Science.gov

Sample records for advanced proteomic technologies

  1. Recent Advance in Applications of Proteomics Technologies on Traditional Chinese Medicine Research

    PubMed Central

    Ji, Qing; Zhu, Fangshi; Liu, Xuan; Li, Qi; Su, Shi-bing

    2015-01-01

    Proteomics technology, a major component of system biology, has gained comprehensive attention in the area of medical diagnosis, drug development, and mechanism research. On the holistic and systemic theory, proteomics has a convergence with traditional Chinese medicine (TCM). In this review, we discussed the applications of proteomic technologies in diseases-TCM syndrome combination researches. We also introduced the proteomic studies on the in vivo and in vitro effects and underlying mechanisms of TCM treatments using Chinese herbal medicine (CHM), Chinese herbal formula (CHF), and acupuncture. Furthermore, the combined studies of proteomics with other “-omics” technologies in TCM were also discussed. In summary, this report presents an overview of the recent advances in the application of proteomic technologies in TCM studies and sheds a light on the future global and further research on TCM. PMID:26557869

  2. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  3. Advances in Proteomic Technologies and Its Contribution to the Field of Cancer

    PubMed Central

    Mesri, Mehdi

    2014-01-01

    Systematic studies of the cancer genome have generated a wealth of knowledge in recent years. These studies have uncovered a number of new cancer genes not previously known to be causal targets in cancer. Genetic markers can be used to determine predisposition to tumor development, but molecularly targeted treatment strategies are not widely available for most cancers. Precision care plans still must be developed by understanding and implementing basic science research into clinical treatment. Proteomics is continuing to make major strides in the discovery of fundamental biological processes as well as more recent transition into an assay platform capable of measuring hundreds of proteins in any biological system. As such, proteomics can translate basic science discoveries into the clinical practice of precision medicine. The proteomic field has progressed at a fast rate over the past five years in technology, breadth and depth of applications in all areas of the bioscience. Some of the previously experimental technical approaches are considered the gold standard today, and the community is now trying to come to terms with the volume and complexity of the data generated. Here I describe contribution of proteomics in general and biological mass spectrometry in particular to cancer research, as well as related major technical and conceptual developments in the field. PMID:26556407

  4. Proteomics technology in systems biology.

    PubMed

    Smith, Jeffrey C; Figeys, Daniel

    2006-08-01

    It has now become apparent that a full understanding of a biological process (e.g. a disease state) is only possible if all biomolecular interactions are taken into account. Systems biology works towards understanding the intricacies of cellular life through the collaborative efforts of biologists, chemists, mathematicians and computer scientists and recently, a number of laboratories around the world have embarked upon such research agendas. The fields of genomics and proteomics are foundational in systems biology studies and a great deal of research is currently being conducted in each worldwide. Moreover, many technological advances (particularly in mass spectrometry) have led to a dramatic rise in the number of proteomic studies over the past two decades. This short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies. PMID:16880956

  5. Advances take stage - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Regulatory advances in proteomics will be taking center stage at a Symposia scheduled to occur at the 2011 American Association for Clinical Chemistry (AACC) Annual Meeting. The symposium entitled "Enabling Translational Proteomics with NCI's Clinical Proteomic Technologies for Cancer" is scheduled for July 25, 2011 at AACC's annual Meeting.

  6. New challenges for proteomics technologies: a mini perspective review

    SciTech Connect

    Shen, Yufeng; Pasa-Tolic, Ljiljana; Robinson, Errol W.; Adkins, Joshua N.; Smith, Richard D.

    2014-10-10

    Proteomics technologies have experienced rapid advances over the last decade to identify or quantify thousands of proteins per sample, typically in a few hours, enabling proteomics applications in environmental, biological, medical, and clinical research. A number of publications have reviewed advances in proteomic technologies and applications. This short review focuses first on a discussion of sensitivity in bottom-up (i.e. digested protein) proteomics and approaches for characterization of small cell populations, and secondly on protein separations for top-down (i.e. intact protein) proteomics including discussions of key technical challenges where recent advances are elucidating specific functions of proteins in biological processes.

  7. Are Proteomic Technologies Ready for IVDs?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last decade major progress has been achieved in proteomic technologies. This came about because of the advances made in atmospheric ionization developments prior to mass spectrometry which allowed soft ionization and measurements of singly ionized relatively large molecules to be measured b...

  8. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  9. HepatoProteomics: Applying Proteomic Technologies to the Study of Liver Function and Disease

    SciTech Connect

    Diamond, Deborah L.; Proll, Sean; Jacobs, Jon M.; Chan, Eric Y.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-08-01

    The wealth of human genome sequence information now available, coupled with technological advances in robotics, nanotechnology, mass spectrometry, and information systems, has given rise to a method of scientific inquiry known as functional genomics. By using these technologies to survey gene expression and protein production on a near global scale, the goal of functional genomics is to assign biological function to genes with currently unknown roles in physiology. This approach carries particular appeal in disease research, where it can uncover the function of previously unknown genes and molecular pathways that are directly involved in disease progression. With this knowledge may come improved diagnostic techniques, prognostic capabilities, and novel therapeutic approaches. In this regard, the continuing evolution of proteomic technologies has resulted in an increasingly greater impact of proteome studies in many areas of research and hepatology is no exception. Our laboratory has been extremely active in this area, applying both genomic and proteomic technologies to the analysis of virus-host interactions in several systems, including the study of hepatitis C virus (HCV) infection and HCV-associated liver disease. Since proteomic technologies are foreign to many hepatologists (and to almost everyone else), this article will provide an overview of proteomic methods and technologies and describe how they're being used to study liver function and disease. We use our studies of HCV infection and HCV-associated liver disease to present an operational framework for performing high throughput proteome analysis and extracting biologically meaningful information.

  10. Advances in targeted proteomics and applications to biomedical research.

    PubMed

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D; Liu, Tao; Qian, Wei-Jun; Smith, Richard D

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  11. Applications of Proteomic Technologies to Toxicology

    EPA Science Inventory

    Proteomics is the large-scale study of gene expression at the protein level. This cutting edge technology has been extensively applied to toxicology research recently. The up-to-date development of proteomics has presented the toxicology community with an unprecedented opportunit...

  12. The Clinical Proteomic Technologies for Cancer | About

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  13. The Clinical Proteomic Technologies for Cancer | Partners

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  14. Advances and Challenges in Liquid Chromatography-Mass Spectrometry-Based Proteomics Profiling for Clinical Applications

    SciTech Connect

    Qian, Weijun; Jacobs, Jon M.; Liu, Tao; Camp, David G.; Smith, Richard D.

    2006-08-01

    The advances in proteomic technologies provide tremendous opportunities for applying these technologies in biomarker-related clinical applications; however, the unique characteristics of human biofluids such as high dynamic range in protein abundances and extreme complexity of human proteomes present tremendous challenges for current analytical technologies. In this review, we focus on summarizing the recent advances in LC-MS based proteomic profiling and its applications in clinical proteomics as well as the major challenges for implementing these technologies for more effective biomarker discovery. Over the last few years, tremendous efforts have been directed towards the development of more effective approaches for characterizing the human plasma/serum and other biofluid proteomes. The developments in immunodepletion and various fractionation approaches in combination with much improved LC-MS platforms have enabled the profiling of the plasma proteome with much greater dynamic range of coverage, allowing many proteins at low ng/mL levels being confidently identified. Despite the significant advances and efforts, the dynamic range of measurements or extent of proteome coverage, the confidence of peptide/protein identification, the accuracy of quantitation, the throughput of analysis, and the robustness of the present instrumentation are still among the major challenges for implementation of a proteomic profiling platform suitable for efficient clinical applications.

  15. Ultrasensitive proteome analysis using paramagnetic bead technology

    PubMed Central

    Hughes, Christopher S; Foehr, Sophia; Garfield, David A; Furlong, Eileen E; Steinmetz, Lars M; Krijgsveld, Jeroen

    2014-01-01

    In order to obtain a systems-level understanding of a complex biological system, detailed proteome information is essential. Despite great progress in proteomics technologies, thorough interrogation of the proteome from quantity-limited biological samples is hampered by inefficiencies during processing. To address these challenges, here we introduce a novel protocol using paramagnetic beads, termed Single-Pot Solid-Phase-enhanced Sample Preparation (SP3). SP3 provides a rapid and unbiased means of proteomic sample preparation in a single tube that facilitates ultrasensitive analysis by outperforming existing protocols in terms of efficiency, scalability, speed, throughput, and flexibility. To illustrate these benefits, characterization of 1,000 HeLa cells and single Drosophila embryos is used to establish that SP3 provides an enhanced platform for profiling proteomes derived from sub-microgram amounts of material. These data present a first view of developmental stage-specific proteome dynamics in Drosophila at a single-embryo resolution, permitting characterization of inter-individual expression variation. Together, the findings of this work position SP3 as a superior protocol that facilitates exciting new directions in multiple areas of proteomics ranging from developmental biology to clinical applications. PMID:25358341

  16. Emerging Protein Array Technologies for Proteomics

    PubMed Central

    Lee, Jung-Rok; Magee, Dewey Mitchell; Gaster, Richard Samuel; LaBaer, Joshua; Wang, Shan X.

    2014-01-01

    Numerous efforts have been made to understand fundamental biology of diseases based on gene expressions. However, the relationship between gene expressions and onset of diseases often remains obscure. The great advances in protein microarrays allow us to investigate this unclear question through protein profiles, which are regarded as more reliable than gene expressions to serve as the harbinger of disease onset or as the biomarker of disease treatment monitoring. We review two relatively new platforms of protein arrays, along with an introduction to the common basis of protein array technologies. Immobilization of proteins on the surface of arrays and neutralizing reactive areas after the immobilization are key practical issues in the field of protein array. One of the emerging protein array technologies is the magneto-nanosensor array where giant magnetoresistive (GMR) sensors are used to quantitatively measure analyte of interest which are labeled with magnetic nanoparticles (MNP). Similar to GMR, several different ways of utilizing magnetic properties for biomolecular detection have been developed and are reviewed here. Another emerging protein array technology is Nucleic Acid Programmable Protein Arrays (NAPPA), which have thousands of protein features directly expressed by nucleic acids on array surface. We anticipate these two emerging protein array platforms can be combined to produce synergistic benefits and open new applications in proteomics and clinical diagnostics. PMID:23414360

  17. Proteomic Technologies for the Study of Osteosarcoma

    PubMed Central

    Byrum, Stephanie D.; Washam, Charity L.; Montgomery, Corey O.; Tackett, Alan J.; Suva, Larry J.

    2012-01-01

    Osteosarcoma is the most common primary bone cancer of children and is established during stages of rapid bone growth. The disease is a consequence of immature osteoblast differentiation, which gives way to a rapidly synthesized incompletely mineralized and disorganized bone matrix. The mechanism of osteosarcoma tumorogenesis is poorly understood, and few proteomic studies have been used to interrogate the disease thus far. Accordingly, these studies have identified proteins that have been known to be associated with other malignancies, rather than being osteosarcoma specific. In this paper, we focus on the growing list of available state-of-the-art proteomic technologies and their specific application to the discovery of novel osteosarcoma diagnostic and therapeutic targets. The current signaling markers/pathways associated with primary and metastatic osteosarcoma that have been identified by early-stage proteomic technologies thus far are also described. PMID:22550414

  18. Advances of Proteomic Sciences in Dentistry

    PubMed Central

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-01-01

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379

  19. Advances of Proteomic Sciences in Dentistry.

    PubMed

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-01-01

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379

  20. Advances in nanocrystallography as a proteomic tool.

    PubMed

    Pechkova, Eugenia; Bragazzi, Nicola Luigi; Nicolini, Claudio

    2014-01-01

    In order to overcome the difficulties and hurdles too much often encountered in crystallizing a protein with the conventional techniques, our group has introduced the innovative Langmuir-Blodgett (LB)-based crystallization, as a major advance in the field of both structural and functional proteomics, thus pioneering the emerging field of the so-called nanocrystallography or nanobiocrystallography. This approach uniquely combines protein crystallography and nanotechnologies within an integrated, coherent framework that allows one to obtain highly stable protein crystals and to fully characterize them at a nano- and subnanoscale. A variety of experimental techniques and theoretical/semi-theoretical approaches, ranging from atomic force microscopy, circular dichroism, Raman spectroscopy and other spectroscopic methods, microbeam grazing-incidence small-angle X-ray scattering to in silico simulations, bioinformatics, and molecular dynamics, has been exploited in order to study the LB-films and to investigate the kinetics and the main features of LB-grown crystals. When compared to classical hanging-drop crystallization, LB technique appears strikingly superior and yields results comparable with crystallization in microgravity environments. Therefore, the achievement of LB-based crystallography can have a tremendous impact in the field of industrial and clinical/therapeutic applications, opening new perspectives for personalized medicine. These implications are envisaged and discussed in the present contribution. PMID:24985772

  1. Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics

    SciTech Connect

    Shen, Yufeng; Smith, Richard D.

    2005-06-01

    We review recent development in separations and mass spectrometric instrumentation for sensitive and high-throughput proteomic analyses. These efforts have been primarily focused on the development of high-efficiency (separation peak capacity of ~103) nanoscale liquid chromatography (nanoLC; e.g., flow rates extending down to ~20 nL/min at optimal separation linear velocities through narrow packed capillaries) in combination with advanced mass spectrometry (MS), including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS. This technology enables MS analysis of low nanogram-level proteomic samples (i.e., nanoscale proteomics) with individual protein identification sensitivity at the low zeptomole-level. The resultant protein measurement dynamic range can reach 106 for nanogram-sized proteomic samples, while more abundant proteins can be detected from complex sub-picogram size proteome samples. The average proteome identification throughput using MS/MS is >200 proteins/h for a ~3 h analysis. These qualities provide the foundation for proteomics studies of single or small populations of cells. The instrumental robustness required for automation and providing high quality routine performance nanoscale proteomic analyses is also discussed.

  2. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery

    PubMed Central

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N.; Carter, Jeff; Dalby, Andrew B.; Eaton, Bruce E.; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R.; Kim, Nancy; Koch, Tad H.; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K.; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M.; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I.; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D.; Vrkljan, Mike; Walker, Jeffrey J.; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K.; Wolfson, Alexey; Wolk, Steven K.; Zhang, Chi; Zichi, Dom

    2010-01-01

    Background The interrogation of proteomes (“proteomics”) in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. Methodology/Principal Findings We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (∼100 fM–1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. Conclusions/Significance We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of

  3. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  4. NIST ADVANCED TECHNOLOGY PROGRAM

    EPA Science Inventory

    Not-yet-possible technologies are the domain of the National Institute of Standards and Technology (NIST) Advanced Technology Program. The ATP is a unique partnership between government and private industry to accelerate the development of high-risk technologies that promise sign...

  5. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  6. Ovarian cancer proteomics: Many technologies one goal.

    PubMed

    Narasimhan, Kothandaraman; Changqing, Zhao; Choolani, Mahesh

    2008-02-01

    The last decade has seen major changes in the technologies used to identify markers for diagnosing cancer. This review focuses on recent developments on the evolving field of biomarker discovery, and validation techniques using proteomics platforms for ovarian cancer. It is possible now to diagnose various disease conditions using microliter quantities of body fluids. Currently the major developments were made in three distinct areas: (i) protein profiling, (ii) high-throughput validation techniques, and (iii) solid and liquid phase protein microarray platforms for analyzing candidate markers across subclasses and stages of cancers. The recent addition to the long list of technologies is metabolomics using metabolite profiling and informatics-based filtering of information for biomarker discovery of ovarian cancer. Emerging technologies need to address ways to eliminate the limitations posed by the complex dynamic nature of body fluids as well as ways to enrich low-abundance tumor markers if they were to become a successful biomarker discovery tool. These new technologies hold significant promise in identifying more robust markers for ovarian cancer. Since the prevalence of this disease in the population is low, the test must have a high specificity. PMID:21136825

  7. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  8. Proteomics of gliomas: Initial biomarker discovery and evolution of technology

    PubMed Central

    Kalinina, Juliya; Peng, Junmin; Ritchie, James C.; Van Meir, Erwin G.

    2011-01-01

    Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers. PMID:21852429

  9. Technological advances transforming rheumatology

    PubMed Central

    Robinson, William H.; Mao, Rong

    2016-01-01

    Technological advances over the past decade have revolutionized many areas of rheumatology, ranging from diagnosis, prognosis and therapeutic development to the mechanistic understanding of rheumatic diseases. This overview highlights key technological innovations and discusses the major impact that these developments are having on research and clinical practice. PMID:26439404

  10. The Clinical Proteomic Technologies for Cancer | Characterization Process

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  11. The Clinical Proteomic Technologies for Cancer | Reagent Opportunities

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  12. The Clinical Proteomic Technologies for Cancer | Antibody Portal

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  13. The Clinical Proteomic Technologies for Cancer | Antibody Scientific Committee

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  14. Technological advances in teleradiology.

    PubMed

    Orphanoudakis, S C; Kaldoudi, E; Tsiknakis, M

    1996-06-01

    Teleradiology consists of a set of added-value telematic services, implemented over an advanced telecommunications infrastructure and supported by different information technologies and related applications. The main goal of teleradiology is to provide different levels of support for remote diagnostic imaging procedures. This paper considers technological advances in this important area, including a discussion of the various added-value telematic services, applications supporting these services, and the required information technology and telecommunications infrastructure. Teleradiology is also considered in the general context of an integrated regional health telematics network, emphasizing its role and its interaction with other information and networking services. PMID:8832235

  15. Sensing parasites: Proteomic and advanced bio-detection alternatives.

    PubMed

    Sánchez-Ovejero, Carlos; Benito-Lopez, Fernando; Díez, Paula; Casulli, Adriano; Siles-Lucas, Mar; Fuentes, Manuel; Manzano-Román, Raúl

    2016-03-16

    Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for bio-sensing parasites in their hosts, showing the newest opportunities offered by modern "-omics" and platforms for parasite detection and control. PMID:26773860

  16. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  17. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  18. Horizontal drilling technology advances

    SciTech Connect

    Not Available

    1991-03-04

    Horizontal drilling technology is making further advances in the Texas Austin chalk play as such drilling continues to spread in many U.S. land areas. One company has completed a Cretaceous Austin chalk oil well with the longest horizontal well bore in Texas and what at 1 1/6 miles is believed to be the world's longest medium radius horizontal displacement.

  19. Advanced geothermal technologies

    SciTech Connect

    Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

    1988-01-01

    Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

  20. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    PubMed Central

    Kim, Eun Young; Kim, Won Kon; Oh, Kyoung-Jin; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2015-01-01

    Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases. PMID:25734986

  1. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  2. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  3. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  4. Advanced Technology Vehicle Testing

    SciTech Connect

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  5. Advanced gearbox technology

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

    1987-01-01

    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

  6. Proteomics technologies for the global identification and quantification of proteins.

    PubMed

    Brewis, Ian A; Brennan, P

    2010-01-01

    This review provides an introduction for the nonspecialist to proteomics and in particular the major approaches available for global protein identification and quantification. Proteomics technologies offer considerable opportunities for improved biological understanding and biomarker discovery. The central platform for proteomics is tandem mass spectrometry (MS) but a number of other technologies, resources, and expertise are absolutely required to perform meaningful experiments. These include protein separation science (and protein biochemistry in general), genomics, and bioinformatics. There are a range of workflows available for protein (or peptide) separation prior to tandem MS and subsequent bioinformatics analysis to achieve protein identifications. The predominant approaches are 2D electrophoresis (2DE) and subsequent MS, liquid chromatography-MS (LC-MS), and GeLC-MS. Beyond protein identification, there are a number of well-established options available for protein quantification. Difference gel electrophoresis (DIGE) following 2DE is one option but MS-based methods (most commonly iTRAQ-Isobaric Tags for Relative and Absolute Quantification or SILAC-Stable Isotope Labeling by Amino Acids) are now the preferred options. Sample preparation is critical to performing good experiments and subcellular fractionation can additionally provide protein localization information compared with whole cell lysates. Differential detergent solubilization is another valid option. With biological fluids, it is possible to remove the most abundant proteins by immunodepletion. Sample enrichment is also used extensively in certain analyses and most commonly in phosphoproteomics with the initial purification of phosphopeptides. Proteomics produces considerable datasets and resources to facilitate the necessary extended analysis of this data are improving all the time. Beyond the opportunities afforded by proteomics there are definite challenges to achieving full proteomic coverage

  7. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  8. State Technologies Advancement Collaborative

    SciTech Connect

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  9. Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts

    PubMed Central

    2015-01-01

    The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC–MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/~wang2x7/Research.htm). From these assessments, we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation. PMID:26653538

  10. USMC UGS technology advancements

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Barr, Michael E.; Hirz, Philip M.; Kipp, Jason; Fishburn, Thomas A.; Waller, Ezra S.; Marks, Brian A.

