethyleneglycol monomethylethersulfate ([C4mim]DEMGS), and 1-butyl-1 -methylpyrollidinium dihydrogenphosphate ([p1,4]dhp) were tested for their effects on the crystallization of the proteins canavalin, beta-lactoglobulin B, xylanase, and glucose isomerase, using a standard high throughput screen. The crystallization experiments were set up with the ILs added to the protein solutions at 0.2 and 0.4 M final concentrations. Crystallization droplets were set up at three proteixprecipitant ratios (1:1, 2:1, and 4:l), which served to progressively dilute the effects of the screen components while increasing the equilibrium protein and IL concentrations. Crystals were obtained for all four proteins at a number of conditions where they were not obtained from the IL-free control experiment. Over half of the protein-IL combinations tested had more successful outcomes than negative, where the IL-free crystallization was better than the corresponding IL-containing outcome, relative to the control. One of the most common causes of a negative outcome was solubilization of the protein by the IL, resulting in a clear drop. In one instance, we were able to use the IL-induced solubilizing to obtain beta-lactoglobulin B crystals from conditions that gave precipitated protein in the absence of IL. The results suggest that it may be feasible to develop ILs specifically for the task of macromolecule crystallization.

  13. Using Microfluidics to Decouple Nucleation and Growth of Protein Crystals.

    PubMed

    Shim, Jung-Uk; Cristobal, Galder; Link, Darren R; Thorsen, Todd; Fraden, Seth

    2007-01-01

    A high throughput, low volume microfluidic device has been designed to decouple the physical processes of protein crystal nucleation and growth. This device, called the Phase Chip, is constructed out of poly(dimethylsiloxane) (PDMS) elastomer. One of the Phase Chip's innovations is to exploit surface tension forces to guide each drop to a storage chamber. We demonstrate that nanoliter water-in-oil drops of protein solutions can be rapidly stored in individual wells thereby allowing the screening of 1000 conditions while consuming a total of only 10 mug protein on a 20 cm(2) chip. Another significant advance over current microfluidic devices is that each well is in contact with a reservoir via a dialysis membrane through which only water and other low molecular weight organic solvents can pass, but not salt, polymer, or protein. This enables the concentration of all solutes in a solution to be reversibly, rapidly, and precisely varied in contrast to current methods, such as the free interface diffusion or sitting drop methods, which are irreversible. The Phase Chip operates by first optimizing conditions for nucleation by using dialysis to supersaturate the protein solution, which leads to nucleation of many small crystals. Next, conditions are optimized for crystal growth by using dialysis to reduce the protein and precipitant concentrations, which leads small crystals to dissolve while simultaneously causing only the largest ones to grow, ultimately resulting in the transformation of many small, unusable crystals into a few large ones.

  14. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  15. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  16. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  17. Trace fluorescent labeling for protein crystallization

    PubMed Central

    Pusey, Marc; Barcena, Jorge; Morris, Michelle; Singhal, Anuj; Yuan, Qunying; Ng, Joseph

    2015-01-01

    Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent. PMID:26144224

  18. Convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    Protein crystals for X-ray diffraction study are usually grown resting on the bottom of a hanging drop of a saturated protein solution, with slow evaporation to the air in a small enclosed cell. The evaporation rate is controlled by hanging the drop above a reservoir of water, with its saturation vapor pressure decreased by a low concentration of a passive solute. The drop has a lower solute concentration, and its volume shrinks by evaporation until the molecular concentrations match. Protein crystals can also be grown from a seed crystal suspended or supported in the interior of a supersaturated solution. The main analysis of this report concerns this case because it is less complicated than hanging-drop growth. Convection effects have been suggested as the reason for the apparent cessation of growth at a certain rather small crystal size. It seeems that as the crystal grows, the number of dislocations increases to a point where further growth is hindered. Growth in the microgravity environment of an orbiting space vehicle has been proposed as a method for obtaining larger crystals. Experimental observations of convection effects during the growth of protein crystals have been reported.

  19. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  20. Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1998-01-01

    Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.

  1. Trace fluorescent labeling for protein crystallization

    SciTech Connect

    Pusey, Marc Barcena, Jorge; Morris, Michelle; Singhal, Anuj; Yuan, Qunying; Ng, Joseph

    2015-06-27

    The presence of a covalently bound fluorescent probe at a concentration of <0.5% does not affect the outcome of macromolecule crystallization screening experiments. Additionally, the fluorescence can be used to determine new, not immediately apparent, lead crystallization conditions. Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent.

  2. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  3. Protein Crystal Growth Dynamics and Impurity Incorporation

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Thomas, Bill

    2000-01-01

    The general concepts and theories of crystal growth are proven to work for biomolecular crystallization. This allowed us to extract basic parameters controlling growth kinetics - free surface energy, alpha, and kinetic coefficient, beta, for steps. Surface energy per molecular site in thermal units, alpha(omega)(sup 2/3)/kT approx. = 1, is close to the one for inorganic crystals in solution (omega is the specific molecular volume, T is the temperature). Entropic restrictions on incorporation of biomolecules into the lattice reduce the incorporation rate, beta, by a factor of 10(exp 2) - 10(exp 3) relative to inorganic crystals. A dehydration barrier of approx. 18kcal/mol may explain approx. 10(exp -6) times difference between frequencies of adding a molecule to the lattice and Brownian attempts to do so. The latter was obtained from AFM measurements of step and kink growth rates on orthorhombic lysozyme. Protein and many inorganic crystals typically do not belong to the Kossel type, thus requiring a theory to account for inequivalent molecular positions within its unit cell. Orthorhombic lysozyme will serve as an example of how to develop such a theory. Factors deteriorating crystal quality - stress and strain, mosaicity, molecular disorder - will be reviewed with emphasis on impurities. Dimers in ferritin and lysozyme and acetylated lysozyme, are microheterogeneous i.e. nearly isomorphic impurities that are shown to be preferentially trapped by tetragonal lysozyme and ferritin crystals, respectively. The distribution coefficient, K defined as a ratio of the (impurity/protein) ratios in crystal and in solution is a measure of trapping. For acetylated lysoyzme, K = 2.15 or, 3.42 for differently acetylated forms, is independent of both the impurity and the crystallizing protein concentration. The reason is that impurity flux to the surface is constant while the growth rate rises with supersaturation. About 3 times lower dimer concentration in space grown ferritin and

  4. Crystallization of Membrane protein under Microgravity

    NASA Astrophysics Data System (ADS)

    Henning, C.; Frank, J.; Laubender, G.; Fromme, P.

    2002-01-01

    Proteins are biological molecules which catalyse all essential reactions of cells. The knowledge on the structure of these molecular machines is necessary for the understanding of their function. Many diseases are caused by defects of membrane proteins. In order to develop new medical therapies the construction principle of the proteins must be known. The main difficulty in the determination of the structure of these membrane protein complexes is the crystallisation. Membrane proteins are normally not soluble in water and have therefore to be solubilised from the membranes by use of detergents. The whole protein-detergent micelle must be crystallised to maintain the functional integrity of the protein complexes. These difficulties are the reasons for the fact that crystals of membrane proteins are difficult to grow and most of them are badly ordered, being not appropriate for X-ray structure analysis. The crystallisation of proteins under microgravity leads to the growth of better-ordered crystals by reduction of nucleation rate and the undisturbed growth of the hovering seeds by the absence of sedimentation and convection. The successful crystallistation of a membrane protein under microgravity has been performed during the space shuttle missions USML2 and STS95 in the Space Shuttle with Photosystem I as model protein. Photosystem I is a large membrane protein complex which catalyses one of the first and fundamental steps in oxygen photosynthesis. The crystals of Photosystem I, grown under microgravity were twenty times larger than all Photosystem I crystals which have been grown on earth. They were the basis for the determination of an improved X-ray structure of Photo- system I. These experiments opened the way for the structure enlightenment of more membrane proteins on the basis of microgravity experiments. On board of the International Space Station ideal conditions for the crystallisation of proteins under zero gravity are existing.

  5. Crystallizing Membrane Proteins Using Lipidic Mesophases

    PubMed Central

    Caffrey, Martin; Cherezov, Vadim

    2009-01-01

    A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour. PMID:19390528

  6. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review.

    PubMed

    Cunningham, B T; Zhang, M; Zhuo, Y; Kwon, L; Race, C

    2016-05-15

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics.

  7. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  8. Datamining protein structure databanks for crystallization patterns of proteins.

    PubMed

    Valafar, Homayoun; Prestegard, James H; Valafar, Faramarz

    2002-12-01

    A study of 345 protein structures selected among 1,500 structures determined by nuclear magnetic resonance (NMR) methods, revealed useful correlations between crystallization properties and several parameters for the studied proteins. NMR methods of structure determination do not require the growth of protein crystals, and hence allow comparison of properties of proteins that have or have not been the subject of crystallographic approaches. One- and two-dimensional statistical analyses of the data confirmed a hypothesized relation between the size of the molecule and its crystallization potential. Furthermore, two-dimensional Bayesian analysis revealed a significant relationship between relative ratio of different secondary structures and the likelihood of success for crystallization trials. The most immediate result is an apparent correlation of crystallization potential with protein size. Further analysis of the data revealed a relationship between the unstructured fraction of proteins and the success of its crystallization. Utilization of Bayesian analysis on the latter correlation resulted in a prediction performance of about 64%, whereas a two-dimensional Bayesian analysis succeeded with a performance of about 75%.

  9. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1992-01-01

    A study is presented of the crystallization of isocitrate lyase (ICL) and the influence of the lack of thermal solutal convection in microgravity on the morphology of ICL crystals is discussed. The latest results of studies with thermonucleation are presented. These include the nucleation of a protein with retrograde solubility and an unknown solubility curve. A new design for a more microgravity compatible thermonuclear is presented.

  10. Protein crystallization - is it rocket science?

    PubMed

    DeLucas, L J.

    2001-07-01

    Fueled by initial space shuttle results, the National Aeronautics and Space Administration (NASA) has been supporting fundamental studies of macromolecular crystal growth since 1985. The majority of this research is directed at understanding the relationship between experimental variables and important crystal characteristics. The program has resulted in new methods and technology that will benefit the crystallography community's effort to meet the ever-increasing demand for protein structural information. Microgravity crystallization results indicate a potential impact on structural biology's more challenging problems, as soon as long-duration experiments can be performed on the International Space Station.

  11. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  12. Magnetic Control of Convection during Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  13. Rotating Vessels for Growing Protein Crystals

    NASA Technical Reports Server (NTRS)

    Cottingham, Paul

    2005-01-01

    Rotating vessels have been proposed as means of growing larger, more nearly uniform protein crystals than would otherwise be possible in the presence of normal Earth gravitation. Heretofore, nonrotating vessels have been used. It is difficult to grow high-quality protein crystals in the terrestrial gravitational field because of convection plumes created by the interaction between gravitation and density gradients in protein-solution depletion layers around growing crystals. The density gradients and the associated convection plumes cause the surfaces of growing crystals to be exposed to nonuniform solution densities, thereby causing the crystals to form in irregular shapes. The microgravitational environment of outer space has been utilized to eliminate gravitation-induced convection, but this approach is generally not favorable because of the high cost and limited availability of space flight. The use of a rotating vessel according to the proposal is intended to ameliorate the effects of gravitation and the resultant convection, relative to the corresponding effects in a non-rotating vessel. The rotation would exert an averaging effect over time, distributing the convective force on the depletion layer. Therefore, the depletion layer would be more nearly uniform and, as a result, the growing crystal would be more nearly perfect. The proposal admits of variations (see figure), including the following: The growing crystal could be rotated about its own central axis or an external axis. The crystal-growth vessel could be of any of various shapes, including cylindrical, hemispherical, conical, and combinations thereof. The crystal-growth vessel could be suspended in a viscous fluid in an outer vessel to isolate the growing crystal from both ambient vibrations and vibrations induced by a mechanism that drives the rotation. The rotation could be coupled to the crystal-growth vessel by viscous or magnetic means. The crystal-growth vessel could be supported within the

  14. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  15. Cry protein crystals: a novel platform for protein delivery.

    PubMed

    Nair, Manoj S; Lee, Marianne M; Bonnegarde-Bernard, Astrid; Wallace, Julie A; Dean, Donald H; Ostrowski, Michael C; Burry, Richard W; Boyaka, Prosper N; Chan, Michael K

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer's patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues.

  16. Searching for the Best Protein Crystals: Synchrotron Based Measurements of Protein Crystal Quality

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria; Snell, Edward H.; Bellamy, Henry; Pangborn, Walter; Nelson, Chris; Arvai, Andy; Ohren, Jeff; Pokross, Matt

    1999-01-01

    We are developing X-ray diffraction methods to quantitatively evaluate the quality of protein crystals. The ultimate use for these crystal quality will be to optimize crystal growth and freezing conditions to obtain the best diffraction data. We have combined super fine-phi slicing with highly monochromatic, low divergence synchrotron radiation and the ADSC Quantum 4 CCD detector at the Stanford Synchrotron Radiation laboratory beamline 1.5 to accurately measure crystal mosaicity. Comparisons of microgravity versus earth-grown insulin crystals using these methods will be presented.

  17. IR laser-induced protein crystal transformation

    SciTech Connect

    Kiefersauer, Reiner Grandl, Brigitte; Krapp, Stephan; Huber, Robert

    2014-05-01

    A novel method and the associated instrumentation for improving crystalline order (higher resolution of X-ray diffraction and reduced mosaicity) of protein crystals by precisely controlled heating is demonstrated. Crystal transformation is optically controlled by a video system. A method and the design of instrumentation, and its preliminary practical realisation, including test experiments, with the object of inducing phase changes of biomolecular crystals by controlled dehydration through heating with infrared (IR) light are described. The aim is to generate and select crystalline phases through transformation in the solid state which have improved order (higher resolution in X-ray diffraction experiments) and reduced mosaic spread (more uniformly aligned mosaic blocks) for diffraction data collection and analysis. The crystal is heated by pulsed and/or constant IR laser irradiation. Loss of crystal water following heating and its reabsorption through equilibration with the environment is measured optically by a video system. Heating proved superior to traditional controlled dehydration by humidity change for the test cases CODH (carbon monoxide dehydrogenase) and CLK2 (a protein kinase). Heating with IR light is experimentally simple and offers an exploration of a much broader parameter space than the traditional method, as it allows the option of varying the rate of phase changes through modification of the IR pulse strength, width and repeat frequency. It impacts the crystal instantaneously, isotropically and homogeneously, and is therefore expected to cause less mechanical stress.

  18. Protein Crystal Growth Apparatus for Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Dowling, Timothy E. (Inventor)

    1997-01-01

    Apparatus for growing protein crystals under microgravity environment includes a plurality of protein growth assemblies stacked one above the other within a canister. Each of the protein growth assemblies includes a tray having a number of spaced apart growth chambers recessed below an upper surface. the growth chambers each having an upstanding pedestal and an annular reservoir about the pedestal for receiving a wick and precipitating agents. A well is recessed below the top of each pedestal to define a protein crystal growth receptacle. A flexible membrane is positioned on the upper surface of each tray and a sealing plate is positioned above each membrane, each sealing plate having a number of bumpers corresponding in number and alignment to the pedestals for forcing the membrane selectively against the upper end of the respective pedestal to seal the reservoir and the receptacle when the sealing plate is forced down.

  19. Sigmoid kinetics of protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Nanev, Christo N.; Tonchev, Vesselin D.

    2015-10-01

    A non-linear differential equation expressing the new phase nucleation rate in the different steps of the process (non-stationary and stationary nucleation and in the plateau region) is derived from basic principles of the nucleation theory. It is shown that one and the same sigmoid (logistic) function describes both nucleation scenarios: the one according to the classical theory, and the other according to the modern two-stage mechanism of protein crystal formation. Comparison to experimental data on both insulin crystal nucleation kinetics and on bovine β-lactoglobulin crystallization indicates a good agreement with the sigmoidal prediction. Experimental data for electrochemical nucleation and glass crystallization obey the same sigmoid time dependence, and suggest universality of this nucleation kinetics law.

  20. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  1. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program

  2. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and

  3. Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.

  4. The Effect of Protein Impurities on Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. In order to further examine the issue of purity in macromolecule crystallization this study investigates the effect of the protein impurities, avidin, ovalbumin and conalbumin, at concentrations up to 50%, on the solubility, crystal face growth rates and crystal purity, of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the f {101} and {101} lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.

  5. Convective diffusion in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Meehan, E. J., Jr.; Xidis, A. L.; Howard, S. B.

    1986-01-01

    A protein crystal modeled as a flat plate suspended in the parent solution, with the normal to the largest face perpendicular to gravity and the protein concentration in the solution adjacent to the plate taken to be the equilibrium solubility, is studied. The Navier-Stokes equation and the equation for convective diffusion in the boundary layer next to the plate are solved to calculate the flow velocity and the protein mass flux. The local rate of growth of the plate is shown to vary significantly with depth due to the convection. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1-mm-high crystal has a thickness of 80 microns at 1 g, and 2570 microns at 10 to the -6th g.

  6. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1988-01-01

    The solubility and growth of the protein canavalin, and the application of the schlieren technique to study fluid flow in protein crystal growth systems were investigated. These studies have resulted in the proposal of a model to describe protein crystal growth and the preliminary plans for a long-term space flight experiment. Canavalin, which may be crystallized from a basic solution by the addition of hydrogen (H+) ions, was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studies. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth rate limiting step is a screw dislocation mechanism. A schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed. The data for lyrozyme showed non-linearities in plots of optical properties and density vs. concentration. In conjunction with with W. A. Tiller, a model based on colloid stability theory was proposed to describe protein crystallization. The model was used to explain observations made by ourselves and others. The results of this research has lead to the development for a preliminary design for a long-term, low-g experiment. The proposed apparatus is univeral and capable of operation under microprocessor control.

  7. The nanoscience behind the art of in-meso crystallization of membrane proteins.

    PubMed

    Zabara, Alexandru; Meikle, Thomas G; Newman, Janet; Peat, Thomas S; Conn, Charlotte E; Drummond, Calum J

    2017-01-05

    The structural changes occurring at the nanoscale level within the lipid bilayer and driving the in-meso formation of large well-diffracting membrane protein crystals have been uniquely characterized for a model membrane protein, intimin. Importantly, the order to order transitions taking place within the bilayer and the lipidic nanostructures required for crystal growth have been shown to be general, occurring for both the cubic and the sponge mesophase crystallization pathways. For the first time, a transient fluid lamellar phase has been observed and unambiguously assigned for both crystallization pathways, present at the earliest stages of protein crystallogenesis but no longer observed once the crystals surpass the size of the average lyotropic liquid crystalline domain. The reported time-resolved structural investigation provides a significantly improved and general understanding of the nanostructural changes taking place within the mesophase during in-meso crystallization which is a fundamental advance in the enabling area of membrane protein structural biology.

  8. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The solubility and growth mechanism of canavalin were studied, and the applicability of the Schlieren technique to protein crystal growth was investigated. Canavalin which may be crystallized from a basic solution by the addition of hydrogen (H+) ions was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studied. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth mechanism at high supersaturation ratios (>1.28) is screw dislocation like. A Schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed.

  9. An automated protein crystal growth facility on the space station

    NASA Technical Reports Server (NTRS)

    Herrmann, Melody

    1988-01-01

    The need is addressed for an automated Protein Crystal Growth experiment on the Space Station and how robotics will be integrated into the system design. This automated laboratory system will enable several hundred protein crystals to grow simultaneously in microgravity and will allow the major variables in protein crystal growth to be monitored and controlled during the experiment. Growing good quality crystals is important in determining the complete structure of the protein by X-ray diffraction. This information is useful in the research and development of medicines and other important medical and biotechnological products. Previous Protein Crystal Growth experiments indicate that the microgravity environment of space allows larger crystals of higher quality to be grown as compared to the same crystals grown on the ground. It is therefore important to have a laboratory in space where protein crystals can be grown under carefully controlled conditions so that a crystal type can be reproduced as needed.

  10. X-ray Microscopic Characterization of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.

  11. Crystallization of G Protein-Coupled Receptors

    PubMed Central

    Salom, David; Padayatti, Pius S.; Palczewski, Krzysztof

    2015-01-01

    Oligomerization is one of several mechanisms that can regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallography and NMR are the only methods able to reveal the details of receptor–receptor interactions at an atomic level, and several GPCR homodimers already have been described from crystal structures. Two clusters of symmetric interfaces have been identified from these structures that concur with biochemical data, one involving helices I, II, and VIII and the other formed mainly by helices V and VI. In this chapter, we describe the protocols used in our laboratory for the crystallization of rhodopsin and the β2-adrenergic receptor (β2-AR). For bovine rhodopsin, we developed a new purification strategy including a (NH4)2SO4-induced phase separation that proved essential to obtain crystals of photoactivated rhodopsin containing parallel dimers. Crystallization of native bovine rhodopsin was achieved by the classic vapor-diffusion technique. For β2-AR, we developed a purification strategy based on previously published protocols employing a lipidic cubic phase to obtain diffracting crystals of a β2-AR/T4-lysozyme chimera bound to the antagonist carazolol. PMID:24143992

  12. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  13. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  14. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)

    SciTech Connect

    Gerdts, Cory J.; Elliott, Mark; Lovell, Scott; Mixon, Mark B.; Napuli, Alberto J.; Staker, Bart L.; Nollert, Peter; Stewart, Lance

    2008-11-01

    The Microcapillary Protein Crystallization System (MPCS) is a new protein-crystallization technology used to generate nanolitre-sized crystallization experiments for crystal screening and optimization. Using the MPCS, diffraction-ready crystals were grown in the plastic MPCS CrystalCard and were used to solve the structure of methionine-R-sulfoxide reductase. The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, ∼10–20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive ‘hybrid’ crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants.

  15. Advances in the directed evolution of proteins

    PubMed Central

    Lane, Michael D.; Seelig, Burckhard

    2014-01-01

    Natural evolution has produced a great diversity of proteins that can be harnessed for numerous applications in biotechnology and pharmaceutical science. Commonly, specific applications require proteins to be tailored by protein engineering. Directed evolution is a type of protein engineering that yields proteins with the desired properties under well-defined conditions and in a practical time frame. While directed evolution has been employed for decades, recent creative developments enable the generation of proteins with previously inaccessible properties. Novel selection strategies, faster techniques, the inclusion of unnatural amino acids or modifications, and the symbiosis of rational design approaches and directed evolution continue to advance protein engineering. PMID:25309990

  16. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1995-01-01

    During the fourth semi-annual period under this grant we have pursued the following activities: (1) crystal growth morphology and kinetics studies with tetragonal lysozyme. These clearly revealed the influence of higher molecular weight protein impurities on interface shape; (2) characterization of the purity and further purification of lysozyme solutions. These efforts have, for the first time, resulted in lysozyme free of higher molecular weight components; (3) continuation of the salt repartitioning studies with Seikagaku lysozyme, which has a lower protein impurity content that Sigma stock. These efforts confirmed our earlier findings of higher salt contents in smaller crystals. However, less salt is in corporated into the crystals grown from Seikagaku stock. This strongly suggests a dependence of salt repartitioning on the concentration of protein impurities in lysozyme. To test this hypothesis, repartitioning studies with the high purity lysozyme prepared in-house will be begun shortly; (4) numerical modelling of the interaction between bulk transport and interface kinetics. These simulations have produced interface shapes which are in good agreement with out experimental observations; and (5) light scattering studies on under- and supersaturated lysozyme solutions. A consistent interpretation of the static and dynamic data leaves little doubt that pre-nucleation clusters, claimed to exist even in undersaturated solutions, are not present. The article: 'Growth morphology response to nutrient and impurity nonuniformities' is attached.

  17. Lattice dynamics of a protein crystal.

    PubMed

    Meinhold, Lars; Merzel, Franci; Smith, Jeremy C

    2007-09-28

    All-atom lattice-dynamical calculations are reported for a crystalline protein, ribonuclease A. The sound velocities, density of states, heat capacity (C(V)) and thermal diffuse scattering are all consistent with available experimental data. C(V) proportional, variant T(1.68) for T < 35 K, significantly deviating from a Debye solid. In Bragg peak vicinity, inelastic scattering of x rays by phonons is found to originate from acoustic mode scattering. The results suggest an approach to protein crystal physics combining all-atom lattice-dynamical calculations with experiments on next-generation neutron sources.

  18. When proteins are completely hydrated in crystals.

    PubMed

    Carugo, Oliviero

    2016-08-01

    In the crystalline state, protein surface patches that do not form crystal packing contacts are exposed to the solvent and one or more layers of hydration water molecules can be observed. It is well known that these water molecules cannot be observed at very low resolution, when the scarcity of experimental information precludes the observation of several parts of the protein molecule, like for example side-chains at the protein surface. On the contrary, more details are observable at high resolution. Here it is shown that it is necessary to reach a resolution of about 1.5-1.6Å to observe a continuous hydration layer at the protein surface. This contrasts previous estimations, which were more tolerant and according to which a resolution of 2.5Å was sufficient to describe at the atomic level the structure of the hydration layer. These results should prove useful in guiding a more rigorous selection of structural data to study protein hydration and in interpreting new crystal structures.

  19. Simple micromechanical model of protein crystals for their mechanical characterizations

    NASA Astrophysics Data System (ADS)

    Yoon, G.; Eom, K.; Na, S.

    2010-06-01

    Proteins have been known to perform the excellent mechanical functions and exhibit the remarkable mechanical properties such as high fracture toughness in spider silk protein [1]. This indicates that the mechanical characterization of protein molecules and/or crystals is very essential to understand such remarkable mechanical function of protein molecules. In this study, for gaining insight into mechanical behavior of protein crystals, we developed the micromechanical model by using the empirical potential field prescribed to alpha carbon atoms of a protein crystal in a unit cell. We consider the simple protein crystals for their mechanical behavior under tensile loading to be compared with full atomic models

  20. Do protein crystals nucleate within dense liquid clusters?

    PubMed

    Maes, Dominique; Vorontsova, Maria A; Potenza, Marco A C; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G

    2015-07-01

    Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10(-3) of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.

  1. IR laser-induced protein crystal transformation

    PubMed Central

    Kiefersauer, Reiner; Grandl, Brigitte; Krapp, Stephan; Huber, Robert

    2014-01-01

    A method and the design of instrumentation, and its preliminary practical realisation, including test experiments, with the object of inducing phase changes of biomolecular crystals by controlled dehydration through heating with infrared (IR) light are described. The aim is to generate and select crystalline phases through transformation in the solid state which have improved order (higher resolution in X-ray diffraction experiments) and reduced mosaic spread (more uniformly aligned mosaic blocks) for diffraction data collection and analysis. The crystal is heated by pulsed and/or constant IR laser irradiation. Loss of crystal water following heating and its reabsorption through equilibration with the environment is measured optically by a video system. Heating proved superior to traditional controlled dehydration by humidity change for the test cases CODH (carbon monoxide dehydrogenase) and CLK2 (a protein kinase). Heating with IR light is experimentally simple and offers an exploration of a much broader parameter space than the traditional method, as it allows the option of varying the rate of phase changes through modification of the IR pulse strength, width and repeat frequency. It impacts the crystal instantaneously, isotropically and homogeneously, and is therefore expected to cause less mechanical stress. PMID:24816092

  2. A protein coated piezoelectric crystal detector

    NASA Astrophysics Data System (ADS)

    Suleiman, Ahmad; Pender, Marie; Ngeh-Ngwainbi, Jerome; Lubrano, Glenn; Guilbault, George

    1990-05-01

    The purpose of this project was to develop a protein coated, portable piezoelectric crystal detector for organophosphorus compounds. The performance of acetylcholinesterase, GD-1 anti-soman, anti-DMMP antibody, and bovine serum albumin (BSA) coatings was evaluated. Different immobilization methods were also tested. The responses obtained with the protein coatings immobilized via cross-linking with glutaraldehyde were acceptable, provided that the reference crystal was coated with dextran. The proposed coatings showed good stability and reasonable lifetimes that ranged from approximately three weeks in the case of the antibody coatings to several months in the case of BSA. Although moisture, gasoline, and sulfur are potential interferents, their effects on the sensor were eliminated by using a sodium sulfate scrubber which did not affect the performance of the detector towards organophosphates. A small, battery operated portable instrument capable of real time measurements with alarm function was produced. The instrument can be used in a wide range of applications, depending on the coatings applied to the crystals.

  3. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  4. Do protein crystals nucleate within dense liquid clusters?

    SciTech Connect

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  5. Small Device for Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Daniel Carter (center), president of New Century Pharmaceuticals, and Dr. Joseph Ho (right), vice president, examine a diffusion Controlled Apparatus for Microgravity (DCAM). At left, Dr. John Ruble, a senior scientist, examines some specimens. The plastic DCAM has two chambers joined by a porous plug through which fluids can diffuse at a controlled rate. This allows researchers to mix protein solutions on Earth and load them aboard the Space Shuttle shortly before launch. The diffusion and crystallization processes are already under way, but at such a slow pace that crystals do not start growing before the DCAM is in orbit aboard the Shuttle or a space station. Dozens of DCAM units can be flown in a small volume and require virtually no crew attention. Specimens are returned to Earth for analysis. Photo credit: NASA/Marshall Space Flight Center

  6. Ultratight crystal packing of a 10 kDa protein

    SciTech Connect

    Trillo-Muyo, Sergio; Chruszcz, Maksymilian; Minor, Wladek; Kuisiene, Nomeda

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  7. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilow, Peter G.

    1998-01-01

    Our work under this grant has significantly contributed to the goals of the NASA supported protein crystallization program. We have achieved the main objectives of the proposed work, as outlined in the original proposal: (1) We have provided important insight into protein nucleation and crystal growth mechanisms to facilitate a rational approach to protein crystallization; (2) We have delineated the factors that currently limit the x-ray diffraction resolution of protein crystals, and their correlation to crystallization conditions; (3) We have developed novel technologies to study and monitor protein crystal nucleation and growth processes, in order to increase the reproducibility and yield of protein crystallization. We have published 17 papers in peer-reviewed scientific journals and books and made more than 15 invited and 9 contributed presentations of our results at international and national scientific meetings.

  8. JAXA protein crystallization in space: ongoing improvements for growing high-quality crystals.

    PubMed

    Takahashi, Sachiko; Ohta, Kazunori; Furubayashi, Naoki; Yan, Bin; Koga, Misako; Wada, Yoshio; Yamada, Mitsugu; Inaka, Koji; Tanaka, Hiroaki; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki

    2013-11-01

    The Japan Aerospace Exploration Agency (JAXA) started a high-quality protein crystal growth project, now called JAXA PCG, on the International Space Station (ISS) in 2002. Using the counter-diffusion technique, 14 sessions of experiments have been performed as of 2012 with 580 proteins crystallized in total. Over the course of these experiments, a user-friendly interface framework for high accessibility has been constructed and crystallization techniques improved; devices to maximize the use of the microgravity environment have been designed, resulting in some high-resolution crystal growth. If crystallization conditions were carefully fixed in ground-based experiments, high-quality protein crystals grew in microgravity in many experiments on the ISS, especially when a highly homogeneous protein sample and a viscous crystallization solution were employed. In this article, the current status of JAXA PCG is discussed, and a rational approach to high-quality protein crystal growth in microgravity based on numerical analyses is explained.