    2008-04-01

    Technology advancements for the USMC UGS system are described. Integration of the ARL Blue Radio/CSR into the System Controller and Radio Repeater permit the TRSS system to operate seamlessly within the Family of UGS concept. In addition to the Blue Radio/CSR, the TRSS system provides VHF and SATCOM radio links. The TRSS system is compatible with a wide range of imagers, including those with both analog and digital interfaces. The TRSS System Controller permits simultaneous monitoring of 2 camera inputs. To complement enhanced compatibility and improved processing, the mechanical housing of the TRSS System Controller has been updated. The SDR-II, a system monitoring device, also incorporates four Blue Radio/CSRs along with other communication capabilities, making it an ideal choice for a monitoring station within the Family of UGS. Field testing of L-3 Nova's UGS system at YPG has shown flawless performance, capturing all 126 targets.

  11. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  12. Advanced stitching technology

    NASA Technical Reports Server (NTRS)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  13. Proteomic strategies in the search for novel pancreatic cancer biomarkers and drug targets: recent advances and clinical impact.

    PubMed

    Coleman, Orla; Henry, Michael; McVey, Gerard; Clynes, Martin; Moriarty, Michael; Meleady, Paula

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers; despite a low incidence rate it is the fourth leading cause of cancer-related death in the world. Improvement of the diagnosis, prognosis and treatment remains the main focus of pancreatic cancer research. Rapid developments in proteomic technologies has improved our understanding of the pancreatic cancer proteome. Here, the authors summarise the recent proteomic strategies undertaken in the search for: novel biomarkers for early diagnosis, pancreatic cancer-specific proteins which may be used for novel targeted therapies and proteins which may be useful for monitoring disease progression post-therapy. Recent advances and findings discussed here provide great promise of having a significant clinical impact and improving the outcome of patients with this malignancy. PMID:26985644

  14. Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2016-09-01

    Despite advances in proteomic technologies, idiosyncratic data issues, for example, incomplete coverage and inconsistency, resulting in large data holes, persist. Moreover, because of naïve reliance on statistical testing and its accompanying p values, differential protein signatures identified from such proteomics data have little diagnostic power. Thus, deploying conventional analytics on proteomics data is insufficient for identifying novel drug targets or precise yet sensitive biomarkers. Complex-based analysis is a new analytical approach that has potential to resolve these issues but requires formalization. We categorize complex-based analysis into five method classes or paradigms and propose an even-handed yet comprehensive evaluation rubric based on both simulated and real data. The first four paradigms are well represented in the literature. The fifth and newest paradigm, the network-paired (NP) paradigm, represented by a method called Extremely Small SubNET (ESSNET), dominates in precision-recall and reproducibility, maintains strong performance in small sample sizes, and sensitively detects low-abundance complexes. In contrast, the commonly used over-representation analysis (ORA) and direct-group (DG) test paradigms maintain good overall precision but have severe reproducibility issues. The other two paradigms considered here are the hit-rate and rank-based network analysis paradigms; both of these have good precision-recall and reproducibility, but they do not consider low-abundance complexes. Therefore, given its strong performance, NP/ESSNET may prove to be a useful approach for improving the analytical resolution of proteomics data. Additionally, given its stability, it may also be a powerful new approach toward functional enrichment tests, much like its ORA and DG counterparts. PMID:27454466

  15. Are proteomic technologies ready for IVDs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the last decade as a result of the unparalleled advancements in mass spectrometry-based methods in protein analysis, biomarker research has escalated to new heights in the academic, government and industrial research laboratories. Translation of biomarker research to in vitro diagnostics (IVD...

  16. Recent advances in maize nuclear proteomic studies reveal histone modifications.

    PubMed

    Casati, Paula

    2012-01-01

    The nucleus of eukaryotic organisms is highly dynamic and complex, containing different types of macromolecules including DNA, RNA, and a wide range of proteins. Novel proteomic applications have led to a better overall determination of nucleus protein content. Although nuclear plant proteomics is only at the initial phase, several studies have been reported and are summarized in this review using different plants species, such as Arabidopsis thaliana, rice, cowpea, onion, garden cress, and barrel clover. These include the description of the total nuclear or phospho-proteome (i.e., Arabidopsis, cowpea, onion), or the analysis of the differential nuclear proteome under different growth environments (i.e., Arabidopsis, rice, cowpea, onion, garden cress, and barrel clover). However, only few reports exist on the analysis of the maize nuclear proteome or its changes under various conditions. This review will present recent data on the study of the nuclear maize proteome, including the analysis of changes in posttranslational modifications in histone proteins. PMID:23248634

  17. Proteomic analysis of human aqueous humor using multidimensional protein identification technology

    PubMed Central

    Richardson, Matthew R.; Price, Marianne O.; Price, Francis W.; Pardo, Jennifer C.; Grandin, Juan C.; You, Jinsam; Wang, Mu

    2009-01-01

    Aqueous humor (AH) supports avascular tissues in the anterior segment of the eye, maintains intraocular pressure, and potentially influences the pathogenesis of ocular diseases. Nevertheless, the AH proteome is still poorly defined despite several previous efforts, which were hindered by interfering high abundance proteins, inadequate animal models, and limited proteomic technologies. To facilitate future investigations into AH function, the AH proteome was extensively characterized using an advanced proteomic approach. Samples from patients undergoing cataract surgery were pooled and depleted of interfering abundant proteins and thereby divided into two fractions: albumin-bound and albumin-depleted. Multidimensional Protein Identification Technology (MudPIT) was utilized for each fraction; this incorporates strong cation exchange chromatography to reduce sample complexity before reversed-phase liquid chromatography and tandem mass spectrometric analysis. Twelve proteins had multi-peptide, high confidence identifications in the albumin-bound fraction and 50 proteins had multi-peptide, high confidence identifications in the albumin-depleted fraction. Gene ontological analyses were performed to determine which cellular components and functions were enriched. Many proteins were previously identified in the AH and for several their potential role in the AH has been investigated; however, the majority of identified proteins were novel and only speculative roles can be suggested. The AH was abundant in anti-oxidant and immunoregulatory proteins as well as anti-angiogenic proteins, which may be involved in maintaining the avascular tissues. This is the first known report to extensively characterize and describe the human AH proteome and lays the foundation for future work regarding its function in homeostatic and pathologic states. PMID:20019884

  18. Nuclear propulsion technology advanced fuels technology

    NASA Technical Reports Server (NTRS)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  19. Advances in fusion technology

    NASA Astrophysics Data System (ADS)

    Baker, Charles C.

    2000-12-01

    The US fusion technology program is an essential element in the development of the knowledge base for an attractive fusion power source. The technology program incorporates both near and long term R&D, contributes to material and engineering sciences as well as technology development, ranges from hardware production to theory and modeling, contributes significantly to spin-off applications, and performs global systems assessments and focused design studies.

  20. Advanced interdisciplinary technologies

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1990-01-01

    The following topics are presented in view graph form: (1) breakthrough trust (space research and technology assessment); (2) bionics (technology derivatives from biological systems); (3) biodynamics (modeling of human biomechanical performance based on anatomical data); and (4) tethered atmospheric research probes.

  1. Advanced Materials Technology

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)

    1982-01-01

    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  2. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  3. New advances in erectile technology

    PubMed Central

    Stein, Marshall J.; Lin, Haocheng

    2014-01-01

    New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants, there is new scientific information and novel technology available to improve their usage and to stimulate new ideas. We anticipate that erectile technologies may revolutionize ED treatment and in the very near future ED may become a curable condition. PMID:24489605

  4. New advances in erectile technology.

    PubMed

    Stein, Marshall J; Lin, Haocheng; Wang, Run

    2014-02-01

    New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants, there is new scientific information and novel technology available to improve their usage and to stimulate new ideas. We anticipate that erectile technologies may revolutionize ED treatment and in the very near future ED may become a curable condition. PMID:24489605

  5. ABRF-PRG07: Advanced Quantitative Proteomics Study

    PubMed Central

    Falick, Arnold M.; Lane, William S.; Lilley, Kathryn S.; MacCoss, Michael J.; Phinney, Brett S.; Sherman, Nicholas E.; Weintraub, Susan T.; Witkowska, H. Ewa; Yates, Nathan A.

    2011-01-01

    A major challenge for core facilities is determining quantitative protein differences across complex biological samples. Although there are numerous techniques in the literature for relative and absolute protein quantification, the majority is nonroutine and can be challenging to carry out effectively. There are few studies comparing these technologies in terms of their reproducibility, accuracy, and precision, and no studies to date deal with performance across multiple laboratories with varied levels of expertise. Here, we describe an Association of Biomolecular Resource Facilities (ABRF) Proteomics Research Group (PRG) study based on samples composed of a complex protein mixture into which 12 known proteins were added at varying but defined ratios. All of the proteins were present at the same concentration in each of three tubes that were provided. The primary goal of this study was to allow each laboratory to evaluate its capabilities and approaches with regard to: detection and identification of proteins spiked into samples that also contain complex mixtures of background proteins and determination of relative quantities of the spiked proteins. The results returned by 43 participants were compiled by the PRG, which also collected information about the strategies used to assess overall performance and as an aid to development of optimized protocols for the methodologies used. The most accurate results were generally reported by the most experienced laboratories. Among laboratories that used the same technique, values that were closer to the expected ratio were obtained by more experienced groups. PMID:21455478

  6. Advances in photovoltaic technology

    NASA Technical Reports Server (NTRS)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  7. Crewman's associate advanced technology demonstration

    NASA Astrophysics Data System (ADS)

    Halle, Robert F.; Mariani, Daniele

    1994-06-01

    The Crewman's Associate will use Virtual Prototyping to evaluate different design concepts. Virtual Prototyping is a process by which advanced computer simulation is used to enable early evaluation of concepts and technologies without actually building those concepts or technologies. The Virtual Prototyping Process will provide the means by which the User is continuously involved in the crew station's design.

  8. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications.

    PubMed

    Semanjski, Maja; Macek, Boris

    2016-02-01

    Mass spectrometry-based proteomics is increasingly used in analysis of bacterial pathogens. Simple experimental set-ups based on high accuracy mass spectrometry and powerful biochemical and bioinformatics tools are capable of reliably quantifying levels of several thousand bacterial proteins in a single experiment, reaching the analytical capacity to completely map whole proteomes. Here the authors present the state-of-the-art in bacterial pathogen proteomics and discuss challenges that the field is facing, especially in analysis of low abundant, modified proteins from organisms that are difficult to culture. Constant improvements in speed and sensitivity of mass spectrometers, as well as in bioinformatic and biochemical workflows will soon allow for comprehensive analysis of regulatory mechanisms of pathogenicity and enable routine application of proteomics in the clinical setting. PMID:26653908

  9. Advances in the proteomic discovery of novel therapeutic targets in cancer

    PubMed Central

    Guo, Shanchun; Zou, Jin; Wang, Guangdi

    2013-01-01

    Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. PMID:24187485

  10. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    SciTech Connect

    Zimmer, Jennifer S.; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.

    2006-01-20

    Proteomics, and the larger field of systems biology, have recently demonstrated utility in both the understanding of cellular processes on the molecular level and the identification of potential biomarkers of various disease states. The large amount of data generated by utilizing high mass accuracy mass spectrometry for high-throughput proteomics analyses presents a challenge in data processing, analysis and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics analysis and the accompanying data processing tools that have been developed in order to interpret and display the large volumes of data produced.

  11. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  12. HPLC-Chip/MS technology in proteomic profiling.

    PubMed

    Vollmer, Martin; van de Goor, Tom

    2009-01-01

    HPLC-chip/MS is a novel nanoflow analytical technology conducted on a microfabricated chip that allows for highly efficient HPLC separation and superior sensitive MS detection of complex proteomic mixtures. This is possible through on-chip preconcentration and separation with fluidic connection made automatically in a leak-tight fashion. Minimum precolumn and postcolumn peak dispersion and uncompromised ease of use result in compounds eluting in bands of only a few nanoliters. The chip is fabricated out of bio-inert polyimide-containing channels and integrated chip structures, such as an electrospray emitter, columns, and frits manufactured by laser ablation technology. Meanwhile, a variety of HPLC-chips differing in design and stationary phase are commercially available, which provide a comprehensive solution for applications in proteomics, glycomics, biomarker, and pharmaceutical discovery. The HPLC-chip can also be easily integrated into a multidimensional separation workflow where different orthogonal separation techniques are combined to solve a highly complex separation problems. In this chapter, we describe in detail the methodological chip usage and functionality and its application in the elucidation of the protein profile of human nucleoli. PMID:19488689

  13. Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS)*

    PubMed Central

    Lamond, Angus I.; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V.; Serrano, Luis; Hartl, F. Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S.; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-01-01

    The term “proteomics” encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new “third generation” proteomics strategy that offers an indispensible tool for cell biology and molecular medicine. PMID:22311636

  14. Advances in water resources technology

    NASA Astrophysics Data System (ADS)

    The presentation of technological advances in the field of water resources will be the focus of Advances in Water Resources Technology, a conference to be held in Athens, Greece, March 20-23, 1991. Organized by the European Committee for Water Resources Management, in cooperation with the National Technical University of Athens, the conference will feature state-of-the art papers, contributed original research papers, and poster papers. Session subjects will include surface water, groundwater, water resources conservation, water quality and reuse, computer modeling and simulation, real-time control of water resources systems, and institutions and methods for technology.The official language of the conference will be English. Special meetings and discussions will be held for investigating methods of effective technology transfer among European countries. For this purpose, a wide representation of research institutions, universities and companies involved in water resources technology will be attempted.

  15. Advances in energy technology

    SciTech Connect

    Sauer, H.J. Jr.; Hegler, B.E.

    1982-01-01

    Papers on various topics of energy conservation, new passive solar heating and storage devices, governmental particiaption in developing energy technologies, and the development of diverse energy sources and safety features are presented. Attention is given to recent shifts in the federal and state government roles in energy research, development and economic incentives. The applications of passive solar walls, flat plate collectors and trombe walls as retorfits for houses, institutions, and industries were examined. Attention was given to the implementation of wind power by a zoo and the use of spoilers as speed control devices in a Darrieus wind turbine. Aspects of gasohol, coal, synfuel, and laser-pyrolyzed coal products use are investigated. Finally, the economic, social, and political factors influencing energy system selection are explored, together with conservation practices in housing, government, and industry, and new simulators for enhancing nuclear power plant safety.

  16. Advanced Aerogel Technology

    NASA Technical Reports Server (NTRS)

    Jones, Steven

    2013-01-01

    The JPL Aerogel Laboratory has made aerogels for NASA flight missions, e.g., Stardust, 2003 Mars Exploration Rovers and the 2011 Mars Science Laboratory, as well as NASA research projects for the past 14 years. During that time it has produced aerogels of a range of shapes, sizes, densities and compositions. Research is ongoing in the development of aerogels for future sample capture and return missions and for thermal insulation for both spacecraft and scientific instruments. For the past several years, the JPL Aerogel Laboratory has been developing, producing and testing a new composite material for use as the high temperature thermal insulation in the Advanced Sterling Radioisotope Generator (ASRG) being developed by Lockheed Martin and NASA. The composite is made up of a glass fiber felt, silica aerogel, Titania powder, and silica powder. The oxide powders are included to reduce irradiative heat transport at elevated temperatures. These materials have thermal conductivity values that are the same as the best commercially produced high temperature insulation materials, and yet are 40% lighter. By greatly reducing the amount of oxide powder in the composite, the density, and therefore for the value of the thermal conductivity, would be reduced. The JPL Aerogel Laboratory has experimented with using glass fiber felt, expanded glass fiber felt and loose fibers to add structural integrity to silica aerogels. However, this work has been directed toward high temperature applications. By conducting a brief investigation of the optimal combination of fiber reinforcement and aerogel density, a durable, extremely efficient thermal insulation material for ambient temperature applications would be produced. If a transparent thermal insulation is desired, then aerogel is an excellent candidate material. At typical ambient temperatures, silica aerogel prevents the transport of heat via convection and conduction due to its highly porous nature. To prevent irradiative thermal

  17. Advanced solar thermal receiver technology

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Leibowitz, L. P.

    1980-01-01

    Development of advanced receiver technology for solar thermal receivers designed for electric power generation or for industrial applications, such as fuels and chemical production or industrial process heat, is described. The development of this technology is focused on receivers that operate from 1000 F to 3000 F and above. Development strategy is mapped in terms of application requirements, and the related system and technical requirements. Receiver performance requirements and current development efforts are covered for five classes of receiver applications: high temperature, advanced Brayton, Stirling, and Rankine cycle engines, and fuels and chemicals.

  18. Advances in plant proteomics toward improvement of crop productivity and stress resistancex

    PubMed Central

    Hu, Junjie; Rampitsch, Christof; Bykova, Natalia V.

    2015-01-01

    Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein–protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed. PMID:25926838

  19. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  20. Advanced Capillary Liquid Chromatography-Mass Spectrometry for Proteomics

    SciTech Connect

    Shen, Yufeng; Page, Jason S.; Smith, Richard D.

    2009-02-23

    The liquid chromatography (LC)-mass spectrometric (MS) analysis of peptides has become a routine method for proteomics – the study of the entire complement of proteins e.g., expressed by a cell under a specific set of conditions at a specific time. Mixtures of peptides, such as those generated from enzymatic (e.g., trypsin) digestion of globally recovered proteins (i.e. a proteome), are typically very complex and >100,000 different molecular species may be observable using MS detection [1]. LC separations implemented prior to MS for broad protein identification have three major roles: 1) to isolate individual components or reduce complexity as much as possible, 2) to increase sensitivity by concentrating the components into narrow zones prior to MS, and 3) to eliminate or displace interfering species (e.g., salts and polymers) that may be present in proteomics samples. A desired quality of LC separation can be achieved from the use of either multiple steps of moderate quality separations, or fewer steps of high power separations. The former approach is generally more easily accessible for very high quality separations due to the variety of commercialized LC platforms available, while the latter still often requires considerable developmental efforts (for both columns and instrumentation). In addition to proteomics data quality, other differences between these two approaches include proteomics analysis time and sample consumption (and subsequent analysis costs), as well as direct impact on potential proteomics applications that have special requirements in terms of analysis coverage, sample size, dynamic range, sensitivity, and throughput.

  1. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  2. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the

  3. TECHcitement: Advances in Technological Education.

    ERIC Educational Resources Information Center

    American Association of Community Colleges, Washington, DC.

    This publication includes seven articles. "ATE Grants Generate Life-Changing Experiences" discusses the National Science Foundation's (NSF) Advanced Technological Education (ATE) grants, which provide seed money and other support that community college educators use to enhance technical training and improve math and science instruction. "Phone…

  4. Advances in Quantitative Proteomics of Microbes and Microbial Communities

    NASA Astrophysics Data System (ADS)

    Waldbauer, J.; Zhang, L.; Rizzo, A. I.