  9. Utilization of Protein Crystal Structures in Industry

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kohki

    In industry, protein crystallography is used in mainly two technologies. One is structure-based drug design, and the other is structure-based enzyme engineering. Some successful cases together with recent advances are presented in this article. The cases include the development of an anti-influenza drug, and the introduction of engineered acid phosphatase to the manufacturing process of nucleotides used as umami seasoning.

  10. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  11. Advances in fluorescent protein technology.

    PubMed

    Shaner, Nathan C; Patterson, George H; Davidson, Michael W

    2007-12-15

    Current fluorescent protein (FP) development strategies are focused on fine-tuning the photophysical properties of blue to yellow variants derived from the Aequorea victoria jellyfish green fluorescent protein (GFP) and on the development of monomeric FPs from other organisms that emit in the yellow-orange to far-red regions of the visible light spectrum. Progress toward these goals has been substantial, and near-infrared emitting FPs may loom over the horizon. The latest efforts in jellyfish variants have resulted in new and improved monomeric BFP, CFP, GFP and YFP variants, and the relentless search for a bright, monomeric and fast-maturing red FP has yielded a host of excellent candidates, although none is yet optimal for all applications. Meanwhile, photoactivatable FPs are emerging as a powerful class of probes for intracellular dynamics and, unexpectedly, as useful tools for the development of superresolution microscopy applications.

  12. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1994-01-01

    This research involved (1) using the Atomic Force Microscope (AFM) in a study on the growth of lysozyme crystals and (2) refinement of the design of the Thermonucleator which controls the supersaturation required for the nucleation and growth of protein crystals separately. AFM studies of the (110) tetragonal face confirmed that lysozyme crystals grow by step propagation. There appears to be very little step pile up in the growth regimes which we studied. The step height was measured at = 54A which was equal to the (110) interpane spacing. The AFM images showed areas of step retardation and the formation of pits. These defects ranged in size from 0.1 to 0.4 mu. The source of these defects was not determined. The redesign of the Thermonucleator produced an instrument based on thermoelectric technology which is both easier to use and more amenable to use in a mu g environment. The use of thermoelectric technology resulted in a considerable size reduction which will allow for the design of a multi-unit growth apparatus. The performance of the new apparatus was demonstrated to be the same as the original design.

  13. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-05-09

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalase (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.

  14. Protein Crystal Growth Activities on STS-42

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Protein Crystal Growth (PCG) middeck payload is currently manifested to fly on STS-42 in January 1992. This payload is a joint effort between NASA s Office of Commercial Programs (OCP) and Office of Space Science and Applications (OSSA). The PCG experiments are managed by the Center for Macromolecular Crystallography (CMC), a NASA Center for the Commercial Development of Space (CCDS) based at the University of Alabama at Birmingham (UAB). This is the eighth flight of a payload in the PCG program that is jointly sponsored by the OCP and the OSSA. The flight hardware for STS-42 includes six Vapor Diffusion Apparatus (VDA) trays stored in two Refrigerator/Incubator Modules (R/TM s). The VDA trays will simultaneously conduct 120 experiments involving 15 different protein compounds, four of which are sponsored by the OCP, the UAB CCDS, and four co-investigators.

  15. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  16. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  17. Imaging of Protein Crystals with Two-Photon Microscopy

    SciTech Connect

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-05-02

    Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as 10 {mu}m in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.

  18. Generation of Protein Crystals Using a Solution-Stirring Technique

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-06-01

    Crystals of bovine adenosine deaminase (ADA) were grown over a two week period in the presence of an inhibitor, whereas ADA crystals did not form using conventional crystallization methods when the inhibitor was excluded. To obtain ADA crystals in the absence of the inhibitor, a solution-stirring technique was used. The crystals obtained using this technique were found to be of high quality and were shown to have high structural resolution for X-ray diffraction analysis. The results of this study indicate that the stirring technique is a useful method for obtaining crystals of proteins that do not crystallize using conventional techniques.

  19. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.

  20. Analysis of crystallization data in the Protein Data Bank

    SciTech Connect

    Kirkwood, Jobie; Hargreaves, David; O’Keefe, Simon; Wilson, Julie

    2015-09-23

    In a large-scale study using data from the Protein Data Bank, some of the many reported findings regarding the crystallization of proteins were investigated. The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.

  1. Recent advances in (therapeutic protein) drug development

    PubMed Central

    Lagassé, H.A. Daniel; Alexaki, Aikaterini; Simhadri, Vijaya L.; Katagiri, Nobuko H.; Jankowski, Wojciech; Sauna, Zuben E.; Kimchi-Sarfaty, Chava

    2017-01-01

    Therapeutic protein drugs are an important class of medicines serving patients most in need of novel therapies. Recently approved recombinant protein therapeutics have been developed to treat a wide variety of clinical indications, including cancers, autoimmunity/inflammation, exposure to infectious agents, and genetic disorders. The latest advances in protein-engineering technologies have allowed drug developers and manufacturers to fine-tune and exploit desirable functional characteristics of proteins of interest while maintaining (and in some cases enhancing) product safety or efficacy or both. In this review, we highlight the emerging trends and approaches in protein drug development by using examples of therapeutic proteins approved by the U.S. Food and Drug Administration over the previous five years (2011–2016, namely January 1, 2011, through August 31, 2016). PMID:28232867

  2. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    -association process is a function of the protein concentration relative to the saturation concentration, and observing it in dilute solution (conc. less than or equal to 10(exp -5)M) requires that the experiments be performed under low solubility conditions, i.e., low temperatures and high salt concentrations. Data from preliminary steady state FRET studies with N-terminal bound pyrene acetic acid (PAA-lys, donor, Ex 340 nm, Em 376 nm) and asp101 LY-lys as an acceptor showed a consistent trend of decreasing donor fluorescence intensity with increasing total protein concentration. The FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding C(sub sat) values are 0.471 and 0.362 mg/ml (approx. 3.3 and approx. 2.5 x 10(exp -5)M respectively). The donor fluorescence decrease is more pronounced at7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations as reflected in the lower solubility. Results from these and other ongoing studies will be discussed in conjunction with an emerging model for how tetragonal lysozyme crystals nucleate and the relevance of that model to other proteins.

  3. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, George D.; Rupp, Bernhard

    1996-01-01

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an x-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the x-ray diffraction pattern.

  4. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, G.D.; Rupp, B.

    1996-06-11

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an X-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the X-ray diffraction pattern. 4 figs.

  5. Detergent-Specific Membrane Protein Crystallization Screens

    NASA Technical Reports Server (NTRS)

    Wiener, Michael

    2007-01-01

    A suite of reagents has been developed for three-dimensional crystallization of integral membranes present in solution as protein-detergent complexes (PDCs). The compositions of these reagents have been determined in part by proximity to the phase boundaries (lower consolute boundaries) of the detergents present in the PDCs. The acquisition of some of the requisite phase-boundary data and the preliminary design of several of the detergent- specific screens was supported by a NASA contract. At the time of expiration of the contract, a partial set of preliminary screens had been developed. This work has since been extended under non-NASA sponsorship, leading to near completion of a set of 20 to 30 different and unique detergent- specific 96-condition screens.

  6. Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure.

    PubMed

    Kadri, A; Lorber, B; Charron, C; Robert, M-C; Capelle, B; Damak, M; Jenner, G; Giegé, R

    2005-06-01

    Pressure is a non-invasive physical parameter that can be used to control and influence protein crystallization. It is also found that protein crystals of superior quality can be produced in gel. Here, a novel crystallization strategy combining hydrostatic pressure and agarose gel is described. Comparative experiments were conducted on hen and turkey egg-white lysozymes and the plant protein thaumatin. Crystals could be produced under up to 75-100 MPa (lysozymes) and 250 MPa (thaumatin). Several pressure-dependent parameters were determined, which included solubility and supersaturation of the proteins, number, size and morphology of the crystals, and the crystallization volume. Exploration of three-dimensional phase diagrams in which pH and pressure varied identified growth conditions where crystals had largest size and best morphology. As a general trend, nucleation and crystal-growth kinetics are altered and nucleation is always enhanced under pressure. Further, solubility of the lysozymes increases with pressure while that of thaumatin decreases. Likewise, changes in crystallization volumes at high and atmospheric pressure are opposite, being positive for the lysozymes and negative for thaumatin. Crystal quality was estimated by analysis of Bragg reflection profiles and X-ray topographs. While the quality of lysozyme crystals deteriorates as pressure increases, that of thaumatin crystals improves, with more homogeneous crystal morphology suggesting that pressure selectively dissociates ill-formed nuclei. Analysis of the thaumatin structure reveals a less hydrated solvent shell around the protein when pressure increases, with approximately 20% less ordered water molecules in crystals grown at 150 MPa when compared with those grown at atmospheric pressure (0.1 MPa). Noticeably, the altered water distribution is seen in depressurized crystals, indicating that pressure triggers a stable structural alteration on the protein surface while its polypeptide backbone

  7. Automating the application of smart materials for protein crystallization

    SciTech Connect

    Khurshid, Sahir; Govada, Lata; EL-Sharif, Hazim F.; Reddy, Subrayal M.; Chayen, Naomi E.

    2015-03-01

    The first semi-liquid, non-protein nucleating agent for automated protein crystallization trials is described. This ‘smart material’ is demonstrated to induce crystal growth and will provide a simple, cost-effective tool for scientists in academia and industry. The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as ‘smart materials’) for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.

  8. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  9. Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals

    PubMed Central

    Bai, Yiqun; Abbott, Nicholas L.

    2011-01-01

    This article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g. oligopeptides and proteins) and transition metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double-layers, acid-base interactions, and hydrogen bonding can have on the interfacial ordering of LCs. The opportunity to create chemically-responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC- aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behaviour of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) confinement of LCs leads to unanticipated size

  10. Growth of protein crystals in hydrogels prevents osmotic shock.

    PubMed

    Sugiyama, Shigeru; Maruyama, Mihoko; Sazaki, Gen; Hirose, Mika; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi

    2012-04-04

    High-throughput protein X-ray crystallography offers a significant opportunity to facilitate drug discovery. The most reliable approach is to determine the three-dimensional structure of the protein-ligand complex by soaking the ligand in apo crystals. However, protein apo crystals produced by conventional crystallization in a solution are fatally damaged by osmotic shock during soaking. To overcome this difficulty, we present a novel technique for growing protein crystals in a high-concentration hydrogel that is completely gellified and exhibits high strength. This technique allowed us essentially to increase the mechanical stability of the crystals, preventing serious damage to the crystals caused by osmotic shock. Thus, this method may accelerate structure-based drug discoveries.

  11. Some implications of colloid stability theory for protein crystallization

    NASA Technical Reports Server (NTRS)

    Young, C. C.; De Mattei, R. C.; Feigelson, R. S.; Tiller, W. A.

    1988-01-01

    Colloid stability theory has been applied to protein crystallization and predicts a narrow range of conditions under which crystals can be grown without the agglomeration of protein molecules (colloids) in the bulk solution. It also predicts a critical electrolyte concentration above which agglomeration will always occur. Using this theory, the rapid protein agglomeration occurring during Schlieren experiments as well as a terminal crystal size effect in a fixed container were explained. Following this concept, the supposed 'terminal' crystal size has been at least doubled.

  12. Lab-on-a-Chip Based Protein Crystallization

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  13. Protein Innovations Advance Drug Treatments, Skin Care

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Dan Carter carefully layered the sheets of tracing paper on the light box. On each sheet were renderings of the atomic components of an essential human protein, one whose structure had long been a mystery. With each layer Carter laid down, a never-before-seen image became clearer. Carter joined NASA s Marshall Space Flight Center in 1985 and began exploring processes of protein crystal growth in space. By bouncing intense X-rays off the crystals, researchers can determine the electron densities around the thousands of atoms forming the protein molecules, unveiling their atomic structures. Cultivating crystals of sufficient quality on Earth was problematic; the microgravity conditions of space were far more accommodating. At the time, only a few hundred protein structures had been mapped, and the methods were time consuming and tedious. Carter hoped his work would help reveal the structure of human serum albumin, a major protein in the human circulatory system responsible for ferrying numerous small molecules in the blood. More was at stake than scientific curiosity. Albumin has a high affinity for most of the world s pharmaceuticals, Carter explains, and its interaction with drugs can change their safety and efficacy. When a medication enters the bloodstream a cancer chemotherapy drug, for example a majority of it can bind with albumin, leaving only a small percentage active for treatment. How a drug interacts with albumin can influence considerations like the necessary effective dosage, playing a significant role in the design and application of therapeutic measures. In spite of numerous difficulties, including having no access to microgravity following the 1986 Space Shuttle Challenger disaster, the image Carter had hoped to see was finally clarifying. In 1988, his lab had acquired specialized X-ray and detection equipment a tipping point. Carter and his colleagues began to piece together albumin s portrait, the formation of its electron densities coalescing on

  14. Protein Purification and Its Application to Crystallization

    DTIC Science & Technology

    1988-08-30

    4-1 4.1.2.2 Microcystin ...............................4-5 4.1.2.3 Aequorin.........................4-5 4.1.2.4 Staphylococcal...analyzing these crystals by HPLC to determine crystal composition. Crystals of microcystin , which did not diffract, were isolated from a hanging drop...standard curve was prepared to correlate peak height to micrograms of microcystin injected. The results of this experiment showed that the crystals did

  15. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)

    SciTech Connect

    Gerdts, Cory J.; Elliott, Mark; Lovell, Scott; Mixon, Mark B.; Napuli, Alberto J.; Staker, Bart L.; Nollert, Peter; Stewart, Lance

    2012-02-08

    The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, {approx}10-20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive 'hybrid' crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants.

  16. Modeling the SHG activities of diverse protein crystals

    PubMed Central

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.

    2012-01-01

    A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-­magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices. PMID:23090400

  17. Application of hybrid LRR technique to protein crystallization.

    PubMed

    Jin, Mi Sun; Lee, Jie-Oh

    2008-05-31

    LRR family proteins play important roles in a variety of physiological processes. To facilitate their production and crystallization, we have invented a novel method termed "Hybrid LRR Technique". Using this technique, the first crystal structures of three TLR family proteins could be determined. In this review, design principles and application of the technique to protein crystallization will be summarized. For crystallization of TLRs, hagfish VLR receptors were chosen as the fusion partners and the TLR and the VLR fragments were fused at the conserved LxxLxLxxN motif to minimize local structural incompatibility. TLR-VLR hybridization did not disturb structures and functions of the target TLR proteins. The Hybrid LRR Technique is a general technique that can be applied to structural studies of other LRR proteins. It may also have broader application in biochemical and medical application of LRR proteins by modifying them without compromising their structural integrity.

  18. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Li, Fenglei

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  19. Inorganic and protein crystal growth - Similarities and differences

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1986-01-01

    Transport and interface kinetic concepts for the design and control of inorganic crystal growth experiments are reviewed, and their applications and limitations in protein crystal growth are considered. It is suggested that the interfacial concentration gradients are steeper for faster crystallization, and that the interfacial concentration distributions for the protein and the precipitant can differ significantly. Results show that uniformity in crystal composition and steady-state conditions in growth kinetics are favored by larger sample size, since surface-tension gradients drive strong in microgravity experiments and in small samples on earth.

  20. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform

    SciTech Connect

    Talreja, S.; Kenis, P; Zukoski, C

    2007-01-01

    The quality, size, and number of protein crystals grown under conditions of continuous solvent extraction are dependent on the rate of solvent extraction and the initial protein and salt concentration. An increase in the rate of solvent extraction leads to a larger number of crystals. The number of crystals decreases, however, when the experiment is started with an initial protein concentration that is closer to the solubility boundary. Here we develop a kinetic model capable of predicting changes in the number and size of protein crystals as a function of time under continuous evaporation. Moreover, this model successfully predicts the initial condition of drops that will result in gel formation. We test this model with experimental crystal growth data of hen egg white lysozyme for which crystal nucleation and growth rate parameters are known from other studies. The predicted and observed rates of crystal growth are in excellent agreement, which suggests that kinetic constants for nucleation and crystal growth for different proteins can be extracted by applying a kinetic model in combination with observations from a few evaporation-based crystallization experiments.

  1. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.

    1997-01-01

    The growth of protein crystals suitable for X-ray crystal structure analysis is an important topic. The methods of protein crystal growth are under increasing study whereby different methods are being compared via diagnostic monitoring including Charge Coupled Device (CCD) video and interferometry. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and X-ray topographic images as well as the diffraction resolution limit and overall data quality. Choice of a liquid-liquid linear crystal growth geometry and microgravity can yield a spatial stability of growing crystals and fluid, as seen in protein crystallization experiments on the unmanned platform EURICA. A review is given here of existing results and experience over several microgravity missions. The results include CCD video as well as interferometry during the mission, followed, on return to earth, by rocking curve experiments and full X-ray data collection on LMS and earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  2. Membrane proteins, detergents and crystals: what is the state of the art?

    PubMed

    Loll, Patrick J

    2014-12-01

    At the time when the first membrane-protein crystal structure was determined, crystallization of these molecules was widely perceived as extremely arduous. Today, that perception has changed drastically, and the process is regarded as routine (or nearly so). On the occasion of the International Year of Crystallography 2014, this review presents a snapshot of the current state of the art, with an emphasis on the role of detergents in this process. A survey of membrane-protein crystal structures published since 2012 reveals that the direct crystallization of protein-detergent complexes remains the dominant methodology; in addition, lipidic mesophases have proven immensely useful, particularly in specific niches, and bicelles, while perhaps undervalued, have provided important contributions as well. Evolving trends include the addition of lipids to protein-detergent complexes and the gradual incorporation of new detergents into the standard repertoire. Stability has emerged as a critical parameter controlling how a membrane protein behaves in the presence of detergent, and efforts to enhance stability are discussed. Finally, although discovery-based screening approaches continue to dwarf mechanistic efforts to unravel crystallization, recent technical advances offer hope that future experiments might incorporate the rational manipulation of crystallization behaviors.

  3. Nucleation and Crystallization of Globular Proteins: What we Know and What is Missing

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Vekilov, P. G.; Muschol, M.; Thomas, B. R.

    1996-01-01

    Recently. much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects, Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies. can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.

  4. Diffraction study of protein crystals grown in cryoloops and micromounts.

    PubMed

    Berger, Michael A; Decker, Johannes H; Mathews, Irimpan I

    2010-12-01

    Protein crystals are usually grown in hanging or sitting drops and generally get transferred to a loop or micromount for cryocooling and data collection. This paper describes a method for growing crystals on cryoloops for easier manipulation of the crystals for data collection. This study also investigates the steps for the automation of this process and describes the design of a new tray for the method. The diffraction patterns and the structures of three proteins grown by both the new method and the conventional hanging-drop method are compared. The new setup is optimized for the automation of the crystal mounting process. Researchers could prepare nanolitre drops under ordinary laboratory conditions by growing the crystals directly in loops or micromounts. As has been pointed out before, higher levels of supersaturation can be obtained in very small volumes, and the new method may help in the exploration of additional crystallization conditions.

  5. Large-volume protein crystal growth for neutron macromolecular crystallography

    SciTech Connect

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  6. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE PAGES

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  7. A Dominant Factor for Structural Classification of Protein Crystals.

    PubMed

    Qi, Fei; Fudo, Satoshi; Neya, Saburo; Hoshino, Tyuji

    2015-08-24

    With the increasing number of solved protein crystal structures, much information on protein shape and atom geometry has become available. It is of great interest to know the structural diversity for a single kind of protein. Our preliminary study suggested that multiple crystal structures of a single kind of protein can be classified into several groups from the viewpoint of structural similarity. In order to broadly examine this finding, cluster analysis was applied to the crystal structures of hemoglobin (Hb), myoglobin (Mb), human serum albumin (HSA), hen egg-white lysozyme (HEWL), and human immunodeficiency virus type 1 protease (HIV-1 PR), downloaded from the Protein Data Bank (PDB). As a result of classification by cluster analysis, 146 crystal structures of Hb were separated into five groups. The crystal structures of Mb (n = 284), HEWL (n = 336), HSA (n = 63), and HIV-1 PR (n = 488) were separated into six, five, three, and six groups, respectively. It was found that a major factor causing these structural separations is the space group of crystals and that crystallizing agents have an influence on the crystal structures. Amino acid mutation is a minor factor for the separation because no obvious point mutation making a specific cluster group was observed for the five kinds of proteins. In the classification of Hb and Mb, the species of protein source such as humans, rabbits, and mice is another significant factor. When the difference in amino sequence is large among species, the species of protein source is the primary factor causing cluster separation in the classification of crystal structures.

  8. Spatiotemporal development of soaked protein crystal

    PubMed Central

    Mizutani, Ryuta; Shimizu, Yusuke; Saiga, Rino; Ueno, Go; Nakamura, Yuki; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2014-01-01

    Crystal soaking is widely performed in biological crystallography. This paper reports time-resolved X-ray crystallographic and microtomographic analyses of tetragonal crystals of chicken egg-white lysozyme soaked in mother liquor containing potassium hexachloroplatinate. The microtomographic analysis showed that X-ray attenuation spread from the superficial layer of the crystal and then to the crystal core. The crystallographic analyses indicated that platinum sites can be classified into two groups from the temporal development of the electron densities. A soaking process consisting of binding-rate-driven and equilibrium-driven layers is proposed to describe these results. This study suggests that the composition of chemical and structural species resulting from the soaking process varies depending on the position in the crystal. PMID:25043871

  9. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms.

    PubMed

    Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.

  10. Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms

    PubMed Central

    Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076

  11. Recent advances in engineering proteins for biocatalysis.

    PubMed

    Li, Ye; Cirino, Patrick C

    2014-07-01

    Protein engineers are increasingly able to rely on structure-function insights, computational methods, and deeper understanding of natural biosynthesis processes, to streamline the design and applications of enzymes. This review highlights recent successes in applying new or improved protein engineering strategies toward the design of improved enzymes and enzymes with new activities. We focus on three approaches: structure-guided protein design, computational design, and the use of novel scaffolding and compartmentalization techniques to improve performance of multienzyme systems. Examples described address problems relating to enzyme specificity, stability, and/or activity, or aim to balance sequential reactions and route intermediates by co-localizing multiple enzymes. Specific applications include improving production of biofuels using enzymes with altered cofactor specificity, production of high-value chiral compounds by enzymes with tailored substrate specificities, and accelerated cellulose degradation via multi-enzyme scaffold assemblies. Collectively, these studies demonstrate a growing variety of computational and molecular biology tools. Continued advances on these fronts coupled with better mindfulness of how to apply proteins in unique ways offer exciting prospects for future protein engineering and biocatalysis research.

  12. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.

    1998-01-01

    The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  13. Analysis of Shannon entropy for protein crystallization and prediction of crystallization pH and precipitants

    NASA Astrophysics Data System (ADS)

    Pérez-Priede, Mónica; García-Granda, Santiago

    2017-02-01

    This is a new attempt at analysing crystallization data from Protein Data Bank. In line with the idea that crystallization conditions are intimately related with amino acid sequences, we have computed the Shannon entropy of polypeptides and polynucleotides and we have discovered a relationship between Shannon entropy and molecular weight, and also between the entropy of polypeptides, and the precipitants used in crystallization experiments. In fact, the Shannon entropy and the molecular weight of proteins are good precipitant predictors. On the other hand, we have proposed the hypothesis that homologous proteins may have similar crystallization conditions, and we have tried to find evidence that supports it, predicting the crystallization pH of a large amount of polypeptide sequences by means of a nearest neighbour approach combined with local sequence alignment.

  14. Teaching Protein Crystallization by the Gel Acupuncture Method

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan Manuel; Moreno, Abel; Otálora, F.; Rondón, D.; Viedma, C.; Zauscher, F.

    1998-04-01

    This paper provides a detailed description of a simple method to obtain large protein single crystals inside glass capillaries. The method is based upon the properties of gels, which are used to hold capillaries containing the protein solution, and also to act as the mass transport medium for the precipitating agent. Recipes for a set of selected experiments bringing a hands-on experience on the crystallization of different soluble proteins are supplied. These experiments are inexpensive and straightforward enough for teaching at the undergraduate level that large biological macromolecules that are the gate our structural studies and drug design can be crystallized. Using simple equations accounting for the solubility of proteins and for the nucleation process, the experimental results are explained to provide a rational approach to the problem. In addition, because of the nature of the crystallization method which is based on diffusion-reactions systems, the student is introduced to the meaning of self-organization.

  15. Missing strings of residues in protein crystal structures.

    PubMed

    Djinovic-Carugo, Kristina; Carugo, Oliviero

    2015-01-01

    A large fraction of the protein crystal structures deposited in the Protein Data Bank are incomplete, since the position of one or more residues is not reported, despite these residues are part of the material that was analyzed. This may bias the use of the protein crystal structures by molecular biologists. Here we observe that in the large majority of the protein crystal structures strings of residues are missing. Polar residues incline to occur in missing strings together with glycine, while apolar and aromatic residues tend to avoid them. Particularly flexible residues, as shown by their extremely high B-factors, by their exposure to the solvent and by their secondary structures, flank the missing strings. These data should be a helpful guideline for crystallographers that encounter regions of flat and uninterpretable electron density as well as end-users of crystal structures.

  16. Missing strings of residues in protein crystal structures

    PubMed Central

    Djinovic-Carugo, Kristina; Carugo, Oliviero

    2015-01-01

    A large fraction of the protein crystal structures deposited in the Protein Data Bank are incomplete, since the position of one or more residues is not reported, despite these residues are part of the material that was analyzed. This may bias the use of the protein crystal structures by molecular biologists. Here we observe that in the large majority of the protein crystal structures strings of residues are missing. Polar residues incline to occur in missing strings together with glycine, while apolar and aromatic residues tend to avoid them. Particularly flexible residues, as shown by their extremely high B-factors, by their exposure to the solvent and by their secondary structures, flank the missing strings. These data should be a helpful guideline for crystallographers that encounter regions of flat and uninterpretable electron density as well as end-users of crystal structures.

  17. Inorganic and Protein Crystal Assembly in Solutions

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2005-01-01

    The basic kinetic and thermodynamic concepts of crystal growth will be revisited in view of recent AFM and interferometric findings. These concepts are as follows: 1) The Kossel crystal model that allows only one kink type on the crystal surface. The modern theory is developed overwhelmingly for the Kessel model; 2) Presumption that intensive step fluctuations maintain kink density sufficiently high to allow applicability of Gibbs-Thomson law; 3) Common experience that unlimited step bunching (morphological instability) during layer growth from solutions and supercooled melts always takes place if the step flow direction coincides with that of the fluid.

  18. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  19. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions

    SciTech Connect

    Qiu, Xiayang; Janson, Cheryl A.

    2010-11-16

    A topic of current interest is engineering surface mutations in order to improve the success rate of protein crystallization. This report explores the possibility of using metal-ion-mediated crystal-packing interactions to facilitate rational design. Escherichia coli apo acyl carrier protein was chosen as a test case because of its high content of negatively charged carboxylates suitable for metal binding with moderate affinity. The protein was successfully crystallized in the presence of zinc ions. The crystal structure was determined to 1.1 {angstrom} resolution with MAD phasing using anomalous signals from the co-crystallized Zn{sup 2+} ions. The case study suggested an integrated strategy for crystallization and structure solution of proteins via engineering surface Asp and Glu mutants, crystallizing them in the presence of metal ions such as Zn{sup 2+} and solving the structures using anomalous signals.

  20. Crystallizing membrane proteins for structure-function studies using lipidic mesophases.

    PubMed

    Caffrey, Martin

    2011-06-01

    The lipidic cubic phase method for crystallizing membrane proteins has posted some high-profile successes recently. This is especially true in the area of G-protein-coupled receptors, with six new crystallographic structures emerging in the last 3½ years. Slowly, it is becoming an accepted method with a proven record and convincing generality. However, it is not a method that is used in every membrane structural biology laboratory and that is unfortunate. The reluctance in adopting it is attributable, in part, to the anticipated difficulties associated with handling the sticky viscous cubic mesophase in which crystals grow. Harvesting and collecting diffraction data with the mesophase-grown crystals is also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. However, over the years, we have worked to make the method user-friendly. To this end, tools for handling the mesophase in the pico- to nano-litre volume range have been developed for efficient crystallization screening in manual and robotic modes. Glass crystallization plates have been built that provide unparalleled optical quality and sensitivity to nascent crystals. Lipid and precipitant screens have been implemented for a more rational approach to crystallogenesis, such that the method can now be applied to a wide variety of membrane protein types and sizes. In the present article, these assorted advances are outlined, along with a summary of the membrane proteins that have yielded to the method. The challenges that must be overcome to develop the method further are described.

  1. Protein crystal growth in microgravity: Temperature induced large scale crystallization of insulin

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.; Delucas, Larry J.; Smith, C.; Carson, M.; Moore, K.; Harrington, Michael D.; Pillion, D. J.; Bishop, S. P.; Rosenblum, W. M.; Naumann, R. J.

    1994-01-01

    One of the major stumbling blocks that prevents rapid structure determination using x-ray crystallography is macro-molecular crystal growth. There are many examples where crystallization takes longer than structure determination. In some cases, it is impossible to grow useful crystals on earth. Recent experiments conducted in conjuction with NASA on various Space Shuttle missions have demonstrated that protein crystals often grow larger and display better internal molecular order than their earth-grown counterparts. This paper reports results from three Shuttle flights using the Protein Crystallization Facility (PCF). The PCF hardware produced large, high-quality insulin crystals by using a temperature change as the sole means to affect protein solubility and thus, crystallization. The facility consists of cylinders/containers with volumes of 500, 200, 100, and 50 ml. Data from the three Shuttle flights demonstrated that larger, higher resolution crystals (as evidenced by x-ray diffraction data) were obtained from the microgravity experiments when compared to earth-grown crystals.

  2. Advances in membrane protein crystallography: in situ and in meso data collection

    SciTech Connect

    Weyand, Simone; Tate, Christopher G.

    2015-05-23

    Membrane protein structural biology has made tremendous advances over the last decade but there are still many challenges associated with crystallization, data collection and structure determination. Two independent groups, Axford et al. [(2015), Acta Cryst. D71, 1228–1237] and Huang et al. [(2015), Acta Cryst. D71, 1238–1256], have published methods that make a major contribution to addressing these challenges.

  3. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.

  4. Single-drop optimization of protein crystallization

    PubMed Central

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-01-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline. PMID:22869140

  5. Strategies for crystallization of large membrane protein complexes

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shinya; Shinzawa-Itoh, Kyoko; Ueda, Hidefumi; Tsukihara, Tomitake; Fukumoto, Yoshihisa; Kubota, Tomomi; Kawamoto, Masahide; Fukuyama, Keiichi; Matsubara, Hiroshi

    1992-08-01

    Crystalline cytochrome c oxidase and ubiquinol: cytochrome c oxidoreductase which diffracted X-rays at 7-8A˚resolution were obtained from bovine heart mitochondria. The methods for the purification and crystallization of these enzymes indicate that large membrane protein complexes are easier to purify and crystallize than smaller homologous membrane protein complexes, because the former have more hydrophilic surface than the latter. Bulky and polydispersed detergents such as Brij-35 and Tween 20 attached to the isolated complex are not always obstructive to crystallization if they are effective for stabilizing the complexes.

  6. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  7. Two-photon excited UV fluorescence for protein crystal detection

    SciTech Connect

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-10-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC.

  8. Protein-directed self-assembly of a fullerene crystal

    NASA Astrophysics Data System (ADS)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; Degrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  9. Protein-directed self-assembly of a fullerene crystal.