    2015-12-01

    Quantitative measurements of gene expression are key to developing a mechanistic, predictive understanding of how microbial metabolism drives many biogeochemical fluxes and responds to environmental change. High-throughput RNA-sequencing can afford a wealth of information about transcript-level expression patterns, but it is becoming clear that expression dynamics are often very different at the protein level where biochemistry actually occurs. These divergent dynamics between levels of biological organization necessitate quantitative proteomic measurements to address many biogeochemical questions. The protein-level expression changes that underlie shifts in the magnitude, or even the direction, of metabolic and biogeochemical fluxes can be quite subtle and test the limits of current quantitative proteomics techniques. Here we describe methodologies for high-precision, whole-proteome quantification that are applicable to both model organisms of biogeochemical interest that may not be genetically tractable, and to complex community samples from natural environments. Employing chemical derivatization of peptides with multiple isotopically-coded tags, this strategy is rapid and inexpensive, can be implemented on a wide range of mass spectrometric instrumentation, and is relatively insensitive to chromatographic variability. We demonstrate the utility of this quantitative proteomics approach in application to both isolates and natural communities of sulfur-metabolizing and photosynthetic microbes.

  5. Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-06-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  6. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  7. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology

    PubMed Central

    Chen, Emily I.; Crew, Katherine D.; Trivedi, Meghna; Awad, Danielle; Maurer, Mathew; Kalinsky, Kevin; Koller, Antonius; Patel, Purvi; Kim Kim, Jenny; Hershman, Dawn L.

    2015-01-01

    Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS) for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9) and those who had a ≥20% worsening (Group 1, N = 8). MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann–Whitney–Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2) suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity

  8. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology.

    PubMed

    Chen, Emily I; Crew, Katherine D; Trivedi, Meghna; Awad, Danielle; Maurer, Mathew; Kalinsky, Kevin; Koller, Antonius; Patel, Purvi; Kim Kim, Jenny; Hershman, Dawn L

    2015-01-01

    Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS) for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9) and those who had a ≥20% worsening (Group 1, N = 8). MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann-Whitney-Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2) suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity

  9. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  10. SP-100 Advanced Technology Program

    NASA Technical Reports Server (NTRS)

    Sovie, Ronald J.

    1987-01-01

    The goal of the triagency SP-100 Program is to develop long-lived, compact, lightweight, survivable nuclear reactor space power systems for application to the power range 50 kWe to 1 MWe. The successful development of these systems should enable or significantly enhance many of the future NASA civil and commercial missions. The NASA SP-100 Advanced Technology Program strongly augments the parallel SP-100 Ground Engineering System Development program and enhances the chances for success of the overall SP-100 program. The purpose of this paper is to discuss the key technical elements of the Advanced Technology Program and the progress made in the initial year and a half of the project.

  11. Subsea completion technology needs advances

    SciTech Connect

    Ledbetter, R.

    1995-09-18

    Subsea technology needs further advances to reduce operational costs before operators will expand the use of subsea well completions in the Gulf of Mexico. They will continue to choose surface completion-oriented systems as long as these are more economical operationally than subsea system. Designs of subsea equipment such as trees, connectors, control pods, umbilicals, and flow lines, must bring about reductions in the cost of both installation and workover compatibility. Remote operated vehicle (ROV) manipulation is one avenue that should be exploited. The bottom line is that significant cooperation between equipment manufacturers and ROV companies is needed to develop advanced ROV technology, and operators should be involved to help guide operational strategies.

  12. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  13. Advanced technology commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.

    1991-01-01

    Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.

  14. Proteomics and the Analysis of Proteomic Data: 2013 Overview of Current Protein-Profiling Technologies

    PubMed Central

    Bruce, Can; Stone, Kathryn; Gulcicek, Erol; Williams, Kenneth

    2013-01-01

    Mass spectrometry has become a major tool in the study of proteomes. The analysis of proteolytic peptides and their fragment ions by this technique enables the identification and quantitation of the precursor proteins in a mixture. However, deducing chemical structures and then protein sequences from mass-to-charge ratios is a challenging computational task. Software tools incorporating powerful algorithms and statistical methods improved our ability to process the large quantities of proteomics data. Repositories of spectral data make both data analysis and experimental design more efficient. New approaches in quantitative and statistical proteomics make possible a greater coverage of the proteome, the identification of more post-translational modifications and a greater sensitivity in the quantitation of targeted proteins. PMID:23504934

  15. The Clinical Proteomic Technologies for Cancer | Cancer Reagent Target Request Instructions

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  16. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Plecity, Mark S.; Nall, Mark E.

    1991-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) provides high risk technologies having the potential to dramatically enhance the capabilities of the satellite communications industry. This experimental satellite, which will be launched by NASA in 1993, will furnish the technology necessary for providing a range of services. Utilizing the ACTS very-high-gain-hopping spot-beam antennas with on-board routing and processing, Very Small Aperture Terminal (VSAT) digital networks which provide on-demand, full-mesh-convectivity 1.544-MBPS services with only a single hop can be established. The high-gain spot-beam antenna at Ka-band permits wide area, flexible networks providing high data rate services between modest-size earth terminals.

  17. Advances in lens implant technology

    PubMed Central

    Kampik, Anselm; Dexl, Alois K.; Zimmermann, Nicole; Glasser, Adrian; Baumeister, Martin; Kohnen, Thomas

    2013-01-01

    Cataract surgery is one of the oldest and the most frequent outpatient clinic operations in medicine performed worldwide. The clouded human crystalline lens is replaced by an artificial intraocular lens implanted into the capsular bag. During the last six decades, cataract surgery has undergone rapid development from a traumatic, manual surgical procedure with implantation of a simple lens to a minimally invasive intervention increasingly assisted by high technology and a broad variety of implants customized for each patient’s individual requirements. This review discusses the major advances in this field and focuses on the main challenge remaining – the treatment of presbyopia. The demand for correction of presbyopia is increasing, reflecting the global growth of the ageing population. Pearls and pitfalls of currently applied methods to correct presbyopia and different approaches under investigation, both in lens implant technology and in surgical technology, are discussed. PMID:23413369

  18. Appliance Standards and Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Desroches, Louis-Benoit

    2011-11-01

    Energy efficiency has long been considered one of the most effective and least costly means of reducing national energy demand. The U.S. Department of Energy runs the appliances and commercial equipment standards program, which sets federal mandatory minimum efficiency levels for many residential appliances, commercial equipment, and lighting products. The Department uses an engineering-economic analysis approach to determine appropriate standard levels that are technologically feasible and economically justified (i.e., a net positive economic benefit to consumers and the nation as a whole). The program has been very successful and has significantly reduced national energy consumption. Efficiency is also a renewable resource, with many new, even more efficient technologies continuously replacing older ones. There are many promising advanced technologies on the horizon today that could dramatically reduce appliance and commercial equipment energy use even further.

  19. Center for Advanced Separation Technology

    SciTech Connect

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  20. Advances in SIS receiver technology

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.

    1988-01-01

    Significant advances in SIS receiver technology since the last Asilomar meeting include: superconductor materials, integrated inductive tuning elements, and planar mounting structures. The effect of these advances is to push the upper frequency operating limit from about 600 to 1500 GHz, and to enhance the feasibility of focal plane arrays of heterodyne receivers. A fundamental high frequency operating limit of SIS mixers is set by the superconducting energy gap. A practical limitation for high frequency operation of SIS junctions is their parasitic capacitance and resistance. The performance of the mixer will be degraded by the Resistor-Capacitor rolloff. Several designs were reported for inductive elements integrated on the same substrate as the SIS junctions to tune out the bulk junction capacitance. Most millimeter SIS-based heterodyne receivers have used waveguide coupling structures. Technology has advanced to the state where programs that have a high probability of success can be defined to produce arrays of SIS receivers for frequencies as high as 1500 GHz.

  1. Advances in Genome Biology & Technology

    SciTech Connect

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  2. Advances in nondestructive evaluation technology

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1982-01-01

    Research at NASA Langley's Materials Characterization Instrumentation Section has followed the philosophy of improving the science base of nondestructive evaluation and advancing the state of the art of quantitative interpretability of physical measurements of materials. Details of several R&D programs choosen to highlight the last several years are given. Applications of these technologies are presented in the area of stress measurement, characterization of metal heat treatment, and evaluation of material internal structure. A second focus of the program is on quantitative transducers/measurements that have resulted in better data in irregular inhomogeneous materials such as composites. Examples are presented of new capabilities resulting from these advances that include fatigue and impact damage evaluation.

  3. Materials Advance Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  4. Advances in traction drive technology

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  5. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  6. Advances in genomic- and proteomic-based methods to study food-borne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, a number of “omics” technologies, including genomics, proteomics, metabolomics, and others are being utilized to enhance the understanding of the complexities of pathogen behavior at the molecular level and for the development of improved pathogen detection and typing systems. Gene...

  7. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  8. Role of Proteomics in the Development of Personalized Medicine.

    PubMed

    Jain, Kewal K

    2016-01-01

    Advances in proteomic technologies have made import contribution to the development of personalized medicine by facilitating detection of protein biomarkers, proteomics-based molecular diagnostics, as well as protein biochips and pharmacoproteomics. Application of nanobiotechnology in proteomics, nanoproteomics, has further enhanced applications in personalized medicine. Proteomics-based molecular diagnostics will have an important role in the diagnosis of certain conditions and understanding the pathomechanism of disease. Proteomics will be a good bridge between diagnostics and therapeutics; the integration of these will be important for advancing personalized medicine. Use of proteomic biomarkers and combination of pharmacoproteomics with pharmacogenomics will enable stratification of clinical trials and improve monitoring of patients for development of personalized therapies. Proteomics is an important component of several interacting technologies used for development of personalized medicine, which is depicted graphically. Finally, cancer is a good example of applications of proteomic technologies for personalized management of cancer. PMID:26827601

  9. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  10. Animal board invited review: advances in proteomics for animal and food sciences.

    PubMed

    Almeida, A M; Bassols, A; Bendixen, E; Bhide, M; Ceciliani, F; Cristobal, S; Eckersall, P D; Hollung, K; Lisacek, F; Mazzucchelli, G; McLaughlin, M; Miller, I; Nally, J E; Plowman, J; Renaut, J; Rodrigues, P; Roncada, P; Staric, J; Turk, R

    2015-01-01

    Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps

  11. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  12. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  13. Advanced Training Technologies and Learning Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  14. Recent findings from the Human Proteome Project: opening the mass spectrometry toolbox to advance cancer diagnosis, surveillance and treatment.

    PubMed

    Cantor, David I; Nice, Edouard C; Baker, Mark S

    2015-06-01

    The Human Proteome Project stands to eclipse the Human Genome Project in terms of scope, content and interpretation. Its outputs, in conjunction with recent developments across the proteomics community, provide new tools for cancer research with the potential of providing clinically relevant insights into the disease. These collectively may guide the development of future diagnosis, surveillance and treatment strategies. Having established a robust organizational framework within the international community, the Human Proteome Organization and the proteomics community at large have made significant advances in biomarker discovery, detection, molecular imaging and in exploring tumor heterogeneity. Here, the authors discuss some developments in cancer proteomics and how they can be implemented to reduce the global burden of the disease. PMID:25925208

  15. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    detection and avoidance, damage control and mitigation, and crew ejection systems. These systems, working together, will greatly increase survivability of crewed systems. Implicit in this varied list of technology and integration is industry risk. Aerospace industry must relearn to accept risk in space technology development in order to advance capability. All of these items wrap up in a total system view that will allow for more advanced, reliable capability in space.

  16. Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling.

    PubMed

    Chen, Wendong; Wang, Shuai; Adhikari, Subash; Deng, Zuhui; Wang, Lingjue; Chen, Lan; Ke, Mi; Yang, Pengyuan; Tian, Ruijun

    2016-05-01

    Great efforts have been taken for developing high-sensitive mass spectrometry (MS)-based proteomic technologies, among which sample preparation is one of the major focus. Here, a simple and integrated spintip-based proteomics technology (SISPROT) consisting of strong cation exchange beads and C18 disk in one pipet tip was developed. Both proteomics sample preparation steps, including protein preconcentration, reduction, alkylation, and digestion, and reversed phase (RP)-based desalting and high-pH RP-based peptide fractionation can be achieved in a fully integrated manner for the first time. This easy-to-use technology achieved high sensitivity with negligible sample loss. Proteomic analysis of 2000 HEK 293 cells readily identified 1270 proteins within 1.4 h of MS time, while 7826 proteins were identified when 100000 cells were processed and analyzed within only 22 h of MS time. More importantly, the SISPROT can be easily multiplexed on a standard centrifuge with good reproducibility (Pearson correlation coefficient > 0.98) for both single-shot analysis and deep proteome profiling with five-step high-pH RP fractionation. The SISPROT was exemplified by the triplicate analysis of 100000 stem cells from human exfoliated deciduous teeth (SHED). This led to the identification of 9078 proteins containing 3771 annotated membrane proteins, which was the largest proteome data set for dental stem cells reported to date. We expect that the SISPROT will be well suited for deep proteome profiling for fewer than 100000 cells and applied for translational studies where multiplexed technology with good label-free quantification precision is required. PMID:27062885

  17. Advancing the global proteome survey platform by using an oriented single chain antibody fragment immobilization approach.

    PubMed

    Säll, Anna; Persson, Helena; Ohlin, Mats; Borrebaeck, Carl A K; Wingren, Christer

    2016-09-25

    Increasing the understanding of a proteome and how its protein composition is affected by for example different diseases, such as cancer, has the potential to improve strategies for early diagnosis and therapeutics. The Global Proteome Survey or GPS is a method that combines mass spectrometry and affinity enrichment with the use of antibodies. The technology enables profiling of complex proteomes in a species independent manner. The sensitivity of GPS, and other methods relying on affinity enrichment, is largely affected by the activity of the exploited affinity reagent. We here present an improvement of the GPS platform by utilizing an antibody immobilization approach which ensures a controlled immobilization process of the antibody to the magnetic bead support. More specifically, we make use of an antibody format that enables site-directed biotinylation and use this in combination with streptavidin coated magnetic beads. The performance of the expanded GPS platform was evaluated by profiling yeast proteome samples. We demonstrate that the oriented antibody immobilization strategy increases the ability of the GPS platform and results in larger fraction of functional antibodies. Additionally, we show that this new antibody format enabled in-solution capture, i.e. immobilization of the antibodies after sample incubation. A workflow has been established that permit the use of an oriented immobilization strategy for the GPS platform. PMID:26703809

  18. Recent advances in flue gas desulfurization technologies

    SciTech Connect

    Pan, Y.S.

    1991-01-01

    Recent advances in flue gas desulfurization (FGD) technologies are reported. The technological advances include conventional wet FGD system improvements, advanced wet FGD system development, spray dryer system operations, technologies for furnace sorbent injections, post-combustion dry technologies, combined SO{sub 2}/NO{sub x} technologies, and several emerging FGD technologies. In addition, progress of by-product utilization that affects the operating cost of FGD systems is described. Economics of some commercially available and nearly maturing FGD technologies is also discussed. The materials included in this report are obtained from technical presentations made through September 1990, at several national and international conferences. This report is intended to document current advances and status of various FGD technologies. 101 refs., 16 figs.

  19. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  20. High throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology

    SciTech Connect

    Liu, Tao; Qian, Weijun; Strittmatter, Eric F.; Camp, David G.; Anderson, Gordon A.; Thrall, Brian D.; Smith, Richard D.

    2004-09-15

    A new quantitative cysteinyl-peptide enrichment technology (QCET) was developed to achieve higher efficiency, greater dynamic range, and higher throughput in quantitative proteomics that use stable-isotope labeling techniques combined with high resolution liquid chromatography (LC)-mass spectrometry (MS). This approach involves {sup 18}O labeling of tryptic peptides, high efficiency enrichment of cysteine-containing peptides, and confident protein identification and quantification using the accurate mass and time tag strategy. Proteome profiling of naive and in vitro-differentiated human mammary epithelial cells using QCET resulted in the identification and quantification of 603 proteins in a single LC-Fourier transform ion cyclotron resonance MS analysis. Advantages of this technology include: (1) a simple, highly efficient method for enriching cysteinyl-peptides; (2) a high throughput strategy suitable for extensive proteome analysis; and (3) improved labeling efficiency for better quantitative measurements. This technology enhances both the functional analysis of biological systems and the detection of potential clinical biomarkers.

  1. Identification of Multiple Metabolic Enzymes from Mice Cochleae Tissue Using a Novel Functional Proteomics Technology

    PubMed Central

    Wang, David L.; Li, Hui; Liang, Ruqiang; Bao, Jianxin

    2015-01-01

    A new type of technology in proteomics was developed in order to separate a complex protein mixture and analyze protein functions systematically. The technology combines the ability of two-dimensional gel electrophoresis (2-DE) to separate proteins with a protein elution plate (PEP) to recover active proteins for functional analysis and mass spectrometry (MS)-based identification. In order to demonstrate the feasibility of this functional proteomics approach, NADH and NADPH-dependent oxidases, major redox enzyme families, were identified from mice cochlear tissue after a specific drug treatment. By comparing the enzymatic activity between mice that were treated with a drug and a control group significant changes were observed. Using MS, five NADH-dependent oxidases were identified that showed highly altered enzymatic activities due to the drug treatment. In essence, the PEP technology allows for a systematic analysis of a large enzyme family from a complex proteome, providing insights in understanding the mechanism of drug treatment. PMID:25811366

  2. Advanced Refrigerator/Freezer Technology Development Project

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.; Geng, Steven M.

    1999-01-01

    The Advanced Refrigerator/Freezer (R/F) Technology Development Project was initiated in 1994, on the basis of recommendations of a team of NASA Scientists and engineers, who assessed the need for advanced technology to support future life and biomedical sciences space flight missions. The project, which was cofunded by NASA's Office of Aerospace Technology and Life and Biomedical Sciences & Applications Division, has two phases. In the Phase I Advanced R/F Technology Assessment, candidate technologies were identified and ranked, on the basis of a combination of their effect on system performance and their risk of developmental success. In Phase II Technology Development, the advanced technologies with the highest combined ranking, which could be accomplished within the budgetary constraints, were pursued. The effort has been mainly by contract, with a modest in-house effort at the NASA Lewis Research Center. Oceaneering Space Systems (OSS) of Houston, Texas, was selected as the prime contractor for both contract phases.

  3. The Use of a Quantitative Cysteinyl-peptide Enrichment Technology for High-Throughput Quantitative Proteomics

    SciTech Connect

    Liu, Tao; Qian, Weijun; Camp, David G.; Smith, Richard D.

    2007-01-02

    Quantitative proteomic measurements are of significant interest in studies aimed at discovering disease biomarkers and providing new insights into biological pathways. A quantitative cysteinyl-peptide enrichment technology (QCET) can be employed to achieve higher efficiency, greater dynamic range, and higher throughput in quantitative proteomic studies that utilize stable-isotope labeling techniques combined with high-resolution liquid chromatography (LC)-mass spectrometry (MS) measurements. The QCET approach involves specific 16O/18O labeling of tryptic peptides, high-efficiency enrichment of cysteinyl-peptides, and confident protein identification and quantification from high resolution LC-Fourier transform ion cyclotron resonance mass spectrometry (FTICR) measurements and a previously established database of accurate mass and elution time information. This methodology is demonstrated by using proteome profiling of naïve and in vitro-differentiated human mammary epithelial cells (HMEC) as an example, which initially resulted in the identification and quantification of 603 proteins in a single LC-FTICR analysis. QCET provides not only highly efficient enrichment of cysteinyl-peptides for more extensive proteome coverage and improved labeling efficiency for better quantitative measurements, but more importantly, a high-throughput strategy suitable for quantitative proteome analysis where extensive or parallel proteomic measurements are required, such as in time course studies of specific pathways and clinical sample analyses for biomarker discovery.