    PubMed

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-26

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  10. Engineering nanoparticle-protein associations for protein crystal nucleation and nanoparticle arrangement

    NASA Astrophysics Data System (ADS)

    Benoit, Denise N.

    Engineering the nanoparticle - protein association offers a new way to form protein crystals as well as new approaches for arrangement of nanoparticles. Central to this control is the nanoparticle surface. By conjugating polymers on the surface with controlled molecular weights many properties of the nanoparticle can be changed including its size, stability in buffers and the association of proteins with its surface. Large molecular weight poly(ethylene glycol) (PEG) coatings allow for weak associations between proteins and nanoparticles. These interactions can lead to changes in how proteins crystallize. In particular, they decrease the time to nucleation and expand the range of conditions over which protein crystals form. Interestingly, when PEG chain lengths are too short then protein association is minimized and these effects are not observed. One important feature of protein crystals nucleated with nanoparticles is that the nanoparticles are incorporated into the crystals. What results are nanoparticles placed at well-defined distances in composite protein-nanoparticle crystals. Crystals on the size scale of 10 - 100 micrometers exhibit optical absorbance, fluorescence and super paramagnetic behavior derivative from the incorporated nanomaterials. The arrangement of nanoparticles into three dimensional arrays also gives rise to new and interesting physical and chemical properties, such as fluorescence enhancement and varied magnetic response. In addition, anisotropic nanomaterials aligned throughout the composite crystal have polarization dependent optical properties.

  11. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  12. Nature of impurities during protein crystallization

    NASA Astrophysics Data System (ADS)

    Baskakova, S. S.; Volkov, V. V.; Laptinskaya, T. V.; Lyasnikova, M. S.; Voloshin, A. E.; Koval'chuk, M. V.

    2017-01-01

    Lysozyme crystal growth was studied using reagents of different purity of three trademarks— Seikagaku Corporation (sixfold recrystallized lysozyme), Sigma-Aldrich (threefold recrystallized lysozyme), and Hampton Research (threefold recrystallized lysozyme). Solutions of these reagents were investigated by small-angle X-ray scattering, dynamic light scattering (DLS), ultracentrifugation, and electrophoresis. It was found that crystal-growth and oligomerization processes are more intense in solutions of the reagent of higher purity. The dependences of the fraction of lysozyme oligomers on the supersaturation and purity of the solution are analyzed.

  13. Membrane proteins, detergents and crystals: what is the state of the art?

    PubMed Central

    Loll, Patrick J.

    2014-01-01

    At the time when the first membrane-protein crystal structure was determined, crystallization of these molecules was widely perceived as extremely arduous. Today, that perception has changed drastically, and the process is regarded as routine (or nearly so). On the occasion of the International Year of Crystallography 2014, this review presents a snapshot of the current state of the art, with an emphasis on the role of detergents in this process. A survey of membrane-protein crystal structures published since 2012 reveals that the direct crystallization of protein–detergent complexes remains the dominant method­ology; in addition, lipidic mesophases have proven immensely useful, particularly in specific niches, and bicelles, while perhaps undervalued, have provided important contributions as well. Evolving trends include the addition of lipids to protein–detergent complexes and the gradual incorporation of new detergents into the standard repertoire. Stability has emerged as a critical parameter controlling how a membrane protein behaves in the presence of detergent, and efforts to enhance stability are discussed. Finally, although discovery-based screening approaches continue to dwarf mechanistic efforts to unravel crystallization, recent technical advances offer hope that future experiments might incorporate the rational manipulation of crystallization behaviors. PMID:25484203

  14. A Critical Assessment of Protein Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    1997-01-01

    Experiments to grow higher diffraction quality protein crystals in the microgravity environment of an orbiting spacecraft are one of the most frequently flown space experiments. Ground-based research has shown that convective flows occur even about protein crystals growing in the Earth's gravitational field. Further, this research has shown that the resultant flow velocities can cause growth cessation, and probably affect the measured X-ray data quality obtained. How flow deleteriously affects protein crystal growth (PCG) is still not known, and is the subject of ongoing research. Failing a rational method for ameliorating flow effects on Earth, one can, through NASA and other nations space agency sponsored programs, carry out protein crystal growth in the microgravity environment of an orbiting spacecraft. Early first generation PCG hardware was characterized by a very low success rate and a steep design learning curve. Subsequent hardware designs have improved upon their predecessors. Now the crystal grower has a wide variety of hardware configurations and crystal growth protocols to choose from, many of which implement "standard" laboratory protein crystal growth methods. While many of these are first or early second generation hardware the success rate, defined as growing crystals giving data better than has been obtained on Earth, is at least 20% overall and may be considerably higher if one only considers latter experiments. There are a large number of protein crystals grown every year, with hundreds of structures determined. Those crystallized in microgravity represent a small proportion of this total, and there is concern that the costs of the microgravity PCG program(s) do not justify such limited returns. Empirical evidence suggests that optimum crystal growth conditions in microgravity differ from those determined on Earth, further exacerbating the chances of success. Microgravity PCG is probably best suited for "mature" crystallizations, where one has

  15. Latest methods of fluorescence-based protein crystal identification

    SciTech Connect

    Meyer, Arne; Betzel, Christian

    2015-01-28

    Fluorescence, whether intrinsic or by using trace fluorescent labeling, can be a powerful aid in macromolecule crystallization. Its use in screening for crystals is discussed here. Successful protein crystallization screening experiments are dependent upon the experimenter being able to identify positive outcomes. The introduction of fluorescence techniques has brought a powerful and versatile tool to the aid of the crystal grower. Trace fluorescent labeling, in which a fluorescent probe is covalently bound to a subpopulation (<0.5%) of the protein, enables the use of visible fluorescence. Alternatively, one can avoid covalent modification and use UV fluorescence, exploiting the intrinsic fluorescent amino acids present in most proteins. By the use of these techniques, crystals that had previously been obscured in the crystallization drop can readily be identified and distinguished from amorphous precipitate or salt crystals. Additionally, lead conditions that may not have been obvious as such under white-light illumination can be identified. In all cases review of the screening plate is considerably accelerated, as the eye can quickly note objects of increased intensity.

  16. Protein crystal growth and the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLucas, L. J.; Moore, K. M.; Long, M. M.

    1999-01-01

    Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.

  17. A Microfluidic, High Throughput Protein Crystal Growth Method for Microgravity

    PubMed Central

    Carruthers Jr, Carl W.; Gerdts, Cory; Johnson, Michael D.; Webb, Paul

    2013-01-01

    The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions’ microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 103 cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories. PMID:24278480

  18. Investigations on gravity influence upon protein crystallization by the gel acupuncture technique

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Antonio González-Ramírez, Luis; de los Angeles Hernández-Hernández, María.; Oliver-Salvador, Carmen; Soriano-García, Manuel; Rodríguez-Romero, Adela

    1999-01-01

    Most investigations on biological macromolecules are important for the knowledge of the functions in living organisms. Nowadays it is well known that the three-dimensional structure of proteins is obtained either by NMR or X-ray crystallographic methods. The crucial part in the latter is the availability of high-quality crystals in order to perform structural characterization. Nevertheless, there are some approaches to overcome this problem from the statistical [Jancarik and Kim, J. Appl. Crystallogr. 24 (1991) 409] and physico-chemical point of view [Riès-Kautt and Ducruix, Methods in Enzymology 276 Part A, Ch. 3, 1997, p. 23]. Once the crystals are obtained, the following part of the research must be focused on growing the crystal in order to have an appropriate size for X-ray analysis. There are additional advances in the methods for crystallizing, growing and determining what kind of biophysical or biochemical parameters have to be taken into account in order to obtain a high quality protein crystal, these advances have been already published elsewhere [Ducruix and Giegé, Crystallization of Nucleic Acids and Proteins. A Practical Approach, IRL Press, Oxford, 1991; McPherson, The Preparation and Analysis of Protein Crystals, Wiley, New York, 1982]. In order to evaluate these parameters, we have developed a new technique, called the gel acupuncture technique for crystallizing proteins inside an X-ray capillary tube as well as for trying to study the "in situ" crystal growth phenomena [Garcı´a-Ruiz et al., Mater. Res. Bull. 28 (1993) 541; Garcı´a-Ruiz and Moreno, Acta Crystallogr. D 50 (1994) 484]. In this work, we present our recent investigations on the influence of the gravity vector upon protein crystallization. Three proteins were chosen in order to test this possible influence, taking into account the size of each: satellite tobacco mosaic virus (1000 kDa) and two proteins of "low molecular weight", thaumatin I (22 kDa) and concanavalin A (200 kda

  19. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.

    PubMed

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun

    2015-06-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable.

  20. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography using Surface Acoustic Waves

    PubMed Central

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela; French, Jarrod B.; Jun Huang, Tony

    2015-01-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming we have developed a surface acoustic wave-based method for manipulating and patterning crystals. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and sub-micrometer sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but also will make it possible to collect data on samples that were previously intractable. PMID:25641793

  1. Protein crystallization in low gravity by step gradient diffusion method

    NASA Astrophysics Data System (ADS)

    Sygusch, Jurgen; Coulombe, René; Cassanto, John M.; Sportiello, Michael G.; Todd, Paul

    1996-05-01

    Two-step crystallization experiments were conducted in low gravity employing a liquid-liquid diffusion method in an effort to eliminate problems associated with protein crystal growth under the supersaturating conditions required for nucleation. Experiments were performed in diffusion cells formed by the sliding of blocks on orbit. Step gradient diffusion experiments consisted of first exposing protein solutions in diffusion half-wells for brief periods to initiating buffer solutions of high precipitant concentrations to induce nucleation followed by exposure of the same protein solutions to solutions of lower precipitant concentration to promote growth of induced nuclei into crystals. To avoid convective disturbances that occur when solutions of discrepant densities are interfaced at normal gravity, crystallization of hen egg-white lysozyme and rabbit skeletal muscle aldolase by step gradient diffusion was investigated in low gravity on four NASA space shuttle flights. In general, the largest crystals of both proteins formed at the highest initiating precipitant concentration used, which is consistent with nuclei formation upon brief exposure to high precipitant concentration, and that these nuclei are competent for sustained growth at lower precipitant concentration. The two-step approach dissociates nucleation events from crystal growth allowing parameters affecting nucleation kinetics such as time, precipitant concentration and temperature of nucleation to be varied separately from conditions used for post-nucleation growth.

  2. Real-Time Protein Crystallization Image Acquisition and Classification System.

    PubMed

    Sigdel, Madhav; Pusey, Marc L; Aygun, Ramazan S

    2013-07-03

    In this paper, we describe the design and implementation of a stand-alone real-time system for protein crystallization image acquisition and classification with a goal to assist crystallographers in scoring crystallization trials. In-house assembled fluorescence microscopy system is built for image acquisition. The images are classified into three categories as non-crystals, likely leads, and crystals. Image classification consists of two main steps - image feature extraction and application of classification based on multilayer perceptron (MLP) neural networks. Our feature extraction involves applying multiple thresholding techniques, identifying high intensity regions (blobs), and generating intensity and blob features to obtain a 45-dimensional feature vector per image. To reduce the risk of missing crystals, we introduce a max-class ensemble classifier which applies multiple classifiers and chooses the highest score (or class). We performed our experiments on 2250 images consisting 67% non-crystal, 18% likely leads, and 15% clear crystal images and tested our results using 10-fold cross validation. Our results demonstrate that the method is very efficient (< 3 seconds to process and classify an image) and has comparatively high accuracy. Our system only misses 1.2% of the crystals (classified as non-crystals) most likely due to low illumination or out of focus image capture and has an overall accuracy of 88%.

  3. Protein adsorption on surfaces: dynamic contact-angle (DCA) and quartz-crystal microbalance (QCM) measurements.

    PubMed

    Stadler, H; Mondon, M; Ziegler, C

    2003-01-01

    Adsorption of the protein bovine serum albumin (BSA) on gold has been tested at various concentrations in aqueous solution by dynamic contact-angle analysis (DCA) and quartz-crystal microbalance (QCM) measurements. With the Wilhelmy plate technique advancing and receding contact angles and the corresponding hysteresis were measured and correlated with the hydrophilicity and the homogeneity of the surface. With electrical admittance measurements of a gold-coated piezoelectrical quartz crystal, layer mass and viscoelastic contributions to the resonator's frequency shift during adsorption could be separated. A correlation was found between the adsorbed mass and the homogeneity and hydrophilicity of the adsorbed film.

  4. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    SciTech Connect

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  5. Effects of Solution Stirring on Protein Crystal Growth

    NASA Astrophysics Data System (ADS)

    Yaoi, Mari; Aadachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-05-01

    We report the influence of solution stirring on the growth of hen egg white lysozyme crystals. Solution stirring rate was controlled by varying the rotation speed of a rotary shaker. A range of precipitation agent (sodium chloride) concentrations was also investigated. The time required for crystal nucleation to occur was observed to be much greater in stirred samples than in unstirred samples. Solution stirring resulted in a reduced number of crystals (at sodium chloride concentrations from 6 to 9%). These crystals were larger and of a higher quality. However, the time required for nucleation to occur was reduced by gentle stirring (25 and 50 rpm) in a 12.5% sodium chloride concentration solution, suggesting that stirring can stimulate nucleation. These results indicate that the optimization of solution stirring rates is a useful technique for controlling protein crystal growth.

  6. Liquid Between Macromolecules in Protein Crystals: Static Versus Dynamics

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2005-01-01

    Protein crystals are so fragile that they often can not be handled by tweezers. Indeed, measurements of the Young modulus, E, of lysozyme crystals resulted in E approx. equals 0.1 - 1 GPa, the lower figures, 0.1 - 0.5 GPa, being obtained from triple point bending of as-grown and not cross-linked crystals sitting in solution. The bending strength was found to be approx.10(exp -2) E. On the other hand, ultrasound speed and Mandelstam-Raman-Brilloin light scattering experiments led to much higher figures, E approx. equals 2.7 GPa. The lower figures for E were found from static or low frequency crystal deformations measurements, while the higher moduli are based on high frequency lattice vibrations, 10(exp 7) - 10(exp 10) 1/s. The physical reason for the about an order of magnitude discrepancy is in different behavior of water filling space between protein molecules. At slow lattice deformation, the not-bound intermolecular water has enough time to flow from the compressed to expanded regions of the deformed crystal. At high deformation frequencies in the ultra- and hypersound waves, the water is confined in the intermolecular space and, on that scale, behaves like a solid, thus contributing to the elastic crystal moduli. In this case, the reciprocal crystal modulus is expected to be an average of the water protein and water compressibilities (reciprocal compressibilities): the bulk modulus for lysozyme is 26 GPa, for water it is 7 GPa. Anisotropy of the crystal moduli comes from intermolecular contacts within the lattice while the high frequency hardness comes from the bulk of protein molecules and water bulk moduli. These conclusions are based on the analysis of liquid flow in porous medium to be presented.

  7. Growing protein crystals in microgravity - The NASA Microgravity Science and Applications Division (MSAD) Protein Crystal Growth (PCG) program

    NASA Technical Reports Server (NTRS)

    Herren, B.

    1992-01-01

    In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.

  8. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  9. Specific Rate of Protein Crystallization Determined by the Guggenheim Method

    NASA Astrophysics Data System (ADS)

    Baird, James K.; McFeeters, Robert L.; Caraballo, Katiuska G.

    2014-05-01

    The biological function of a protein is intimately related to its three-dimensional molecular structure. Although X-ray diffraction from single crystals can be employed to solve for the molecular structure, use of this method is often impeded by the slow rate of precipitation of crystals from the pH buffered, aqueous solutions of strong electrolytes which ordinarily serve as growth media. The rate of crystallization can be measured as a function of growth solution conditions by growing the crystals in a dilatometer. As the crystallization progresses, the rate of change of the system volume caused by the difference in density between the crystals and the solution is reflected in the rate of change of the height of the fluid in the capillary side arm of the dilatometer. In the case of the proteins, lysozyme, and canavalin, this height changes exponentially with time, which serves to define a first-order rate constant or specific crystallization rate, k. A dozen such experiments may be needed to determine how depends upon pH, electrolyte concentration, and temperature. Each experiment can require 4 or 5 days to reach equilibrium. If height measurements are made equally spaced in time, however, early time data can be combined according to the Guggenheim procedure, and the value of k can be determined without the experiment having to reach equilibrium. By using this method, the time required to complete an experiment can be reduced by as much as 50 %.

  10. Thermal Optimization of Growth and Quality in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    1996-01-01

    Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.

  11. Applications of the second virial coefficient: protein crystallization and solubility

    SciTech Connect

    Wilson, William W.; DeLucas, Lawrence J.

    2014-04-30

    This article highlights some of the ground-based studies emanating from NASA’s Microgravity Protein Crystal Growth (PCG) program, and includes a more detailed discussion of the history and the progress made in one of the NASA-funded PCG investigations involving the use of measured second virial coefficients (B values) as a diagnostic indicator of solution conditions conducive to protein crystallization. This article begins by highlighting some of the ground-based studies emanating from NASA’s Microgravity Protein Crystal Growth (PCG) program. This is followed by a more detailed discussion of the history of and the progress made in one of the NASA-funded PCG investigations involving the use of measured second virial coefficients (B values) as a diagnostic indicator of solution conditions conducive to protein crystallization. A second application of measured B values involves the determination of solution conditions that improve or maximize the solubility of aqueous and membrane proteins. These two important applications have led to several technological improvements that simplify the experimental expertise required, enable the measurement of membrane proteins and improve the diagnostic capability and measurement throughput.

  12. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  13. Mechanisms of protein and virus crystal growth: An atomic force microscopy study of Canavalin crystallization

    SciTech Connect

    Land, T.A.; De Yoreo, J.J.; Malkin, A.J.; Kutznesov, Y.G.; McPherson, A.

    1995-03-10

    The evolution of surface morphology and step dynamics during growth of single crystals of the protein Canavalin and of the cubic satellite tobacco mosaic virus crystals (STMV) have been investigated by in situ atomic force microscopy. These two crystals were observed to grow by very different mechanisms. Growth of Canavalin occurs on complex vicinal hillocks formed by multiple, independently acting screw dislocations. Small cluster were observed on the terraces. STMV on the other hand, was observed to grow by 2D nucleation of islands. No dislocations were found on the crystal. The results are used to determine the growth mechanisms and estimate fundamental materials parameters. The images also illustrate the important mechanism of defect incorporation and provide insight to the processes that limit the growth rate and uniformity of these crystals.

  14. THz Microscopy of Anisotropy and Correlated Motions in Protein Crystals

    NASA Astrophysics Data System (ADS)

    Niessen, Katherine; Acbas, Gheorghe; Snell, Edward; Markelz, Andrea

    2013-03-01

    We introduce a new technique, Crystal Anisotropy Terahertz Microscopy (CATM) which can directly measure correlated intra-molecular protein vibrations. The terahertz (THz) frequency range (5-100 cm-1) corresponds to global correlated protein motions, proposed to be essential to protein function [1, 2]. CATM accesses these motions by removal of the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for hen egg-white lysozyme (HEWL) single crystals as well as HEWL with triacetylglucosamine (HEWL-3NAG) inhibitor single crystals. The most prominent features for the HEWL crystals appear at 45 cm-1, 69 cm-1, and 78 cm-1 and the strength of the absorption varies with crystal orientation relative to the THz polarization. Calculations show similar anisotropic features, suggesting specific correlated mode identification is possible. 1. Hammes-Schiffer, S. and S.J. Benkovic, Relating Protein Motion to Catalysis. Annu. Rev. Biochem., 2006. 75: p. 519-41. 2. Henzler-Wildman, K.A., et al., Intrinsic motions along an enzymatic reaction trajectory. Nature, 2007. 450(7171): p. 838-U13. This work supported by NSF MRI2 grant DBI295998.

  15. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes.

    PubMed

    Shukla, Arun K; Gupta, Charu; Srivastava, Ashish; Jaiman, Deepika

    2015-01-01

    G protein-coupled receptors (GPCRs) are one of the key players in extracellular signal recognition and their subsequent communications with cellular signaling machinery. Crystallization and high-resolution structure determination of GPCRs has been one of the major advances in the area of GPCR biology over the last 7-8 years. There have primarily been three approaches to GPCR crystallization till date. These are fusion protein strategy, thermostabilization, and antibody fragment-mediated crystallization. Of these, antibody fragment-mediated crystallization has not only provided the first breakthrough in structure determination of a non-rhodopsin GPCR but it has also assisted in obtaining structures of fully active conformations of GPCRs. Antibody fragment approach has also been crucial in obtaining structural information on GPCR signaling complexes. Here, we highlight the specific examples of GPCR crystal structures that have utilized antibody fragments for promoting crystallogenesis and structure solution. We also discuss emerging powerful technologies such as the nanobody technology and the synthetic phage display libraries in the context of GPCR crystallization and underline how these tools are likely to propel key GPCR structural studies in future.

  16. Development of compartment for studies on the growth of protein crystals in space.

    PubMed

    Yamazaki, T; Tsukamoto, K; Yoshizaki, I; Fukuyama, S; Miura, H; Shimaoka, T; Maki, T; Oshi, K; Kimura, Y

    2016-03-01

    To clarify the growth mechanism of a protein crystal, it is essential to measure its growth rate with respect to the supersaturation. We developed a compartment (growth cell) for measuring the growth rate (<0.1 nm s(-1)) of the face of a protein crystal at a controlled supersaturation by interferometry over a period of half a year in space. The growth cell mainly consists of quartz glass, in which the growth solution and a seed crystal are enclosed by capillaries, the screw sample holder, and a helical insert. To avoid the destruction of the cell and the evaporation of the water from the solution inside the cell, we selected the materials for these components with care. The equipment was successfully used to examine the growth of a lysozyme crystal at a controlled supersaturation in space, where convection is negligible because of the microgravity environment, thereby advancing our understanding of the mechanism of protein crystal growth from solution. The technique used to develop the growth cell is useful not only for space experiments but also for kinetic studies of materials with very slow growth and dissolution rates (<10(-3) nm s(-1)).

  17. Crystallization of a protein using dehydration without a precipitant

    PubMed Central

    Sharpe, Miriam L.; Baker, Edward N.; Lott, J. Shaun

    2005-01-01

    Hypoxic response protein I (HRPI) is a protein of unknown biochemical function whose expression is very strongly upregulated in response to oxygen depletion in Mycobacterium tuberculosis. Crystals have been grown from a solution of full-length HRPI by the unusual method of dehydration without the use of precipitants. The crystals produced diffract to a maximum resolution of 2.1 Å and belong to space group P41212 (or P43212), with unit-cell parameters a = b = 79.18, c = 37.34 Å. PMID:16511097

  18. Protein Crystal Growth (PCG) experiment aboard mission STS-66

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On the Space Shuttle Orbiter Atlantis' middeck, Astronaut Joseph R. Tarner, mission specialist, works at an area amidst several lockers which support the Protein Crystal Growth (PCG) experiment during the STS-66 mission. This particular section is called the Crystal Observation System, housed in the Thermal Enclosure System (COS/TES). Together with the Vapor Diffusion Apparatus (VDA), housed in Single Locker Thermal Enclosure (SLTES), the COS/TES represents the continuing research into the structure of proteins and other macromolecules such as viruses.

  19. Protein crystal screening and characterization for serial femtosecond nanocrystallography

    PubMed Central

    Darmanin, Connie; Strachan, Jamie; Adda, Christopher G.; Ve, Thomas; Kobe, Bostjan; Abbey, Brian

    2016-01-01

    The recent development of X-ray free electron lasers (XFELs) has spurred the development of serial femtosecond nanocrystallography (SFX) which, for the first time, is enabling structure retrieval from sub-micron protein crystals. Although there are already a growing number of structures published using SFX, the technology is still very new and presents a number of unique challenges as well as opportunities for structural biologists. One of the biggest barriers to the success of SFX experiments is the preparation and selection of suitable protein crystal samples. Here we outline a protocol for preparing and screening for suitable XFEL targets. PMID:27139248

  20. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  1. A structural dissection of large protein-protein crystal packing contacts.

    PubMed

    Luo, Jiesi; Liu, Zhongyu; Guo, Yanzhi; Li, Menglong

    2015-09-15

    With the rapid increase in crystal structures of protein-protein complexes deposited in the Protein Data Bank (PDB), more and more crystal contacts have been shown to have similar or even larger interface areas than biological interfaces. However, little attention has been paid to these large crystal packing contacts and their structural principles remain unknown. To address this issue, we used a comparative feature analysis to analyze the geometric and physicochemical properties of large crystal packing contacts by comparing two types of specific protein-protein interactions (PPIs), weak transient complexes and permanent homodimers. Our results show that although large crystal packing contacts have a similar interface area and contact size as permanent homodimers, they tend to be more planar, loosely packed and less hydrophobic than permanent homodimers and cannot form a central core region that is fully buried during interaction. However, the properties of large crystal packing contacts, except for the interface area and contact size, more closely resemble those of weak transient complexes. The large overlap between biological and large crystal packing contacts indicates that interface properties are not efficient indicators for classification of biological interfaces from large crystal packing contacts and finding other specific features urgently needed.

  2. Cross-Linked Protein Crystals for Vaccine Delivery

    NASA Astrophysics Data System (ADS)

    St. Clair, Nancy; Shenoy, Bhami; Jacob, Lawrence D.; Margolin, Alexey L.

    1999-08-01

    The progress toward subunit vaccines has been limited by their poor immunogenicity and limited stability. To enhance the immune response, subunit vaccines universally require improved adjuvants and delivery vehicles. In the present paper, we propose the use of cross-linked protein crystals (CLPCs) as antigens. We compare the immunogenicity of CLPCs of human serum albumin with that of soluble protein and conclude that there are marked differences in the immune response to the different forms of human serum albumin. Relative to the soluble protein, crystalline forms induce and sustain over almost a 6-month study a 6- to 10-fold increase in antibody titer for highly cross-linked crystals and an approximately 30-fold increase for lightly cross-linked crystals. We hypothesize that the depot effect, the particulate structure of CLPCs, and highly repetitive nature of protein crystals may play roles in the enhanced production of circulating antibodies. Several features of CLPCs, such as their remarkable stability, purity, biodegradability, and ease of manufacturing, make them highly attractive for vaccine formulations. This work paves the way for a systematic study of protein crystallinity and cross-linking on enhancement of humoral and T cell responses.

  3. Cross-linked protein crystals for vaccine delivery

    PubMed Central

    St. Clair, Nancy; Shenoy, Bhami; Jacob, Lawrence D.; Margolin, Alexey L.

    1999-01-01

    The progress toward subunit vaccines has been limited by their poor immunogenicity and limited stability. To enhance the immune response, subunit vaccines universally require improved adjuvants and delivery vehicles. In the present paper, we propose the use of cross-linked protein crystals (CLPCs) as antigens. We compare the immunogenicity of CLPCs of human serum albumin with that of soluble protein and conclude that there are marked differences in the immune response to the different forms of human serum albumin. Relative to the soluble protein, crystalline forms induce and sustain over almost a 6-month study a 6- to 10-fold increase in antibody titer for highly cross-linked crystals and an approximately 30-fold increase for lightly cross-linked crystals. We hypothesize that the depot effect, the particulate structure of CLPCs, and highly repetitive nature of protein crystals may play roles in the enhanced production of circulating antibodies. Several features of CLPCs, such as their remarkable stability, purity, biodegradability, and ease of manufacturing, make them highly attractive for vaccine formulations. This work paves the way for a systematic study of protein crystallinity and cross-linking on enhancement of humoral and T cell responses. PMID:10449716

  4. Rational design of crystal contact-free space in protein crystals for analyzing spatial distribution of motions within protein molecules.

    PubMed

    Matsuoka, Rei; Shimada, Atsushi; Komuro, Yasuaki; Sugita, Yuji; Kohda, Daisuke

    2016-03-01

    Contacts with neighboring molecules in protein crystals inevitably restrict the internal motions of intrinsically flexible proteins. The resultant clear electron densities permit model building, as crystallographic snapshot structures. Although these still images are informative, they could provide biased pictures of the protein motions. If the mobile parts are located at a site lacking direct contacts in rationally designed crystals, then the amplitude of the movements can be experimentally analyzed. We propose a fusion protein method, to create crystal contact-free space (CCFS) in protein crystals and to place the mobile parts in the CCFS. Conventional model building fails when large amplitude motions exist. In this study, the mobile parts appear as smeared electron densities in the CCFS, by suitable processing of the X-ray diffraction data. We applied the CCFS method to a highly mobile presequence peptide bound to the mitochondrial import receptor, Tom20, and a catalytically relevant flexible segment in the oligosaccharyltransferase, AglB. These two examples demonstrated the general applicability of the CCFS method to the analysis of the spatial distribution of motions within protein molecules.

  5. Morphology and the Strength of Intermolecular Contact in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Matsuura, Yoshiki; Chernov, Alexander A.

    2002-01-01

    The strengths of intermolecular contacts (macrobonds) in four lysozyme crystals were estimated based on the strengths of individual intermolecular interatomic interaction pairs. The periodic bond chain of these macrobonds accounts for the morphology of protein crystals as shown previously. Further in this paper, the surface area of contact, polar coordinate representation of contact site, Coulombic contribution on the macrobond strength, and the surface energy of the crystal have been evaluated. Comparing location of intermolecular contacts in different polymorphic crystal modifications, we show that these contacts can form a wide variety of patches on the molecular surface. The patches are located practically everywhere on this surface except for the concave active site. The contacts frequently include water molecules, with specific intermolecular hydrogen-bonds on the background of non-specific attractive interactions. The strengths of macrobonds are also compared to those of other protein complex systems. Making use of the contact strengths and taking into account bond hydration we also estimated crystal-water interfacial energies for different crystal faces.

  6. From art to science in protein crystallization by means of thin-film nanotechnology

    NASA Astrophysics Data System (ADS)

    Pechkova, Eugenia; Nicolini, Claudio

    2002-08-01

    A new method of protein crystallization based on a homologous Langmuir-Schaefer (LS) protein thin-film template proves to successfully stimulate crystal nucleation and growth of the four different proteins being studied, under different crystallization conditions including those failing to lead to crystal formation in solution. Protein microcrystals were obtained by a modified vapour diffusion hanging drop method. This report is focused on recombinant bovine cytochrome P-450scc crystallization and subsequent crystal characterization by atomic force microscopy in an appropriate chamber. The results are discussed in terms of a possible transition in protein crystallization from art to science by means of LS thin-film nanotechnology.

  7. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  8. Can proteins and crystals self-catalyze methyl rotations?

    SciTech Connect

    Smith, Jeremy C; Baudry, Jerome

    2005-10-01

    The {chi} (C{sub {alpha}}-C{sub {beta}}) torsional barrier in the dipeptide alanine (N-methyl-l-alanyl-N-methylamide) crystal was investigated using ab initio calculations at various levels of theory, molecular mechanics, and molecular dynamics. For one of the two molecules in the asymmetric unit the calculations suggest that rotation around the ? dihedral angle is catalyzed by the crystal environment, reducing by up to 2kT the torsional barrier in the crystal with respect to that in the gas phase. This catalytic effect is present at both low and room temperature and originates from a van der Waals destabilization of the minima in the methyl dihedral potential coming from the nonbonded environment of the side chain. Screening of a subset of the Protein Data Bank with a pharmacophore model reproducing the crystal environment around this side chain methyl identified a protein containing an alanine residue with an environment similar to that in the crystal. Calculations indicate that this ? torsional barrier is also reduced in the protein at low temperature but not at room temperature. This suggests that environment-catalyzed rotation of methyl groups can occur both in the solid phase and in native biological structures, though this effect might be temperature-dependent. The relevance of this catalytic effect is discussed in terms of its natural occurrence and its possible contribution to the low-frequency vibrational modes of molecules.