  4. Developments of mass spectrometry-based technologies for effective drug development linked with clinical proteomes.

    PubMed

    Nakayama, Noboru; Bando, Yasuhiko; Fukuda, Tetsuya; Kawamura, Takeshi; Nakamura, Haruhiko; Marko-Varga, György; Nishimura, Toshihide

    2016-02-01

    A strong demand in drug discovery and development today is to overcome "Big Gaps" encountered by differences in species and races, to accelerate effective developments in cost and time, and to meet medical needs. Moreover, drugs of various types have emerged which cover middle-size molecules and polymers rather than conventional small molecules. Upon those challenges, mass spectrometry (MS)-based technologies, which will be described in this paper, will play an increasingly important role, among which the liquid chromatography-tandem mass spectrometry (LC/MS/MS) platform will be powerful as rapid and molecule-based analysis more than ever. nanoPore Optical Interferometry (nPOI) newly introduced can detect even weak interactions in protein-protein and protein-compound, and can be connected directly to LC/MS/MS for identification of binding molecular species, which will be quite useful for affinity ranking and high-throughput interaction screening. Imaging MS provides the molecular information and spatial distribution of targeted molecules within a tissue specimen. MS-based clinical proteomics utilizing clinical specimens and empowered by advanced bioinformatics can attain both key protein-protein interaction (PPI) networks with major protein players responsible for functional mechanisms of a disease subtype. An integration of those MS-based technologies will deliver a seamless platform of drug development from molecules identified in human clinical specimens. PMID:26782309

  5. Centennial Paper: Proteomics in animal science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomics holds significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we wil...

  6. The promise of proteomics in animal science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomics hold significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we will...

  7. Benefits of advanced technology in industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.

    1979-01-01

    This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.

  8. Innovative proteomic approaches for cancer biomarker discovery.

    PubMed

    Faca, Vitor; Krasnoselsky, Alexei; Hanash, Samir

    2007-09-01

    Substantial technological advances in proteomics and related computational science have been made in the past few years. These advances overcome in part the complexity and heterogeneity of the human proteome, permitting quantitative analysis and identification of protein changes associated with tumor development. Here, we discuss some of these advances that are uncovering new cancer biomarkers that have potential to detect cancer at early and curable stages and address remaining challenges. PMID:17907570

  9. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  10. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  11. Identifying Advanced Technologies for Education's Future.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; Yin, Robert K.

    A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…

  12. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  13. Proteomics for systems toxicology

    PubMed Central

    Titz, Bjoern; Elamin, Ashraf; Martin, Florian; Schneider, Thomas; Dijon, Sophie; Ivanov, Nikolai V.; Hoeng, Julia; Peitsch, Manuel C.

    2014-01-01

    Current toxicology studies frequently lack measurements at molecular resolution to enable a more mechanism-based and predictive toxicological assessment. Recently, a systems toxicology assessment framework has been proposed, which combines conventional toxicological assessment strategies with system-wide measurement methods and computational analysis approaches from the field of systems biology. Proteomic measurements are an integral component of this integrative strategy because protein alterations closely mirror biological effects, such as biological stress responses or global tissue alterations. Here, we provide an overview of the technical foundations and highlight select applications of proteomics for systems toxicology studies. With a focus on mass spectrometry-based proteomics, we summarize the experimental methods for quantitative proteomics and describe the computational approaches used to derive biological/mechanistic insights from these datasets. To illustrate how proteomics has been successfully employed to address mechanistic questions in toxicology, we summarized several case studies. Overall, we provide the technical and conceptual foundation for the integration of proteomic measurements in a more comprehensive systems toxicology assessment framework. We conclude that, owing to the critical importance of protein-level measurements and recent technological advances, proteomics will be an integral part of integrative systems toxicology approaches in the future. PMID:25379146

  14. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  15. Low speed propellers: Impact of advanced technologies

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1980-01-01

    Sensitivity studies performed to evaluate the potential of several advanced technological elements on propeller performance, noise, weight, and cost for general aviation aircraft are discussed. Studies indicate that the application of advanced technologies to general aviation propellers can reduce fuel consumption in future aircraft an average of ten percent, meeting current regulatory noise limits. Through the use of composite blade construction, up to 25 percent propeller weight reduction can be achieved. This weight reduction in addition to seven percent propeller efficiency improvements through application of advanced technologies result in four percent reduction in direct operating costs, ten percent reduction in aircraft acquisition cost, and seven percent lower gross weight for general aviation aircraft.

  16. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  17. Liquid Chromatography Mass Spectrometry-Based Proteomics: Biological and Technological Aspects

    SciTech Connect

    Karpievitch, Yuliya V.; Polpitiya, Ashoka D.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2010-12-01

    Mass spectrometry-based proteomics has become the tool of choice for identifying and quantifying the proteome of an organism. Though recent years have seen a tremendous improvement in instrument performance and the computational tools used, significant challenges remain, and there are many opportunities for statisticians to make important contributions. In the most widely used "bottom-up" approach to proteomics, complex mixtures of proteins are first subjected to enzymatic cleavage, the resulting peptide products are separated based on chemical or physical properties and analyzed using a mass spectrometer. The two fundamental challenges in the analysis of bottom-up MS-based proteomics are: (1) Identifying the proteins that are present in a sample, and (2) Quantifying the abundance levels of the identified proteins. Both of these challenges require knowledge of the biological and technological context that gives rise to observed data, as well as the application of sound statistical principles for estimation and inference. We present an overview of bottom-up proteomics and outline the key statistical issues that arise in protein identification and quantification.

  18. Whither Humanities and Advanced Technologies?

    ERIC Educational Resources Information Center

    Jones, Paul

    1997-01-01

    Discusses humanities projects that can be facilitated by communications technology: multiple language representations, providing cross-platform multilingual font sets and distributed multilingual enabling technologies; high-quality images and tools for archival image annotation, search, and retrieval; three-dimensional representations to provide…

  19. 75 FR 106 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY... Committee on Advanced Technology (VCAT), National Institute of Standards and Technology (NIST), will...

  20. Recent advances in biomarker discovery in solid organ transplant by proteomics

    PubMed Central

    Sigdel, Tara K; Sarwal, Minnie M

    2012-01-01

    The identification and clinical use of more sensitive and specific biomarkers in the field of solid organ transplantation is an urgent need in medicine. Solid organ transplantation has seen improvements in the short-term survival of transplanted organs due to recent advancements in immunosuppressive therapy. However, the currently available methods of allograft monitoring are not optimal. Recent advancements in assaying methods for biomolecules such as genes, mRNA and proteins have helped to identify surrogate biomarkers that can be used to monitor the transplanted organ. These high-throughput ‘omic’ methods can help researchers to significantly speed up the identification and the validation steps, which are crucial factors for biomarker discovery efforts. Still, the progress towards identifying more sensitive and specific biomarkers remains a great deal slower than expected. In this article, we have evaluated the current status of biomarker discovery using proteomics tools in different solid organ transplants in recent years. This article summarizes recent reports and current status, along with the hurdles in efficient biomarker discovery of protein biomarkers using proteomics approaches. Finally, we will touch upon personalized medicine as a future direction for better management of transplanted organs, and provide what we think could be a recipe for success in this field. PMID:22087656

  1. Costs and Benefits of Advanced Aeronautical Technology

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  2. Advancing Binaural Cochlear Implant Technology

    PubMed Central

    McAlpine, David

    2015-01-01

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies. PMID:26721929

  3. Advances in gene technology: Human genetic disorders

    SciTech Connect

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  4. Rotorcraft technology at Boeing Vertol: Recent advances

    NASA Technical Reports Server (NTRS)

    Shaw, John; Dadone, Leo; Wiesner, Robert

    1988-01-01

    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

  5. [Advances in genetic modification technologies].

    PubMed

    Zhang, Baixue; Sun, Qixin; Li, Haifeng

    2015-08-01

    Genetic modification technology is a new molecular tool for targeted genome modification. It includes zinc finger nucleases (ZFN) technology, transcription activator-like effector nucleases (TALEN) technology and clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) (CRISPR-Cas) nucleases technology. All of these nucleases create DNA double-strand breaks (DSB) at chromosomal targeted sites and induce cell endogenous mechanisms that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway, resulting in targeted endogenous gene knock-out or exogenous gene insertion. In recent years, genetic modification technologies have been successfully applied to bacteria, yeast, human cells, fruit fly, zebra fish, mouse, rat, livestock, cynomolgus monkey, Arabidopsis, rice, tobacco, maize, sorghum, wheat, barley and other organisms, showing its enormous advantage in gene editing field. Especially, the newly developed CRISPR-Cas9 system arose more attention because of its low cost, high effectiveness, simplicity and easiness. We reviewed the principles and the latest research progress of these three technologies, as well as prospect of future research and applications. PMID:26762038

  6. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  7. Policy issues inherent in advanced technology development

    SciTech Connect

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  8. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  9. Advanced Refrigerator/Freezer Technology Development. Technology Assessment

    NASA Technical Reports Server (NTRS)

    Gaseor, Thomas; Hunter, Rick; Hamill, Doris

    1996-01-01

    The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.

  10. Advanced clean coal utilization technologies

    SciTech Connect

    Moritomi, Hiroshi

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  11. Novel possibilities in the study of the salivary proteomic profile using SELDI-TOF/MS technology

    PubMed Central

    ARDITO, FATIMA; PERRONE, DONATELLA; COCCHI, ROBERTO; LO RUSSO, LUCIO; DE LILLO, ALFREDO; GIANNATEMPO, GIOVANNI; LO MUZIO, LORENZO

    2016-01-01

    There is currently an increasing interest in exploring human saliva to identify salivary diagnostic and prognostic biomarkers, since the collection of saliva is rapid, non-invasive and stress-free. Diagnostic tests on saliva are common and cost-effective, particularly for patients who need to monitor their hormone levels or the effectiveness of undergoing therapies. Furthermore, salivary diagnostics is ideal for surveillance studies and in situations where fast results and inexpensive technologies are required. The most important constituents of saliva are proteins, the expression levels of which may be modified due to variations of the cellular conditions. Therefore, the different profile of proteins detected in saliva, including their absence, presence or altered levels, is a potential biomarker of certain physiological and/or pathological conditions. A promising novel approach to study saliva is the global analysis of salivary proteins using proteomic techniques. In the present study, surface-enhanced laser desorption/ionization-time-of-flight/mass spectrometry (SELDI-TOF/MS), one of the most recent proteomic tools for the identification of novel biomarkers, is reviewed. In addition, the possible use of this technique in salivary proteomic studies is discussed, since SELDI technology combines the precision of matrix-assisted laser desorption/ionization-TOF/MS proteomic analysis and the high-throughput nature of protein array analysis. PMID:26998108

  12. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  13. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  14. Advancing Careers in Information Science and Technology

    ERIC Educational Resources Information Center

    Stanton, Wilbur W.; Templeton, Dennie E.; Chase, Joe D.; Rose, Melinda; Eaton, Carlotta

    2005-01-01

    The authors discuss the joining of 12 Virginia community colleges from the Appalachian region of southwestern Virginia with Radford University to form the Regional Technology Education Consortium (RTEC), a three-year project funded by the National Science Foundation Advanced Technological Education program and designed to develop articulation…

  15. Technological Advances and the Study of Reading.

    ERIC Educational Resources Information Center

    Henk, William A.

    Recent technological advances in neuroanatomy and neurophysiology have unearthed structural and functional patterns in the brain that can be associated with severe reading disabilities. As a response, this paper examines several computer-driven technologies whose capabilities shed light on brain-related issues germane to reading, with the intent…

  16. TECHcitement: Advances in Technological Education, 2007

    ERIC Educational Resources Information Center

    Patton, Madeline

    2007-01-01

    This publication presents the following nine articles: (1) ATE [Advanced Technological Education] Readies Technicians for International Competition; (2) Technicians in Demand Worldwide; (3) Accreditation Board for Engineering and Technology Endorses International Protocols for Technicians; (4) Entrepreneurial Educator Creates InnovaBio to Meet…

  17. Responding to Industry Demands: Advanced Technology Centers.

    ERIC Educational Resources Information Center

    Smith, Elizabeth Brient

    1991-01-01

    Discusses characteristics identified by the Center for Occupational Research and Development as indicative of fully functioning advanced technology centers, including the provision of training and retraining in such areas as design, manufacturing, materials science, and electro-optics; technology transfer; demonstration sites; needs assessment;…

  18. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  19. Advances in cold plasma technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens continue to be an issue on a variety of commodities, prompting research into novel interventions. Cold plasma is a nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. The prim...

  20. Advances in femtosecond laser technology.

    PubMed

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  1. Advanced Lost Foam Casting Technology

    SciTech Connect

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  2. Technological advances in bovine mastitis diagnosis: an overview.

    PubMed

    Duarte, Carla M; Freitas, Paulo P; Bexiga, Ricardo

    2015-11-01

    Bovine mastitis is an economic burden for dairy farmers and preventive control measures are crucial for the sustainability of any dairy business. The identification of etiological agents is necessary in controlling the disease, reducing risk of chronic infections and targeting antimicrobial therapy. The suitability of a detection method for routine diagnosis depends on several factors, including specificity, sensitivity, cost, time in producing results, and suitability for large-scale sampling of milk. This article focuses on current methodologies for identification of mastitis pathogens and for detection of inflammation, as well as the advantages and disadvantages of different methods. Emerging technologies, such as transcriptome and proteome analyses and nano- and microfabrication of portable devices, offer promising, sensitive methods for advanced detection of mastitis pathogens and biomarkers of inflammation. The demand for alternative, fast, and reliable diagnostic procedures is rising as farms become bigger. Several examples of technological and scientific advances are summarized which have given rise to more sensitive, reliable and faster diagnostic results. PMID:26450837

  3. Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)

    NASA Technical Reports Server (NTRS)

    Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.

    1980-01-01

    The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.

  4. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  5. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  6. Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Schertler, Ronald J.; Gedney, Richard T.

    1992-01-01

    An overview of the NASA ACTS program is presented. The key technologies of ACTS include spot beams, on-board baseband processing and routing, wide bandwidth (900 MHz), and Ka-band transponders. The discussion covers system description, current status of the spacecraft development, ACTS earth stations, NGS traffic terminal, USAT, land and aeronautical mobiles, high data rate and propagation receive only terminals, and ACTS experiments program.

  7. Advances in FCC reactor technology

    SciTech Connect

    Schnaith, M.W.; Gilbert, A.T.; Lomas, D.A.; Myers, D.N.

    1995-09-01

    The riser termination device and the feed distribution system are the key elements that enable FCC reactor technology to achieve the high performance demanded in the 1990s and beyond. UOP`s development efforts have combined cold flow modeling and commercial optimization testing to produce new technology in both areas. A key differentiation of the UOP feed-catalyst contacting system is the use of a catalyst acceleration zone to moderate density and achieve plug flow before feed injection. Commercial data confirm the benefit and importance of elevated feed injection and proper catalyst environment in this three-phase system. A new high-performance Optimix feed nozzle has been developed and cold-flow tested and is currently undergoing commercial demonstration. New riser disengagement technology with prestripping has been extended to internal riser FCC units. The new disengager design will achieve at least 98% hydrocarbon containment. Cold-flow modeling has confirmed catalyst separation efficiency, and the design has been accepted for two FCC reactor revamps scheduled for mid-1995 and for 1996.

  8. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  9. 78 FR 29704 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  10. 76 FR 59659 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  11. 75 FR 28785 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Partially Closed Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT), National Institute of Standards...

  12. 76 FR 29195 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  13. 77 FR 59592 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. ] SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  14. 78 FR 292 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  15. 75 FR 60082 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of Public Meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT), National Institute of Standards and...

  16. 78 FR 57839 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  17. 77 FR 32570 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... National Institute of Standards and Technology Visiting Committee on Advanced Technology AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Visiting Committee on Advanced Technology (VCAT or Committee), National Institute of Standards...

  18. Advances in multiphoton microscopy technology

    PubMed Central

    Hoover, Erich E.; Squier, Jeff A.

    2013-01-01

    Multiphoton microscopy has enabled unprecedented dynamic exploration in living organisms. A significant challenge in biological research is the dynamic imaging of features deep within living organisms, which permits the real-time analysis of cellular structure and function. To make progress in our understanding of biological machinery, optical microscopes must be capable of rapid, targeted access deep within samples at high resolution. In this Review, we discuss the basic architecture of a multiphoton microscope capable of such analysis and summarize the state-of-the-art technologies for the quantitative imaging of biological phenomena. PMID:24307915

  19. Space platform advanced technology study

    NASA Technical Reports Server (NTRS)

    Burns, G.

    1981-01-01

    Current and past space platform and power module studies were utilized to point the way to areas of development for mechanical devices that will be required for the ultimate implementation of a platform erected and serviced by the Shuttle/Orbiter. The study was performed in accordance with a study plan which included: a review of space platform technology; orbiter berthing system requirements; berthing latch interface requirements, design, and model fabrication; berthing umbilical interface requirements and design; adaptive end effector design and model fabrication; and adaptive end effector requirements.

  20. Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria.

    PubMed

    D'Agostino, Paul M; Woodhouse, Jason N; Makower, A Katharina; Yeung, Anna C Y; Ongley, Sarah E; Micallef, Melinda L; Moffitt, Michelle C; Neilan, Brett A

    2016-02-01

    A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist. PMID:26663762

  1. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  2. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  3. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  4. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  5. Advanced RF Front End Technology

    NASA Technical Reports Server (NTRS)

    Herman, M. I.; Valas, S.; Katehi, L. P. B.

    2001-01-01

    The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.

  6. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  7. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  8. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  9. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  10. Technological Advances in Psychiatric Nursing: An update.

    PubMed

    Bostrom, Andrea C

    2016-06-01

    Understanding and treating mental illness has improved in many ways as a result of the fast pace of technological advances. The technologies that have the greatest potential impact are those that (1) increase the knowledge of how the brain functions and changes based on interventions, (2) have the potential to personalize interventions based on understanding genetic factors of drug metabolism and pharmacodynamics, and (3) use information technology to provide treatment in the absence of an adequate mental health workforce. Technologies are explored for psychiatric nurses to consider. Psychiatric nurses are encouraged to consider the experiences of psychiatric patients, including poor health, stigmatization, and suffering. PMID:27229272

  11. Technological advances for studying human behavior

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  12. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  13. Advanced MCT technologies in France

    NASA Astrophysics Data System (ADS)

    Destefanis, Gérard; Tribolet, Philippe

    2007-04-01

    In this paper we present an overview of the very recent developments of the HgCdTe infrared detector technology developed by CEA-LETI and industrialized by Sofradir in France. Today Sofradir uses in production for more than 15years a very mature, reproducible, well mastered and fully understood, planar n on p ion implanted technology. This process that allows very high yields to be achieved in all infrared bands from SWIR to LWIR uses the very conventional approach of LPE growth of MCT on lattice-matched CdZnTe substrates. Progress in this field is continuous from 20years and has recently leaded to the fabrication of high performance VLWIR FPA (320x256 with cut off wavelengths as high as 20μm). Moreover, thanks to the design of the epitaxial structure and to the substrate removal step MCT FPAs present the unique features to have very high quantum efficiency (above 70%) from the cut off wavelength down to the UV. This effect, which opens new application fields, was recently demonstrated in SWIR 320x256 FPAs with cut off wavelength of 2.5μm. Very high quality FPAs (1280x1024) with pitches as small as 15μm have already been demonstrated last year using the MBE growth of MWIR MCT epilayers on 4 inches germanium substrates, n on p ion implanted photodiodes and the hot welding indium bump hybridization technique. At the same time, with the MBE growth, bicolor and dual band FPAs which uses more complex multi hetero-junctions architectures (both 4 layers npn and 'pseudo planar' structures and extrinsically doped MCT layers) were fabricated with formats of 320x256 and pitches as small as 25μm. A very new area of development concerns avalanche photodiodes (APD) made with MCT. This semiconductor presents a unique feature among all the over semiconductors. Extremely high avalanche gains can be obtained on n on p photodiodes without absolutely any noise excess (F(K)=1): MCT APDs act as perfect amplifiers. These results open new interesting fields of investigation for low

  14. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  15. Research on advanced photovoltaic manufacturing technology

    SciTech Connect

    Jester, T.; Eberspacher, C. )

    1991-11-01

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  16. Advancing gas turbine technology: Evolution and revolution

    SciTech Connect

    Kuehn, S.E.