  9. Applications of the second virial coefficient: protein crystallization and solubility.

    PubMed

    Wilson, William W; Delucas, Lawrence J

    2014-05-01

    This article begins by highlighting some of the ground-based studies emanating from NASA's Microgravity Protein Crystal Growth (PCG) program. This is followed by a more detailed discussion of the history of and the progress made in one of the NASA-funded PCG investigations involving the use of measured second virial coefficients (B values) as a diagnostic indicator of solution conditions conducive to protein crystallization. A second application of measured B values involves the determination of solution conditions that improve or maximize the solubility of aqueous and membrane proteins. These two important applications have led to several technological improvements that simplify the experimental expertise required, enable the measurement of membrane proteins and improve the diagnostic capability and measurement throughput.

  10. Crystallization of cyclase-associated protein from Dictyostelium discoideum.

    PubMed

    Hofmann, Andreas; Hess, Sonja; Noegel, Angelika A; Schleicher, Michael; Wlodawer, Alexander

    2002-10-01

    Cyclase-associated protein (CAP) is a conserved two-domain protein that helps to activate the catalytic activity of adenylyl cyclase in the cyclase-bound state through interaction with Ras, which binds to the cyclase in a different region. With its other domain, CAP can bind monomeric actin and therefore also carries a cytoskeletal function. The protein is thus involved in Ras/cAMP-dependent signal transduction and most likely serves as an adapter protein translocating the adenylyl cyclase complex to the actin cytoskeleton. Crystals belonging to the orthorhombic space group C222, with unit-cell parameters a = 71.2, b = 75.1, c = 162.9 A, have been obtained from Dictyostelium discoideum CAP carrying a C-terminal His tag. A complete native data set extending to 2.2 A resolution was collected from a single crystal using an in-house X-ray system. The asymmetric unit contains one molecule of CAP.

  11. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    NASA Astrophysics Data System (ADS)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  12. The effect of microgravity on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Mcpherson, Alexander; Greenwood, Aaron; Day, John

    1991-01-01

    Based on the results of microgravity crystallization experiments using the protein canavalin aboard four separate U.S. Space Shuttle missions, visual observations and diffraction data are presented that support the contention that protein crystals of improved quality can be obtained in a microgravity environment. With canavalin, no significant increase in resolution was noted, but an overall improvement in diffraction quality, as judged by statistical analyses of the data, was clear. This improvement in quality may be due primarily to the elimination of defects and dislocations rather than an overall enhancement of order. The mechanism for this improvement may be microgravity-stabilized depletion zones that develop around growing crystals that establish and maintain optimal growth conditions more rapidly following nucleation. Such zones would be destroyed by convective flow effects in earth's gravity.

  13. Protein phase behavior and crystallization: Effect of glycerol

    NASA Astrophysics Data System (ADS)

    Sedgwick, H.; Cameron, J. E.; Poon, W. C. K.; Egelhaaf, S. U.

    2007-09-01

    Glycerol is widely used as an additive to stabilize proteins in aqueous solution. We have studied the effect of up to 40wt% glycerol on the crystallization of lysozyme from brine. As the glycerol concentration increased, progressively larger amounts of salt were needed to crystallize the protein. Like previous authors, we interpret this as evidence for glycerol changing the interaction between lysozyme molecules. We quantitatively model the interprotein interaction using a Derjaguin-Landau-Verwey-Overbeek potential. We find that the effect of glycerol can be entirely accounted for by the way it modifies the dielectric constant and refractive index of the solvent. Quantifying the interprotein interaction by the second virial coefficient, B2, we find a universal crystallization boundary for all glycerol concentrations.

  14. Protein phase behavior and crystallization: effect of glycerol.

    PubMed

    Sedgwick, H; Cameron, J E; Poon, W C K; Egelhaaf, S U

    2007-09-28

    Glycerol is widely used as an additive to stabilize proteins in aqueous solution. We have studied the effect of up to 40 wt % glycerol on the crystallization of lysozyme from brine. As the glycerol concentration increased, progressively larger amounts of salt were needed to crystallize the protein. Like previous authors, we interpret this as evidence for glycerol changing the interaction between lysozyme molecules. We quantitatively model the interprotein interaction using a Derjaguin-Landau-Verwey-Overbeek potential. We find that the effect of glycerol can be entirely accounted for by the way it modifies the dielectric constant and refractive index of the solvent. Quantifying the interprotein interaction by the second virial coefficient, B(2), we find a universal crystallization boundary for all glycerol concentrations.

  15. X-ray crystal structures of a severely desiccated protein.

    PubMed Central

    Bell, J. A.

    1999-01-01

    Unlike most protein crystals, form IX of bovine pancreatic ribonuclease A diffracts well when severely dehydrated. Crystal structures have been solved after 2.5 and 4 days of desiccation with CaSO4, at 1.9 and 2.0 A resolution, respectively. The two desiccated structures are very similar. An RMS displacement of 1.6 A is observed for main-chain atoms in each structure when compared to the hydrated crystal structure with some large rearrangements observed in loop regions. The structural changes are the result of intermolecular contacts formed by strong electrostatic interactions in the absence of a high dielectric medium. The electron density is very diffuse for some surface loops, consistent with a very disordered structure. This disorder is related to the conformational changes. These results help explain conformational changes during the lyophilization of protein and the associated phenomena of denaturation and molecular memory. PMID:10548049

  16. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    PubMed Central

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-01-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions. PMID:26843366

  17. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    NASA Astrophysics Data System (ADS)

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-02-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.

  18. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  19. The Growth of Protein Crystals Using McDUCK

    NASA Technical Reports Server (NTRS)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals

  20. Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts

    PubMed Central

    Capitani, Guido; Duarte, Jose M.; Baskaran, Kumaran; Bliven, Spencer; Somody, Joseph C.

    2016-01-01

    Modern structural biology still draws the vast majority of information from crystallography, a technique where the objects being investigated are embedded in a crystal lattice. Given the complexity and variety of those objects, it becomes fundamental to computationally assess which of the interfaces in the lattice are biologically relevant and which are simply crystal contacts. Since the mid-1990s, several approaches have been applied to obtain high-accuracy classification of crystal contacts and biological protein–protein interfaces. This review provides an overview of the concepts and main approaches to protein interface classification: thermodynamic estimation of interface stability, evolutionary approaches based on conservation of interface residues, and co-occurrence of the interface across different crystal forms. Among the three categories, evolutionary approaches offer the strongest promise for improvement, thanks to the incessant growth in sequence knowledge. Importantly, protein interface classification algorithms can also be used on multimeric structures obtained using other high-resolution techniques or for protein assembly design or validation purposes. A key issue linked to protein interface classification is the identification of the biological assembly of a crystal structure and the analysis of its symmetry. Here, we highlight the most important concepts and problems to be overcome in assembly prediction. Over the next few years, tools and concepts of interface classification will probably become more frequently used and integrated in several areas of structural biology and structural bioinformatics. Among the main challenges for the future are better addressing of weak interfaces and the application of interface classification concepts to prediction problems like protein–protein docking. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: guido.capitani@psi.ch PMID:26508758

  1. Dynamic X-ray diffraction sampling for protein crystal positioning.

    PubMed

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by

  2. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals.

    PubMed

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2015-12-17

    Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites.

  3. Protein purification and crystallization artifacts: The tale usually not told.

    PubMed

    Niedzialkowska, Ewa; Gasiorowska, Olga; Handing, Katarzyna B; Majorek, Karolina A; Porebski, Przemyslaw J; Shabalin, Ivan G; Zasadzinska, Ewelina; Cymborowski, Marcin; Minor, Wladek

    2016-03-01

    The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non-reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building.

  4. Protein-directed self-assembly of a fullerene crystal

    PubMed Central

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; DeGrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-01-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. PMID:27113637

  5. Scalable photonic crystal chips for high sensitivity protein detection.

    PubMed

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  6. Microgravity polymer and crystal growth at the Advanced Materials Center for the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    Mccauley, Lisa A.

    1990-01-01

    The microgravity research programs currently conducted by the Advanced Materials Center for the Commercial Development of Space (CCDS) are briefly reviewed. Polymer processing in space, which constitutes the most active microgravity program at the Advanced Materials CCDS, is conducted in three areas: membrane processing, multiphase composite behavior, and plasma polymerization. Current work in microgravity crystal growth is discussed with particular reference to the development of the Zeolite Crystal Growth facility.

  7. Laser Scattering Tomography for the Study of Defects in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.; DeLucas, Lawrence; DeMattei, R. C.

    1997-01-01

    The goal of this research is to explore the application of the non-destructive technique of Laser Scattering Tomography (LST) to study the defects in protein crystals and relate them to the x-ray diffraction performance of the crystals. LST has been used successfully for the study of defects in inorganic crystals and. in the case of lysozyme, for protein crystals.

  8. Models of protein-ligand crystal structures: trust, but verify

    NASA Astrophysics Data System (ADS)

    Deller, Marc C.; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  9. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  10. Protein crystal growth; Proceedings of the First International Conference, Stanford University, CA, August 14-16, 1985

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S. (Editor)

    1986-01-01

    Papers are presented on mechanisms of nucleation and growth of protein crystals, the role of purification in the crystallization of proteins and nucleic acids, and the effect of chemical impurities in polyethylene glycol on macromolecular crystallization. Also considered are growth kinetics of tetragonal lysozyme crystals, thermodynamic and kinetic considerations for crystal growth of complex molecules from solution, protein single-crystal growth under microgravity, and growth of organic crystals in a microgravity environment. Papers are also presented on preliminary investigations of protein crystal growth using the Space Shuttle, convective diffusion in protein crystal growth, and the growth and characterization of membrane protein crystals.

  11. An overview of heavy-atom derivatization of protein crystals

    PubMed Central

    Pike, Ashley C. W.; Garman, Elspeth F.; Krojer, Tobias; von Delft, Frank; Carpenter, Elisabeth P.

    2016-01-01

    Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative. PMID:26960118

  12. The first crystal structure of an archaeal helical repeat protein

    SciTech Connect

    Yoneda, Kazunari; Sakuraba, Haruhiko; Tsuge, Hideaki; Katunuma, Nobuhiko; Kuramitsu, Seiki; Kawabata, Takeshi; Ohshima, Toshihisa

    2005-07-01

    The crystal structure of ST1625p, a protein encoded by a hypothetical open reading frame ST1625 in the genome of the hyperthermophilic archaeon Sulfolobus tokodaii, was determined at 2.2 Å resolution. The structure of ST1625p consists of a unique superhelix with a low-level structure resemblance to doamins from other proteins with known three-dimensional structures. The crystal structure of ST1625p, a protein encoded by a hypothetical open reading frame ST1625 in the genome of the hyperthermophilic archaeon Sulfolobus tokodaii, was determined at 2.2 Å resolution. The only sequence similarity exhibited by the amino-acid sequence of ST1625p was a 33% identity with the sequence of SSO0983p from S. solfataricus. The 19 kDa monomeric protein was observed to consist of a right-handed superhelix assembled from a tandem repeat of ten α-helices. A structural homology search using the DALI and MATRAS algorithms indicates that this protein can be classified as a helical repeat protein.

  13. Effects of impurities on membrane-protein crystallization in different systems

    SciTech Connect

    Kors, Christopher A.; Wallace, Ellen; Davies, Douglas R.; Li, Liang; Laible, Philip D.; Nollert, Peter

    2009-10-01

    The effects of commonly encountered impurities on various membrane-protein crystallization regimes are investigated and it is found that the lipidic cubic phase crystallization methodology is the most robust, tolerating protein contamination levels of up to 50%, with little effect on crystal quality. If generally applicable, this tolerance may be exploited (i) in initial crystallization trials to determine the ‘crystallizability’ of a given membrane-protein and (ii) to subject partially pure membrane-protein samples to crystallization trials. When starting a protein-crystallization project, scientists are faced with several unknowns. Amongst them are these questions: (i) is the purity of the starting material sufficient? and (ii) which type of crystallization experiment is the most promising to conduct? The difficulty in purifying active membrane-protein samples for crystallization trials and the high costs associated with producing such samples require an extremely pragmatic approach. Additionally, practical guidelines are needed to increase the efficiency of membrane-protein crystallization. In order to address these conundrums, the effects of commonly encountered impurities on various membrane-protein crystallization regimes have been investigated and it was found that the lipidic cubic phase (LCP) based crystallization methodology is more robust than crystallization in detergent environments using vapor diffusion or microbatch approaches in its ability to tolerate contamination in the forms of protein, lipid or other general membrane components. LCP-based crystallizations produced crystals of the photosynthetic reaction center (RC) of Rhodobacter sphaeroides from samples with substantial levels of residual impurities. Crystals were obtained with protein contamination levels of up to 50% and the addition of lipid material and membrane fragments to pure samples of RC had little effect on the number or on the quality of crystals obtained in LCP

  14. Using Green and Red Fluorescent Proteins to Teach Protein Expression, Purification, and Crystallization

    ERIC Educational Resources Information Center

    Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong

    2008-01-01

    We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…

  15. Site-specific immobilization of proteins at zeolite L crystals by nitroxide exchange reactions.

    PubMed

    Becker, Maike; De Cola, Luisa; Studer, Armido

    2011-03-28

    Site-selective immobilization of dyes and different protein recognizing entities at the surface of zeolite L crystals using mild radical nitroxide exchange reactions is reported. Exposure of these crystals to aqueous protein solutions leads to site-selective immobilization of proteins onto the crystals.

  16. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.

  17. Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.

    PubMed

    Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun

    2014-05-23

    Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35-96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4-8 nL. The protein consumption significantly reduces 50-500 fold compared with current crystallization stations.

  18. Renaissance of protein crystallization and precipitation in biopharmaceuticals purification.

    PubMed

    Dos Santos, Raquel; Carvalho, Ana Luísa; Roque, A Cecília A

    The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups.

  19. Crystallization of a paraspeckle protein PSPC1-NONO heterodimer.

    PubMed

    Passon, Daniel M; Lee, Mihwa; Fox, Archa H; Bond, Charles S

    2011-10-01

    The paraspeckle component 1 (PSPC1) and non-POU-domain-containing octamer-binding protein (NONO) heterodimer is an essential structural component of paraspeckles, ribonucleoprotein bodies found in the interchromatin space of mammalian cell nuclei. PSPC1 and NONO both belong to the Drosophila behaviour and human splicing (DBHS) protein family, which has been implicated in many aspects of RNA processing. A heterodimer of the core DBHS conserved region of PSPC1 and NONO comprising two tandemly arranged RNA-recognition motifs (RRMs), a NONA/paraspeckle (NOPS) domain and part of a predicted coiled-coil domain has been crystallized in space group C2, with unit-cell parameters a = 90.90, b = 67.18, c = 94.08 Å, β = 99.96°. The crystal contained one heterodimer in the asymmetric unit and diffracted to 1.9 Å resolution using synchrotron radiation.

  20. Phytases: crystal structures, protein engineering and potential biotechnological applications.

    PubMed

    Yao, M-Z; Zhang, Y-H; Lu, W-L; Hu, M-Q; Wang, W; Liang, A-H

    2012-01-01

    Phytases are a group of enzymes capable of releasing phosphates from phytates, one of the major forms of phosphorus (P) in animal feeds of plant origin. These enzymes have been widely used in animal feed to improve phosphorus nutrition and to reduce phosphorus pollution in animal waste. This review covers the basic nomenclature and crystal structures of phytases and emphasizes both the protein engineering strategies used for the development of new, effective phytases with improved properties and the potential biotechnological applications of phytases.

  1. Recent results and new hardware developments for protein crystal growth in microactivity

    NASA Technical Reports Server (NTRS)

    Delucas, L. J.; Long, M. M.; Moore, K. M.; Smith, C.; Carson, M.; Narayana, S. V. L.; Carter, D.; Clark, A. D., Jr.; Nanni, R. G.; Ding, J.

    1993-01-01

    Protein crystal growth experiments have been performed on 16 space shuttle missions since April, 1985. The initial experiments utilized vapor diffusion crystallization techniques similar to those used in laboratories for earth-based experiments. More recent experiments have utilized temperature induced crystallization as an alternative method for growing high quality protein crystals in microgravity. Results from both vapor diffusion and temperature induced crystallization experiments indicate that proteins grown in microgravity may be larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  2. Advances in extrusion for texturized whey proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins like whey proteins play an important role in human nutrition because of their characteristic structure and associated numerous benefits such as ease of digestion, in- vivo assimilation, creating new or maintaining the muscle mass and the unique ability of boosting immune functions. W...

  3. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  4. Protein dynamics derived from clusters of crystal structures.

    PubMed Central

    van Aalten, D M; Conn, D A; de Groot, B L; Berendsen, H J; Findlay, J B; Amadei, A

    1997-01-01

    A method is presented to mathematically extract concerted structural transitions in proteins from collections of crystal structures. The "essential dynamics" procedure is used to filter out small-amplitude fluctuations from such a set of structures; the remaining large conformational changes describe motions such as those important for the uptake/release of substrate/ligand and in catalytic reactions. The method is applied to sets of x-ray structures for a number of proteins, and the results are compared with the results from essential dynamics as applied to molecular dynamics simulations of those proteins. A significant degree of similarity is found, thereby providing a direct experimental basis for the application of such simulations to the description of large concerted motions in proteins. Images FIGURE 1 PMID:9414203

  5. The first crystal structure of an archaeal helical repeat protein

    PubMed Central

    Yoneda, Kazunari; Sakuraba, Haruhiko; Tsuge, Hideaki; Katunuma, Nobuhiko; Kuramitsu, Seiki; Kawabata, Takeshi; Ohshima, Toshihisa

    2005-01-01

    The crystal structure of ST1625p, a protein encoded by a hypothetical open reading frame ST1625 in the genome of the hyperthermophilic archaeon Sulfolobus tokodaii, was determined at 2.2 Å resolution. The only sequence similarity exhibited by the amino-acid sequence of ST1625p was a 33% identity with the sequence of SSO0983p from S. solfataricus. The 19 kDa monomeric protein was observed to consist of a right-handed superhelix assembled from a tandem repeat of ten α-­helices. A structural homology search using the DALI and MATRAS algorithms indicates that this protein can be classified as a helical repeat protein. PMID:16511116

  6. Crystal structure of Homo sapiens protein LOC79017

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N.

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  7. Crystallization and preliminary X-ray analysis of papaya mosaic virus coat protein.

    PubMed

    Zhang, H; Todderud, E; Stubbs, G

    1993-12-05

    Papaya mosaic virus coat protein has been treated with trypsin and a large fragment of the intact protein has been crystallized in space group P3(1)21 or P3(2)21 (unit cell dimensions: a = b = 110 A, c = 237 A). The crystals diffract to 3.5 A resolution. Crystals of the untreated protein have also been grown. The untreated protein crystals diffract to 4 A resolution, but have a large mosaic spread. They have the same space group as the trypsin-treated protein crystals, but a much smaller unit cell (a = b = 72 A, c = 240 A).

  8. Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals

    SciTech Connect

    D Freed; P Horanyi; M Wiener; D Cafiso

    2011-12-31

    Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

  9. Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals

    SciTech Connect

    Freed, Daniel M.; Horanyi, Peter S.; Wiener, Michael C.; Cafiso, David S.

    2010-09-27

    Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

  10. Protein crystal growth results from shuttle flight 51-F

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.

    1985-01-01

    The protein crystal growth (PCG) experiments run on 51-F were analyzed. It was found that: (1) sample stability is increased over that observed during the experiments on flight 51-D; (2) the dialysis experiments produced lysozyme crystals that were significantly larger than those obtained in our identical ground-based studies; (3) temperature fluctuations apparently caused problems during the crystallization experiments on 51-F; (4) it is indicated that teflon tape stabilizes droplets on the syringe tips; (5) samples survived during the reentry and landing in glass tips that were not stoppered with plungers; (6) from the ground-based studies, it was expected that equilibration should be complete within 2 to 4 days for all of these vapor-diffusion experiments, thus it appears that the vapor diffusion rates are somewhat slower under microgravity conditions; (7) drop tethering was highly successful, all four of the tethered drops were stable, even though they contained MPD solutions; (8) the PCG experiments on 51-F were done to assess the hardware and experimental procedures that are developed for future flights, when temperature control will be available. Lysozyme crystals obtained by microdialysis are considerably larger than those obtained on the ground, using the identical apparatus and procedures.

  11. Advanced piezoelectric single crystal based transducers for naval sonar applications

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2006-03-01

    Transducers incorporating single crystal piezoelectric Pb(Mg 1/3Nb 2/3) x-1Ti xO 3 (PMN-PT) exhibit significant advantages over ceramic piezoelectrics such as PZT, including both high electromechanical coupling (k 33 > 90%) and piezoelectric coefficients (d 33 > 2000 pC/N). Conventional <001> orientation gives inherently larger bandwidth and output power than PZT ceramics, however, the anisotropy of the crystal also allows for tailoring of the performance by orienting the crystal along different crystallographic axes. This attribute combined with composition refinements can be used to improve thermal or mechanical stability, which is important in high power, high duty cycle sonar applications. By utilizing the "31" resonance mode, the high power performance of PMN-PT can be improved over traditional "33" mode single crystal transducers, due to an improved aspect ratio. Utilizing novel geometries, effective piezoelectric constants of -600 pC/N to -1200 pC/N have been measured. The phase transition point induced by temperature, pre-stress or field is close to that in the "33" mode, and since the prestress is applied perpendicular to the poling direction in "31" mode elements, they exhibit lower loss and can therefore be driven harder. The high power characteristics of tonpilz transducers can also be affected by the composition of the PMN-PT crystal. TRS modified the composition of PMN-PT to improve the thermal stability of the material, while keeping the loss as low as possible. Three dimensional modeling shows that the useable bandwidth of these novel compositions nearly equals that of conventional PMN-PT. A decrease in the source level of up to 6 dB was calculated, which can be compensated for by the higher drive voltages possible.

  12. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  13. Analytical Protein Microarrays: Advancements Towards Clinical Applications

    PubMed Central

    Sauer, Ursula

    2017-01-01

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems. PMID:28146048

  14. Analytical Protein Microarrays: Advancements Towards Clinical Applications.

    PubMed

    Sauer, Ursula

    2017-01-29

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.

  15. Photonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis.

    PubMed

    Mu, Zhongde; Zhao, Xiangwei; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-12-02

    Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By hybridization of the plasmonic nanoparticles and photonic crystal, surface-enhanced Raman spectroscopy (SERS) analysis of multiplexed protein is realized. It benefits the Raman analysis by providing high-density "hot spots" in 3D and extra enhancement of local electromagnetic field at the band edge of PhC with periodic refractive index distribution. The strong interaction of light and the hybrid 3D nanostructure offers new insights into plasmonic nanoparticle applications and biosensor design.

  16. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    SciTech Connect

    Timmins, P.A.; Pebay-Peyroula, E.

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  17. Advanced discretizations and multigrid methods for liquid crystal configurations

    NASA Astrophysics Data System (ADS)

    Emerson, David B.

    Liquid crystals are substances that possess mesophases with properties intermediate between liquids and crystals. Here, we consider nematic liquid crystals, which consist of rod-like molecules whose average pointwise orientation is represented by a unit-length vector, n( x, y, z) = (n1, n 2, n3)T. In addition to their self-structuring properties, nematics are dielectrically active and birefringent. These traits continue to lead to many important applications and discoveries. Numerical simulations of liquid crystal configurations are used to suggest the presence of new physical phenomena, analyze experiments, and optimize devices. This thesis develops a constrained energy-minimization finite-element method for the efficient computation of nematic liquid crystal equilibrium configurations based on a Lagrange multiplier formulation and the Frank-Oseen free-elastic energy model. First-order optimality conditions are derived and linearized via a Newton approach, yielding a linear system of equations. Due to the nonlinear unit-length constraint, novel well-posedness theory for the variational systems, as well as error analysis, is conducted. The approach is shown to constitute a convergent and well-posed approach, absent typical simplifying assumptions. Moreover, the energy-minimization method and well-posedness theory developed for the free-elastic case are extended to include the effects of applied electric fields and flexoelectricity. In the computational algorithm, nested iteration is applied and proves highly effective at reducing computational costs. Additionally, an alternative technique is studied, where the unit-length constraint is imposed by a penalty method. The performance of the penalty and Lagrange multiplier methods is compared. Furthermore, tailored trust-region strategies are introduced to improve robustness and efficiency. While both approaches yield effective algorithms, the Lagrange multiplier method demonstrates superior accuracy per unit cost. In

  18. Crystal structure of the petal death protein from carnation flower.

    PubMed

    Teplyakov, Alexey; Liu, Sijiu; Lu, Zhibing; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat

    2005-12-20

    Expression of the PSR132 protein from Dianthus caryophyllus (carnation, clover pink) is induced in response to ethylene production associated with petal senescence, and thus the protein is named petal death protein (PDP). Recent work has established that despite the annotation of PDP in sequence databases as carboxyphosphoenolpyruvate mutase, the enzyme is actually a C-C bond cleaving lyase exhibiting a broad substrate profile. The crystal structure of PDP has been determined at 2.7 A resolution, revealing a dimer-of-dimers oligomeric association. Consistent with sequence homology, the overall alpha/beta barrel fold of PDP is the same as that of other isocitrate lyase/PEP mutase superfamily members, including a swapped eighth helix within a dimer. Moreover, Mg(2+) binds in the active site of PDP with a coordination pattern similar to that seen in other superfamily members. A compound, covalently bound to the catalytic residue, Cys144, was interpreted as a thiohemiacetal adduct resulting from the reaction of glutaraldehyde used to cross-link the crystals. The Cys144-carrying flexible loop that gates access to the active site is in the closed conformation. Models of bound substrates and comparison with the closed conformation of isocitrate lyase and 2-methylisocitrate lyase revealed the structural basis for the broad substrate profile of PDP.

  19. Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen

    SciTech Connect

    Li, Dianfan; Lee, Jean; Caffrey, Martin

    2011-11-30

    The default lipid for the bulk of the crystallogenesis studies performed to date using the cubic mesophase method is monoolein. There is no good reason, however, why this 18-carbon, cis-monounsaturated monoacylglycerol should be the preferred lipid for all target membrane proteins. The latter come from an array of biomembrane types with varying properties that include hydrophobic thickness, intrinsic curvature, lateral pressure profile, lipid and protein makeup, and compositional asymmetry. Thus, it seems reasonable that screening for crystallizability based on the identity of the lipid creating the hosting mesophase would be worthwhile. For this, monoacylglycerols with differing acyl chain characteristics, such as length and olefinic bond position, must be available. A lipid synthesis and purification program is in place in the author's laboratory to serve this need. In the current study with the outer membrane sugar transporter, OprB, we demonstrate the utility of host lipid screening as a means for generating diffraction-quality crystals. Host lipid screening is likely to prove a generally useful strategy for mesophase-based crystallization of membrane proteins.

  20. Three-dimensional Raman spectroscopic imaging of protein crystals deposited on a nanodroplet.

    PubMed

    Nitahara, Satoshi; Maeki, Masatoshi; Yamaguchi, Hiroshi; Yamashita, Kenichi; Miyazaki, Masaya; Maeda, Hideaki

    2012-12-21

    Confocal Raman spectroscopic imaging has been used to find the location of protein crystals deposited in a nanodroplet. The depth of the protein crystal has been clearly identified by comparing the three-dimensional Raman spectroscopic images of the protein with those of water. Additionally, the low concentration region around a growing protein crystal in the nanodroplet was visualized using two-dimensional Raman spectroscopic imaging.

  1. Advances in generating functional diversity for directed protein evolution.

    PubMed

    Shivange, Amol V; Marienhagen, Jan; Mundhada, Hemanshu; Schenk, Alexander; Schwaneberg, Ulrich

    2009-02-01

    Despite advances in screening technologies, only a very small fraction of theoretical protein sequence can be sampled in directed evolution experiments. At the current state of random mutagenesis technologies mutation frequencies have often been adjusted to values that cause a limited number of amino acid changes (often one to four amino acid changes per protein). For harvesting the power of directed evolution algorithms it is therefore important that generated mutant libraries are rich in diversity and enriched in active population. Insufficient knowledge about protein traits, mutational robustness of protein folds and technological limitations in diversity generating methods are main challenges for managing the complexity of protein sequence space. This review covers computational and experimental advances for high quality mutant library generation that have been achieved in the past two years.

  2. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  3. Protein-protein binding detection with nanoparticle photonic crystal enhanced microscopy (NP-PCEM).

    PubMed

    Zhuo, Yue; Tian, Limei; Chen, Weili; Yu, Hojeong; Singamaneni, Srikanth; Cunningham, Brian T

    2014-01-01

    We demonstrate a novel microscopy-based biosensing approach that utilizes a photonic crystal (PC) surface to detect protein-protein binding with the functionalized nanoparticles as tags. This imaging approach utilizes the measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC biosensor in the presence of individual nanoparticles. Moreover, it substantially increases the sensitivity of the imaging approach through tunable localized surface plasmon resonant frequency of the nanoparticle matching with the resonance of the PC biosensor. Experimental demonstrations of photonic crystal enhanced microscopy (PCEM) imaging with single nanoparticle resolution are supported by Finite-Difference Time-Domain (FDTD) computer simulations. The ability to detect the surface adsorption of individual nanoparticles as tags offers a route to single molecule biosensing with photonic crystal biosensor in the future.

  4. Brain protein deciphered at Advanced Light Source

    SciTech Connect

    2010-01-01

    This computer-generated model of a rat glutamate receptor is the first complete portrait of this important link in the nervous system. At the top of the Y-shaped protein, a pair of molecules splay outward like diverging prongs. The bottom section, which is embedded in a neuronal membrane, houses the ion channel. The resolution of this image is 3.6 angstroms per pixel, or just under four ten-billionths of a meter per image unit. http://newscenter.lbl.gov/feature-stories/2010/01/21/glutamate-receptor/

  5. Advanced piezoelectric single crystal based transducers for naval sonar applications

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2005-05-01

    TRS is developing new transducers based on single crystal piezoelectric materials such as Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT). Single crystal piezoelectrics such as PMN-PT exhibit very high piezoelectric coefficients (d33 ~ 1800 to >2000 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, which may be exploited for improving the performance of broad bandwidth and high frequency sonar. Apart from basic performance, much research has been done on reducing the size and increasing the output power of tonpilz transducers for sonar applications. Results are presented from two different studies. "33" mode single crystal tonpilz transducers have reduced stack lengths due to their low elastic stiffness relative to PZTs, however, this produces non-ideal aspect ratios due to large lateral dimensions. Alternative "31" resonance mode tonpilz elements are proposed to improve performance over these "33" designs. d32 values as high as 1600 pC/N have been observed, and since prestress is applied perpendicular to the poling direction, "31" mode Tonpilz elements exhibit lower loss and higher reliability than "33" mode designs. Planar high power tonpilz arrays are the optimum way to obtain the required acoustic pressure and bandwidth for small footprint, high power sensors. An important issue for these sensors is temperature and prestress stability, since fluctuations in tonpilz properties affects power delivery and sensing electronic design. TRS used the approach of modifying the composition of PMN-PT to improve the temperature dependence of properties of the material. Results show up to a 50% decrease in temperature change while losing minimal source level.