    1995-05-01

    This article describes advances made in gas turbine technology as manufacturers introduce aero-derived advances in the pursuit of more power. The rise in the application of gas turbines for electric power generation is attributable to many factors. The first is an abundance of cheap natural gas. The second reason is the very high (54 percent to 58 percent) combined-cycle efficiencies being achieved with commercially available technology right now. Reliability and availability are cited third. Low environmental impact was cited as the fourth reason why gas turbines are so popular. Fifth are gas turbine`s low capital costs.

  17. Advanced technologies in trauma critical care management.

    PubMed

    Cannon, Jeremy W; Chung, Kevin K; King, David R

    2012-08-01

    Care of critically injured patients has evolved over the 50 years since Shoemaker established one of the first trauma units at Cook County Hospital in 1962. Modern trauma intensive care units offer a high nurse-to-patient ratio, physicians and midlevel providers who manage the patients, and technologically advanced monitors and therapeutic devices designed to optimize the care of patients. This article describes advances that have transformed trauma critical care, including bedside ultrasonography, novel patient monitoring techniques, extracorporeal support, and negative pressure dressings. It also discusses how to evaluate the safety and efficacy of future advances in trauma critical care. PMID:22850154

  18. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  19. Developments at the Advanced Design Technologies Testbed

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    2003-01-01

    A report presents background and historical information, as of August 1998, on the Advanced Design Technologies Testbed (ADTT) at Ames Research Center. The ADTT is characterized as an activity initiated to facilitate improvements in aerospace design processes; provide a proving ground for product-development methods and computational software and hardware; develop bridging methods, software, and hardware that can facilitate integrated solutions to design problems; and disseminate lessons learned to the aerospace and information technology communities.

  20. Advanced technology and confidentiality in hand surgery.

    PubMed

    Naam, Nash H; Sanbar, Sandy

    2015-01-01

    Advanced technology has the potential to improve the quality of care for our patients, but it also poses new challenges, especially in maintaining patient confidentiality. The Health Insurance Portability and Accountability Act and the newly enacted Health Information Technology for Economic and Clinical Health Act provide certain guidelines governing patients' medical record confidentiality. This article discusses the other new challenges facing hand surgeons, such as the use of social media, telemedicine, e-mails, and the Internet. PMID:25189686

  1. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    PubMed Central

    Gaudreau, Pierre-Olivier; Stagg, John; Soulières, Denis; Saad, Fred

    2016-01-01

    Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development. PMID:27168728

  2. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements.

    PubMed

    Gaudreau, Pierre-Olivier; Stagg, John; Soulières, Denis; Saad, Fred

    2016-01-01

    Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development. PMID:27168728

  3. Advances in technologies and study design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Completion of the initial draft sequence of the human genome was the proving ground for and has ushered in significant advancements in technology of increasing sophistication and ever increasing amounts of data. Often, this combination has a multiplicative effect of stimulating research groups to co...

  4. TECHcitement: Advances in Technology Education, 2008

    ERIC Educational Resources Information Center

    Patton, Madeline

    2008-01-01

    This publication presents the following articles: (1) Advanced Technological Education (ATE) Develops Student Recruitment and Retention Strategies; (2) Marketer Advises Tech Educators Appeal to Teens' Emotions, Desires to Do Something Important; (3) Digital Bridge Academy Gets At-Risk Students on Paths to Knowledge-Based Careers; (4) Project…

  5. TECHcitement: Advances in Technological Education, 2004

    ERIC Educational Resources Information Center

    American Association of Community Colleges (NJ1), 2004

    2004-01-01

    This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)…

  6. Advanced Technological Education Survey 2012 Fact Sheet

    ERIC Educational Resources Information Center

    Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

    2012-01-01

    This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…

  7. Advanced Technological Education Survey 2011 Fact Sheet

    ERIC Educational Resources Information Center

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2011-01-01

    This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…

  8. Advanced Technological Education Survey 2010 Fact Sheet

    ERIC Educational Resources Information Center

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2010-01-01

    This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…

  9. Advanced Technological Education Survey 2009 Fact Sheet

    ERIC Educational Resources Information Center

    Wingate, Lori; Gullickson, Arlen

    2009-01-01

    This fact sheet summarizes data gathered in the 2009 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by The Evaluation Center at Western Michigan University, this was the tenth annual survey of ATE projects and centers. Included here are statistics about the program's grantees and…

  10. Advancing Technological Education: Keeping America Competitive

    ERIC Educational Resources Information Center

    Patton, Madeline

    2005-01-01

    This publication profiles the strategies and best practices of Advanced Technological Education (ATE) Centers in developing faculty skills, cultivating partnerships, implementing new curricula, recruiting students, preparing for change, utilizing advisors, managing organizations, and nurturing leaders. In this report, ATE center leaders share with…

  11. Why Video? How Technology Advances Method

    ERIC Educational Resources Information Center

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  12. TECHcitement: Advances in Technological Education, 2006

    ERIC Educational Resources Information Center

    American Association of Community Colleges (NJ1), 2006

    2006-01-01

    This publication includes 13 articles: (1) ATE [Advanced Technological Education] Attuned to Global Competition; (2) Materials Science Center Supplies Information on Often-Overlooked Field; (3) CSEC [Cyber Security Education Consortium] Builds Corps of Cyber Technicians; (4) KCTCS [Kentucky Community and Technical College System] Is U.S. Partner…

  13. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2015-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center (GRC) with contractor Sunpower Inc. to develop high efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems. Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or Engineering Units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA Engineering Units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F Pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in FY2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical tests at NASA

  14. Advanced Stirling Convertor (ASC) Technology Maturation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  15. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP Project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  16. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  17. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  18. Technology advancement of an oxygen generation subsystem

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Burke, K. A.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    An oxygen generation subsystem based on water electrolysis was developed and tested to further advance the concept and technology of the spacecraft air revitalization system. Emphasis was placed on demonstrating the subsystem integration concept and hardware maturity at a subsystem level. The integration concept of the air revitalization system was found to be feasible. Hardware and technology of the oxygen generation subsystem was demonstrated to be close to the preprototype level. Continued development of the oxygen generation technology is recommended to further reduce the total weight penalties of the oxygen generation subsystem through optimization.

  19. Advanced technologies for perimeter intrusion detection sensors

    SciTech Connect

    Williams, J.D.

    1995-03-01

    The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

  20. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  1. Proteomic analyses of the environmental toxicity of carcinogenic chemicals

    EPA Science Inventory

    Protein expression and posttranslational modifications consistently change in response to the exposure to environmental chemicals. Recent technological advances in proteomics provide new tools for more efficient characterization of protein expression and posttranslational modific...

  2. ESA's advanced relay and technology mission

    NASA Astrophysics Data System (ADS)

    Lechte, H.; Bird, A. G.; van Holtz, L.; Oppenhauser, G.

    1990-05-01

    The Advanced Relay and Technology Mission is discussed. The objective of the mission is to develop, launch, and operate a single geostationary satellite. The proposed satellite includes advanced communications payloads with data-relay, mobile, and fixed-service applications. The semiconductor laser intersatellite link experiment (Silex), which is aimed at developing an optical communications data-relay system, is described. The Silex configuration is designed for LEO or GEO applications and has a 65 Mbit/s data rate over the optical return link. Consideration is given to the phased-array technology utilized in the S-band data-relay payload; the L-band land mobile payload; diagnostics and propagation packages; and technology experiments for improving the platform.

  3. Electrochemical carbon dioxide concentrator advanced technology tasks

    NASA Technical Reports Server (NTRS)

    Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1975-01-01

    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

  4. Advances in Bioprinting Technologies for Craniofacial Reconstruction.

    PubMed

    Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan

    2016-09-01

    Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. PMID:27113634

  5. Maneuvering technology for advanced fighter aircraft

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, Scott H.; Byers, Richard H.

    1992-01-01

    The need for increased maneuverability has its genesis from the first aerial combat engagement when two adversaries entangled themselves in a deadly aerial dance trying to gain the advantage over the other. It has only been in the past two decades that technologies have been investigated to increase aircraft control at maneuver attitudes that are typically dominated by highly separated flows. These separated flow regions are aggravated by advanced fighter aircraft shapes required to defeat an electronic enemy. This paper discusses passive and active devices that can be used to enhance the maneuverability of advanced fighter aircraft through vortex flow control, boundary layer control, and innovative flow manipulation.

  6. Advanced technology for future space propulsion systems

    NASA Technical Reports Server (NTRS)

    Diehl, Larry A.

    1989-01-01

    The NASA Project Pathfinder contains programs to provide technologies for future transfer vehicles including those powered by both advanced chemical and electric propulsion rockets. This paper discusses the Chemical Transfer Propulsion and Cargo Vehicle Propulsion elements of Pathfinder. The program requirements and goals for both elements are discussed, and technical activities which are planned or underway are summarized. Recent progress in programs which support or proceed the Pathfinder activities is detailed. In particular, the NASA Program for Advanced Orbital Transfer Vehicle Propulsion, which acted as the precursor for the Chemical Transfer Propulsion element of Pathfinder is summarized.

  7. Advanced endoscopic technologies for colorectal cancer screening

    PubMed Central

    Obstein, Keith L; Valdastri, Pietro

    2013-01-01

    Colorectal cancer is the third most common cancer in men and the second most common cancer in women worldwide. Diagnosing colorectal has been increasingly successful due to advances in technology. Flexible endoscopy is considered to be an effective method for early diagnosis and treatment of gastrointestinal cancer, making it a popular choice for screening programs. However, millions of people who may benefit from endoscopic colorectal cancer screening fail to have the procedure performed. Main reasons include psychological barriers due to the indignity of the procedure, fear of procedure related pain, bowel preparation discomfort, and potential need for sedation. Therefore, an urgent need for new technologies addressing these issues clearly exists. In this review, we discuss a set of advanced endoscopic technologies for colorectal cancer screening that are either already available or close to clinical trial. In particular, we focus on visual-inspection-only advanced flexible colonoscopes, interventional colonoscopes with alternative propulsion mechanisms, wireless capsule colonoscopy, and technologies for intraprocedural bowel cleansing. Many of these devices have the potential to reduce exam related patient discomfort, obviate the need for sedation, increase diagnostic yield, reduce learning curves, improve access to screening, and possibly avert the need for a bowel preparation. PMID:23382621

  8. Ceramic technology for advanced heat engines project

    SciTech Connect

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  9. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  10. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  11. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  12. Advanced Sciences and Technology Research for Astrodynamics

    NASA Astrophysics Data System (ADS)

    Jah, M.

    The Advanced Sciences and Technology Research Institute for Astrodynamics (ASTRIA) has been created as a research endeavor that focuses all astrodynamics R&D within the Air Force Research Laboratory (AFRL). ASTRIA is mainly a consortium of academic partners brought together to bear on the nation's challenges as related to astrodynamics sciences and technologies. An overview of ASTRIA is presented as well as examples of several research efforts that are relevant to data/track association, UCT/cross-tagging mitigation, and attitude recovery from light curve data.

  13. Advanced rotorcraft technology: Task force report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

  14. Second NASA Advanced Composites Technology Conference

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

  15. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    C.M. Boyer II; N.R. Fairchild, Jr.

    2000-04-01

    As part of Task 1 in the Advanced Technologies for Stripper Gas Well Enhancement, Holditch-Reservoir Technologies has partnered with two Appalachian Basin producers, Great Lakes Energy (formerly Range Resources) and Belden & Blake Corporation, to develop methodologies for the identification and enhancement of stripper wells with economic upside potential. The industry partners have provided data for over 700 wells in northwest Pennsylvania. The Task 1 goals of this project are to develop and validate methodologies that can quickly and cost effectively identify wells with enhancement potential. We are currently working with the well data supplied by the industry partners to develop and validate these methodologies.

  16. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  17. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  18. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  19. Recent technological advancements in breast ultrasound.

    PubMed

    Eisenbrey, John R; Dave, Jaydev K; Forsberg, Flemming

    2016-08-01

    Ultrasound is becoming increasingly common as an imaging tool for the detection and characterization of breast tumors. This paper provides an overview of recent technological advancements, especially those that may have an impact in clinical applications in the field of breast ultrasound in the near future. These advancements include close to 100% fractional bandwidth high frequency (5-18MHz) 2D and 3D arrays, automated breast imaging systems to minimize the operator dependence and advanced processing techniques, such as those used for detection of microcalcifications. In addition, elastography and contrast-enhanced ultrasound examinations that are expected to further enhance the clinical importance of ultrasound based breast tumor screening are briefly reviewed. These techniques have shown initial promise in clinical trials and may translate to more comprehensive clinical adoption in the future. PMID:27179143

  20. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  1. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  2. Advances in resist technology and processing V

    SciTech Connect

    MacDonald, S.A.

    1988-01-01

    These proceedings discuss the technology and processing advances made in the resist materials. The topics included are: Mid-UV photoresists combining chemical amplification and dissolution inhibition; new photoactive compounds for deep-UV lithography; contrast-enhancement materials for mid-UV applications; materials for CMOS and bipolar circuits; effects of ion bombardment in oxygen plasma etching; silicone-based positive photoresist; and ion-etching properties of polysilane polysilane copolymers.

  3. Progress at the Vatican Advanced Technology Telescope

    NASA Astrophysics Data System (ADS)

    West, Steve C.; Nagel, Robert H.; Harvey, David A.; Brar, A.; Phillips, B.; Ray, J.; Trebisky, T. J.; Cromwell, Richard H.; Woolf, Neville J.; Corbally, Chris; Boyle, R.; Blanco, Daniel R.; Otten, L.

    1997-03-01

    The Vatican Advanced Technology Telescope incorporates a fast (f/1.0) borosilicate honeycomb primary mirror and an f/0.9 secondary in an aplanatic Gregorian optical configuration. We provide a brief technical and performance overview by describing the optical layout, the primary and secondary mirror systems, and the telescope drive and control system. Results from a high resolution wavefront sensor and a current wide-field image taken at the f/9 focus demonstrates the overall fine performance of the telescope.

  4. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  5. Further advances in autostereoscopic technology at Dimension Technologies Inc.

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1992-06-01

    Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.

  6. RUBIN Microsatellites for Advanced Space Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    The first new space technology demonstration payload BIRD-RUBIN was developed by OHB- System in co-operation with students from the University of Applied Sciences, Bremen, and was successfully launched July 15th, 2000 together with the scientific satellites CHAMP and MITA onboard a COSMOS 3M launcher. The BIRD-RUBIN mission has tested the telematics technology in space via ORBCOMM network. Small data packages were sent by the hatbox sized system to the ORBCOMM satellite net, then transmitted further on to the ground stations and from that point entered into the internet. The payload user could retrieve the data direct via email account and was able to send commands back to payload in orbit. The next micro satellite RUBIN-2 for advanced space technology demonstration will be launched at the end of 2002 as "secondary" payload on the Russian launcher DNEPR. The RUBIN-2 micro satellite platform will use again the inter-satellite communication mode via Orbcomm network and offers an orbital testbed with low cost, bi-directional and near real-time Internet access. In parallel to the further inter satellite link experiments using Orbcomm, several additional leading edge technology experiments will be done onboard Rubin-2 (electrical propulsion, two loop miniaturized thermal control system, GPS navigation, LI-Ion Battery, etc.). This paper provides an overview of RUBIN micro satellites for advanced space technology demonstrations. The main results of the first BIRD-RUBIN experiment and the goals of the second Rubin-2 mission are described. The potential of low cost technology demonstration missions using Internet and inter satellite communication technology via commercial satellite systems and the piggyback flight opportunities on Russian launchers are discussed.

  7. A Case Study on Advanced Technology: Understanding the Impact of Advanced Technology on Student Performance

    ERIC Educational Resources Information Center

    Morris, Jill Sellars

    2010-01-01

    While research has focused on the effect of technology on student performance, it is not yet known how advanced technology, such as Promethean boards influence student achievement. The purpose of this mixed-method study was to examine how Promethean boards impact academic performance of elementary school students in third and fifth grade…

  8. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  9. Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

  10. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  11. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  12. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  13. National Advanced Drilling and Excavation Technologies Program

    SciTech Connect

    1993-06-15

    The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

  14. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  15. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  16. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Astrophysics Data System (ADS)

    Doyle, Monica M.; O'Neil, Daniel A.; Christensen, Carissa B.

    2005-02-01

    Forecasting technology capabilities requires a tool and a process for capturing state-of-the-art technology metrics and estimates for future metrics. A decision support tool, known as the Advanced Technology Lifecycle Analysis System (ATLAS), contains a Technology Tool Box (TTB) database designed to accomplish this goal. Sections of this database correspond to a Work Breakdown Structure (WBS) developed by NASA's Exploration Systems Research and Technology (ESRT) Program. These sections cover the waterfront of technologies required for human and robotic space exploration. Records in each section include technology performance, operations, and programmatic metrics. Timeframes in the database provide metric values for the state of the art (Timeframe 0) and forecasts for timeframes that correspond to spiral development milestones in NASA's Exploration Systems Mission Directorate (ESMD) development strategy. Collecting and vetting data for the TTB will involve technologists from across the agency, the aerospace industry and academia. Technologists will have opportunities to submit technology metrics and forecasts to the TTB development team. Semi-annual forums will facilitate discussions about the basis of forecast estimates. As the tool and process mature, the TTB will serve as a powerful communication and decision support tool for the ESRT program.

  17. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  18. Advanced thermal management technologies for defense electronics

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  19. Advanced Education and Technology Business Plan, 2010-13

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…

  20. The advanced technology development center (ATDC)

    NASA Astrophysics Data System (ADS)

    Clements, Gregory R.

    2002-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a ``national resource'' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets: this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area (Phase 1); a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount (Phase 2); ``Iron Rocket'' Test Demonstrator (Phase 3); a Processing Facility with a Checkout and Control System (Phase 4); and Future Infrastructure Developments (Phase 5). Initial ATDC development will be completed in 2006. .

  1. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  2. Technological Advances in Deep Brain Stimulation.

    PubMed

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware. PMID:26406128

  3. Advanced supersonic technology propulsion system study

    NASA Technical Reports Server (NTRS)

    Szeliga, R.; Allan, R. D.

    1974-01-01

    This study had the objectives of determining the most promising conventional and variable cycle engine types; the effect of design cruise Mach number (2.2, 2.7 and 3.2) on a commercial supersonic transport; effect of advanced engine technology on the choice of engine cycle; and effect of utilizing hydrogen as the engine fuel. The technology required for the engines was defined, and the levels of development to ensure availability of this technology in advanced aircraft propulsion systems were assessed. No clearcut best conventional or variable cycle engine was identified. The dry bypass turbojet and the duct burning turbofans were initially selected as the best conventional engines, but later results, utilizing augmentation at takeoff, added the mixed-flow augmented turbofan as a promising contender. The modulating air flow, three-rotor variable cycle engine identified the performance features desired from VCE concepts (elimination of inlet drag and reduction in afterbody drag), but was a very heavy and complex engine.

  4. Differential proteomic analysis of respiratory failure in peripheral blood mononuclear cells using iTRAQ technology

    PubMed Central

    SUN, GUOPING; CAO, CUIHUI; CHEN, WENBIAO; ZHANG, YANG; DAI, YONG

    2016-01-01

    Respiratory failure (RF) is a state in which the respiratory system fails by its gas exchange functions. Failure of the lung, which is caused by all types of lung diseases, leads to hypoxaemia with type I respiratory failure. Failure of the pump leads to hypercapnia or type II respiratory failure. Using isobaric tags for relative and absolute quantification (iTRAQ) technology to identify and quantify the total proteins in peripheral blood mononuclear cells (PBMCs) of RF patients and identify the differentially expressed proteome. The present study analyzed the total proteins in the PBMCs of RF patients and healthy controls using the eight-plex iTRAQ added with strong cation-exchange chromatography and liquid chromatography coupled with tandem mass spectrometry. The differentially expressed proteins were identified by MASCOT. A total of 4,795 differentially expressed proteins were identified, and 403 proteins were upregulated and 421 were downregulated. Among them, 4 proteins were significantly differentially expressed, which were upregulated KIAA1520 protein and γ fibrinogen type B (AA at 202) and downregulated chain A, crystal structure of recombinant human platelet factor 4 and myosin regulatory light polypeptide 9. iTRAQ technology is suitable for identifying and quantifying the proteome in the PBMCs of RF patients. The differentially expressed proteins of RF patients have been identified in the present study, and further research of the molecular mechanism of the differentially expressed proteins is required to clarify the pathogenesis and identify novel biomarkers of RF. PMID:27123249

  5. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  6. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  7. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  8. Advanced Technology System Scheduling Governance Model

    SciTech Connect

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  9. IPIRG programs - advances in pipe fracture technology

    SciTech Connect

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  10. Technology readiness for advanced ducted engines

    SciTech Connect

    Eckardt, D.; Brines, G.L.