  6. Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins

    SciTech Connect

    Leung, Daisy W.; Borek, Dominika; Farahbakhsh, Mina; Ramanan, Parameshwaran; Nix, Jay C.; Wang, Tianjiao; Prins, Kathleen C.; Otwinowski, Zbyszek; Honzatko, Richard B.; Helgeson, Luke A.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2010-06-21

    VP35 is one of seven structural proteins encoded by the Ebola viral genome and mediates viral replication, nucleocapsid formation and host immune suppression. The C-terminal interferon inhibitory domain (IID) of VP35 is critical for dsRNA binding and interferon inhibition. The wild-type VP35 IID structure revealed several conserved residues that are important for dsRNA binding and interferon antagonism. Here, the expression, purification and crystallization of recombinant Zaire Ebola VP35 IID mutants R312A, K319A/R322A and K339A in space groups P6{sub 1}22, P2{sub 1}2{sub 1}2{sub 1} and P2{sub 1}, respectively, are described. Diffraction data were collected using synchrotron sources at the Advanced Light Source and the Advanced Photon Source.

  7. Advances in flow visualization using liquid-crystal coatings

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1987-01-01

    This paper discusses a new four-part mixing method for visualizing boundary layer flows, including transitions, separation, and shock locations, by the use of liquid-crystal coatings. The method controls the event temperature and color-play bandwidth best suited to specific experimental conditions, and is easily learned. The method is applicable almost throughout the altitude and speed ranges for subsonic aircraft flight envelopes, and is also applicable to supersonic flow visualization and for general use in high- and low-speed wind tunnel and water tunnel testing.

  8. Protein products obtained by site-preferred partial crosslinking in protein crystals and "liberated" by redissolution.

    PubMed

    Buch, Michal; Wine, Yariv; Dror, Yael; Rosenheck, Sonia; Lebendiker, Mario; Giordano, Rita; Leal, Ricardo M F; Popov, Alexander N; Freeman, Amihay; Frolow, Felix

    2014-07-01

    The use of protein crystals as a source of nanoscale biotemplates has attracted growing interest in recent years owing to their inherent internal order. As these crystals are vulnerable to environmental changes, potential applications require their stabilization by chemical crosslinking. We have previously shown that such intermolecular chemical crosslinking reactions occurring within protein crystals are not random events, but start at preferred crosslinking sites imposed by the alignment of protein molecules and their packing within the crystalline lattice. Here we propose a new working hypothesis and demonstrate its feasibility in enabling us to extricate homogeneous populations of single protein molecules that display chemical point mutations or of dimers that show homogeneous chemical crosslinking, and that have the potential for isolation of higher structures. Characterization of the crosslinking mechanism and its end products opens the way to the potential retrieval of such specific modified/intermolecular crosslinked products simply by effecting partial crosslinking at identified preferred sites, followed by time-controlled arrest of the crosslinking reaction and dissolution of the crystals by medium exchange complemented by chromatographic purification.

  9. Determination of protein and solvent volumes in protein crystals from contrast variation data

    SciTech Connect

    Badger, J.

    1994-12-31

    By varying the relative values of protein and solvent scattering densities in a crystal, it is possible to obtain information on the shape and dimensions of protein molecular envelopes. Neutron diffraction methods are ideally suited to these contrast variation experiments because H/D exchange leads to large differential changes in the protein and solvent scattering densities and is structurally non-perturbing. Low resolution structure factors have been measured from cubic insulin crystals with differing H/D contents. Structure factors calculated from a simple binary density model, in which uniform scattering densities represent the protein and solvent volumes in the crystals, were compared with these data. The contrast variation differences in the sets of measured structure factors were found to be accurately fitted by this simple model. Trial applications to two problems in crystal structure determination illustrate how this fact may be exploited. (1) A translation function that employs contrast variation data gave a sharp minimum within 1-9{Angstrom} of the correctly positioned insulin molecule and is relatively insensitive to errors in the atomic model. (2) An ab initio phasing method for the contrast variation data, based on analyzing histograms of the density distributions in trial maps, was found to recover the correct molecular envelope.

  10. Recent advances in recombinant protein production

    PubMed Central

    Kunert, Renate; Casanova, Emilio

    2013-01-01

    Designing appropriate expression vectors is one of the critical steps in the generation of stable cell lines for recombinant protein production. Conventional expression vectors are severely affected by the chromatin environment surrounding their integration site into the host genome, resulting in low expression levels and transgene silencing. In the past, a new generation of expression vectors and different strategies was developed to overcome the chromatin effects. Bacterial artificial chromosomes (BACs) are cloning vectors capable of accommodating up to 350 Kb. Thus, BACs can carry a whole eukaryotic locus with all the elements controlling the expression of a gene; therefore, BACs harbor their own chromatin environment. Expression vectors based on BACs containing open/permissive chromatin loci are not affected by the chromatin surrounding their integration site in the host cell genome. Consequently, BAC-based expression vectors containing the appropriate loci confer predictable and high levels of expression over time. These properties make BAC-based expression vectors a very attractive tool applied to the recombinant protein production field. PMID:23680894

  11. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium.

    PubMed

    Chayen, Naomi E; Saridakis, Emmanuel; Sear, Richard P

    2006-01-17

    The determination of high-resolution structures of proteins requires crystals of suitable quality. Because of the new impetus given to structural biology by structural genomics/proteomics, the problem of crystallizing proteins is becoming increasingly acute. There is therefore an urgent requirement for the development of new efficient methods to aid crystal growth. Nucleation is the crucial step that determines the entire crystallization process. Hence, the holy grail is to design a "universal nucleant," a substrate that induces the nucleation of crystals of any protein. We report a theory for nucleation on disordered porous media and its experimental testing and validation using a mesoporous bioactive gel-glass. This material induced the crystallization of the largest number of proteins ever crystallized using a single nucleant. The combination of the model and the experimental results opens up the scope for the rational design of nucleants, leading to alternative means of controlling crystallization.

  12. A crystallization technique for obtaining large protein crystals with increased mechanical stability using agarose gel combined with a stirring technique

    NASA Astrophysics Data System (ADS)

    Maruyama, Mihoko; Hayashi, Yuki; Yoshikawa, Hiroshi Y.; Okada, Shino; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Takano, Kazufumi; Murakami, Satoshi; Yoshimura, Masashi; Mori, Yusuke

    2016-10-01

    We developed a protein crystallization technique using a 0.0-2.0 w/v% agarose gel solution combined with a stirring technique for the purpose of controlling the crystal number in the gelled solutions. To confirm the stirring effect in the gelled solution, we investigated the nucleation probability and growth rate of the crystals produced using this method. The stirring operation by a rotary shaker affected the behavior of protein molecules in the gelled solution, and both a significant decrease in the nucleation rate and an enhancement of the crystal growth rate were achieved by the method. As a result, we concluded that the proposed technique, the stirring technique in a gel solution, was effective for generating protein crystals of sufficient and increased mechanical stability.

  13. Superheating of ice crystals in antifreeze protein solutions.

    PubMed

    Celik, Yeliz; Graham, Laurie A; Mok, Yee-Foong; Bar, Maya; Davies, Peter L; Braslavsky, Ido

    2010-03-23

    It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44 degrees C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing.

  14. Protein-protein interactions as druggable targets: recent technological advances.

    PubMed

    Higueruelo, Alicia P; Jubb, Harry; Blundell, Tom L

    2013-10-01

    Classical target-based drug discovery, where large chemical libraries are screened using inhibitory assays for a single target, has struggled to find ligands that inhibit protein-protein interactions (PPI). Nevertheless, in the past decade there have been successes that have demonstrated that PPI can be useful drug targets, and the field is now evolving fast. This review focuses on the new approaches and concepts that are being developed to tackle these challenging targets: the use of fragment based methods to explore the chemical space, stapled peptides to regulate intracellular PPI, alternatives to competitive inhibition and the use of antibodies to enable small molecule discovery for these targets.

  15. Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel

    PubMed Central

    Abdallah, Bahige G.; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra

    2014-01-01

    Traditional macroscale protein crystallization is accomplished non-trivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time consuming and resource intensive, hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these ‘difficult to crystallize’ proteins such as femtosecond nanocrystallography are being developed, yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is set up separately. Second harmonic generation microscopy via Second Order Nonlinear Imaging of Chiral Crystals (SONICC) was applied for the detection of nanometer and micrometer sized PSI crystals within microchannels. To develop a crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date. PMID:24191698

  16. Supported phospholipid bilayers for two-dimensional protein crystallization.

    PubMed

    Uzgiris, E E

    1986-01-29

    Phospholipid bilayers, supported on UV irradiated carbon shadowed nitrocellulose electron microscope grids, have been used to induce two-dimensional crystal growth of IgE and IgG anti-DNP monoclonal antibodies. The UV irradiation renders the grids hydrophilic in a very uniform fashion and allows for the transfer of phospholipid monolayers from an air/water interface in a sequential dipping procedure. The surface coverage achieved was nearly 100% as measured by antibody binding and by the formation of protein arrays on the bilayer covered grids. The supported bilayers appear to be stably held and are appropriate for slow binding conditions and long incubation times with low concentrations of binding protein.

  17. A Proposed Model for Protein Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined

  18. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  19. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    NASA Technical Reports Server (NTRS)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  20. Crystal Structure of the Japanese Encephalitis Virus Envelope Protein

    SciTech Connect

    Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.; Fremont, Daved H.

    2012-03-13

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  1. Byonic: Advanced Peptide and Protein Identification Software

    PubMed Central

    Bern, Marshall; Kil, Yong J.; Becker, Christopher

    2013-01-01

    Byonic™ is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence Byonic can search for 10s or even 100s of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic’s Wildcard Search™ allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic’s Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites. PMID:23255153

  2. First experiences with semi-autonomous robotic harvesting of protein crystals.

    PubMed

    Viola, Robert; Walsh, Jace; Melka, Alex; Womack, Wesley; Murphy, Sean; Riboldi-Tunnicliffe, Alan; Rupp, Bernhard

    2011-07-01

    The demonstration unit of the Universal Micromanipulation Robot (UMR) capable of semi-autonomous protein crystal harvesting has been tested and evaluated by independent users. We report the status and capabilities of the present unit scheduled for deployment in a high-throughput protein crystallization center. We discuss operational aspects as well as novel features such as micro-crystal handling and drip-cryoprotection, and we extrapolate towards the design of a fully autonomous, integrated system capable of reliable crystal harvesting. The positive to enthusiastic feedback from the participants in an evaluation workshop indicates that genuine demand exists and the effort and resources to develop autonomous protein crystal harvesting robotics are justified.

  3. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    SciTech Connect

    Hu, X.; Lu, Q; Kaplan, D; Cebe, P

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  4. The Feasibility of Bulk Crystallization as an Industrial Purification and Production Technique for Proteins

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Forsythe, Elizabeth L.; Johns, Michael R.; Pusey, Marc L.; White, Edward T.

    1998-01-01

    Bulk crystallization in stirred vessels is used industrially for the recovery and purification of many inorganic and organic materials. Although much has been written on the crystallization of proteins for X-ray diffraction analysis, very little has been reported on the application of bulk crystallization in stirred vessels. In this study, a 1-liter, seeded, stirred, batch crystallizer was used with ovalbumin as a model protein to test the feasibility of this crystallization method as a recovery and purification process for proteins. Results were obtained for ovalbumin solubility, nucleation thresholds, crystal breakage and crystal growth kinetics in bulk solution under a range of operating conditions of pH and ammonium sulphate concentration (Judge et al., 1996). Experiments were also performed to determine the degree of purification that can be achieved by the crystallization of ovalbumin from a mixture of proteins. The effect of the presence of these proteins upon the ovalbumin crystal growth kinetics was also investigated (Judge et al., 1995). All of these aspects are essential for the design of bulk crystallization processes which have not previously been reported for proteins. Results from a second study that investigated the effect of structurally different proteins on the solubility, crystal growth rates and crystal purity of chicken egg white lysozyme are also presented (Judge et al., 1997). In this case face growth rates were measured using lysozyme purified by liquid chromatography and the effect of the addition of specific protein impurities were observed on the (110) and (101) crystal faces. In these two studies the results are presented to show the feasibility and purifying ability of crystallization as a production process for proteins.

  5. Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys

    NASA Technical Reports Server (NTRS)

    Peters, B. J.; Biondo, C. M.; DeLuca, D. P.

    1995-01-01

    This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test

  6. Advances in protein complex analysis using mass spectrometry

    PubMed Central

    Gingras, Anne-Claude; Aebersold, Ruedi; Raught, Brian

    2005-01-01

    Proteins often function as components of larger complexes to perform a specific function, and formation of these complexes may be regulated. For example, intracellular signalling events often require transient and/or regulated protein–protein interactions for propagation, and protein binding to a specific DNA sequence, RNA molecule or metabolite is often regulated to modulate a particular cellular function. Thus, characterizing protein complexes can offer important insights into protein function. This review describes recent important advances in mass spectrometry (MS)-based techniques for the analysis of protein complexes. Following brief descriptions of how proteins are identified using MS, and general protein complex purification approaches, we address two of the most important issues in these types of studies: specificity and background protein contaminants. Two basic strategies for increasing specificity and decreasing background are presented: whereas (1) tandem affinity purification (TAP) of tagged proteins of interest can dramatically improve the signal-to-noise ratio via the generation of cleaner samples, (2) stable isotopic labelling of proteins may be used to discriminate between contaminants and bona fide binding partners using quantitative MS techniques. Examples, as well as advantages and disadvantages of each approach, are presented. PMID:15611014

  7. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOEpatents

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  8. Advances and Challenges in Protein-Ligand Docking

    PubMed Central

    Huang, Sheng-You; Zou, Xiaoqin

    2010-01-01

    Molecular docking is a widely-used computational tool for the study of molecular recognition, which aims to predict the binding mode and binding affinity of a complex formed by two or more constituent molecules with known structures. An important type of molecular docking is protein-ligand docking because of its therapeutic applications in modern structure-based drug design. Here, we review the recent advances of protein flexibility, ligand sampling, and scoring functions—the three important aspects in protein-ligand docking. Challenges and possible future directions are discussed in the Conclusion. PMID:21152288

  9. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  10. Isolation, purification, crystallization, and preliminary X-ray diffraction study of the crystals of HU protein from M. gallisepticum

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. Yu.; Timofeev, V. I.; Boiko, K. M.; Korzhenevskii, D. A.; Rakitina, T. V.; Dorovatovskii, P. V.; Lipkin, A. V.

    2015-11-01

    HU proteins are involved in bacterial DNA and RNA repair. Since these proteins are absent in cells of higher organisms, inhibitors of HU proteins can be used as effective and safe antibiotics. The crystallization conditions for the M. gallisepticum HU protein were found and optimized by the vapor-diffusion method. The X-ray diffraction data set was collected to 2.91 Å resolution from the crystals grown by the vapor-diffusion method on a synchrotron source. The crystals of the HU protein belong to sp. gr. P41212 and have the following unit-cell parameters: a = b = 97.94 Å, c = 77.92 Å, α = β = γ = 90°.

  11. Beneficial effect of solubility enhancers on protein crystal nucleation and growth.

    PubMed

    Gosavi, Rajendrakumar A; Bhamidi, Venkateswarlu; Varanasi, Sasidhar; Schall, Constance A

    2009-04-21

    Crystallizing solutions of proteins often contain various nonelectrolyte additives that arise from the purification process of proteins or from the reagents employed in the screening kits. Currently, limited knowledge exists about the influence of these additives on the mechanisms underlying the crystallization process, in particular on the nucleation stage of crystals. To address this need, we studied crystallization of two proteins, D-xylose isomerase and chicken egg-white lysozyme, in small batches and in the presence of two solubility-enhancing additives, acetonitrile and glycerol. We have also measured the nucleation rates of crystals of these proteins in the presence and in the absence of acetonitrile using the method of initial rates. With the addition of the solubility enhancers, both proteins exhibited an increase in crystal nucleation at any given supersaturation. Solubility enhancing additives appear to lower the energy barrier to nucleation by influencing the strength of attraction between the protein molecules. We have characterized the quality of D-xylose isomerase crystals by determining the crystal mosaicity, which showed considerable improvement for crystals grown in the presence of additives. When compared to the crystals of chicken egg-white lysozyme, D-xylose isomerase crystals required higher supersaturations to nucleate. We attribute this result to the large size of the D-xylose isomerase molecule, which influences the energy barrier to nucleation by increasing the surface area of the critical nucleus. Contrary to the common expectation that reagents that solubilize the protein may hinder the crystallization process, our results suggest that solubility enhancers, in fact, can have a beneficial effect on the nucleation and growth of crystals. These findings are of importance in formulating successful strategies toward crystallizing new proteins.

  12. Automatic classification and pattern discovery in high-throughput protein crystallization trials.

    PubMed

    Cumbaa, Christian; Jurisica, Igor

    2005-01-01

    Conceptually, protein crystallization can be divided into two phases search and optimization. Robotic protein crystallization screening can speed up the search phase, and has a potential to increase process quality. Automated image classification helps to increase throughput and consistently generate objective results. Although the classification accuracy can always be improved, our image analysis system can classify images from 1,536-well plates with high classification accuracy (85%) and ROC score (0.87), as evaluated on 127 human-classified protein screens containing 5,600 crystal images and 189,472 non-crystal images. Data mining can integrate results from high-throughput screens with information about crystallizing conditions, intrinsic protein properties, and results from crystallization optimization. We apply association mining, a data mining approach that identifies frequently occurring patterns among variables and their values. This approach segregates proteins into groups based on how they react in a broad range of conditions, and clusters cocktails to reflect their potential to achieve crystallization. These results may lead to crystallization screen optimization, and reveal associations between protein properties and crystallization conditions. We also postulate that past experience may lead us to the identification of initial conditions favorable to crystallization for novel proteins.

  13. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction.

    PubMed

    Emamzadah, Soheila; Petty, Tom J; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean Luc; Halazonetis, Thanos D

    2009-09-01

    Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus' molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 A resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  14. Automated documentation generator for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Provancha, Anna; Chattam, David; Ford, Ronald

    1993-01-01

    The System Management and Production Laboratory at the Research Institute, the University of Alabama in Huntsville (UAH), was tasked by the Microgravity Experiment Projects (MEP) Office of the Payload Projects Office (PPO) at Marshall Space Flight Center (MSFC) to conduct research in the current methods of written documentation control and retrieval. The goals of this research were to determine the logical interrelationships within selected NASA documentation, and to expand on a previously developed prototype system to deliver a distributable, electronic knowledge-based system. This computer application would then be used to provide a paperless interface between the appropriate parties for the required NASA document.

  15. Automated documentation generator for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Provancha, Anna; Chattam, David

    1994-01-01

    To achieve an environment less dependent on the flow of paper, automated techniques of data storage and retrieval must be utilized. This software system, 'Automated Payload Experiment Tool,' seeks to provide a knowledge-based, hypertext environment for the development of NASA documentation. Once developed, the final system should be able to guide a Principal Investigator through the documentation process in a more timely and efficient manner, while supplying more accurate information to the NASA payload developer. The current system is designed for the development of the Science Requirements Document (SRD), the Experiment Requirements Document (ERD), the Project Plan, and the Safety Requirements Document.

  16. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans.

    PubMed

    Cai, Zhongyu; Kwak, Daniel H; Punihaole, David; Hong, Zhenmin; Velankar, Sachin S; Liu, Xinyu; Asher, Sanford A

    2015-10-26

    We report two-dimensional (2D) photonic crystal (PC) sensing materials that selectively detect Candida albicans (C. albicans). These sensors utilize Concanavalin A (Con A) protein hydrogels with a 2D PC embedded on the Con A protein hydrogel surface, that multivalently and selectively bind to mannan on the C. albicans cell surface to form crosslinks. The resulting crosslinks shrink the Con A protein hydrogel, reduce the 2D PC particle spacing, and blue-shift the light diffracted from the PC. The diffraction shifts can be visually monitored, measured with a spectrometer, or determined from the Debye diffraction ring diameter. Our unoptimized hydrogel sensor has a detection limit of around 32 CFU/mL for C. albicans. This sensor distinguishes between C. albicans and those microbes devoid of cell-surface mannan such as the gram-negative bacterium E. coli. This sensor provides a proof-of-concept for utilizing recognition between lectins and microbial cell surface carbohydrates to detect microorganisms in aqueous environments.

  17. Use of dye to distinguish salt and protein crystals under microcrystallization conditions

    NASA Technical Reports Server (NTRS)

    Cosenza, Larry (Inventor); Bray, Terry L. (Inventor); DeLucas, Lawrence J. (Inventor); Gester, Thomas E. (Inventor); Hamrick, David T. (Inventor)

    2007-01-01

    An improved method of screening crystal growth conditions is provided wherein molecules are crystallized from solutions containing dyes. These dyes are selectively incorporated or associated with crystals of particular character thereby rendering crystals of particular character colored and improving detection of the dyed crystals. A preferred method involves use of dyes in protein solutions overlayed by oil. Use of oil allows the use of small volumes of solution and facilitates the screening of large numbers of crystallization conditions in arrays using automated devices that dispense appropriate solutions to generate crystallization trials, overlay crystallization trials with an oil, provide appropriate conditions conducive to crystallization and enhance detection of dyed (colored) or undyed (uncolored) crystals that result.

  18. Crystal Structure of a Lipid G Protein-Coupled Receptor

    SciTech Connect

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  19. Towards long-wavelength protein crystallography: keeping a protein crystal frozen in vacuum

    NASA Astrophysics Data System (ADS)

    Mykhaylyk, Vitaliy; Wagner, Armin

    2013-03-01

    There is growing interest to explore the long-wavelength X-ray domain for macromolecular crystallography (MX) experiments but there are a number of practical issues that make these experiments difficult to perform. In this article we study several aspects related to cooling a protein crystal in a vacuum environment. We investigated thermal contact conductance (TCC) of copper-copper joints and designed a demountable sample holder assembly with a magnetic joint that facilitates good thermal conductivity and reliability over a long time period. The thermal conductivity of amorphous ice formed by a 20% solution of ethylene glycol was studied. It is concluded that the ice thickness is the factor that can compromise the cooling of protein crystals and therefore it should be carefully controlled.

  20. Phase Sensitive X-Ray Diffraction Imaging Study of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.

    2003-01-01

    The study of defects and growth of protein crystals is of importance in providing a fundamental understanding of this important category of systems and the rationale for crystallization of better ordered crystals for structural determination and drug design. Yet, as a result of the extremely weak scattering power of x-rays in protein and other biological macromolecular crystals, the extinction lengths for those crystals are extremely large and, roughly speaking, of the order of millimeters on average compared to the scale of micrometers for most small molecular crystals. This has significant implication for x-ray diffraction and imaging study of protein crystals, and presents an interesting challenge to currently available x-ray analytical techniques. We proposed that coherence-based phase sensitive x-ray diffraction imaging could provide a way to augment defect contrast in x-ray diffraction images of weakly diffracting biological macromolecular crystals. I shall examine the principles and ideas behind this approach and compare it to other available x-ray topography and diffraction methods. I shall then present some recent experimental results in two model protein systems-cubic apofemtin and tetragonal lysozyme crystals to demonstrate the capability of the coherence-based imaging method in mapping point defects, dislocations, and the degree of perfection of biological macromolecular crystals with extreme sensitivity. While further work is under way, it is intended to show that the observed new features have yielded important information on protein crystal perfection and nucleation and growth mechanism otherwise unobtainable.

  1. Extracellular matrix protein in calcified endoskeleton: a potential additive for crystal growth and design

    NASA Astrophysics Data System (ADS)

    Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu

    2011-06-01

    In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.

  2. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals

    PubMed Central

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites. PMID:26675363

  3. Advances in Polymer and Polymeric Nanostructures for Protein Conjugation

    PubMed Central

    González-Toro, Daniella C.; Thayumanavan, S.

    2013-01-01

    Linear polymers have been considered the best molecular structures for the formation of efficient protein conjugates due to their biological advantages, synthetic convenience and ease of functionalization. In recent years, much attention has been dedicated to develop synthetic strategies that produce the most control over protein conjugation utilizing linear polymers as scaffolds. As a result, different conjugate models, such as semitelechelic, homotelechelic, heterotelechelic and branched or star polymer conjugates, have been obtained that take advantage of these well-controlled synthetic strategies. Development of protein conjugates using nanostructures and the formation of said nanostructures from protein-polymer bioconjugates are other areas in the protein bioconjugation field. Although several polymer-protein technologies have been developed from these discoveries, few review articles have focused on the design and function of these polymers and nanostructures. This review will highlight some recent advances in protein-linear polymer technologies that employ protein covalent conjugation and successful protein-nanostructure bioconjugates (covalent conjugation as well) that have shown great potential for biological applications. PMID:24058205

  4. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells.

    PubMed

    Li, Xingxiang; Zhang, Dianzhong; Lynch-Holm, Valerie J; Okita, Thomas W; Franceschi, Vincent R

    2003-10-01

    The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation.

  5. A profile of protein-protein interaction: Crystal structure of a lectin-lectin complex.

    PubMed

    Surya, Sukumaran; Abhilash, Joseph; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-06-01

    Proteins may utilize complex networks of interactions to create/proceed signaling pathways of highly adaptive responses such as programmed cell death. Direct binary interactions study of proteins may help propose models for protein-protein interaction. Towards this goal we applied a combination of thermodynamic kinetics and crystal structure analyses to elucidate the complexity and diversity in such interactions. By determining the heat change on the association of two galactose-specific legume lectins from Butea monosperma (BML) and Spatholobus parviflorus (SPL) belonging to Fabaceae family helped to compute the binding equilibrium. It was extended further by X-ray structural analysis of BML-SPL binary complex. In order to chart the proteins interacting mainly through their interfaces, identification of the nature of forces which stabilized the association of the lectin-lectin complex was examined. Comprehensive analysis of the BMLSPL complex by isothermal titration calorimetry and X-ray crystal structure threw new light on the lectin-lectin interactions suggesting of their use in diverse areas of glycobiology.

  6. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers.

    PubMed

    Rickert, J; Brecht, A; Göpel, W

    1997-01-01

    The use of quartz crystal microbalances (QCMs) for quantitative biosensing and characterization of protein multilayers is demonstrated in three case studies. Monolayers of QCM-based affinity biosensors were investigated first. Layers of a thiol-containing synthetic peptide constituting an epitope of the foot-and-mouse-disease virus were formed on gold electrodes via self-assembly. The binding of specific antibodies to epitope-modified gold electrodes was detected for different concentrations of antibody solutions. Oligolayers were studied in a second set of experiments. Dextran hydrogels were modified by thrombin inhibitors. The QCM response was used in a competitive binding assay to identify inhibitors for thrombin at different concentrations. Multilayers of proteins formed by self-assembly of a biotin-conjugate and streptavidin were investigated next. The QCM frequency response was monitored as a function of layer thickness up to 20 protein layers. A linear frequency decay was observed with increasing thickness. The decay per layer remained constant, thus indicating perfect mass coupling to the substrate. Frequency changes a factor of four higher were obtained in buffer solution as compared to measurements in dry air. This indicates a significant incorporation of water (75% weight) in the protein layers. This water behaves like a solid concerning the shear mode coupling to the substrate. The outlook discusses briefly the need for controlled molecular engineering of overlayers for subsequent QCM analysis, and the importance of an additional multiparameter analysis with other transducer principles and with additional techniques of interface analysis to characterize the mechanical coupling of overlayers as biosensor coatings. A promising trend concerns the use of QCM-arrays for screening experiments.

  7. Protein-complex structure completion using IPCAS (Iterative Protein Crystal structure Automatic Solution).

    PubMed

    Zhang, Weizhe; Zhang, Hongmin; Zhang, Tao; Fan, Haifu; Hao, Quan

    2015-07-01

    Protein complexes are essential components in many cellular processes. In this study, a procedure to determine the protein-complex structure from a partial molecular-replacement (MR) solution is demonstrated using a direct-method-aided dual-space iterative phasing and model-building program suite, IPCAS (Iterative Protein Crystal structure Automatic Solution). The IPCAS iteration procedure involves (i) real-space model building and refinement, (ii) direct-method-aided reciprocal-space phase refinement and (iii) phase improvement through density modification. The procedure has been tested with four protein complexes, including two previously unknown structures. It was possible to use IPCAS to build the whole complex structure from one or less than one subunit once the molecular-replacement method was able to give a partial solution. In the most challenging case, IPCAS was able to extend to the full length starting from less than 30% of the complex structure, while conventional model-building procedures were unsuccessful.

  8. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Alter, W. S.; Johnston, M. H.; Strizak, J. P.

    1985-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  9. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Alter, W. S.; Parr, R. A.; Johnston, M. H.; Strizak, J. P.

    1984-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  10. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  11. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, G.D.; Glass, R.; Rupp, B.

    1997-01-28

    A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.

  12. Real-time investigation of dynamic protein crystallization in living cellsa)

    PubMed Central

    Schönherr, R.; Klinge, M.; Rudolph, J. M.; Fita, K.; Rehders, D.; Lübber, F.; Schneegans, S.; Majoul, I. V.; Duszenko, M.; Betzel, C.; Brandariz-Nuñez, A.; Martinez-Costas, J.; Duden, R.; Redecke, L.

    2015-01-01

    X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus μNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. In vivo protein crystallization offers exciting new possibilities for proteins that do not form crystals in vitro. PMID:26798811

  13. Understanding the Physical Properties that Control Protein Crystallization by Analysis of Large-Scale Experimental Data

    SciTech Connect

    Price, W.; Chen, Y; Handelman, S; Neely, H; Manor, P; Karlin, R; Nair, R; Montelione, G; Hunt, J; et. al.

    2008-01-01

    Crystallization is the most serious bottleneck in high-throughput protein-structure determination by diffraction methods. We have used data mining of the large-scale experimental results of the Northeast Structural Genomics Consortium and experimental folding studies to characterize the biophysical properties that control protein crystallization. This analysis leads to the conclusion that crystallization propensity depends primarily on the prevalence of well-ordered surface epitopes capable of mediating interprotein interactions and is not strongly influenced by overall thermodynamic stability. We identify specific sequence features that correlate with crystallization propensity and that can be used to estimate the crystallization probability of a given construct. Analyses of entire predicted proteomes demonstrate substantial differences in the amino acid-sequence properties of human versus eubacterial proteins, which likely reflect differences in biophysical properties, including crystallization propensity. Our thermodynamic measurements do not generally support previous claims regarding correlations between sequence properties and protein stability.

  14. Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip.

    PubMed

    Li, Liang; Ismagilov, Rustem F

    2010-01-01

    To obtain protein crystals, researchers must search for conditions in multidimensional chemical space. Empirically, thousands of crystallization experiments are carried out to screen various precipitants at multiple concentrations. Microfluidics can manipulate fluids on a nanoliter scale, and it affects crystallization twofold. First, it miniaturizes the experiments that can currently be done on a larger scale and enables crystallization of proteins that are available only in small amounts. Second, it offers unique experimental approaches that are difficult or impossible to implement on a larger scale. Ongoing development of microfluidic techniques and their integration with protein production, characterization, and in situ diffraction promises to accelerate the progress of structural biology.

  15. Graphene as a protein crystal mounting material to reduce background scatter

    PubMed Central

    Wierman, Jennifer L.; Alden, Jonathan S.; Kim, Chae Un; McEuen, Paul L.; Gruner, Sol M.

    2013-01-01

    The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects. PMID:24068843

  16. Automation of Vapor-Diffusion Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hamrick, David T.; Bray, Terry L.

    2005-01-01

    Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis. The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop configuration, whichever is specified, in each of 48 experiment chambers. A video camera of approximately the size and shape of a lipstick dispenser was added to a mobile stage that is part of the robot, in order to enable automated acquisition of images in each experiment chamber. The experiment chambers were redesigned to enable the use of sitting drops, enable backlighting of each specimen, and facilitate automation.

  17. Advanced Fluorescence Protein-Based Synapse-Detectors

    PubMed Central

    Lee, Hojin; Oh, Won Chan; Seong, Jihye; Kim, Jinhyun

    2016-01-01

    The complex information-processing capabilities of the central nervous system emerge from intricate patterns of synaptic input-output relationships among various neuronal circuit components. Understanding these capabilities thus requires a precise description of the individual synapses that comprise neural networks. Recent advances in fluorescent protein engineering, along with developments in light-favoring tissue clearing and optical imaging techniques, have rendered light microscopy (LM) a potent candidate for large-scale analyses of synapses, their properties, and their connectivity. Optically imaging newly engineered fluorescent proteins (FPs) tagged to synaptic proteins or microstructures enables the efficient, fine-resolution illumination of synaptic anatomy and function in large neural circuits. Here we review the latest progress in fluorescent protein-based molecular tools for imaging individual synapses and synaptic connectivity. We also identify associated technologies in gene delivery, tissue processing, and computational image analysis that will play a crucial role in bridging the gap between synapse- and system-level neuroscience. PMID:27445785

  18. Real-time processing of interferograms for monitoring protein crystal growth on the Space Station

    NASA Technical Reports Server (NTRS)

    Choudry, A.; Dupuis, N.

    1988-01-01

    The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.

  19. Perfection of Apoferritin Crystals: An Advanced X-Ray Imaging and Diffraction Study

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.

    2003-01-01

    Ferritin is a well-known iron-storage protein, and is a spherical shell that consists of 24 identical subunits packed in a 432 symmetry. The typically large protein size and its distinction from lysozyme as to chemical and physical characteristics make ferritin an attractive model protein for crystal growth and perfection investigation-as an alternative to the most widely studied lysozyme. In this contribution, the latest results obtained from coherence-based x-ray diffraction imaging and diffraction experiments will be presented on octahedral apoferritin (a demetalized form of ferritin) crystals grown from various growth conditions. Crystal specimens, which have the measured rocking-curve widths varying from a few arcseconds to several tens arcseconds (or more), are comparatively examined by intrinsically highly sensitive mapping of lattice perfection and defects. The richness of the observed defects and growth features offers insight into perfection and growth of protein crystals. Beautiful interference fringe patterns formed in diffraction images and fine oscillation structure of rocking curves observed will be discussed for understanding of physical origins and the underlying impact.

  20. Metal-assisted and microwave accelerated-evaporative crystallization: Application to lysozyme protein

    NASA Astrophysics Data System (ADS)

    Mauge-Lewis, Kevin

    In response to the growing need for new crystallization techniques that afford for rapid processing times along with control over crystal size and distribution, the Aslan Research Group has recently demonstrated the use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization MA-MAEC technique in conjunction with metal nanoparticles and nanostructures for the crystallization of amino acids and organic small molecules. In this study, we have employed the newly developed MA-MAEC technique to the accelerated crystallization of chicken egg-white lysozyme on circular crystallization platforms in order to demonstrate the proof-of-principle application of the method for protein crystallization. The circular crystallization platforms are constructed in-house from poly (methyl methacrylate) (PMMA) and silver nanoparticle films (SNFs), indium tin oxide (ITO) and iron nano-columns. In this study, we prove the MA-MAEC method to be a more effective technique in the rapid crystallization of macromolecules in comparison to other conventional methods. Furthermore, we demonstrate the use of the novel iCrystal system, which incorporates the use of continuous, low wattage heating to facilitate the rapid crystallization of the lysozyme while still retaining excellent crystal quality. With the incorporation of the iCrystal system, we observe crystallization times that are even shorter than those produced by the MA-MAEC technique using a conventional microwave oven in addition to significantly improved crystal quality.

  1. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    PubMed Central

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-01-01

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318

  2. Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements

    NASA Astrophysics Data System (ADS)

    Aizenberg, J.; Albeck, S.; Weiner, S.; Addadi, L.

    1994-09-01

    A key parameter in the biological control of crystal formation is the interaction of a group of acidic macromolecules with the mineral phase. Here we study protein-calcite interactions using epitaxial overgrowth of synthetic calcite crystals under conditions in which local release of occluded macromolecules from the biogenic substrate occurs. The macromolecules subsequently interact with the newly formed overgrown crystals, resulting in modified calcite morphology. This novel method provides a means of mapping crystal-protein interactions under conditions that minimally affect the conformational states of the acidic macromolecules. We show that proteins released from calcitic sponge spicules and mollusc prisms specifically interact with {001} and {01 l} faces of calcite, whereas proteins released from echinoderm skeletal elements only interact with {01 l} faces. The extent to which the overgrown crystals are affected by the proteins varies even in the same organism and within the same element, depending on the site and crystallographic orientation of the skeletal elements.

  3. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization

    PubMed Central

    Zheng, Bo; Gerdts, Cory J; Ismagilov, Rustem F

    2006-01-01

    Protein crystallization is important for determining protein structures by X-ray diffraction. Nanoliter-sized plugs —aqueous droplets surrounded by a fluorinated carrier fluid —have been applied to the screening of protein crystallization conditions. Preformed arrays of plugs in capillary cartridges enable sparse matrix screening. Crystals grown in plugs inside a microcapillary may be analyzed by in situ X-ray diffraction. Screening using plugs, which are easily formed in PDMS microfluidic channels, is simple and economical, and minimizes consumption of the protein. This approach also has the potential to improve our understanding of the fundamentals of protein crystallization, such as the effect of mixing on the nucleation of crystals. PMID:16154351

  4. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID.

    PubMed

    Michalska, Karolina; Tan, Kemin; Chang, Changsoo; Li, Hui; Hatzos-Skintges, Catherine; Molitsky, Michael; Alkire, Randy; Joachimiak, Andrzej

    2015-11-01

    A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access.

  5. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID

    PubMed Central

    Michalska, Karolina; Tan, Kemin; Chang, Changsoo; Li, Hui; Hatzos-Skintges, Catherine; Molitsky, Michael; Alkire, Randy; Joachimiak, Andrzej

    2015-01-01

    A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access. PMID:26524303

  6. Influence of precipitating agents on thermodynamic parameters of protein crystallization solutions.

    PubMed

    Stavros, Philemon; Saridakis, Emmanuel; Nounesis, George

    2016-09-01

    X-ray crystallography is the most powerful method for determining three-dimensional structures of proteins to (near-)atomic resolution, but protein crystallization is a poorly explained and often intractable phenomenon. Differential Scanning Calorimetry was used to measure the thermodynamic parameters (ΔG, ΔH, ΔS) of temperature-driven unfolding of two globular proteins, lysozyme, and ribonuclease A, in various salt solutions. The mixtures were categorized into those that were conducive to crystallization of the protein and those that were not. It was found that even fairly low salt concentrations had very large effects on thermodynamic parameters. High concentrations of salts conducive to crystallization stabilized the native folded forms of proteins, whereas high concentrations of salts that did not crystallize them tended to destabilize them. Considering the ΔH and TΔS contributions to the ΔG of unfolding separately, high concentrations of crystallizing salts were found to enthalpically stabilize and entropically destabilize the protein, and vice-versa for the noncrystallizing salts. These observations suggest an explanation, in terms of protein stability and entropy of hydration, of why some salts are good crystallization agents for a given protein and others are not. This in turn provides theoretical insight into the process of protein crystallization, suggesting ways of predicting and controlling it. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 642-652, 2016.

  7. Green Fluorescent Protein as a Model for Protein Crystal Growth Studies

    NASA Technical Reports Server (NTRS)

    Agena, Sabine; Smith, Lori; Karr, Laurel; Pusey, Marc

    1998-01-01

    Green fluorescent protein (GFP) from jellyfish Aequorea Victoria has become a popular marker for e.g. mutagenesis work. Its fluorescent property, which originates from a chromophore located in the center of the molecule, makes it widely applicable as a research too]. GFP clones have been produced with a variety of spectral properties, such as blue and yellow emitting species. The protein is a single chain of molecular weight 27 kDa and its structure has been determined at 1.9 Angstrom resolution. The combination of GFP's fluorescent property, the knowledge of its several crystallization conditions, and its increasing use in biophysical and biochemical studies, all led us to consider it as a model material for macromolecular crystal growth studies. Initial preparations of GFP were from E.coli with yields of approximately 5 mg/L of culture media. Current yields are now in the 50 - 120 mg/L range, and we hope to further increase this by expression of the GFP gene in the Pichia system. The results of these efforts and of preliminary crystal growth studies will be presented.

  8. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.

    PubMed

    Wang, Guifang; Zhang, Ze-Ting; Jiang, Bin; Zhang, Xu; Li, Conggang; Liu, Maili

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography are the two main methods for protein three-dimensional structure determination at atomic resolution. According to the protein structures deposited in the Protein Data Bank, X-ray crystallography has become the dominant method for structure determination, particularly for large proteins and complexes. However, with the developments of isotope labeling, increase of magnetic field strength, common use of a cryogenic probe, and ingenious pulse sequence design, the applications of NMR spectroscopy have expanded in biological research, especially in characterizing protein dynamics, sparsely populated transient structures, weak protein interactions, and proteins in living cells at atomic resolution, which is difficult if not impossible by other biophysical methods. Although great advances have been made in protein NMR spectroscopy, its applications in protein therapeutics, which represents the fastest growing segment of the pharmaceutical industry, are still limited. Here we review the recent advances in the use of NMR spectroscopy in studies of large proteins or complexes, posttranslation modifications, weak interactions, and aggregation, and in-cell NMR spectroscopy. The potential applications of NMR spectroscopy in protein therapeutic assays are discussed.

  9. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments.

    PubMed

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C; Johnson, Jennifer L; Entzminger, Kevin; Jain, Avni; Heaner, David P; Morales, Ivan A; Truskett, Thomas M; Maynard, Jennifer A; Lieberman, Raquel L

    2014-09-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three-dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts.

  10. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments

    PubMed Central

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.

    2014-01-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866

  11. Advances in the development of piezoelectric quartz-crystal oscillators, hydrogen masers, and superconducting frequency standards

    NASA Technical Reports Server (NTRS)

    Suter, Joseph J.

    1988-01-01

    This paper describes recent research advances made in the development of radiation-hardened piezoelectric quartz oscillators, hydrogen masers, and superconducting oscillators, with emphasis placed on the principles involved in the operation of these oscillators and the factors affecting the operation. Particular attention is given to the radiation-susceptibility studies of quartz-crystal resonators, the hydrogen-maser relaxation process and noise sources, and low-phase-noise superconducting oscillators. Diagrams of these devices and performance graphs are included.

  12. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  13. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  14. A visible-light-excited fluorescence method for imaging protein crystals without added dyes.

    PubMed

    Lukk, Tiit; Gillilan, Richard E; Szebenyi, Doletha M E; Zipfel, Warren R

    2016-02-01

    Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experiments where crystals are cooled to 100 K with a cryostream. In addition to the non-damaging excitation wavelength and low laser power required for imaging, the method can also serve a useful role for differentiating protein crystals from salt crystals in screening trays.

  15. A visible-light-excited fluorescence method for imaging protein crystals without added dyes

    PubMed Central

    Lukk, Tiit; Gillilan, Richard E.; Szebenyi, Doletha M. E.; Zipfel, Warren R.

    2016-01-01

    Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experiments where crystals are cooled to 100 K with a cryostream. In addition to the non-damaging excitation wavelength and low laser power required for imaging, the method can also serve a useful role for differentiating protein crystals from salt crystals in screening trays. PMID:26937240

  16. Selecting temperature for protein crystallization screens using the temperature dependence of the second virial coefficient.

    PubMed

    Liu, Jun; Yin, Da-Chuan; Guo, Yun-Zhu; Wang, Xi-Kai; Xie, Si-Xiao; Lu, Qin-Qin; Liu, Yong-Ming

    2011-03-30

    Protein crystals usually grow at a preferable temperature which is however not known for a new protein. This paper reports a new approach for determination of favorable crystallization temperature, which can be adopted to facilitate the crystallization screening process. By taking advantage of the correlation between the temperature dependence of the second virial coefficient (B(22)) and the solubility of protein, we measured the temperature dependence of B(22) to predict the temperature dependence of the solubility. Using information about solubility versus temperature, a preferred crystallization temperature can be proposed. If B(22) is a positive function of the temperature, a lower crystallization temperature is recommended; if B(22) shows opposite behavior with respect to the temperature, a higher crystallization temperature is preferred. Otherwise, any temperature in the tested range can be used.

  17. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  18. Fabrication of X-ray compatible microfluidic platforms for protein crystallization

    PubMed Central

    Guha, Sudipto; Perry, Sarah L.; Pawate, Ashtamurthy S.; Kenis, Paul J.A.

    2012-01-01

    This paper reports a method for fabricating multilayer microfluidic protein crystallization platforms using different materials to achieve X-ray transparency and compatibility with crystallization reagents. To validate this approach, three soluble proteins, lysozyme, thaumatin, and ribonuclease A were crystallized on-chip, followed by on-chip diffraction data collection. We also report a chip with an array of wells for screening different conditions that consume a minimal amount of protein solution as compared to traditional screening methods. A large number of high quality isomorphous protein crystals can be grown in the wells, after which slices of X-ray data can be collected from many crystals still residing within the wells. Complete protein structures can be obtained by merging these slices of data followed by further processing with crystallography software. This approach of using an x-ray transparent chip for screening, crystal growth, and X-ray data collection enables room temperature data collection from many crystals mounted in parallel, which thus eliminates crystal handling and minimizes radiation damage to the crystals. PMID:23105172

  19. Therapeutic advances in rheumatology with the use of recombinant proteins.

    PubMed

    Rothe, Achim; Power, Barbara E; Hudson, Peter J

    2008-11-01

    Antibody engineering and protein design have led to the creation of a new era of targeted anti-inflammatory therapies in rheumatology. Recombinant DNA technologies have enabled the selection and humanization of specific antibody fragments in order to develop therapeutic reagents of any specificity that can be 'armed' to deliver effective anti-inflammatory 'payloads'. Antibodies and antibody-like proteins provide the opportunity to block key soluble mediators of inflammation in their milieu, or alternatively to block intracellular inflammation-triggering pathways by binding to an upstream cell-surface receptor. These designer proteins can be tuned for desired pharmacokinetic and pharmacodynamic effects, and represent tools for specific therapeutic intervention by delivering precisely the required immunosuppressive effect. The extent of desired and undesired effects of a particular biologic therapy, however, can be broader than initially predicted and require careful evaluation during clinical trials. This Review highlights advances in recombinant technologies for the development of novel biologic therapies in rheumatology.

  20. Crystal Structure of the Human Astrovirus Capsid Protein

    PubMed Central

    Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.; Yeager, Mark; Méndez, Ernesto

    2016-01-01

    ABSTRACT Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominant protein species with molecular masses of ∼34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP9071–415 (amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP9071–415 encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP9071–415 is comprised of two domains: an S domain, which adopts the typical jelly-roll β-barrel fold, and a P1 domain, which forms a squashed β-barrel consisting of six antiparallel β-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP9071–415 structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCE Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus

  1. Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly

    NASA Astrophysics Data System (ADS)

    Kowacz, Magdalena; Marchel, Mateusz; Juknaité, Lina; Esperança, José M. S. S.; Romão, Maria João; Carvalho, Ana Luísa; Rebelo, Luís Paulo N.

    2017-01-01

    We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems.

  2. Microcontact imprinted quartz crystal microbalance nanosensor for protein C recognition.

    PubMed

    Bakhshpour, Monireh; Özgür, Erdoğan; Bereli, Nilay; Denizli, Adil

    2017-03-01

    Detection of protein C (PC) in human serum was performed by quartz crystal microbalance (QCM) based on molecular imprinting technique (MIP). The high-resolution and mass-sensitive QCM based sensor was integrated with high sensitivity and selectivity of the MIP technique. The PC microcontact imprinted (PC-μCIP) nanofilm was prepared on the glass surface. Then, the PC-μCIP/QCM sensor was prepared with 2-hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA) and N-methacryloyl l-histidine methylester (MAH) as the functional monomer with copper(II) ions. The polymerization was performed under UV light (100W and 365nm) for 20-25min under nitrogen atmosphere. The characterization studies of QCM sensor were done by observation using atomic force microscopy (AFM), contact angle measurements, ellipsometry and fourier transform infrared spectroscopy (FTIR). Detection of PC was investigated in a concentration range of 0.1-30μg/mL. Selectivity of PC-μCIP and PC non-imprinted/QCM (PC-non-μCIP) sensors for PC determination was investigated by using proteins namely hemoglobin (Hb), human serum albumin (HSA) and fibrinogen solutions. QCM sensor was also used for detection of PC molecules in aqueous solutions and human plasma. The detection limit was determined as 0.01μg/mL for PC analysis. The PC-μCIP/QCM sensor was used for five consecutive adsorption-desorption cycles. According to the results, the PC-μCIP/QCM sensor had obtained high selectivity and sensitivity for detection of PC molecules.

  3. An approach to crystallizing proteins by metal-mediated synthetic symmetrization

    SciTech Connect

    Laganowsky, Arthur; Zhao, Minglei; Soriaga, Angela B.; Sawaya, Michael R.; Cascio, Duilio; Yeates, Todd O.

    2011-12-09

    Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu2+), nickel (Ni2+), or zinc (Zn2+). The approach resulted in 16 new crystal structures-eight for T4L and eight for MBP-displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest.

  4. The role of flexibility and molecular shape in the crystallization of proteins by surface mutagenesis

    PubMed Central

    Devedjiev, Yancho D.

    2015-01-01

    Proteins are dynamic systems and interact with their environment. The analysis of crystal contacts in the most accurately determined protein structures (d < 1.5 Å) reveals that in contrast to current views, static disorder and high side-chain entropy are common in the crystal contact area. These observations challenge the validity of the theory that presumes that the occurrence of well ordered patches of side chains at the surface is an essential prerequisite for a successful crystallization event. The present paper provides evidence in support of the approach for understanding protein crystallization as a process dependent on multiple factors, each with its relative contribution, rather than a phenomenon driven by a few dominant physicochemical characteristics. The role of the molecular shape as a factor in the crystallization of proteins by surface mutagenesis is discussed. PMID:25664789

  5. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    PubMed Central

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W.W.; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2014-01-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure. PMID:26052177

  6. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening.

    PubMed

    Cuttitta, Christina M; Ericson, Daniel L; Scalia, Alexander; Roessler, Christian G; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S

    2015-01-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s(-1)) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  7. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    DOE PAGES

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; ...

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from themore » inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  8. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  9. Space-grown protein crystals are more useful for structure determination.

    PubMed

    Ng, Joseph D

    2002-10-01

    The usefulness of X-ray data derived from space-grown protein crystals for calculating a more accurate structure is reviewed here for three model proteins. These include the plant sweetening protein, thaumatin, from Thaumatococcus daniellii; the aspartyl-tRNA synthetase from Thermus thermophilus; and pea lectin from Pisum sativum. In all three cases, X-ray diffraction data collected from protein crystals obtained under reduced gravity lead to better defined initial electron density maps, facilitating model building and improved crystallographic statistics. With thaumatin, the phasing power of the anomalous scattering atom, sulfur, is used to determine protein crystal quality in terms of its usefulness for ab initio structure determination. Thaumatin crystals grown under microgravity provided improved phasing statistics compared to those of Earth-grown crystals. Consequently, generating a de novo protein model of higher quality was facilitated using X-ray diffraction data from space-grown crystals. This lends evidence to the possibility that a microgravity environment can favor protein crystal growth and, subsequently, be more useful for structure determination.

  10. Automated harvesting and processing of protein crystals through laser photoablation.

    PubMed

    Zander, Ulrich; Hoffmann, Guillaume; Cornaciu, Irina; Marquette, Jean-Pierre; Papp, Gergely; Landret, Christophe; Seroul, Gaël; Sinoir, Jérémy; Röwer, Martin; Felisaz, Frank; Rodriguez-Puente, Sonia; Mariaule, Vincent; Murphy, Peter; Mathieu, Magali; Cipriani, Florent; Márquez, José Antonio

    2016-04-01

    Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities.

  11. Automated harvesting and processing of protein crystals through laser photoablation

    PubMed Central

    Zander, Ulrich; Hoffmann, Guillaume; Cornaciu, Irina; Marquette, Jean-Pierre; Papp, Gergely; Landret, Christophe; Seroul, Gaël; Sinoir, Jérémy; Röwer, Martin; Felisaz, Frank; Rodriguez-Puente, Sonia; Mariaule, Vincent; Murphy, Peter; Mathieu, Magali; Cipriani, Florent; Márquez, José Antonio

    2016-01-01

    Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities. PMID:27050125

  12. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  13. X-ray Structure of Snow Flea Antifreeze Protein Determined by Racemic Crystallization of Synthetic Protein Enantiomers

    SciTech Connect

    Pentelute, Brad L.; Gates, Zachary P.; Tereshko, Valentina; Dashnau, Jennifer L.; Vanderkooi, Jane M.; Kossiakoff, Anthony A.; Kent, Stephen B.H.

    2008-08-20

    Chemical protein synthesis and racemic protein crystallization were used to determine the X-ray structure of the snow flea antifreeze protein (sfAFP). Crystal formation from a racemic solution containing equal amounts of the chemically synthesized proteins d-sfAFP and l-sfAFP occurred much more readily than for l-sfAFP alone. More facile crystal formation also occurred from a quasi-racemic mixture of d-sfAFP and l-Se-sfAFP, a chemical protein analogue that contains an additional -SeCH2- moiety at one residue and thus differs slightly from the true enantiomer. Multiple wavelength anomalous dispersion (MAD) phasing from quasi-racemate crystals was then used to determine the X-ray structure of the sfAFP protein molecule. The resulting model was used to solve by molecular replacement the X-ray structure of l-sfAFP to a resolution of 0.98 {angstrom}. The l-sfAFP molecule is made up of six antiparallel left-handed PPII helixes, stacked in two sets of three, to form a compact brick-like structure with one hydrophilic face and one hydrophobic face. This is a novel experimental protein structure and closely resembles a structural model proposed for sfAFP. These results illustrate the utility of total chemical synthesis combined with racemic crystallization and X-ray crystallography for determining the unknown structure of a protein.

  14. Development of high-performance X-ray transparent crystallization plates for in situ protein crystal screening and analysis

    SciTech Connect

    Soliman, Ahmed S. M.; Warkentin, Matthew; Apker, Benjamin; Thorne, Robert E.

    2011-07-01

    An optically, UV and X-ray transparent crystallization plate suitable for in situ analysis has been developed. The plate uses contact line pinning rather than wells to confine the liquids. X-ray transparent crystallization plates based upon a novel drop-pinning technology provide a flexible, simple and inexpensive approach to protein crystallization and screening. The plates consist of open cells sealed top and bottom by thin optically, UV and X-ray transparent films. The plates do not need wells or depressions to contain liquids. Instead, protein drops and reservoir solution are held in place by rings with micrometre dimensions that are patterned onto the bottom film. These rings strongly pin the liquid contact lines, thereby improving drop shape and position uniformity, and thus crystallization reproducibility, and simplifying automated image analysis of drop contents. The same rings effectively pin solutions containing salts, proteins, cryoprotectants, oils, alcohols and detergents. Strong pinning by rings allows the plates to be rotated without liquid mixing to 90° for X-ray data collection or to be inverted for hanging-drop crystallization. The plates have the standard SBS format and are compatible with standard liquid-handling robots.

  15. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    PubMed Central

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.

    2013-01-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-­ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-­ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed. PMID:23633594

  16. Simulations of a protein crystal: Explicit treatment of crystallization conditions links theory and experiment in the streptavidin-biotin complex

    PubMed Central

    Cerutti, David S.; Le Trong, Isolde; Stenkamp, Ronald E.; Lybrand, Terry P.

    2009-01-01

    A 250ns molecular dynamics simulation of the biotin-liganded streptavidin crystal lattice, including cryo-protectant molecules and crystallization salts, is compared to a 250ns simulation of the lattice solvated with pure water. The simulation using detailed crystallization conditions preserves the initial X-ray structure better than the simulation using pure water, even though the protein molecules display comparable mobility in either simulation. Atomic fluctuations computed from the simulation with crystallization conditions closely reproduce fluctuations derived from experimental temperature factors (correlation coefficient 0.88, omitting two N-terminal residues with very high experimental B-factors). In contrast, fluctuations calculated from the simulation with pure water were less accurate, particularly for two of the streptavidin loops exposed to solvent in the crystal lattice. Finally, we obtain good agreement between the water and cryo-protectant densities obtained from the simulated crystallization conditions and the electron density due to solvent molecules in the X-ray structure. Our results suggest that detailed lattice simulations with realistic crystallization conditions can be used to assess potential function parameters, validate simulation protocols, and obtain valuable insights that solution-phase simulations do not easily provide. We anticipate that this will prove to be a powerful strategy for molecular dynamics simulations of biomolecules. PMID:18950193

  17. Relation between the phase separation and the crystallization in protein solutions

    NASA Astrophysics Data System (ADS)

    Tanaka, Shinpei; Yamamoto, Masahiko; Ito, Kohzo; Hayakawa, Reinosuke; Ataka, Mitsuo

    1997-07-01

    Liquid-liquid phase separation and crystallization (or solid-liquid phase separation) both occur in protein solutions. By adopting egg-white lysozyme for a model system, we compared two types of diagrams, a phase diagram of the liquid-liquid phase separation and a morphological diagram of protein crystals. By superimposing these diagrams, we distinguished two types of white precipitates, urchinlike spherulites arising from the crystallization and protein-rich droplets from the liquid-liquid phase separation. Furthermore, we observed a transformation from the protein-rich droplets to the spherulites, and simultaneously an unusual pattern evolution of the protein-rich phase unlike the conventional phase separation of typical binary mixtures. This is understood in terms of the competition between the crystallization and the liquid-liquid phase separation.

  18. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals.

    PubMed

    Sontz, Pamela A; Bailey, Jake B; Ahn, Sunhyung; Tezcan, F Akif

    2015-09-16

    We describe here the construction of a three-dimensional, porous, crystalline framework formed by spherical protein nodes that assemble into a prescribed lattice arrangement through metal-organic linker-directed interactions. The octahedral iron storage enzyme, ferritin, was engineered in its C3 symmetric pores with tripodal Zn coordination sites. Dynamic light scattering and crystallographic studies established that this Zn-ferritin construct could robustly self-assemble into the desired bcc-type crystals upon coordination of a ditopic linker bearing hydroxamic acid functional groups. This system represents the first example of a ternary protein-metal-organic crystalline framework whose formation is fully dependent on each of its three components.

  19. A Semiautomatic Protein Crystallization System with Preventing Evaporation of Drops and Surface Sensor of Solution

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Niino, Ai; Ishizu, Takeshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-01-01

    We developed a simple, semiautomated protein crystallization system. The system performs crystallization-condition-screening experiments using commercial solution kits and crystallization plates. It is capable of dispensing a minimum of one microliter of protein solution into a protein well and a maximum of one milliliter of a mother liquor into a reservoir with high reproducibility using two syringes of different sizes. Several new instruments effective in preventing evaporation of solutions, a surface sensor of solutions, and a tube-holder box for solution kits are introduced.

  20. Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii

    PubMed Central

    Fernández-Millán, Pablo; Kortazar, Danel; Lucas, María; Martínez-Chantar, María Luz; Astigarraga, Egoitz; Fernández, José Andrés; Sabas, Olatz; Albert, Armando; Mato, Jose M.; Martínez-Cruz, Luis Alfonso

    2008-01-01

    CBS domains are small protein motifs, usually associated in tandem, that are implicated in binding to adenosyl groups. Several genetic diseases in humans have been associated with mutations in CBS sequences, which has made them very promising targets for rational drug design. Trigonal crystals of the CBS-domain protein MJ0729 from Methanococcus jannaschii were grown by the vapour-diffusion method at acidic pH. Preliminary analysis of nine X-ray diffraction data sets using Yeates statistics and Britton plots showed that slight variation in the pH as well as in the buffer used in the crystallization experiments led to crystals with different degrees of merohedral twinning that may vary from perfect hemihedral twinning to perfect tetartohedral twinning. PMID:18607087

  1. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of macrophage growth locus A (MglA) protein from Francisella tularensis

    SciTech Connect

    Subburaman, P.; Austin, B.P.; Shaw, G.X.; Waugh, D.S.; Ji, X.

    2010-11-03

    Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 {angstrom} resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 125, c = 54 {angstrom}.

  2. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    SciTech Connect

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-10-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.

  3. Crystallization and preliminary X-ray analysis of the RAD protein from Antirrhinum majus

    SciTech Connect

    Stevenson, Clare E. M.; Burton, Nicolas; Costa, Manuela; Nath, Utpal; Dixon, Ray A.; Coen, Enrico S.; Lawson, David M.

    2005-10-01

    An 8 kDa proteolytic fragment of the A. majus RADIALIS protein was crystallized and X-ray data were collected to 2 Å resolution. Crystals of the RADIALIS protein from Antirrhinum majus were grown by vapour diffusion after limited proteolysis. Mass spectrometry indicated that an 8 kDa fragment had been crystallized corresponding to the predicted MYB DNA-binding domain. X-ray data collected at room temperature were consistent with tetragonal symmetry, whereas data collected at 100 K using crystals cryoprotected by supplementing the mother liquor with ethylene glycol conformed to orthorhombic symmetry. It was subsequently shown that crystals soaked in cryoprotectants that were ‘osmolality-matched’ to the mother liquor retained tetragonal symmetry. Using these crystals, X-ray data were collected in-house to a maximum resolution of 2 Å.

  4. Systematic analysis of protein-detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hussein, Rana; Brillet, Karl; Brognaro, Hevila; Betzel, Christian

    2015-01-01

    Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advanced hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 µl. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-trans n-alkyl-β-D-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH2 group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein-detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic cleavage to separate the fusion partners. This study demonstrates the potential of in situ DLS to optimize solutions of protein-detergent complexes for crystallization applications.

  5. Life in the fast lane for protein crystallization and X-ray crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.

    2005-01-01

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from

  6. Life in the Fast Lane for Protein Crystallization and X-Ray Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.

    2004-01-01

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today s high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from

  7. Life in the fast lane for protein crystallization and X-ray crystallography

    SciTech Connect

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.

    2010-07-20

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain 'low-hanging fruit' protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from

  8. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    PubMed Central

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  9. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments.

    PubMed

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-09-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.

  10. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  11. How proteins pack into crystals: nuclei achieve translation symmetries by growing.