    1989-01-01

    The Advanced Ducted Engines (ADEs) currently undergoing development for next-generation passenger aircraft typically possess bypass ratios of the order of 12-25 and specific fuel consumption figures 12-17 percent lower than current advanced turbofans. An extensive technology-readiness program has been mounted on behalf of ADE design definition over the last two years, encompassing among its concerns aircraft/engine-installation interference, low pressure-ratio fan aerodynamics, fan/nacelle interactions (including windmilling and thrust-reversal), acoustic characteristics, transonic-drive turbines, and slender nacelle aerodynamic and mechanical design. Both turbine-driven and geared ADE fans, which may be of single-rotating or contrarotating type, are discussed. 5 refs.

  11. Emerging proteomic technologies for elucidating context-dependent cellular signaling events: A big challenge of tiny proportions.

    PubMed

    Parker, Sarah J; Raedschelders, Koen; Van Eyk, Jennifer E

    2015-05-01

    Aberrant cell signaling events either drive or compensate for nearly all pathologies. A thorough description and quantification of maladaptive signaling flux in disease is a critical step in drug development, and complex proteomic approaches can provide valuable mechanistic insights. Traditional proteomics-based signaling analyses rely heavily on in vitro cellular monoculture. The characterization of these simplified systems generates a rich understanding of the basic components and complex interactions of many signaling networks, but they cannot capture the full complexity of the microenvironments in which pathologies are ultimately made manifest. Unfortunately, techniques that can directly interrogate signaling in situ often yield mass-limited starting materials that are incompatible with traditional proteomics workflows. This review provides an overview of established and emerging techniques that are applicable to context-dependent proteomics. Analytical approaches are illustrated through recent proteomics-based studies in which selective sample acquisition strategies preserve context-dependent information, and where the challenge of minimal starting material is met by optimized sensitivity and coverage. This review is organized into three major technological themes: (i) LC methods in line with MS; (ii) antibody-based approaches; (iii) MS imaging with a discussion of data integration and systems modeling. Finally, we conclude with future perspectives and implications of context-dependent proteomics. PMID:25545106

  12. Emerging proteomic technologies for elucidating context-dependent cellular signaling events: A big challenge of tiny proportions

    PubMed Central

    Parker, Sarah J; Raedschelders, Koen; Van Eyk, Jennifer E

    2015-01-01

    Aberrant cell signaling events either drive or compensate for nearly all pathologies. A thorough description and quantification of maladaptive signaling flux in disease is a critical step in drug development, and complex proteomic approaches can provide valuable mechanistic insights. Traditional proteomics-based signaling analyses rely heavily on in vitro cellular monoculture. The characterization of these simplified systems generates a rich understanding of the basic components and complex interactions of many signaling networks, but they cannot capture the full complexity of the microenvironments in which pathologies are ultimately made manifest. Unfortunately, techniques that can directly interrogate signaling in situ often yield mass-limited starting materials that are incompatible with traditional proteomics workflows. This review provides an overview of established and emerging techniques that are applicable to context-dependent proteomics. Analytical approaches are illustrated through recent proteomics-based studies in which selective sample acquisition strategies preserve context-dependent information, and where the challenge of minimal starting material is met by optimized sensitivity and coverage. This review is organized into three major technological themes: (1) LC methods inline with mass spectrometry; (2) Antibody-based approaches; (3) MS Imaging with a discussion of data integration and systems modeling. Finally, we conclude with future perspectives and implications of context-dependent proteomics. PMID:25545106

  13. Advanced Technology Development for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  14. Physics and Advanced Technologies 2001 Annual Report

    SciTech Connect

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  15. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  16. Advanced technology application for combustion chamber concepts

    NASA Technical Reports Server (NTRS)

    Tygielski, Kathy S.

    1992-01-01

    NASA-Marshall is engaged in the development of an Advanced Main Combustion Chamber under the aegis of the Earth-to-Orbit Propulsion Technology Program. AMCC is to be a robust and highly reliable combustion-chamber prototype costing one-third as much as current designs of comparable performance; it will be associated with a reduction of fabrication time by one-half. Attention is presently given to the three component-manufacturing processes used: single-piece investment casting for the structural jacket and manifolds; vacuum plasma spraying, for the combustion liner, and an alternative, platelet-compounded liner.

  17. Advanced radio over fiber network technologies.

    PubMed

    Novak, Dalma; Waterhouse, Rod

    2013-09-23

    The evolution of wireless communication networks supporting emerging broadband services and applications offers new opportunities for realizing integrated optical and wireless network infrastructures. We report on some of our recent activities investigating advanced technologies for next generation converged optical wireless networks. Developments in Active Antenna Systems, mobile fronthaul architectures, and 60 GHz fiber distributed wireless networks are described. We also discuss the potential for analog radio over fiber distribution links as a viable solution for meeting the capacity requirements of new network architectures. PMID:24104183

  18. Management accounting for advanced technological environments.

    PubMed

    Kaplan, R S

    1989-08-25

    Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments. PMID:17773356

  19. Advanced Modulation and Coding Technology Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions.

  20. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  1. Advanced sensors, technology lower costs, boost productivity

    SciTech Connect

    Altpeter, L.L.; Kothari, K.

    1997-04-01

    Lower costs and higher productivity for the maintenance and repair of gas distribution systems has become an ever-increasing challenge to local distribution companies throughout the United States. A significant portion of costs for operations such as pipe location, leak pinpointing and leak surveying, arise from the inadequacies of their sensing technologies, some of which have not changed significantly in nearly 30 years. After reviewing the basic costs of pipe location, leak pinpointing, and leak surveying operations, the paper describes several advanced sensors for gas leak detection, and several sensors for pipe location and leak pinpointing.

  2. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  3. Advanced teleoperation: Technology innovations and applications

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.; Bejczy, Antal K.; Kim, Won S.

    1994-01-01

    The capability to remotely, robotically perform space assembly, inspection, servicing, and science functions would rapidly expand our presence in space, and the cost efficiency of being there. There is considerable interest in developing 'telerobotic' technologies, which also have comparably important terrestrial applications to health care, underwater salvage, nuclear waste remediation and other. Such tasks, both space and terrestrial, require both a robot and operator interface that is highly flexible and adaptive, i.e., capable of efficiently working in changing and often casually structured environments. One systems approach to this requirement is to augment traditional teleoperation with computer assists -- advanced teleoperation. We have spent a number of years pursuing this approach, and highlight some key technology developments and their potential commercial impact. This paper is an illustrative summary rather than self-contained presentation; for completeness, we include representative technical references to our work which will allow the reader to follow up items of particular interest.

  4. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  5. Enabling technologies to advance microbial isoprenoid production.

    PubMed

    Chen, Yun; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-01-01

    Microbial production of isoprenoids provides an attractive alternative to biomass extraction and chemical synthesis. Although widespread research aims for isoprenoid biosynthesis, it is still in its infancy in terms of delivering commercial products. Large barriers remain in realizing a cost-competitive process, for example, developing an optimal microbial cell factory. Here, we summarize the many tools and methods that have been developed in the metabolic engineering of isoprenoid production, with the advent of systems biology and synthetic biology, and discuss how these technologies advance to accelerate the design-build-test engineering cycle to obtain optimum microbial systems. It is anticipated that innovative combinations of new and existing technologies will continue to emerge, which will enable further development of microbial cell factories for commercial isoprenoid production. PMID:25549781

  6. Recent advances in polyethylene separator technology

    NASA Astrophysics Data System (ADS)

    Weighall, M. J.

    The well known technical and production benefits of polyethylene separator materials over other separator materials have prompted a dramatic increase in polyethylene separator usage in recent years. Separator trends in the United States from 1980 to 1996, and in Europe from 1987 to 1992, are shown. The manufacturing process for polyethylene separators is outlined, with particular emphasis on the latest advances in manufacturing technology. These improvements have resulted in a higher quality product, and also benefit the environment because of the sophisticated oil extraction and solvent recovery system. The product quality improvements resulting from the latest manufacturing technology include consistent conformance to dimensional specifications, low electrical resistance, close control of residual oil content, virtual elimination of pinholes, and good running properties on the battery manufacturers' plate enveloping machines. The material can also be manufactured with a very thin backweb to reduce electrical resistance still further.

  7. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  8. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  9. The Advanced Technology Solar Telescope mount assembly

    NASA Astrophysics Data System (ADS)

    Warner, Mark; Cho, Myung; Goodrich, Bret; Hansen, Eric; Hubbard, Rob; Lee, Joon Pyo; Wagner, Jeremy

    2006-06-01

    When constructed on the summit of Haleakala on the island of Maui, Hawaii, the Advanced Technology Solar Telescope (ATST) will be the world's largest solar telescope. The ATST is a unique design that utilizes a state-of-the-art off-axis Gregorian optical layout with five reflecting mirrors delivering light to a Nasmyth instrument rotator, and nine reflecting mirrors delivering light to an instrument suite located on a large diameter rotating coude lab. The design of the telescope mount structure, which supports and positions the mirrors and scientific instruments, has presented noteworthy challenges to the ATST engineering staff. Several novel design solutions, as well as adaptations of existing telescope technologies to the ATST application, are presented in this paper. Also shown are plans for the control system and drives of the structure.

  10. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    C.M. Boyer II; N.R. Fairchild, Jr.; R.J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in the Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) has partnered with two Appalachian Basin producers, Great Lakes Energy (formerly Range Resources) and Belden and Blake Corporation, to develop methodologies for the identification and enhancement of stripper wells with economic upside potential. These industry partners have provided data for over 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Access/Excel based software and processing this well data to generate a list of potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the Final Technical report has begun.

  11. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    C.M. Boyer II; N.R. Fairchild, Jr.; R.J. MacDonald P.G.

    2000-10-01

    As part of Task 1 in the Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) has partnered with two Appalachian Basin producers, Great Lakes Energy (formerly Range Resources) and Belden and Blake Corporation, to develop methodologies for the identification and enhancement of stripper wells with economic upside potential. These industry partners have provided data for over 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Access/Excel based software and processing this well data to generate a list of potential candidate wells that can be used in Phase 2 to validate these methodologies.

  12. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    C.M. Boyer II; N.,R. Fairchild, Jr.; R.J. MacDonald P.G.

    2000-10-01

    As part of Phase 1 in the Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) has partnered with two Appalachian Basin producers, Great Lakes Energy (formerly Range Resources) and Belden & Blake Corporation, to develop methodologies for the identification and enhancement of stripper wells with economic upside potential. These industry partners have provided data for over 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently processing the production and well data and developing our new Access/Excel based software that incorporates our identification methodologies. Upon completion we will generate a list of potential candidate wells that can be used in Phase 2 to validate these methodologies.

  13. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Charles M. Boyer II; Ronald J. MacDonald

    2002-07-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel based software. We have processed all well information and identified potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, the final technical report is almost finished and a draft version has been reviewed by DOE.

  14. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.

  15. Technology Advancement for Integrative Stem Cell Analyses

    PubMed Central

    Jeong, Yoon

    2014-01-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose—by introducing a concept of vertical and horizontal approach—that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment. PMID:24874188

  16. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  17. Advanced Gas Turbine (AGT) technology development project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the final in a series of Technical Summary Reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorizrd under NASA Contract DEN3-167 and sponsored by the DOE. The project was administered by NASA-Lewis Research Center of Cleveland, Ohio. Plans and progress are summarized for the period October 1979 through June 1987. This program aims to provide the US automotive industry the high risk, long range technology necessary to produce gas turbine engines for automobiles that will reduce fuel consumption and reduce environmental impact. The intent is that this technology will reach the marketplace by the 1990s. The Garrett/Ford automotive AGT was designated AGT101. The AGT101 is a 74.5 kW (100 shp) engine, capable of speeds to 100,000 rpm, and operates at turbine inlet temperatures to 1370 C (2500 F) with a specific fuel consumption level of 0.18 kg/kW-hr (0.3 lbs/hp-hr) over most of the operating range. This final report summarizes the powertrain design, power section development and component/ceramic technology development.

  18. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  19. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  20. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  1. Advances in space technology: the NSBRI Technology Development Team

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  2. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  3. Advances in space technology: the NSBRI Technology Development Team.

    PubMed

    Maurer, R H; Charles, H K; Pisacane, V L

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI. PMID:12382926

  4. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  5. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States.

  6. Land reclamation: Advances in research technology

    SciTech Connect

    Younos, T.; Diplas, P.; Mostaghimi, S.

    1992-01-01

    Land reclamation encompasses remediation of industrial wasteland, improvement of infertile land for agricultural production, preservation of wetlands, and restoration of disturbed areas. Land reclamation is an integral part of sustainable development which aims to reconcile economic productivity with environmental preservation. During the 1980s, significant progress was achieved in the application of advanced technologies to sustainable development projects. The goal of this international symposium was to serve as a forum to review current research and state-of-the-art technology dealing with various aspects of land reclamation, and provide an opportunity for professional interaction and exchange of information in a multi-disciplinary setting. The scope of the symposium was as broad as the topic itself. The keynote address by Professor John Cairns focused on a systems approach in land restoration projects and challenges facing scientists in global biotic impoverishment. Other topics discussed in ten mechanical sessions included development and applications of computer models, geographic information systems, remote sensing technology, salinity problems, surface and ground water monitoring, reclamation of mine areas, soil amendment methods and impacts, wetland restoration techniques, and land use planning for resource protection.

  7. [Advances in peroxide-based decontaminating technologies].

    PubMed

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants. PMID:23914512

  8. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  9. Shotgun MS proteomic analysis of bronchoalveolar lavage fluid in normal subjects.

    PubMed

    Nguyen, Elizabeth V; Gharib, Sina A; Schnapp, Lynn M; Goodlett, David R

    2014-10-01

    We provide a review of proteomic techniques used to characterize the bronchoalveolar lavage fluid (BALF) proteome of normal healthy subjects. Bronchoalveolar lavage (BAL) is the most common technique for sampling the components of the alveolar space. The proteomic techniques used to study normal BALF include protein separation by 2DE, whereby proteins were identified by comparison to a reference gel as well as high pressure liquid chromatography (HPLC)-MS/MS, also known as shotgun proteomics. We summarize recent progress using shotgun MS technologies to define the normal BALF proteome. Surprisingly, we find that despite advances in shotgun proteomic technologies over the course of the last 10 years, which have resulted in greater numbers of proteins being identified, the functional landscape of normal BALF proteome was similarly described by all methods examined. PMID:24616423

  10. Shotgun MS proteomic analysis of bronchoalveolar lavage fluid in normal subjects

    PubMed Central

    Nguyen, Elizabeth V.; Gharib, Sina A.; Schnapp, Lynn M.; Goodlett, David R.

    2014-01-01

    We provide a review of proteomic techniques used to characterize the bronchoalveolar lavage fluid (BALF) proteome of normal healthy subjects. Bronchoalveolar lavage (BAL) is the most common technique for sampling the components of the alveolar space. The proteomic techniques used to study normal BALF include protein separation by 2D gel electrophoresis whereby proteins were identified by comparison to a reference gel as well as high pressure liquid chromatography (HPLC)-tandem mass spectrometry technique, also known as shotgun proteomics. We summarize recent progress using shotgun MS technologies to define the normal BALF proteome. Surprisingly, we find that despite advances in shotgun proteomic technologies over the course of the last ten years, which have resulted in greater numbers of proteins being identified, the functional landscape of normal BALF proteome was similarly described by all methods examined. PMID:24616423

  11. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    A cooperative government-industry effort, the Energy Efficient Engine Project, to develop the advanced technology base for future commercial development of a new generation of more fuel conservative turbofan engines for airline use is described. Engine configurations that are dependent upon technology advances in each major engine component are defined and current design and development of the advanced components are included.

  12. Advanced Education and Technology Business Plan, 2010-13. Highlights

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  13. Technological advances in electrospinning of nanofibers

    NASA Astrophysics Data System (ADS)

    Teo, Wee-Eong; Inai, Ryuji; Ramakrishna, Seeram

    2011-02-01

    Progress in the electrospinning techniques has brought new methods for the production and construction of various nanofibrous assemblies. The parameters affecting electrospinning include electrical charges on the emerging jet, charge density and removal, as well as effects of external perturbations. The solvent and the method of fiber collection also affect the construction of the final nanofibrous architecture. Various techniques of yarn spinning using solid and liquid surfaces as well as surface-free collection are described and compared in this review. Recent advances allow production of 3D nanofibrous scaffolds with a desired microstructure. In the area of tissue regeneration and bioengineering, 3D scaffolds should bring nanofibrous technology closer to clinical applications. There is sufficient understanding of the electrospinning process and experimental results to suggest that precision electrospinning is a real possibility.

  14. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.

  15. Advances in uncooled technology at BAE SYSTEMS

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Kohin, Margaret; Leary, Arthur R.; Blackwell, Richard J.; Rumbaugh, Roy N.

    2003-09-01

    BAE SYSTEMS has made tremendous progress in uncooled technology and systems in the last year. In this paper we present performance results and imagery from our latest 640x480 and 320x240 small pixel focal plane arrays. Both were produced using submicron lithography and have achieved our lowest NETDs to date. Testing of the 320x240 devices has shown TNETDs of 30mK at F/1. Video imagery from our 640 x 480 uncooled camera installed in a POINTER Unattended Aerial Vehicle is also shown. In addition, we introduce our newest commercial imaging camera core, the SCC500 and show its vastly improved characteristics. Lastly, plans for future advancements are outlined.

  16. Advanced information technology: Building stronger databases

    SciTech Connect

    Price, D.

    1994-12-01

    This paper discusses the attributes of the Advanced Information Technology (AIT) tool set, a database application builder designed at the Lawrence Livermore National Laboratory. AIT consists of a C library and several utilities that provide referential integrity across a database, interactive menu and field level help, and a code generator for building tightly controlled data entry support. AIT also provides for dynamic menu trees, report generation support, and creation of user groups. Composition of the library and utilities is discussed, along with relative strengths and weaknesses. In addition, an instantiation of the AIT tool set is presented using a specific application. Conclusions about the future and value of the tool set are then drawn based on the use of the tool set with that specific application.

  17. Advanced monolithic pixel sensors using SOI technology

    NASA Astrophysics Data System (ADS)

    Miyoshi, Toshinobu; Arai, Yasuo; Asano, Mari; Fujita, Yowichi; Hamasaki, Ryutaro; Hara, Kazuhiko; Honda, Shunsuke; Ikegami, Yoichi; Kurachi, Ikuo; Mitsui, Shingo; Nishimura, Ryutaro; Tauchi, Kazuya; Tobita, Naoshi; Tsuboyama, Toru; Yamada, Miho

    2016-07-01

    We are developing advanced pixel sensors using silicon-on-insulator (SOI) technology. A SOI wafer is used; top silicon is used for electric circuit and bottom silicon is used as a sensor. Target applications are high-energy physics, X-ray astronomy, material science, non-destructive inspection, medical application and so on. We have developed two integration-type pixel sensors, FPIXb and INTPIX7. These sensors were processed on single SOI wafers with various substrates in n- or p-type and double SOI wafers. The development status of double SOI sensors and some up-to-date test results of n-type and p-type SOI sensors are shown.