    PubMed

    Feng, Dan; Zeng, Zong-Hao

    2004-07-01

    How protein molecules pack into a crystal remains problematic. Packing units are direct materials for packing into crystals. The group generator method is introduced for automatically identifying the packing unit. By introducing deviations into the nucleation stage of crystallization, we proved that these deviations diminish in further packing. This process illustrates how translation symmetries are achieved by the growing of nuclei. Two effects, the size effect and the close up effect, are found to behave differently in this process.

  12. Recent Advances in High-Growth Rate Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50-100 {micro}m/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m{sup 1/2} in comparison to 5-10 MPa m{sup 1/2} for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.

  13. Contaminant inclusion into protein crystals analyzed by electrospray mass spectrometry and X-ray crystallography.

    PubMed Central

    Hirschler, J.; Halgand, F.; Forest, E.; Fontecilla-Camps, J. C.

    1998-01-01

    The inclusion of protein contaminants into crystals of turkey egg white lysozyme (TEWL) was investigated by electrospray mass spectrometry of the dissolved crystals. The results show that significant amounts of the structurally related contaminant hen egg white lysozyme (HEWL) are included in the crystals of TEWL. The structurally unrelated contaminant RNAse A, on the other hand, is not included. The X-ray diffraction data statistics of a hybrid TEWL/HEWL crystal and an uncontaminated TEWL crystal were of similar quality. This indicates that, even though the crystals contain much higher levels of the contaminant than one would have expected after a recrystallization experiment, they are still suitable for X-ray diffraction experiments. However, attempts to detect the presence of the contaminant in the crystal by crystallographic structure refinement did not yield conclusive results. PMID:9514273

  14. Microseed matrix screening for optimization in protein crystallization: what have we learned?

    PubMed Central

    D’Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W.; Marsh, May

    2014-01-01

    Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems. PMID:25195878

  15. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    SciTech Connect

    Wallace, E.; Dranow, D.; Laible, P. D.; Christensen, J.; Nollert, P.

    2011-01-01

    The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization

  16. Advanced chemical model for analysis of Cz and DS Si-crystal growth

    NASA Astrophysics Data System (ADS)

    Vorob'ev, A. N.; Sid'ko, A. P.; Kalaev, V. V.

    2014-01-01

    In growing bulk crystals from the melt, impurities contained in silicon feedstock, generated due to the melt-to-crucible contact and transported by the gas flow from graphite elements strongly affect the efficiency of mono and multicrystalline silicon solar cells. The present paper is aimed at developing an advanced coupled chemical model accounting for such phenomena as oxygen and nitrogen solution at crucible wall, oxygen and carbon transport through the melt free surface, formation of Si3N4-, Si2N2O- and SiC-particles in the melt, mass transport of SiO-, CO- and Si-species in argon carrier gas and, finally, formation of parasitic deposits on the furnace units. The model is verified by simulation of DS and Cz Si-crystal growth. It is shown that the computational results agree well with available experimental data, and the model can be used for optimization of Cz and DS processes.

  17. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    PubMed Central

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-01-01

    Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystalliz­ation or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions. PMID:21931220

  18. Protein crystal quality in diffusive environments and its evaluation

    NASA Astrophysics Data System (ADS)

    Lopez-Jaramillo, F. J.; Otálora, F.; Gavira, J. A.

    2003-01-01

    We have analyzed the crystal quality along a capillary by a precise protocol that comprises the study of tetragonal lysozyme cylindrical crystals that fill the capillary diameter (i.e. rods), the careful definition of the diffraction parameters and the use of a single software for the data reduction in order to avoid any bias in the comparison of the quality of different data sets. Our results cannot be explained on the basis of the different redundancy of the data sets and they demonstrate that the gel acupuncture method promotes a gradient of supersaturation along the capillary that yields in the same experiment crystals of increasing quality as a function of the position. However, despite being single crystals, rods have regions that show different crystal quality because they grew at different supersaturations. Our data are in agreement with the existence of a relation between length of the c-axis and crystal quality reported by other groups, but a deeper analysis of the cell parameters reveals the existence of a significant linear relation ( R=0.87) with the c/ a-axis ratio. This result points to the hypothesis of an ideal unit cell that yields the best crystals in terms of I/ σ( I).

  19. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  20. Protein-Precipitant-Specific Criteria for the Impact of Reduced Gravity on Crystal Perfection

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Witherow, W. (Technical Monitor)

    2003-01-01

    The objective of this research is to provide quantitative criteria for the impact of reduced or enhanced convective transport on protein crystal perfection. Our earlier work strongly suggests that the magnitude of (lattice defect-inducing) fluctuations in the crystallization rate of proteins arise from the coupling of bulk transport and nonlinear interface kinetics. Hence, we surmised that, depending on the relative weight of bulk transport and interface kinetics in the control of the crystallization process on Earth, these fluctuations can either increase or decrease under reduced gravity conditions. The sign and magnitude of these changes depend on the specific protein-precipitant system. As a consequence, space environments can be either beneficial or detrimental for achieving structural perfection in protein crystals. The task objectives consist in systematic investigations of this hypothesis.

  1. In-plate protein crystallization, in situ ligand soaking and X-ray diffraction.

    PubMed

    le Maire, Albane; Gelin, Muriel; Pochet, Sylvie; Hoh, François; Pirocchi, Michel; Guichou, Jean François; Ferrer, Jean Luc; Labesse, Gilles

    2011-09-01

    X-ray crystallography is now a recognized technique for ligand screening, especially for fragment-based drug design. However, protein crystal handling is still tedious and limits further automation. An alternative method for the solution of crystal structures of proteins in complex with small ligands is proposed. Crystallization drops are directly exposed to an X-ray beam after cocrystallization or soaking with the desired ligands. The use of dedicated plates in connection with an optimal parametrization of the G-rob robot allows efficient data collection. Three proteins currently under study in our laboratory for ligand screening by X-ray crystallography were used as validation test cases. The protein crystals belonged to different space groups, including a challenging monoclinic case. The resulting diffraction data can lead to clear ligand recognition, including indication of alternating conformations. These results demonstrate a possible method for automation of ligand screening by X-ray crystallography.

  2. Expanding pH screening space using multiple droplets with secondary buffers for protein crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Chen-Yan; Dong, Chen; Lu, Xiao-Li; Wang, Bei; He, Tian-Yuan; Yang, Rui-Zeng; Lin, Hua-Long; Yang, Xue-Zhou; Yin, Da-Chuan

    2017-04-01

    We have proposed a rational strategy for selecting a suitable pH of protein solution based on protein biochemical properties. However, it is difficult to use this strategy for biochemical properties unknown proteins. In this paper, a simpler and faster pH buffer strategy was proposed. An additional pH-controlling buffer was added to crystallization droplet mixed with protein solution and commercial crystallization reagents to adjust its pH. The results revealed that protein crystallization success rates were enhanced by this strategy due to expansion of the pH screening space, which was closely related with protein solubility. Thus, the possibility of reaching supersaturation was increased by using this strategy.

  3. Crystal-to-Crystal Synthesis of Triazole-Linked Pseudo-proteins via Topochemical Azide-Alkyne Cycloaddition Reaction.

    PubMed

    Krishnan, Baiju P; Rai, Rishika; Asokan, Aromal; Sureshan, Kana M

    2016-11-16

    Isosteric replacement of amide bond(s) of peptides with surrogate groups is an important strategy for the synthesis of peptidomimetics (pseudo-peptides). Triazole is a well-recognized bio-isostere for peptide bonds, and peptides with one or more triazole units are of great interest for different applications. We have used a catalyst-free and solvent-free method, viz., topochemical azide-alkyne cycloaddition (TAAC) reaction, to synthesize pseudo-proteins with repeating sequences. A designed β-sheet-forming l-Ala-l-Val dipeptide containing azide and alkyne at its termini (N3-Ala-Val-NHCH2C≡CH, 1) was synthesized. Single-crystal XRD analysis of the dipeptide 1 showed parallel β-sheet arrangement along the b-direction and head-to-tail arrangement of such β-sheets along the c-direction. This head-to-tail arrangement along the c-direction places the complementary reacting motifs, viz., azide and alkyne, of adjacent molecules in proximity. The crystals of dipeptide 1, upon heating at 85 °C, underwent crystal-to-crystal polymerization, giving 1,4-triazole-linked pseudo-proteins. This TAAC polymerization was investigated by various time-dependent techniques, such as NMR, IR, DSC, and PXRD. The crystal-to-crystal nature of this transformation was revealed from polarizing microscopy and PXRD experiments, and the regiospecificity of triazole formation was evidenced from various NMR techniques. The MALDI-TOF spectrum showed the presence of pseudo-proteins >7 kDa.

  4. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  5. Crystallization Process of Protein Rv0731c from Mycobacterium Tuberculosis for a Successful Atomic Resolution Crystal Structure at 1.2 Angstrom

    SciTech Connect

    Zhu, Liang Cong

    2009-06-08

    Proteins are bio-macromolecules consisting of basic 20 amino acids and have distinct three-dimensional folds. They are essential parts of organisms and participate in every process within cells. Proteins are crucial for human life, and each protein within the body has a specific function, such as antibodies, contractile proteins, enzymes, hormonal proteins, structural proteins, storage proteins and transport proteins. Determining three-dimensional structure of a protein can help researchers discover the remarkable protein folding, binding site, conformation and etc, in order to understand well of protein interaction and aid for possible drug design. The research on protein structure by X-ray protein crystallography carried by Li-Wei Hung's research group in the Physical Bioscience Division at Lawrence Berkeley National Laboratory (LBNL) is focusing on protein crystallography. The research in this lab is in the process of from crystallizing the proteins to determining the three dimensional crystal structures of proteins. Most protein targets are selected from Mycobacterium Tuberculosis. TB (Tuberculosis) is a possible fatal infectious disease. By studying TB target protein can help discover antituberculer drugs, and find treatment for TB. The high-throughput mode of crystallization, crystal harvesting, crystal screening and data collection are applied to the research pipeline (Figure 1). The X-ray diffraction data by protein crystals can be processed and analyzed to result in a three dimensional representation of electron density, producing a detailed model of protein structure. Rv0731c is a conserved hypothetical protein with unknown function from Mycobacterium Tuberculosis. This paper is going to report the crystallization process and brief structure information of Rv0731c.

  6. Development of high-performance X-ray transparent crystallization plates for in situ protein crystal screening and analysis

    PubMed Central

    Soliman, Ahmed S. M.; Warkentin, Matthew; Apker, Benjamin; Thorne, Robert E.

    2011-01-01

    X-ray transparent crystallization plates based upon a novel drop-pinning technology provide a flexible, simple and inexpensive approach to protein crystallization and screening. The plates consist of open cells sealed top and bottom by thin optically, UV and X-ray transparent films. The plates do not need wells or depressions to contain liquids. Instead, protein drops and reservoir solution are held in place by rings with micrometre dimensions that are patterned onto the bottom film. These rings strongly pin the liquid contact lines, thereby improving drop shape and position uniformity, and thus crystallization reproducibility, and simplifying automated image analysis of drop contents. The same rings effectively pin solutions containing salts, proteins, cryoprotectants, oils, alcohols and detergents. Strong pinning by rings allows the plates to be rotated without liquid mixing to 90° for X-ray data collection or to be inverted for hanging-drop crystallization. The plates have the standard SBS format and are compatible with standard liquid-handling robots. PMID:21697603

  7. Protein crystallization screens developed at the MRC Laboratory of Molecular Biology.

    PubMed

    Gorrec, Fabrice

    2016-05-01

    In order to solve increasingly challenging protein structures with crystallography, crystallization reagents and screen formulations are regularly investigated. Here, we briefly describe 96-condition screens developed at the MRC Laboratory of Molecular Biology: the LMB sparse matrix screen, Pi incomplete factorial screens, the MORPHEUS grid screens and the ANGSTROM optimization screen. In this short review, we also discuss the difficulties and advantages associated with the development of protein crystallization screens.

  8. Step and Kink Dynamics in Inorganic and Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Rashkovich, L. N.; Vekilov, P. G.; DeYoreo, J. J.

    2004-01-01

    Behavior of low-kink-density steps in solution growth and consequences for general understanding of spiral crystal growth processes will be overviewed. Also, influence of turbulence on step bunching and possibility to diminish this bunching will be presented.

  9. X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals.

    PubMed

    Perozzo, M A; Ward, K B; Thompson, R B; Ward, W W

    1988-06-05

    The energy transfer protein, green fluorescent protein, from the hydromedusan jellyfish Aequorea victoria has been crystallized in two morphologies suitable for x-ray diffraction analysis. Hexagonal plates have been obtained in the P6122 or P6522 space group with a = b = 77.5, c = 370 A, and no more than three molecules per asymmetric unit. Monoclinic parallel-epipeds have been obtained in the C2 space group with a = 93.3, b = 66.5, c = 45.5 A, beta = 108 degrees, and one molecule per asymmetric unit. The monoclinic form is better suited for use in a structure determination, and a data set was collected from the native crystal. Time-resolved fluorescence measurements of large single crystals are possible due to the unique, covalently bound chromophore present in this molecule. Fluorescence emission spectra of Aequorea green fluorescent protein in solution and from either the hexagonal or monoclinic single crystal show similar profiles suggesting that the conformations of protein in solution and in the crystal are similar. Multifrequency phase fluorimetric data obtained from a single crystal were best fit by a single fluorescence lifetime very close to that exhibited by the protein in solution. The complementary structural data obtained from fluorescence spectroscopy and x-ray diffraction crystallography will aid in the elucidation of this novel protein's structure-function relationship.

  10. Large scale crystallization of protein pharmaceuticals in microgravity via temperature change

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.

    1992-01-01

    The major objective of this research effort is the temperature driven growth of protein crystals in large batches in the microgravity environment of space. Pharmaceutical houses are developing protein products for patient care, for example, human insulin, human growth hormone, interferons, and tissue plasminogen activator or TPA, the clot buster for heart attack victims. Except for insulin, these are very high value products; they are extremely potent in small quantities and have a great value per gram of material. It is feasible that microgravity crystallization can be a cost recoverable, economically sound final processing step in their manufacture. Large scale protein crystal growth in microgravity has significant advantages from the basic science and the applied science standpoints. Crystal growth can proceed unhindered due to lack of surface effects. Dynamic control is possible and relatively easy. The method has the potential to yield large quantities of pure crystalline product. Crystallization is a time honored procedure for purifying organic materials and microgravity crystallization could be the final step to remove trace impurities from high value protein pharmaceuticals. In addition, microgravity grown crystals could be the final formulation for those medicines that need to be administered in a timed release fashion. Long lasting insulin, insulin lente, is such a product. Also crystalline protein pharmaceuticals are more stable for long-term storage. Temperature, as the initiation step, has certain advantages. Again, dynamic control of the crystallization process is possible and easy. A temperature step is non-invasive and is the most subtle way to control protein solubility and therefore crystallization. Seeding is not necessary. Changes in protein and precipitant concentrations and pH are not necessary. Finally, this method represents a new way to crystallize proteins in space that takes advantage of the unique microgravity environment. The results

  11. Protein crystallization aboard the Space Shuttle and the Mir space station

    NASA Technical Reports Server (NTRS)

    Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.

    1993-01-01

    Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.

  12. Protein crystal growth aboard the U.S. Space Shuttle flights STS-31 and STS-32

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Carter, Daniel C.; Twigg, Pam; He, Xiao-Min; Snyder, Robert S.; Weber, Patricia C.; Schloss, J. V.; Einspahr, H. M.; Clancy, L. L.

    1992-01-01

    Results obtained from the Shuttle flight STS-32 flown in January 1990, and preliminary results from the most recent Shuttle flight, STS-31, flown in April 1990, are presented. Crystals grown in microgravity environment include Canavalin, isocitrate lyase, human serum albumin, and Anti-HPr Fab. It is concluded that about 20 percent of proteins flown exhibit better morphologies or better quality data than their earth-grown counterparts. About 40 percent do not yield crystals at all and the remaining 40 percent yield crystals that are either too small for X-ray analysis or produce data of poorer quality than the best earth-grown crystals.

  13. The role of purification in the crystallization of proteins and nucleic acids

    NASA Astrophysics Data System (ADS)

    Giegé, R.; Dock, A. C.; Kern, D.; Lorber, B.; Thierry, J. C.; Moras, D.

    1986-08-01

    In structural biology, the crystallization of the macromolecules often represents the most challenging step. Beside classical factors which determine the solubility of macromolecules, purity of compounds is another major parameter governing crystal growth. With aminoacyl-tRNA synthetases and transfer ribonucleic acids as examples, it will be shown that molecules to be crystallized not only have to be pure in terms of contaminating molecules, but also in terms of sequence integrity and conformational homogeneity. A chromatographic method based on salting-out of proteins or nucleic acids on Sepharose 4B gels and back-solubilization with inverse salt gradients will be discussed in the light of crystal growth experiments.

  14. RIBER/DIBER: a software suite for crystal content analysis in the studies of protein-nucleic acid complexes.

    PubMed

    Chojnowski, Grzegorz; Bujnicki, Janusz M; Bochtler, Matthias

    2012-03-15

    Co-crystallization experiments of proteins with nucleic acids do not guarantee that both components are present in the crystal. We have previously developed DIBER to predict crystal content when protein and DNA are present in the crystallization mix. Here, we present RIBER, which should be used when protein and RNA are in the crystallization drop. The combined RIBER/DIBER suite builds on machine learning techniques to make reliable, quantitative predictions of crystal content for non-expert users and high-throughput crystallography.

  15. Design of a confined environment using protein cages and crystals for the development of biohybrid materials.

    PubMed

    Abe, Satoshi; Maity, Basudev; Ueno, Takafumi

    2016-05-05

    There is growing interest in the design of protein assemblies for use in materials science and bionanotechnology. Protein assemblies, such as cages and crystalline protein structures, provide confined chemical environments that allow immobilization of metal complexes, nanomaterials, and proteins by metal coordination, assembly/disassembly reactions, genetic manipulation and crystallization methods. Protein assembly composites can be used to prepare hybrid materials with catalytic, magnetic and optical properties for cellular applications due to their high stability, solubility and biocompatibility. In this feature article, we focus on the recent development of ferritin as the most promising molecular template protein cage and in vivo and in vitro engineering of protein crystals as solid protein materials with functional properties.

  16. Recent advances in covalent, site-specific protein immobilization

    PubMed Central

    Meldal, Morten; Schoffelen, Sanne

    2016-01-01

    The properties of biosensors, biomedical implants, and other materials based on immobilized proteins greatly depend on the method employed to couple the protein molecules to their solid support. Covalent, site-specific immobilization strategies are robust and can provide the level of control that is desired in this kind of application. Recent advances include the use of enzymes, such as sortase A, to couple proteins in a site-specific manner to materials such as microbeads, glass, and hydrogels. Also, self-labeling tags such as the SNAP-tag can be employed. Last but not least, chemical approaches based on bioorthogonal reactions, like the azide–alkyne cycloaddition, have proven to be powerful tools. The lack of comparative studies and quantitative analysis of these immobilization methods hampers the selection process of the optimal strategy for a given application. However, besides immobilization efficiency, the freedom in selecting the site of conjugation and the size of the conjugation tag and the researcher’s expertise regarding molecular biology and/or chemical techniques will be determining factors in this regard. PMID:27785356

  17. Approach for growth of high-quality and large protein crystals.

    PubMed

    Matsumura, Hiroyoshi; Sugiyama, Shigeru; Hirose, Mika; Kakinouchi, Keisuke; Maruyama, Mihoko; Murai, Ryota; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Inoue, Tsuyoshi

    2011-01-01

    Three crystallization methods for growing large high-quality protein crystals, i.e. crystallization in the presence of a semi-solid agarose gel, top-seeded solution growth (TSSG) and a large-scale hanging-drop method, have previously been presented. In this study the effectiveness of crystallization in the presence of a semi-solid agarose gel has been further evaluated by crystallizing additional proteins in the presence of 2.0% (w/v) agarose gel, resulting in complete gelification with high mechanical strength. In TSSG the seed crystals are hung by a seed holder protruding from the top of the growth vessel to prevent polycrystallization. In the large-scale hanging-drop method, a cut pipette tip was used to maintain large-scale droplets consisting of protein-precipitant solution. Here a novel crystallization method that combines TSSG and the large-scale hanging-drop method is reported. A large and single crystal of lysozyme was obtained by this method.

  18. Purification, crystallization and preliminary X-ray diffraction analysis of the plant Rho protein ROP5

    SciTech Connect

    Thomas, Christoph Berken, Antje

    2007-12-01

    Crystals of the plant Rho protein ROP5 from A. thaliana have been obtained that diffract to 1.53 Å resolution. The small G protein ROP5 from the model plant Arabidopsis thaliana was purified and crystallized using the hanging-drop vapour-diffusion method. ROP5 crystals were obtained using PEG 3000 as precipitant and belong to space group P2{sub 1}. A data set was collected to 1.53 Å resolution using synchrotron radiation at 100 K. A clear molecular-replacement solution was found using ROP4–GDP of the ROP4–GDP–PRONE8 complex as the search model.

  19. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  20. Controlled protein delivery from electrospun non-wovens: novel combination of protein crystals and a biodegradable release matrix.

    PubMed

    Puhl, Sebastian; Li, Linhao; Meinel, Lorenz; Germershaus, Oliver

    2014-07-07

    Poly-ε-caprolactone (PCL) is an excellent polymer for electrospinning and matrix-controlled drug delivery combining optimal processability and good biocompatibility. Electrospinning of proteins has been shown to be challenging via the use of organic solvents, frequently resulting in protein unfolding or aggregation. Encapsulation of protein crystals represents an attractive but largely unexplored alternative to established protein encapsulation techniques because of increased thermodynamic stability and improved solvent resistance of the crystalline state. We herein explore the electrospinning of protein crystal suspensions and establish basic design principles for this novel type of protein delivery system. PCL was deployed as a matrix, and lysozyme was used as a crystallizing model protein. By rational combination of lysozyme crystals 0.7 or 2.1 μm in diameter and a PCL fiber diameter between 1.6 and 10 μm, release within the first 24 h could be varied between approximately 10 and 100%. Lysozyme loading of PCL microfibers between 0.5 and 5% was achieved without affecting processability. While relative release was unaffected by loading percentage, the amount of lysozyme released could be tailored. PCL was blended with poly(ethylene glycol) and poly(lactic-co-glycolic acid) to further modify the release rate. Under optimized conditions, an almost constant lysozyme release over 11 weeks was achieved.

  1. Effect of solution flow produced by rotary shaker on protein crystallization

    NASA Astrophysics Data System (ADS)

    Murai, Ryota; Yoshikawa, Hiroshi Y.; Kawahara, Hisato; Maki, Syou; Sugiyama, Shigeru; Kitatani, Tomoya; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Sasaki, Takatomo; Mori, Yusuke

    2008-04-01

    We investigated the relationship between the flow produced by a rotary shaker and protein crystallization. Lysozyme was crystallized in a solution stirred by a rotary shaker at 50 rpm. The number of crystals grown in the stirring environment was less than that of the quiescent environment. We confirmed the improvement of resolution and mosaicity of crystals grown in the stirring by X-ray diffraction measurement. We estimated that mean speed of the flow by a rotary shaker at 50 rpm was about 2×10 -6 m/s, and the Reynolds number of this flow was 4×10 -4. The magnitude of the Reynolds number was only twice as large as that of the quiescent environment. These results indicate that such a slight flow can influence protein crystallization.

  2. Stability of Magnetically-Suppressed Solutal Convection In Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Ramachandran, N.

    2005-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments and show solutal convection can be stabilized if the surrounding fluid has larger magnetic susceptibility and the magnetic field has a specific structure. Discussion on the application of the technique to protein crystallization is also provided.

  3. The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution

    SciTech Connect

    Judge, Russell A.; Takahashi, Sumiko; Longenecker, Kenton L.; Fry, Elizabeth H.; Abad-Zapatero, Cele; Chiu, Mark L.

    2009-09-08

    Ionic liquids exhibit a variety of properties that make them attractive solvents for biomaterials. Given the potential for productive interaction between ionic liquids and biological macromolecules, we investigated the use of ionic liquids as precipitating agents and additives for protein crystallization for six model proteins (lysozyme, catalase, myoglobin, trypsin, glucose isomerase, and xylanase). The ionic liquids produced changes in crystal morphology and mediated significant increases in crystal size in some cases. Crystals grown using ionic liquids as precipitating agents or as additives provided X-ray diffraction resolution similar to or better than that obtained without ionic liquids. Based upon the experiments performed with model proteins, the ionic liquids were used as additives for the crystallization of the poorly diffracting monoclonal antibody 106.3 Fab in complex with the B-type natriuretic peptide (5-13). The ionic liquids improved the crystallization behavior and provided improved diffraction resulting in the determination of the structure. Ionic liquids should be considered as useful additives for the crystallization of other proteins.

  4. Design rules for the self-assembly of a protein crystal

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Haxton, Thomas

    2014-03-01

    Theories and models of protein crystallization based on spheres that form close-packed crystals suggest that protein crystallization can be enhanced by metastable liquid-liquid criticality or demixing, and can be predicted by the osmotic second virial coefficient. However, most protein crystals are open structures, stabilized by anisotropic interactions. I will use analytic theory and computer simulations to argue that the self-assembly of open crystal lattices should not in general be best near the metastable liquid-liquid critical point or binodal (although assembly can certainly happen there), and to argue that the second virial coefficient cannot be a fully predictive measure of assembly propensity (although it is a useful starting point). Instead, the conditions that lead to best self-assembly of one particular computer model of a porous protein crystal are closer to the conditions that lead to best self-assembly of certain model viral capsids than they are to the conditions that optimize assembly of close-packed crystals. Work done at the Molecular Foundry at Lawrence Berkeley National Lab, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  5. Crystallization of Ranasmurfin, a blue-coloured protein from Polypedates leucomystax

    SciTech Connect

    McMahon, Stephen A.; Walsh, Martin A.; Ching, Rosalind Tan Yan; Carter, Lester G.; Dorward, Mark; Johnson, Kenneth A.; Liu, Huanting; Oke, Muse; Bloch, Carlos Jr; Kennedy, Malcolm W.; Latiff, Aishah A.; Cooper, Alan; Taylor, Garry L.; White, Malcolm F.; Naismith, James H.

    2006-11-01

    A novel blue protein from frog nests has been crystallized. Ranasmurfin, a previously uncharacterized ∼13 kDa blue protein found in the nests of the frog Polypedates leucomystax, has been purified and crystallized. The crystals are an intense blue colour and diffract to 1.51 Å with P2{sub 1} symmetry and unit-cell parameters a = 40.9, b = 59.9, c = 45.0 Å, β = 93.3°. Self-rotation function analysis indicates the presence of a dimer in the asymmetric unit. Biochemical data suggest that the blue colour of the protein is related to dimer formation. Sequence data for the protein are incomplete, but thus far have identified no model for molecular replacement. A fluorescence scan shows a peak at 9.676 keV, indicating that the protein binds zinc and suggesting a route for structure solution.

  6. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    PubMed Central

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  7. In situ observation of containerless protein crystallization by magnetically levitating crystal growth

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanimoto, Yoshifumi; Udagawa, Chikako; Morimoto, Shotaro; Hagiwara, Masayuki

    2016-03-01

    We report on the results of the crystal growth of hen-egg lysozyme by magnetically levitating crystals in a small amount of buffer solution. The concentrations of lysozyme and the precipitating agent (gadolinium chloride) were 6.53 wt % and 0.362 mol/kg, respectively. Gadolinium chloride, which induces the magneto-Archimedes effect, was utilized to levitate the crystals with Bz · (dBz/dz) = 22.46 T2/m, where Bz is the vertical (z) component of the magnetic flux density vector. Although the collected crystals were small, we succeeded in maintaining the levitation of the crystals into a specific place in the liquid phase from the beginning of nucleation. In situ observation revealed that a state of pseudo-weightlessness was generated in the vicinity of the magnet bore edge, and small crystals were concentrated inside the domain moving along an hourglass-shaped surface. We found by numerical computations that the formation of the hourglass-shaped domain is attributable to the radial component of the magnetic force.

  8. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  9. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion

    NASA Astrophysics Data System (ADS)

    Hansen, Carl L.; Skordalakes, Emmanuel; Berger, James M.; Quake, Stephen R.

    2002-12-01

    Producing robust and scalable fluid metering in a microfluidic device is a challenging problem. We developed a scheme for metering fluids on the picoliter scale that is scalable to highly integrated parallel architectures and is independent of the properties of the working fluid. We demonstrated the power of this method by fabricating and testing a microfluidic chip for rapid screening of protein crystallization conditions, a major hurdle in structural biology efforts. The chip has 480 active valves and performs 144 parallel reactions, each of which uses only 10 nl of protein sample. The properties of microfluidic mixing allow an efficient kinetic trajectory for crystallization, and the microfluidic device outperforms conventional techniques by detecting more crystallization conditions while using 2 orders of magnitude less protein sample. We demonstrate that diffraction-quality crystals may be grown and harvested from such nanoliter-volume reactions.

  10. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    SciTech Connect

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun; Zhang, Qinagmin; Qi, Jianxun; Gao, George Fu

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.

  11. Modification of an apparatus for tumor-suppressor protein crystal growth in the International Space Station

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    Some human diseases as tumors are being studied continuously for the development of vaccines against them. And a way of doing that is by means of proteins research. There are some kinds of proteins, like the p53 and p73 proteins, which are tumor suppressors. There are other diseases such as A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases which are protein-related. The determination of how proteins geometrically order themselves, during its biological functions is very necessary to understand how a protein's structure affects its function, to design vaccines that intercede in tumor-protein activities and in other proteins related to those other diseases. The protein crystal growth in microgravity environment produces purer crystallization than on the ground, and it is a powerful tool to produce better vaccines. Several data have already been acquired using ground-based research and in spaceflight experiments aboard the Spacelab and Space Shuttle missions, and in the MIR and in the International Space Station (ISS). Here in this paper, I propose to be performed in the ISS Biological Research Facility (which is being developed), multiple crystal growth of proteins related to cancer (as tumors suppressors and oncoproteins), A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases, for the future obtaining of possible vaccines against them. I also propose a simple and practical equipment, a modification of the crystallization plates (which use a vapor diffusion technique) inside each cylinder of the Protein Crystallization Apparatus in Microgravity (PCAM), with multiple chambers with different sizes. Instead of using some chambers with the same size it is better to use several chambers with different sizes. Why is that? The answer is: the energy associated with the surface tension of the liquid in the chamber is directly related to the circle area of it. So, to minimize the total energy of the surface tension of a proteins liquid -making it more stable

  12. (PCG) Protein Crystal Growth Canavalin Crystals grown on Earth and Space

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator was Alexander McPherson.