  18. Applications technology satellites advanced mission study

    NASA Technical Reports Server (NTRS)

    Gould, L. M.

    1972-01-01

    Three spacecraft configurations were designed for operation as a high powered synchronous communications satellite. Each spacecraft includes a 1 kw TWT and a 2 kw Klystron power amplifier feeding an antenna with multiple shaped beams. One of the spacecraft is designed to be boosted by a Thor-Delta launch vehicle and raised to synchronous orbit with electric propulsion. The other two are inserted into a elliptical transfer orbit with an Atlas Centaur and injected into final orbit with an apogee kick motor. Advanced technologies employed in the several configurations include tubes with multiple stage collectors radiating directly to space, multiple-contoured beam antennas, high voltage rollout solar cell arrays with integral power conditioning, electric propulsion for orbit raising and on-station attitude control and station-keeping, and liquid metal slip rings.

  19. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  20. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    SciTech Connect

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

  1. Proteomic insights into floral biology.

    PubMed

    Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng

    2016-08-01

    The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26945514

  2. SwellGel: a sample preparation affinity chromatography technology for high throughput proteomic applications.

    PubMed

    Haney, Paul J; Draveling, Connie; Durski, Wendy; Romanowich, Kathryn; Qoronfleh, M Walid

    2003-04-01

    Development of high throughput systems for purification and analysis of proteins is essential for the success of today's proteomic research. We have developed an affinity chromatography technology that allows the customization of high capacity/high throughput chromatographic separation of proteins. This technology utilizes selected chromatography media that are dehydrated to form uniform SwellGel discs. Unlike wet resin slurries, these discs are easily adaptable to a variety of custom formats, eliminating problems associated with resin dispensing, equilibration, or leakage. Discs can be made in assorted sizes (resin volume 15 microl-3 ml) dispensed in various formats (384-, 96-, 48-, and 24-well microplates or columns) and different ligands can be attached to the matrix. SwellGel discs rapidly hydrate upon addition of either water or the protein sample, providing dramatically increased capacity compared to coated plates. At the same time, the discs offer greater stability, reproducibility, and ease of handling than standard wet chromatography resins. We previously reported the development of SwellGel for the purification of 6x His- and glutathione-S-transferase (GST)-tagged fusion proteins [Prot. Exp. Purif. 22 (2001) 359-366]. In this paper, we discuss an expanded list of SwellGel stabilized chromatographic methods that have been adapted to high throughput formats for processing protein samples ranging from 10 microl to 10 ml (1 microg to 50 mg protein). Data are presented applying SwellGel discs to high throughput proteomic applications such as affinity tag purification, protein desalting, the removal of abundant proteins from serum including albumin and immunoglobulin, and the isolation of phosphorylated peptides for mass spectrometry. PMID:12699691

  3. CCSDS - Advancing Spaceflight Technology for International Collaboration

    NASA Technical Reports Server (NTRS)

    Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.

  4. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  5. Advanced Life Support Technologies and Scenarios

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  6. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  8. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  9. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  10. Advanced Technology for Isolating Payloads in Microgravity

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    1997-01-01

    advances in isolation technology for that particular component. The final section presents some concluding thoughts and a summary of anticipated advances in research and development for isolating microgravity experiments.

  11. Technology Advancement of the Visible Nulling Coronagraph

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  12. Morpheus: Advancing Technologies for Human Exploration

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael

    2012-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional

  13. The Complete Picture: "Standards for Technological Literacy" and "Advancing Excellence in Technological Literacy."

    ERIC Educational Resources Information Center

    Technology Teacher, 2003

    2003-01-01

    Provides an overview of the "Standards for Technological Literacy: Content for the Study of Technology" (STL) and "Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards" (AETL). Shows how the documents work together to advance the technological literacy of technology educators and K-12…

  14. Advanced Wall Framing; BTS Technology Fact Sheet

    SciTech Connect

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Advanced framing techniques for home construction have been researched extensively and proven effective. Both builders and home owners can benefit from advanced framing. Advanced framing techniques create a structurally sound home that has lower material and labor costs than a conventionally framed house. This fact sheet describes advanced framing techniques, design considerations, and framing.

  15. ADVANCED PROTEOMICS AND BIOINFORMATICS TOOLS IN TOXICOLOGY RESEARCH: OVERCOMING CHALLENGES TO PROVIDE SIGNIFICANT RESULTS

    EPA Science Inventory

    This presentation specifically addresses the advantages and limitations of state of the art gel, protein arrays and peptide-based labeling proteomic approaches to assess the effects of a suite of model T4 inhibitors on the thyroid axis of Xenopus laevis.

  16. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Astrophysics Data System (ADS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-04-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  17. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-01-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  18. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  19. Advanced Thermal Control Technologies for "CEV" (New Name: ORION)

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Westheimer, David; Ewert, Michael; Hasan, Mojib; Anderson, Molly; Tuan, George; Beach, Duane

    2007-01-01

    NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.

  20. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing

  1. Virtual Labs in proteomics: new E-learning tools.

    PubMed

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. PMID:22484059

  2. Sensitive oil industry: users of advanced technology

    NASA Astrophysics Data System (ADS)

    Lindsey, Rhonda P.; Barnes, James L.

    1999-01-01

    The oil industry exemplifies mankind's search for resource sin a harsh environment here on the earth. Traditionally, the oil industry has created technological solutions to increasingly difficult exploration, drilling, and production activities as the need has arisen. The depths to which a well must be drilled to produce the finite hydrocarbon resources are increasing and the surface environments during oil and gas activities is the key to success, not information that is hours old or incomplete; but 'real-time' data that responds to the variable environment downhole and allows prediction and prevention. The difference that information makes can be the difference between a successfully drilled well and a blowout that causes permanent damage to the reservoir and may reduce the value of the reserves downhole. The difference that information makes can make the difference between recovering 22 percent of the hydrocarbon reserves in a profitable field and recovering none of the reserves because of an uneconomic bottom line. Sensors of every type are essential in the new oil and gas industry and they must be rugged, accurate, affordable, and long lived. It is not just for the sophisticated majors exploring the very deep waters of the world but for the thousands of independent producers who provide a lion's share of the oil and gas produced in the US domestic market. The Department of Energy has been instrumental in keeping reserves from being lost by funding advancements in sensor technology. Due to sponsorship by the Federal Government, the combined efforts of researchers in the National Laboratories, academic institutions, and industry research centers are producing increasingly accurate tools capable of functioning in extreme conditions with economics acceptable to the accountants of the industry. Three examples of such senors developed with Federal funding are given.

  3. Physics and Advanced Technologies 2003 Annual Report

    SciTech Connect

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  4. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology

  5. Introduction to cadet center for advanced data evaluation technology

    NASA Technical Reports Server (NTRS)

    Schulbach, Cathy; Jorgensen, C.

    1991-01-01

    Viewgraphs on the Center for Advanced Data Evaluation Technology are presented. Topics covered include: technology problem; human problem; goals and objectives; key CADET focus; and elements of the modeling process.

  6. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  7. Advanced Technology for Isolating Payloads in Microgravity

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    1997-01-01

    advances in isolation technology for that particular component. The final s

  8. Advanced technologies for encryption of satellite links

    NASA Astrophysics Data System (ADS)

    McMahan, Sherry S.

    The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.

  9. The Advanced Communication Technology Satellite and ISDN

    NASA Technical Reports Server (NTRS)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  10. Advanced Gas Turbine (AGT) Technology Development Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set.

  11. Advanced ignition and propulsion technology program

    SciTech Connect

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  12. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  13. Advance in phage display technology for bioanalysis.

    PubMed

    Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong

    2016-06-01

    Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. PMID:27061133

  14. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2003-04-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel programs. During the last quarter of 2002, we received additional data for approximately 2,200 wells from Great Lakes. This information pertains to their Cooperstown field located in northwestern Pennsylvania. We recognized approximately 130 potential remediation candidates, and Great Lakes' personnel are currently reviewing this list for viable remediation. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We are also determining whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.

  15. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2003-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel based software. We have received additional data from Great Lakes pertaining to a Cooperstown field that is expected to have numerous remediation candidates. This field will provide a rigorous test of out software and analytical methods. We have processed all the information provided to us before receiving the Cooperstown data and are currently analyzing the new data. Great Lakes will be providing supplemental data in the near future that will identify the original operator of the wells. This will prove valuable in determining whether a statistically significant number of underperformers are a result of specific operators and their associated completion/stimulation methods. We have identified potential candidate wells for Phase 2 to validate the new methodologies. In addition, a draft version of a final report has been reviewed by DOE.

  16. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2005-04-27

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project were to develop and validate methodologies that can quickly and cost-effectively identify underperforming wells with remediation potential. We enhanced and streamlined our software and are using it with Microsoft's{trademark} Access and Excel programs. During the last quarter of 2002, Great Lakes provided us with additional data for approximately 2,200 wells located in their Cooperstown field situated in northwestern Pennsylvania. We identified approximately 220 potential remediation candidates and Great Lakes personnel reviewed this list for viability and selected more than twenty five wells to be reworked. Approximately fifteen wells have been successfully reworked as of year-end 2004. This field provided a rigorous test of our software and analytical methods. We processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells.

  17. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2004-07-14

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify underperforming wells with remediation potential. We have enhanced and streamlined our software and are using it with the latest versions of Microsoft's{trademark} Access and Excel programs. During the last quarter of 2002, Great Lakes provided us with additional data for approximately 2,200 wells located in their Cooperstown field situated in northwestern Pennsylvania. We identified approximately 130 potential remediation candidates, and Great Lakes personnel are currently reviewing this list for viable remediation. Within the last few weeks, a list of five candidates have been chosen for refract, in addition to two alternate wells. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We have determined whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.

  18. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2003-04-04

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel programs. During the last quarter of 2002, we received additional data for approximately 2,200 wells from Great Lakes. This information pertains to their Cooperstown field located in northwestern Pennsylvania. We recognized approximately 130 potential remediation candidates, and Great Lakes' personnel are currently reviewing this list for viable remediation. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We have determined whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.

  19. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect

    Ronald J. MacDonald

    2002-11-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel based software. We have received additional data from Great Lakes pertaining to a Cooperstown field that is expected to have numerous remediation candidates. This field will provide a rigorous test of out software and analytical methods. We have processed all the information available to us before the Cooperstown data was provided. We have identified potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, a draft version of a final report has been reviewed by DOE.

  20. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  1. Polyploidy and the proteome.

    PubMed

    Soltis, Douglas E; Misra, Biswapriya B; Shan, Shengchen; Chen, Sixue; Soltis, Pamela S

    2016-08-01

    Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26993527

  2. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...

  3. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...

  4. Proteomic Analysis of Mesenchymal Stem Cells.

    PubMed

    Faça, Vitor Marcel; Orellana, Maristela Delgado; Greene, Lewis Joel; Covas, Dimas Tadeu

    2016-01-01

    Mesenchymal stem or stromal cells (MSCs) are of great interest in biomedical sciences and disease treatment because of their multipotency and wide range of applications for tissue repair and suppression of the immune system. Proteomic analysis of these unique cells has contributed to the identification of important pathways utilized by MSCs to differentiate into distinct tissues as well as important proteins responsible for their special function in vivo and in vitro. However, comparison of proteomic studies in MSCs still suffers from the heterogeneity of MSC preparations. In addition, as proteomics technology advances, several studies can be revisited in order to increase the depth of analysis and, therefore, elucidate more refined mechanisms involved in MSC functionalities. Here, we present detailed protocols to obtain MSCs, as well as protocols to perform in-depth profiling and quantification of alterations in MSC proteomes. PMID:27236693

  5. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics

    PubMed Central

    DalCorso, Giovanni; Fasani, Elisa; Furini, Antonella

    2013-01-01

    Hyperaccumulator/hypertolerant plant species have evolved strategies allowing them to grow in metal-contaminated soils, where they accumulate high concentrations of heavy metals in their shoots without signs of toxicity. The mechanisms that allow enhanced metal uptake, root-to-shoot translocation and detoxification in these species are not fully understood. Complementary approaches such as transcriptomic-based DNA microarrays and proteomics have recently been used to gain insight into the molecular pathways evolved by metal hyperaccumulator/hypertolerant species. Proteomics has the advantage of focusing on the translated portion of the genome and it allows to analyze complex networks of proteins. This review discusses the recent analysis of metal hyperaccumulator/hypertolerant plant species using proteomics. Changes in photosynthetic proteins, sulfur, and glutathione metabolism, transport, biotic and xenobiotic defenses as well as the differential regulation of proteins involved in signaling and secondary metabolism are discussed in relation to metal hyperaccumulation. We also consider the potential contribution of several proteins to the hyperaccumulation phenotype. PMID:23898342

  6. CE-ESI-MS for bottom-up proteomics: Advances in separation, interfacing and applications.

    PubMed

    Heemskerk, Anthonius A M; Deelder, André M; Mayboroda, Oleg A

    2016-01-01

    With the development of more sensitive hyphenation strategies for capillary electrophoresis-electrospray-mass spectrometry the technique has reemerged as technique with high separation power combined with high sensitivity in the analysis of peptides and protein digests. This review will discuss the newly developed hyphenation strategies for CE-ESI-MS and their application in bottom-up proteomics as well as the applications in the same time span, 2009 to present, using co-axial sheathliquid. Subsequently all separate aspects in the development of a CE-ESI-MS method for bottom-up proteomics shall be discussed, highlighting certain applications and discussing pros and cons of the various choices. The separation of peptides in a capillary electrophoresis system is discussed including the great potential for modeling of this migration of peptides due to the simple electrophoretic separation process. Furthermore, the technical aspects of method development are discussed, namely; background electrolyte choice, coating of the separation capillary and chosen loading method. Finally, conclusions and an outlook on future developments in the field of bottom-up proteomics by CE-ESI-MS will be provided. PMID:24852088

  7. Closing the gap between brain banks and proteomics to advance the study of neurodegenerative diseases.

    PubMed

    Paraizo Leite, Renata Elaine; Tenenholz Grinberg, Lea

    2015-10-01

    Neurodegenerative diseases (NDs), such as Alzheimer's disease and Parkinson's disease, are among the most debilitating neurological disorders, and as life expectancy rises quickly around the world, the scientific and clinical challenges of dealing with them will also increase dramatically, putting increased pressure on the biomedical community to come up with innovative solutions for the understanding, diagnosis, and treatment of these conditions. Despite several decades of intensive research, there is still little that can be done to prevent, cure, or even slow down the progression of NDs in most patients. There is an urgent need to develop new lines of basic and applied research that can be quickly translated into clinical application. One way to do this is to apply the tools of proteomics to well-characterized samples of human brain tissue, but a closer partnership must still be forged between proteomic scientists, brain banks, and clinicians to explore the maximum potential of this approach. Here, we analyze the challenges and potential benefits of using human brain tissue for proteomics research toward NDs. PMID:26059592

  8. Advanced Control and Power System (ACAPS) Technology Program

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Groom, N. J.

    1983-01-01

    The advanced control and power system (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  9. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    ScienceCinema

    Secretary Chu

    2010-09-01

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation?s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  10. Advanced Technological Education Program: 1995 Awards and Activities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    The Advanced Technological Education (ATE) program promotes exemplary improvement in advanced technological education at the national and regional level through support of curriculum development and program improvement at the undergraduate and secondary school levels, especially for technicians being educated for the high performance workplace of…

  11. Advanced Education and Technology Business Plan, 2009-12

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The Ministry of Advanced Education and Technology consists of the following entities for budget purposes: Department of Advanced Education and Technology, the Access to the Future Fund, Alberta Enterprise Corporation, Alberta Research Council Inc., and iCORE Inc. Achieving the Ministry's goals involves the work and coordination of many…

  12. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2005, as published by DOE. (3) In the case of an electric drive vehicle with the ability to recharge... 10 Energy 4 2012-01-01 2012-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy... PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  13. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2005, as published by DOE. (3) In the case of an electric drive vehicle with the ability to recharge... 10 Energy 4 2013-01-01 2013-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy... PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  14. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2005, as published by DOE. (3) In the case of an electric drive vehicle with the ability to recharge... 10 Energy 4 2014-01-01 2014-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy... PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is...

  15. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    SciTech Connect

    Secretary Chu

    2009-07-16

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation’s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  16. Advanced Education and Technology Business Plan, 2008-11

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The Ministry of Advanced Education and Technology's 2008-11 business plan identifies how it plans to work over the next three years to enhance advanced learning opportunities and innovation for all Albertans. Alberta's advanced learning system is composed of public board-governed institutions, the apprenticeship and industry training system,…

  17. Stable isotope dimethyl labeling combined with LTQ mass spectrometric detection, a quantitative proteomics technology used in liver cancer research

    PubMed Central

    TANG, BO; LI, YANG; ZHAO, LIANG; YUAN, SHENGGUANG; WANG, ZHENRAN; LI, BO; CHEN, QIAN

    2013-01-01

    Liver cancer is a common malignant disease, with high incidence and mortality rates. The study on the proteomics of liver cancer has attracted particular attention. The quantitative study method of proteomics depends predominantly on two-dimensional (2D) gel electrophoresis. In the present study we reported a rapid and accurate proteomics quantitative study method of high repeatability that includes the use of stable isotope labeling for the extraction of proteins and peptides via enzymolysis to achieve new type 2D capillary liquid chromatography-mass spectrometry separation using the separation mode of cation-exchange chromatography in conjunction with reversed-phase chromatography. LTQ OrbiTrap mass spectrometry detection was also performed. A total of 188 differential proteins were analyzed, including 122 upregulating [deuterium/hydrogen ratio (D/H) >1.5)] and 66 downregulating proteins (D/H<0.67). These proteins may play an important role in the occurrence, drug resistance, metastasis and recurrence of cancer or other pathological processes. Such a proteomics technology may provide biological data as well as a new methodological basis for liver cancer research. PMID:24648984

  18. Advanced technology's impact on compressor design and development - A perspective

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  19. Advanced technologies impact on compressor design and development: A perspective

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.

    1989-01-01

    A historical perspective of the impact of advanced technologies on compression system design and development for aircraft gas turbine applications is presented. A bright view of the future is projected in which further advancements in compression system technologies will be made. These advancements will have a significant impact on the ability to meet the ever-more-demanding requirements being imposed on the propulsion system for advanced aircraft. Examples are presented of advanced compression system concepts now being studied. The status and potential impact of transitioning from an empirically derived design system to a computationally oriented system are highlighted. A current NASA Lewis Research Center program to enhance this transitioning is described.

  20. The Staphylococcus aureus proteome.

    PubMed

    Otto, Andreas; van Dijl, Jan Maarten; Hecker, Michael; Becher, Dörte

    2014-03-01

    Staphylococcus aureus is a Gram-positive commensal bacterium that is regarded as a major threat for modern health care systems. This relates both to the ability of S. aureus to overcome antibiotic therapy by developing high-level resistance against multiple antibiotics and this bacterium's extensive arsenal of virulence factors. Understanding the mechanisms of resistance and functional studies on stress and starvation responses are the main goals of proteomics in staphylococcal research. This review high-lights recent advances in gel-based and gel-free proteomics analyses of S. aureus and pinpoints the importance of location-specific proteomics studies targeting the cytosol, the membrane, the cell surface and the extracellular milieu in combination with integrated global proteome studies. Emerging hot topics in staphylococcal proteomics are discussed with special focus on in vivo proteomics, membrane vesicles, biofilm formation and the acquisition of absolute proteome data for systems biological modeling approaches. PMID:24439828

  1. The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    1995-01-01

    The goal of the Reusable Launch Vehicle (RLV) technology program is formulated, and the primary objectives of RLV are listed. RLV technology program implementation phases are outlined. X-33 advanced technology demonstrator is described. Program management is addressed.

  2. The Escherichia coli Proteome: Past, Present, and Future Prospects†

    PubMed Central

    Han, Mee-Jung; Lee, Sang Yup

    2006-01-01

    Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308

  3. The Advanced Technology Solar Telescope enclosure

    NASA Astrophysics Data System (ADS)

    Phelps, L.; Barr, J.; Dalrymple, N.; Fraser, M.; Hubbard, R.; Wagner, J.; Warner, M.