  13. Atomic force microscopy of three-dimensional membrane protein crystals. Ca-ATPase of sarcoplasmic reticulum.

    PubMed Central

    Lacapère, J J; Stokes, D L; Chatenay, D

    1992-01-01

    We have observed three-dimensional crystals of the calcium pump from sarcoplasmic reticulum by atomic force microscopy (AFM). From AFM images of dried crystals, both on graphite and mica, we measured steps in the crystal thickness, corresponding to the unit cell spacing normal to the substrate. It is known from transmission electron microscopy that crystal periodicity in the plane of the substrate is destroyed by drying, and it was therefore not surprising that we were unable to observe this periodicity by AFM. Thus, we were motivated to use the AFM on hydrated crystals. In this case, crystal adsorption appeared to be a limiting factor, and our studies indicate that adsorption is controlled by the composition of the medium and by the physical-chemical properties of the substrate. We used scanning electron microscopy to determine the conditions yielding the highest adsorption of crystals, and, under these conditions, we have obtained AFM images of hydrated crystals with a resolution similar to that observed with dried samples (i.e., relatively poor). In the same preparations, we have observed lipid bilayers with a significantly better resolution, indicating that the poor quality of crystal images was not due to instrumental limitations. Rather, we attribute poor images to the intrinsic flexibility of these multilamellar crystals, which apparently allow movement of one layer relative to another in response to shear forces from the AFM tip. We therefore suggest some general guidelines for future studies of membrane proteins with AFM. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:1420878

  14. Some Aspects of Crystal Centering During X-ray High-throughput Protein Crystallography Experiment

    NASA Astrophysics Data System (ADS)

    Gaponov, Yu. A.; Matsugaki, N.; Sasajima, K.; Igarashi, N.; Wakatsuki, S.

    A set of algorithms and procedures of a crystal loop centering during X-ray high-throughput protein crystallography experiment has been designed and developed. A simple algorithm of the crystal loop detection and preliminary recognition has been designed and developed. The crystal loop detection algorithm is based on finding out the crystal loop ending point (opposite to the crystal loop pin) using image cross section (digital image column) profile analysis. The crystal loop preliminary recognition procedure is based on finding out the crystal loop sizes and position using image cross section profile analysis. The crystal loop fine recognition procedure based on Hooke-Jeeves pattern search method with an ellipse as a fitting pattern has been designed and developed. The procedure of restoring missing coordinate of the crystal loop is described. Based on developed algorithms and procedures the optimal auto-centering procedure has been designed and developed. A procedure of optimal manual crystal centering (Two Clicks Procedure) has been designed and developed. Developed procedures have been integrated into control software system PCCS installed at crystallography beamlines Photon Factory BL5A and PF-AR NW12, KEK.

  15. Nucleation of protein crystals: critical nuclei, phase behavior, and control pathways

    NASA Astrophysics Data System (ADS)

    Galkin, Oleg; Vekilov, Peter G.

    2001-11-01

    We have studied the nucleation of crystals of the model protein lysozyme using a novel technique that allows direct determinations of homogeneous nucleation rates. At constant temperature of 12.6°C we varied the thermodynamic supersaturation by changing the concentrations of protein and precipitant. We found a broken dependence of the homogeneous nucleation rate on supersaturation that is beyond the predictions of the classical nucleation theory. The nucleation theorem allows us to relate this to discrete changes of the size of the crystal nuclei with increasing supersaturation as (10 or 11)→(4 or 5)→(1 or 2). Furthermore, we observe that the existence of a second liquid phase at high protein concentrations strongly affects crystal nucleation kinetics. We show that the rate of homogeneous nucleation of lysozyme crystals passes through a maximum in the vicinity of the liquid-liquid phase boundary hidden below the liquidus (solubility) line in the phase diagram of the protein solution. We found that glycerol and polyethylene glycol (PEG), which do not specifically bind to proteins, shift this phase boundary and significantly suppress or enhance the crystal nucleation rates, although no simple correlation exists between the action of PEG on the phase diagram and the nucleation kinetics. This provides for a control mechanism which does not require changes in the protein concentration, or the acidity and ionicity of the solution. The effects of the two additives on the phase diagram strongly depend on their concentration and this provides opportunities for further tuning of nucleation rates.

  16. Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers.

    PubMed

    Reddy, Subrayal M; Phan, Quan T; El-Sharif, Hazim; Govada, Lata; Stevenson, Derek; Chayen, Naomi E

    2012-12-10

    We have characterized the imprinting capability of a family of acrylamide polymer-based molecularly imprinted polymers (MIPs) for bovine hemoglobin (BHb) and trypsin (Tryp) using spectrophotometric and quartz crystal microbalance (QCM) sensor techniques. Bulk gel characterization on acrylamide (AA), N-hydroxymethylacrylamide (NHMA), and N-isopropylacrylamide (NiPAM) gave varied selectivities when compared with nonimprinted polymers. We have also harnessed the ability of the MIPs to facilitate protein crystallization as a means of evaluating their selectivity for cognate and noncognate proteins. Crystallization trials indicated improved crystal formation in the order NiPAMprotein loading. Equivalent results for acrylamide MIPs suggested that the cavities were equally selective for both proteins, while N-isopropylacrylamide MIPs were not selective for either cognate BHb or noncognate BSA. All BHb MIP-QCM sensors based on AA, NHMA, or NiPAM were essentially nonresponsive to smaller, noncognate proteins. Protein crystallization studies validated the hydrophilic efficacy of MIPS indicated in the QCM studies.

  17. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants.

  18. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities in Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.

    2003-01-01

    Insight into the crystallization processes of biological macromolecules into crystals or aggregates can provide valuable guidelines in many fundamental and applied fields. Such insight will prompt new means to regulate protein phase transitions in-vivo, e.g., polymerization of hemoglobin S in the red cells, crystallization of crystallins in the eye lens, etc. Understanding of protein crystal nucleation will help achieve narrow crystallite size distributions, needed for sustained release of pharmaceutical protein preparations such as insulin or interferon. Traditionally, protein crystallization studies have been related to the pursuit of crystal perfection needed to improve the structure details provided by x-ray, electron or neutron diffraction methods. Crystallization trials for the purposes of structural biology carried out in space have posed an intriguing question related to the inconsistency of the effects of the microgravity growth on the quality of the crystals.

  19. Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating.

    PubMed

    Kriminski, S; Kazmierczak, M; Thorne, R E

    2003-04-01

    Three problems involving heat transfer from a protein crystal to a cooling agent are analyzed: flash-cooling in a cold nitrogen- or helium-gas stream, plunge-cooling into liquid nitrogen, propane or ethane and crystal heating in a cold gas stream owing to X-ray absorption. Heat transfer occurs by conduction inside the crystal and by convection from the crystal's outer surface to the cooling fluid. For flash-cooling in cold gas streams, heat transfer is limited by the rate of external convection; internal temperature gradients and crystal strains during cooling are very small. Helium gas provides only a threefold improvement in cooling rates relative to nitrogen because its much larger thermal conductivity is offset by its larger kinematic viscosity. Characteristic cooling times vary with crystal size L as L(3/2) and theoretical estimates of these times are consistent with experiments. Plunge-cooling into liquid cryogens, which can give much smaller convective thermal resistances provided that surface boiling is eliminated, can increase cooling rates by more than an order of magnitude. However, the internal conduction resistance is no longer negligible, producing much larger internal temperature gradients and strains that may damage larger crystals. Based on this analysis, factors affecting the success of flash-cooling experiments can be ordered from most to least important as follows: (1) crystal solvent content and solvent composition, (2) crystal size and shape, (3) amount of residual liquid around the crystal, (4) cooling method (liquid plunge versus gas stream), (5) choice of gas/liquid and (6) relative speed between cooling fluid and crystal. Crystal heating by X-ray absorption on present high-flux beamlines should be small. For a fixed flux and illuminated area, heating can be reduced by using crystals with areas normal to the beam that are much larger than the beam area.

  20. Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Moore, K. M.; Vanderwoerd, M.; Bray, T. L.; Smith, C.; Carson, M.; Narayana, S. V. L.; Rosenblum, W. M.; Carter, D.; Clark, A. D, Jr.

    1994-01-01

    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission.

  1. Determining the Molecular Packing Arrangements on Protein Crystal Faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Perozzo, Mary A.; Konnert, John H.; Nadarajan, Arunan; Pusey, Marc L.

    1998-01-01

    Periodic Bond Chain (PBC) analysis of the packing of tetragonal lysozyme crystals have revealed that there are two possible molecular packing arrangements for the crystal faces. The analysis also predicted that only one of these, involving the formation of helices about the 4(sub 3) axes, would prevail during crystal growth. In this study high resolution atomic force microscopy (AFM) was employed to verify these predictions for the (110) crystal face. A computer program was developed which constructs the expected AFM image for a given tip shape for each possible molecular packing arrangement. By comparing the actual AFM image with the predicted images the correct packing arrangement was determined. The prediction of an arrangement involving 4(sub 3) helices was confirmed in this manner,"while the alternate arrangement was not observed. The investigation also showed the protein molecules were packed slightly closer about the 4(sub 3) axes than in the crystallographic arrangement of the crystal interior. This study demonstrates a new approach for determining the molecular packing arrangements on protein crystal faces. It also shows the power of combining a theoretical PBC analysis with experimental high resolution AFM techniques in probing protein crystal growth processes at the molecular level.

  2. In vacuo X-ray data collection from graphene-wrapped protein crystals

    SciTech Connect

    Warren, Anna J.; Crawshaw, Adam D.; Trincao, Jose; Aller, Pierre; Alcock, Simon; Nistea, Ioana; Salgado, Paula S.; Evans, Gwyndaf

    2015-09-26

    A method is reported for collecting room-temperature data from protein crystals under vacuum by protecting them with a thin graphene layer. The measurement of diffraction data from macromolecular crystal samples held in vacuo holds the promise of a very low X-ray background and zero absorption of incident and scattered beams, leading to better data and the potential for accessing very long X-ray wavelengths (>3 Å) for native sulfur phasing. Maintaining the hydration of protein crystals under vacuum is achieved by the use of liquid jets, as with serial data collection at free-electron lasers, or is side-stepped by cryocooling the samples, as implemented at new synchrotron beamlines. Graphene has been shown to protect crystals from dehydration by creating an extremely thin layer that is impermeable to any exchanges with the environment. Furthermore, owing to its hydrophobicity, most of the aqueous solution surrounding the crystal is excluded during sample preparation, thus eliminating most of the background caused by liquid. Here, it is shown that high-quality data can be recorded at room temperature from graphene-wrapped protein crystals in a rough vacuum. Furthermore, it was observed that graphene protects crystals exposed to different relative humidities and a chemically harsh environment.

  3. Protein Crystals Grow Purer in Space: Physics of Phenomena

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.

    2000-01-01

    This presentation will summarize the quantitative experimental and theoretical results obtained by B.R. Thomas, P.G. Vekilov, D.C. Carter, A.M. Holmes, W.K. Widierow and the Author, the team with expertise in physics, biochemistry, crystallography and engineering. Impurities inhomogeneously trapped by a growing crystal - e.g., producing sectorial structure and/or striations - may induce macroscopic internal stress in it if an impurity molecule has slightly (less than 10%) different shape or volume than the regular one(s) they replace. We tested for the first time plasticity and measured Young modulus E of the triclinic, not cross-linked lysozyme by triple point bending technique. Triclinic lysozyme crystals are purely elastic with E similar or equal to 1/5 (raised dot) 10 (exp 9) partial derivative yn/sq cm. The strength limit, sigma (sub c) similar or equal to 10 (exp -3)E similar or equal to Epsilon (sub c), where sigma (sub c) and epsilon (sub c) are critical stress and strain, respectively. Scaling E and sigma (sub c) with the lattice spacing suggests similar binding stiffness in inorganic and biomolecular crystals. The inhomogeneous internal stress may be resolved in these brittle crystals either by cracking or by creation of misoriented mosaic blocks during, not after growth. If each impurity molecule induces in the lattice elementary strain epsilon (sub 0) similar or equal to 3 (raised dot) 10 (exp -2) (this is maximal elementary strain that can arise at the supersaturation DELTA mu/kT similar or equal to 2 and macroscopic molecular concentration difference between subsequent macrolayers or growth sectors is partial derivativeC similar or equal to 5 (raised dot) 10 (exp -3), the internal strain epsilon similar or equal to epsilon (sub 0) partial derivative C similar or equal to 10 (exp -4). Mosaic misorientation resolving such strain is approximately 30 arcsec. Tenfold increase of impurity concentration may cause cracking. Estimates of stress in an isometric

  4. A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.

    PubMed

    Cao, Hui-Ling; Sun, Li-Hua; Li, Jian; Tang, Lin; Lu, Hui-Meng; Guo, Yun-Zhu; He, Jin; Liu, Yong-Ming; Xie, Xu-Zhuo; Shen, He-Fang; Zhang, Chen-Yan; Guo, Wei-Hong; Huang, Lin-Jun; Shang, Peng; He, Jian-Hua; Yin, Da-Chuan

    2013-10-01

    High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and the Rmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals.

  5. Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals.

    PubMed

    Salom, David; Le Trong, Isolde; Pohl, Ehmke; Ballesteros, Juan A; Stenkamp, Ronald E; Palczewski, Krzysztof; Lodowski, David T

    2006-12-01

    G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.

  6. Solutal Convection Around Growing Protein Crystal and Diffusional Purification in Space

    NASA Technical Reports Server (NTRS)

    Lee, Chun P.; Chernov, Alexander A.

    2004-01-01

    At least some protein crystals were found to preferentially trap microheterogeneous impurities. The latter are, for example, dimmer molecules of the crystallizing proteines (e.g. ferritin, lysozyme), or the regular molecules on which surfaces small molecules or ions are adsorbed (e.g. acetilated lysozyme) and modi@ molecular charge. Impurities may induce lattice defects and deteriorate structural resolution. Distribution of impurities between mother solution and gorwing crystal is defined by two interrelated distribution coefficients: kappa = rho(sup c, sub 2) and K = (rho(sup c, sub 2)/rho(sup c, sub 1)/rho(sub 2)/rho(sub 1). Here, rho(sub 2), rho(sub 1) and rho(sup c, sub 2) are densities of impurity (2) and regular protein (1) in solution at the growing interface and within the crystal ("c"). For the microheterogeneous impurities studied, K approx. = 2 - 4, so that kappa approx. - 10(exp 2) - 10(exp 3), since K = kappa (rho(sub 1)/rho(sup c, sub 1) and protein solubility ratio rho(sub 1)/rho(sub=p c, sub 2) much less than 1. Therefore, a crystal growing in absence of convection purifies mother solution around itself, grows cleaner and, probably, more perfect. If convection is present, the solution flow permanently brings new impurities to the crystal. This work theoretically addressed two subjects: 1) onset of convection, 2) distribution of impurities.

  7. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    SciTech Connect

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-09-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.

  8. De novo protein crystal structure determination from X-ray free-electron laser data.

    PubMed

    Barends, Thomas R M; Foucar, Lutz; Botha, Sabine; Doak, R Bruce; Shoeman, Robert L; Nass, Karol; Koglin, Jason E; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Schlichting, Ilme

    2014-01-09

    The determination of protein crystal structures is hampered by the need for macroscopic crystals. X-ray free-electron lasers (FELs) provide extremely intense pulses of femtosecond duration, which allow data collection from nanometre- to micrometre-sized crystals in a 'diffraction-before-destruction' approach. So far, all protein structure determinations carried out using FELs have been based on previous knowledge of related, known structures. Here we show that X-ray FEL data can be used for de novo protein structure determination, that is, without previous knowledge about the structure. Using the emerging technique of serial femtosecond crystallography, we performed single-wavelength anomalous scattering measurements on microcrystals of the well-established model system lysozyme, in complex with a lanthanide compound. Using Monte-Carlo integration, we obtained high-quality diffraction intensities from which experimental phases could be determined, resulting in an experimental electron density map good enough for automated building of the protein structure. This demonstrates the feasibility of determining novel protein structures using FELs. We anticipate that serial femtosecond crystallography will become an important tool for the structure determination of proteins that are difficult to crystallize, such as membrane proteins.

  9. Vibrational and structural investigation of SOUL protein single crystals by using micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossi, Barbara; Giarola, Marco; Mariotto, Gino; Ambrosi, Emmanuele; Monaco, Hugo L.

    2010-05-01

    Protein SOUL is a new member of the recently discovered putative heme-binding protein family called SOUL/HEBP and, to date, no structural information exists for this protein. Here, micro-Raman spectroscopy is used to study the vibrational properties of single crystals obtained from recombinant protein SOUL by means of two different optimization routes. This spectroscopic approach offers the valuable advantage of the in-situ collection of experimental data from protein crystals, placed onto a hanging-drop plate, under the same conditions used to grow the crystals. By focusing on the regions of amides I and III bands, some secondary structure characteristic features have been recognized. Moreover, some side-chain marker bands were observed in the Raman spectra of SOUL crystals and the unambiguous assignment of these peaks inferred by comparing the experimental Raman spectra of pure amino acids and their Raman intensities computed using quantum chemical calculations. Our comparative analysis allows to get a deeper understanding of the side-chain environments and of the interactions involving these specific amino acids in the two different SOUL crystals.

  10. Density of States Simulations of Proteins, Liquid Crystals, and DNA

    NASA Astrophysics Data System (ADS)

    Knotts, Thomas A.; Rathore, Nitin; Kim, Evelina B.; de Pablo, Juan J.

    2003-11-01

    Three variations of the Wang-Landau density of states (WLDOS) scheme are presented: 1) combining WLDOS with parallel tempering, 2) obtaining the density of states from the configurational temperature, and 3) performing DOS simulations in an expanded ensemble. Results for the folding of small peptides (methods 1 and 2), the behavior of liquid crystals around colloidal particles (method 3), and the hybridization of DNA base pairs (method 3) are presented.

  11. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  12. Intrinsic Kinetics Fluctuations as Cause of Growth Inhomogeneity in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Rosenberger, Franz

    1998-01-01

    Intrinsic kinetics instabilities in the form of growth step bunching during the crystallization of the protein lysozyme from solution were characterized by in situ high-resolution optical interferometry. Compositional variations (striations) in the crystal, which potentially decrease its utility, e.g., for molecular structure studies by diffraction methods, were visualized by polarized light reflection microscopy. A spatiotemporal correlation was established between the sequence of moving step bunches and the striations.

  13. Crystallization and preliminary X-ray diffraction analysis of Sfh3, a member of the Sec14 protein superfamily

    SciTech Connect

    Ren, Jihui; Schaaf, Gabriel; Bankaitis, Vytas A.; Ortlund, Eric A.; Pathak, Manish C.

    2012-03-26

    Sec14 is the major phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein in the yeast Saccharomyces cerevisiae and is the founding member of the Sec14 protein superfamily. Recent functional data suggest that Sec14 functions as a nanoreactor for PtdCho-regulated presentation of PtdIns to PtdIns kinase to affect membrane trafficking. Extrapolation of this concept to other members of the Sec14 superfamily suggests a mechanism by which a comprehensive cohort of Sec14-like nanoreactors sense correspondingly diverse pools of lipid metabolites. In turn, metabolic information is translated to signaling circuits driven by phosphoinositide metabolism. Sfh3, one of five Sec14 homologs in yeast, exhibits several interesting functional features, including its unique localization to lipid particles and microsomes. This localization forecasts novel regulatory interfaces between neutral lipid metabolism and phosphoinositide signaling. To launch a detailed structural and functional characterization of Sfh3, the recombinant protein was purified to homogeneity, diffraction-quality crystals were produced and a native X-ray data set was collected to 2.2 {angstrom} resolution. To aid in phasing, SAD X-ray diffraction data were collected to 1.93 {angstrom} resolution from an SeMet-labeled crystal at the Southeast Regional Collaborative Access Team at the Advanced Photon Source. Here, the cloning and purification of Sfh3 and the preliminary diffraction of Sfh3 crystals are reported, enabling structural analyses that are expected to reveal novel principles governing ligand binding and functional specificity for Sec14-superfamily proteins.

  14. Performance Prediction for a Hockey-Puck Silicon Crystal Monochromator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, Zunping; Rosenbaum, Gerd; Navrotski, Gary

    2014-03-01

    One of the Key Performance Parameters of the upgrade of the Advanced Photon Source (APS) is the increase of the storage ring current from 100 to 150 mA. In order to anticipate the impact of this increased heat load on the X-ray optics of the beamlines, the APS has implemented a systematic review, by means of finite element analysis and computational fluid dynamics, of the thermal performance of the different types of monochromators installed at the highest-heat-load insertion device beamlines. We present here simulations of the performance of a directly liquid nitrogen-cooled silicon crystal, the hockey-puck design. Calculations of the temperature and slope error at multiple ring currents under multiple operational conditions, including the influence of power, cooling, and diffraction surface thickness are included.

  15. Protein Crystal Engineering of YpAC-IV Using a Strategy of Excess Charge Reduction

    SciTech Connect

    Gallagher, D.; Smith, N; Kim, S; Robinson, H; Reddy, P

    2009-01-01

    The class IV adenylyl cyclase from Yersinia pestis has been engineered by site-specific mutagenesis to facilitate crystallization at neutral pH. The wild-type enzyme crystallized only below pH 5, consistent with the observation of a carboxyl-carboxylate H bond in a crystal contact in the refined structure 2FJT. On the basis of that unliganded structure at 1.9 A resolution, two different approaches were tested with the goal of producing a higher-pH crystal needed for inhibitor complexation and mechanistic studies. In one approach, Asp 19, which forms the growth-limiting dicarboxyl contact in wild-type triclinic crystals, was modified to Ala and Asn in hopes of relieving the acid-dependence of that crystal form. In the other approach, wild-type residues Met 18, Glu 25, and Asp 55 were (individually) changed to lysine to reduce the protein's excess negative charge in hopes of enabling growth of new, higher-pH forms. These three sites were selected based on their high solvent exposure and lack of intraprotein interactions. The D19A and D19N mutants had reduced solubility and did not crystallize. The other three mutants all crystallized, producing several new forms at neutral pH. One of these forms, with the D55K mutant, enabled a product complex at 0.16 nm resolution, structure 3GHX. This structure shows why the new crystal form required the mutation in order to grow at neutral pH. This approach could be useful in other cases where excess negative charge inhibits the crystallization of low-pI proteins.

  16. High-throughput Protein Purification and Quality Assessment for Crystallization

    PubMed Central

    Kim, Youngchang; Babnigg, Gyorgy; Jedrzejczak, Robert; Eschenfeldt, William H.; Li, Hui; Maltseva, Natalia; Hatzos-Skintges, Catherine; Gu, Minyi; Makowska-Grzyska, Magdalena; Wu, Ruiying; An, Hao; Chhor, Gekleng; Joachimiak, Andrzej

    2012-01-01

    The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; [1] the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are

  17. Influence of protein solution in nucleation and optimized formulation for the growth of ARM lipase crystal

    NASA Astrophysics Data System (ADS)

    Rahman, Raja Noor Zaliha Raja Abd; Masomian, Malihe; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad

    2015-09-01

    ARM lipase is a thermostable and organic solvent tolerant enzyme which was highly purified prior to crystallization. The His-tagged ARM lipase was purified with immobilized metal affinity chromatography followed by anion-exchange chromatography. The effect of different salt concentrations on stability, solubility and crystal nucleation of the protein was studied. The highly purified and homogeneous ARM lipase with protein concentration of 2 mg/mL was successfully crystallized by a sitting drop, vapor diffusion method with the use of 0.1 M MES monohydrate pH 6.5 and 12% (v/v) polyethylene glycol (PEG) 20000 as precipitant. The crystallization conditions were optimized by changing the pH and concentration of the precipitant. The optimum crystallization condition was 2 mg/mL ARM lipase in 0.1 M Tris-HCl, 0.15 M NaCl, pH 8.0 protein solution, crystallized using 0.1 M Tris-HCl, pH 8.0 and 12% (v/v) PEG 20000 as precipitant.

  18. The effect of protein contaminants on the crystallization of turkey egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Abergel, Chantal; Nesa, Marie P.; Fontecilla-Camps, Juan C.

    1991-03-01

    We report here a series of studies on the controlled contamination of crystallizing solutions of the hexagonal form of turkey egg white lysozyme (TEWL) carried out to understand the effects of impurities on the nucleation and growth of protein crystals. The contamination of TEWL solutions with any of three other avian lysozymes affects both the nucleation and the growth processes. For hen and quail egg white lysozymes, low and medium levels of contamination result in partial inhibition of nucleation and shortening of the c-axis. Further increase of the contaminant concentration leads to detectable co-crystallization. A different effect is obtained when using the pheasant egg white lysozyme. Contamination by an unrelated protein, ribonuclease A, has an effect on the nucleation levels that is similar to those observed with the avian lysozymes. However, no effect on TEWL crystal morphology is observed. Thus, in the case of TEWL crystals, one can distinguish between a specific effect on crystal morphology induced by related proteins and a more general inhibitory effect on the nucleation levels observed in all cases studied here.

  19. Crystallization of a protein aboard the US Space Shuttle flight STS-31

    NASA Astrophysics Data System (ADS)

    Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. Wilson; Delucas, Lawrence J.; Bugg, Charles E.

    A monoclonal antibody designated Je142 has been generated against a small bacterial protein, and the interaction of the antibody with this antigen is being studied. The method of x-ray crystallography is being used to study the structures of the Fab fragment (the antigen-binding portion of the antibody) and the Fab fragment - antigen complex. Microgravity conditions have been shown to produce better quality crystals than analogous crystals grown on earth, thereby providing an opportunity to obtain x-ray data of better resolution. The Je142 Fab fragment was selected for microgravity crystallization on the space shuttle mission STS-31. The crystallization procedure was largely based on the hanging drop vapor diffusion method. Protein and precipitant solutions are extruded onto a syringe tip and the combined droplet equilibrates with a concentrated reservoir precipitant that is on an absorbent material which surrounds the droplet. Just before the shuttle leaves orbit, the drop is withdrawn into the syringe to minimize mechanical stress on any protein crystals in the droplet. Je142 Fab fragment crystals typically require 8-9 days to reach optimum size (1 mm in each direction).

  20. Using natural seeding material to generate nucleation in protein crystallization experiments.

    PubMed

    D'Arcy, Allan; Mac Sweeney, Aengus; Haber, Alexander

    2003-07-01

    The nucleation event in protein crystallization is a part of the process that is poorly controlled. It is generally accepted that the protein should be in the metastable phase for crystal growth, but for nucleation higher levels of saturation are needed. Formation of nuclei in bulk solvent requires interaction of protein molecules until a critical size of aggregate is created. In many crystallization experiments sufficiently high levels of saturation are not reached to allow this critical nucleation event to occur. If an environment can be created that favours a higher local concentration of macromolecules, the energy barrier for nucleation may be lowered. When seeds are introduced at lower levels of saturation in a crystallization experiment, nucleation may be facilitated and crystal growth initiated. In this study, the use of natural materials as stable seeds for nucleation has been investigated. The method makes it possible to introduce seeds into crystallization trials at any stage of the experiment using both microbatch and vapour-diffusion methods.

  1. Crystal structure analysis, overexpression and refolding behaviour of a DING protein with single mutation.

    PubMed

    Gai, Zuoqi; Nakamura, Akiyoshi; Tanaka, Yoshikazu; Hirano, Nagisa; Tanaka, Isao; Yao, Min

    2013-11-01

    After crystallization of a certain protein-RNA complex, well diffracting crystals were obtained. However, the asymmetric unit of the crystal was too small to locate any components. Mass spectrometry and X-ray crystal structure analysis showed that it was a member of the DING protein family (HPBP). Surprisingly, the structure of HPBP reported previously was also determined accidentally as a contaminant, suggesting that HPBP has a strong tendency to crystallize. Furthermore, DING proteins were reported to relate in disease. These observations suggest that DING has potential for application in a wide range of research fields. To enable further analyses, a system for preparation of HPBP was constructed. As HPBP was expressed in insoluble form in Escherichia coli, it was unfolded chemically and refolded. Finally, a very high yield preparation method was constructed, in which 43 mg of HPBP was obtained from 1 L of culture. Furthermore, to evaluate the validity of refolding, its crystal structure was determined at 1.03 Å resolution. The determined structure was identical to the native structure, in which two disulfide bonds were recovered correctly and a phosphate ion was captured. Based on these results, it was concluded that the refolded HPBP recovers its structure correctly.

  2. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    SciTech Connect

    Lee, Sangsoo; Son, Yong-Hoon; Hwang, Kihyun; Shin, Yoo Gyun; Yoon, Euijoon

    2014-07-01

    The advanced solid phase crystallization (SPC) method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND) devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM) when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  3. Protein purification in multicompartment electrolyzers for crystal growth of r-DNA products in microgravity

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Casale, Elena; Carter, Daniel; Snyder, Robert S.; Wenisch, Elisabeth; Faupel, Michel

    1990-01-01

    Recombinant-DNA (deoxyribonucleic acid) (r-DNA) proteins, produced in large quantities for human consumption, are now available in sufficient amounts for crystal growth. Crystallographic analysis is the only method now available for defining the atomic arrangements within complex biological molecules and decoding, e.g., the structure of the active site. Growing protein crystals in microgravity has become an important aspect of biology in space, since crystals that are large enough and of sufficient quality to permit complete structure determinations are usually obtained. However even small amounts of impurities in a protein preparation are anathema for the growth of a regular crystal lattice. A multicompartment electrolyzer with isoelectric, immobiline membranes, able to purify large quantities of r-DNA proteins is described. The electrolyzer consists of a stack of flow cells, delimited by membranes of very precise isoelectric point (pI, consisting of polyacrylamide supported by glass fiber filters containing Immobiline buffers and titrants to uniquely define a pI value) and very high buffering power, able to titrate all proteins tangent or crossing such membranes. By properly selecting the pI values of two membranes delimiting a flow chamber, a single protein can be kept isoelectric in a single flow chamber and thus, be purified to homogeneity (by the most stringent criterion, charge homogeneity).

  4. In-situ Optical Waveguides for Monitoring and Modifying Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula; Osterberg, Ulf

    2004-01-01

    The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.

  5. Crystallization and preliminary X-ray diffraction analysis of human phosphate-binding protein

    SciTech Connect

    Contreras-Martel, Carlos; Carpentier, Philippe; Morales, Renaud; Renault, Frédérique; Chesne-Seck, Marie-Laure; Rochu, Daniel; Masson, Patrick; Fontecilla-Camps, Juan Carlos; Chabrière, Eric

    2006-01-01

    The purification, detergent-exchange protocol and crystallization conditions that led to the discovery of HPBP are reported. HPBP is a new human apoprotein that is absent from the genomic database and is the first phosphate transporter characterized in human plasma. Human phosphate-binding protein (HPBP) was serendipitously discovered by crystallization and X-ray crystallography. HPBP belongs to a eukaryotic protein family named DING that is systematically absent from the genomic database. This apoprotein of 38 kDa copurifies with the HDL-associated apoprotein paraoxonase (PON1) and binds inorganic phosphate. HPBP is the first identified transporter capable of binding phosphate ions in human plasma. Thus, it may be regarded as a predictor of phosphate-related diseases such as atherosclerosis. In addition, HPBP may be a potential therapeutic protein for the treatment of such diseases. Here, the purification, detergent-exchange protocol and crystallization conditions that led to the discovery of HPBP are reported.

  6. Crystallization of a pentapeptide-repeat protein by reductive cyclic pentylation of free amines with glutaraldehyde.

    PubMed

    Vetting, Matthew W; Hegde, Subray S; Blanchard, John S

    2009-05-01

    The pentapeptide-repeat protein EfsQnr from Enterococcus faecalis protects DNA gyrase from inhibition by fluoroquinolones. EfsQnr was cloned and purified to homogeneity, but failed to produce diffraction-quality crystals in initial crystallization screens. Treatment of EfsQnr with glutaraldehyde and the strong reducing agent borane-dimethylamine resulted in a derivatized protein which produced crystals that diffracted to 1.6 A resolution;