    2006-06-01

    Telescope enclosure design is based on an increasingly standard set of criteria. Enclosures must provide failsafe protection in a harsh environment for an irreplaceable piece of equipment; must allow effective air flushing to minimize local seeing while still attenuating wind-induced vibration of the telescope; must reliably operate so that the dome is never the reason for observatory down time; must provide access to utilities, lifting devices and support facilities; and they must be affordable within the overall project budget. The enclosure for the Advanced Technology Solar Telescope (ATST) has to satisfy all these challenging requirements plus one more. To eliminate so-called external dome seeing, the exterior surfaces of the enclosure must be maintained at or just below ambient air temperature while being subjected to the full solar loading of an observing day. Further complicating the design of the ATST enclosure and support facilities are the environmental sensitivities and high construction costs at the selected site - the summit of Haleakala on the island of Maui, Hawaii. Previous development work has determined an appropriate enclosure shape to minimize solar exposure while allowing effective interior flushing, and has demonstrated the feasibility of controlling the exterior skin temperature with an active cooling system. This paper presents the evolution of the design since site selection and how the enclosure and associated thermal systems have been tailored to the particular climatic and terrain conditions of the site. Also discussed are load-reduction strategies that have been identified through thermal modeling, CFD modeling, and other analyses to refine and economize the thermal control systems.

  4. Advanced microlithography process with chemical shrink technology

    NASA Astrophysics Data System (ADS)

    Kanda, Takashi; Tanaka, Hatsuyuki; Kinoshita, Yoshiaki; Watase, Natsuo; Eakin, Ronald J.; Ishibashi, Takeo; Toyoshima, Toshiyuki; Yasuda, Naoki; Tanaka, Mikihiro

    2000-06-01

    Mitsubishi Electric Corporation (MELCO) has developed an advanced microlithographic process for producing 0.1 micrometer contact holes (CH). A chemical shrink technology, RELACSTM (Resolution Enhancement Lithography Assisted by Chemical Shrink), utilizes the crosslinking reaction catalyzed by the acid component existing in a predefined resist pattern. This 'RELACSTM' process is a hole shrinking procedure that includes simple coating, baking, and rinse steps applied after conventional photolithography. This paper examines the process parameters affecting shrinkage of CH size. We subsequently evaluated the dependency of CH shrinkage on resist formulation. We conducted investigations of shrink magnitude dependency on each process parameter. (1) Photoresist lithography process: CH size, exposure dose, post development bake temperature. (2) AZR R200 [a product of Clariant, Japan) K.K.] RELACSTM process: Soft bake temperature, film thickness, mixing bake temperature (diffusion bake temperature), etc. We found that the mixing bake condition (diffusion bake temperature) is one of most critical parameters to affect the amount of CH shrink. Additionally, the structural influence of photoacid generators on shrinkage performance was also investigated in both high and low activation energy resist systems. The shrinkage behavior by the photoacid generator of the resist is considered in terms of the structure (molecular volume) of the photogenerated acid and its acidity (pKa). The results of these studies are discussed in terms of base polymer influence on shrinkage performance and tendency. Process impact of the structure and acidity of the photogenerated acid is explored. Though the experimental acetal type KrF positive resist (low activation energy system) can achieve around 0.1 micrometer CH after RELACSTM processing under the optimized condition, the experimental acrylate type positive resist (high activation energy system) showed less shrinkage under the same process

  5. Plan for advanced microelectronics processing technology application

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  6. Recent advancements in prosthetic hand technology.

    PubMed

    Saikia, Angana; Mazumdar, Sushmi; Sahai, Nitin; Paul, Sudip; Bhatia, Dinesh; Verma, Suresh; Rohilla, Punit Kumar

    2016-07-01

    Recently, significant advances over the past decade have been made in robotics, artificial intelligence and other cognitive related fields, allowing development of highly sophisticated bio-mimetic robotics systems. In addition, enormous number of robots have been designed and assembled by explicitly realising their biological oriented behaviours. To enhance skill behaviours and adequate grasping abilities in these devices, a new phase of dexterous hands has been developed recently with bio-mimetically oriented and bio-inspired functionalities. The aim in writing this review paper is to present a detailed insight towards the development of the bio-mimetic based dexterous robotic multi-fingered artificial hand. An "ideal" upper limb prosthesis should be perceived as a part of their natural body by the amputee and should replicate sensory-motor capabilities of the amputated limb. Upper-limb amputations are most often the result of sudden trauma to the body, although they also can be caused by malignancy, congenital deficiencies and vascular diseases. This paper discusses the different bio-mimetic approaches using a framework that permits for a common description of biological and technical based hand manipulation behaviour. In particular, the review focuses on a number of developments in the inspired robotic systems. In conclusion, the study found that a huge amount of research efforts in terms of kinematics, dynamics, modelling and control methodologies are being put in to improve the present hand technology, thereby providing more functionality to the prosthetic limb of the amputee. This would improve their quality-of-life and help in performing activities of daily living (ADL) tasks with comparative ease in the near future. PMID:27098838

  7. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  8. Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma.

    PubMed

    Nie, Wenna; Yan, Leyu; Lee, Yie H; Guha, Chandan; Kurland, Irwin J; Lu, Haitao

    2016-05-01

    Hepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.g., profiling of DNA damage adducts, RNA modification profiling, proteomics, and metabolomics) stand at the interface between chemistry and biology, and have yielded valuable outcomes from the study of a diversity of complicated diseases. Particularly, these technologies are being broadly used to dissect various biological aspects of HCC with the purpose of biomarker discovery, interrogating pathogenesis as well as for therapeutic discovery. This proof of knowledge-based critical review aims at exploring the selected applications of those defined omics technologies in the HCC niche with an emphasis on translational applications driven by advanced mass spectrometry, toward the specific clinical use for HCC patients. This approach will enable the biomedical community, through both basic research and the clinical sciences, to enhance the applicability of mass spectrometry-based omics technologies in dissecting the pathogenesis of HCC and could lead to novel therapeutic discoveries for HCC. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:331-349, 2016. PMID:24890331

  9. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  10. 76 FR 2662 - Visiting Committee on Advanced Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ...The Visiting Committee on Advanced Technology (VCAT), National Institute of Standards and Technology (NIST), will meet Tuesday, February 1, 2011, from 8:30 a.m. to 5 p.m. and Wednesday, February 2, 2011, from 8:30 a.m. to 2 p.m. The Visiting Committee on Advanced Technology is composed of fifteen members appointed by the Director of NIST who are eminent in such fields as business, research,......

  11. Technical advances in proteomics: new developments in data-independent acquisition

    PubMed Central

    Hu, Alex; Noble, William S.; Wolf-Yadlin, Alejandro

    2016-01-01

    The ultimate aim of proteomics is to fully identify and quantify the entire complement of proteins and post-translational modifications in biological samples of interest. For the last 15 years, liquid chromatography-tandem mass spectrometry (LC-MS/MS) in data-dependent acquisition (DDA) mode has been the standard for proteomics when sampling breadth and discovery were the main objectives; multiple reaction monitoring (MRM) LC-MS/MS has been the standard for targeted proteomics when precise quantification, reproducibility, and validation were the main objectives. Recently, improvements in mass spectrometer design and bioinformatics algorithms have resulted in the rediscovery and development of another sampling method: data-independent acquisition (DIA). DIA comprehensively and repeatedly samples every peptide in a protein digest, producing a complex set of mass spectra that is difficult to interpret without external spectral libraries. Currently, DIA approaches the identification breadth of DDA while achieving the reproducible quantification characteristic of MRM or its newest version, parallel reaction monitoring (PRM). In comparative de novo identification and quantification studies in human cell lysates, DIA identified up to 89% of the proteins detected in a comparable DDA experiment while providing reproducible quantification of over 85% of them. DIA analysis aided by spectral libraries derived from prior DIA experiments or auxiliary DDA data produces identification and quantification as reproducible and precise as that achieved by MRM/PRM, except on low‑abundance peptides that are obscured by stronger signals. DIA is still a work in progress toward the goal of sensitive, reproducible, and precise quantification without external spectral libraries. New software tools applied to DIA analysis have to deal with deconvolution of complex spectra as well as proper filtering of false positives and false negatives. However, the future outlook is positive, and various

  12. Funding Smart Classrooms: Administrating Technological Advances.

    ERIC Educational Resources Information Center

    Vartabedian, Robert A.

    According to the Northwestern University (2002) Web site, smart classrooms also can be called "electronic or technologically enhanced classrooms." Smart classrooms create new educational opportunities by integrating networking, computers, and audio visual technology. In this paper instructional technology, in particular, the "smart classroom" is…

  13. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  14. Advanced Teaching Methods for the Technology Classroom

    ERIC Educational Resources Information Center

    Petrina, Stephen

    2007-01-01

    Because of the nature of their subject, technology teachers have found ways to make learning active and exciting, often through new activities and projects that have real-world relevance. As technology fields grow, the success of technology teachers is tied in with innovation rather than the accomplishments of the past. This book provides a…

  15. Advanced technologies for turbomachinery systems: An overview

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1982-01-01

    Turbomachinery system components and associated technologies are discussed. Specific technologies reviewed include the compressor, turbine, internal flow analysis methods, combustion, fuels, materials, structures, bearings, seals, and lubrication, dynamics and controls, and instrumentation. Analytical procedures as a path to improved performance are discussed. The strong interaction between the various technologies if turbomachinery performance gains are to be realized is reflected.

  16. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky

  17. Advanced technology for America's future in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.

  18. 2004 Physics and Advanced Technologies In the News

    SciTech Connect

    Hazi, A

    2005-11-01

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  19. Advanced Technology Training Program for the Apparel Industry. Final Report.

    ERIC Educational Resources Information Center

    El Paso Community Coll., TX.

    A project developed rapid response, advanced technology courses that met the apparel market labor needs of the El Paso (Texas) community. Courses were designed for four options: computerized marker making and pattern grading, computerized front office systems, high technology machinery operation, and high technology machinery mechanics. The…

  20. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  1. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  2. Application of advanced technologies to future military transports

    NASA Technical Reports Server (NTRS)

    Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.

    1990-01-01

    Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.

  3. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  4. Managing the Perception of Advanced Technology Risks in Mission Proposals

    NASA Technical Reports Server (NTRS)

    Bellisario, Sebastian Nickolai

    2012-01-01

    Through my work in the project proposal office I became interested in how technology advancement efforts affect competitive mission proposals. Technology development allows for new instruments and functionality. However, including technology advancement in a mission proposal often increases perceived risk. Risk mitigation has a major impact on the overall evaluation of the proposal and whether the mission is selected. In order to evaluate the different approaches proposals took I compared the proposals claims of heritage and technology advancement to the sponsor feedback provided in the NASA debriefs. I examined a set of Discovery 2010 Mission proposals to draw patterns in how they were evaluated and come up with a set of recommendations for future mission proposals in how they should approach technology advancement to reduce the perceived risk.

  5. Single Cell Functional Proteomics for Assessing Immune Response in Cancer Therapy: Technology, Methods, and Applications

    PubMed Central

    Ma, Chao; Fan, Rong; Elitas, Meltem

    2013-01-01

    In the past decade, significant progresses have taken place in the field of cancer immunotherapeutics, which are being developed for most human cancers. New immunotherapeutics, such as Ipilimumab (anti-CTLA-4), have been approved for clinical treatment; cell-based immunotherapies such as adoptive cell transfer (ACT) have either passed the final stage of human studies (e.g., Sipuleucel-T) for the treatment of selected neoplastic malignancies or reached the stage of phase II/III clinical trials. Immunotherapetics has become a sophisticated field. Multimodal therapeutic regimens comprising several functional modules (up to five in the case of ACT) have been developed to provide focused therapeutic responses with improved efficacy and reduced side-effects. However, a major challenge remains: the lack of effective and clinically applicable immune assessment methods. Due to the complexity of antitumor immune responses within patients, it is difficult to provide comprehensive assessment of therapeutic efficacy and mechanism. To address this challenge, new technologies have been developed to directly profile the cellular immune functions and the functional heterogeneity. With the goal to measure the functional proteomics of single immune cells, these technologies are informative, sensitive, high-throughput, and highly multiplex. They have been used to uncover new knowledge of cellular immune functions and have been utilized for rapid, informative, and longitudinal monitoring of immune response in clinical anti-cancer treatment. In addition, new computational tools are required to integrate high-dimensional data sets generated from the comprehensive, single cell level measurements of patient’s immune responses to guide accurate and definitive diagnostic decision. These single cell immune function assessment tools will likely contribute to new understanding of therapy mechanism, pre-treatment stratification of patients, and ongoing therapeutic monitoring and assessment

  6. Francisella tularensis novicida proteomic and transcriptomic data integration and annotation based on semantic web technologies

    PubMed Central

    Anwar, Nadia; Hunt, Ela

    2009-01-01

    Background This paper summarises the lessons and experiences gained from a case study of the application of semantic web technologies to the integration of data from the bacterial species Francisella tularensis novicida (Fn). Fn data sources are disparate and heterogeneous, as multiple laboratories across the world, using multiple technologies, perform experiments to understand the mechanism of virulence. It is hard to integrate these data sources in a flexible manner that allows new experimental data to be added and compared when required. Results Public domain data sources were combined in RDF. Using this connected graph of database cross references, we extended the annotations of an experimental data set by superimposing onto it the annotation graph. Identifiers used in the experimental data automatically resolved and the data acquired annotations in the rest of the RDF graph. This happened without the expensive manual annotation that would normally be required to produce these links. This graph of resolved identifiers was then used to combine two experimental data sets, a proteomics experiment and a transcriptomic experiment studying the mechanism of virulence through the comparison of wildtype Fn with an avirulent mutant strain. Conclusion We produced a graph of Fn cross references which enabled the combination of two experimental datasets. Through combination of these data we are able to perform queries that compare the results of the two experiments. We found that data are easily combined in RDF and that experimental results are easily compared when the data are integrated. We conclude that semantic data integration offers a convenient, simple and flexible solution to the integration of published and unpublished experimental data. PMID:19796400

  7. Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes

    DOE PAGESBeta

    Smith, Richard D.

    2002-01-01

    Progress is reviewedmore » towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide ‘accurate mass tags’ (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from ‘potential mass tags’ tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10 5 components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements. Abbreviations : LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.« less

  8. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  9. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  10. A review of advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  11. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  12. MMIC technology for advanced space communications systems

    NASA Technical Reports Server (NTRS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  13. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  14. Advances in Technology, Education and Development

    ERIC Educational Resources Information Center

    Kouwenhoven, Wim, Ed.

    2009-01-01

    From 3rd to 5th March 2008 the International Association of Technology, Education and Development organised its International Technology, Education and Development Conference in Valencia, Spain. Over a hundred papers were presented by participants from a great variety of countries. Summarising, this book provides a kaleidoscopic view of work that…

  15. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  16. Advanced control technology for LSST antennas

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.

    1981-01-01

    The control technology for the realization of large space system technology (LSST) antenna systems was identified and developed. Emphasis was directed at the control of LSST wrap-rib offset-feed antenna. The overall dynamic and control performance of offset-feed antenna was evaluated. Quantitative definitions of control problems were provided and control concepts for future development were identified.

  17. Advanced composite airframe program: Today's technology

    NASA Technical Reports Server (NTRS)

    Good, Danny E.; Mazza, L. Thomas

    1988-01-01

    The Advanced Composite Airframe Program (ACAP) was undertaken to demonstrate the advantages of the application of advanced composite materials and structural design concepts to the airframe structure on helicopters designed to stringent military requirements. The primary goals of the program were the reduction of airframe production costs and airframe weight by 17 and 22 percent respectively. The ACAP effort consisted of a preliminary design phase, detail design, and design support testing, full-scale fabrication, laboratory testing, and a ground/flight test demonstration. Since the completion of the flight test demonstration programs follow-on efforts were initiated to more fully evaluate a variety of military characteristics of the composite airframe structures developed under the original ACAP advanced development contracts. An overview of the ACAP program is provided and some of the design features, design support testing, manufacturing approaches, and the results of the flight test evaluation, as well as, an overview of Militarization Test and Evaluation efforts are described.

  18. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  19. Value analysis for advanced technology products

    NASA Astrophysics Data System (ADS)

    Soulliere, Mark

    2011-03-01

    Technology by itself can be wondrous, but buyers of technology factor in the price they have to pay along with performance in their decisions. As a result, the ``best'' technology may not always win in the marketplace when ``good enough'' can be had at a lower price. Technology vendors often set pricing by ``cost plus margin,'' or by competitors' offerings. What if the product is new (or has yet to be invented)? Value pricing is a methodology to price products based on the value generated (e.g. money saved) by using one product vs. the next best technical alternative. Value analysis can often clarify what product attributes generate the most value. It can also assist in identifying market forces outside of the control of the technology vendor that also influence pricing. These principles are illustrated with examples.

  20. Advancing Sensor Technology for Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mercer, Carolyn R.

    2002-01-01

    NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.

  1. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  2. Advanced microelectronics technologies for future small satellite systems

    NASA Astrophysics Data System (ADS)

    Alkalai, Leon

    2000-03-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjoint markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  3. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  4. Advanced Platform Systems Technology study. Volume 3: Supporting data

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The overall study effort proceeded from the identification of 106 technology topics to the selection of 5 for detail trade studies. The technical issues and options were evaluated through the trade process. Finally, individual consideration was given to costs and benefits for the technologies identified for advancement. Eight priority technology items were identified for advancement. Supporting data generated during the trade selection and trade study process were presented. Space platform requirements, trade study and cost benefits analysis, and technology advancement planning are advanced. The structured approach used took advantage of a number of forms developed to ensure that a consistent approach was employed by each of the diverse specialists that participated. These forms were an intrinsic part of the study protocol.

  5. Advanced Technology Display House. Volume 1: Project Summary and Procedures

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

  6. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  7. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  8. Overview of proteomics studies in obstructive sleep apnea

    PubMed Central

    Feliciano, Amélia; Torres, Vukosava Milic; Vaz, Fátima; Carvalho, Ana Sofia; Matthiesen, Rune; Pinto, Paula; Malhotra, Atul; Bárbara, Cristina; Penque, Deborah

    2015-01-01

    Obstructive sleep apnea (OSA) is an underdiagnosed common public health concern causing deleterious effects on metabolic and cardiovascular health. Although much has been learned regarding the pathophysiology and consequences of OSA in the past decades, the molecular mechanisms associated with such processes remain poorly defined. The advanced high-throughput proteomics-based technologies have become a fundamental approach for identifying novel disease mediators as potential diagnostic and therapeutic targets for many diseases, including OSA. Here, we briefly review OSA pathophysiology and the technological advances in proteomics and the first results of its application to address critical issues in the OSA field. PMID:25770042

  9. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  10. Advanced Technology: It's Available at JPL

    NASA Technical Reports Server (NTRS)

    Edberg, James R.

    1996-01-01

    Non-NASA activities at JPL are the province of the JPL Technology and Applications Programs Directorate, and include working relationships with industry, academia, and other government agencies. Within this Directorate, the JPL Undersea Technology Program endeavors to apply and transfer these capabilities to the area of underwater research and operations. Of particular interest may be a Reversed Electron Attachment Detector (READ). It is a man-portable device capabable of unambiguous detection of unique chemical signatures associated with mines. In addition, there are other JPL technologies which merit investigation for marine applications.

  11. Application of advanced technology to space automation

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  12. Antenna technology for advanced mobile communication systems

    NASA Technical Reports Server (NTRS)

    Rammos, Emmanuel; Roederer, Antoine; Rogard, Roger

    1988-01-01

    The onboard antenna front end is the key subsystem conditioning configuration and performance of mobile communication satellites. The objectives of this paper are to demonstrate this key role and to review L-band satellite antenna technology for earth coverage and regional applications. Multibeam arrays are first discussed, then unfurlable and inflatable reflector antennas are described. These technologies are now qualified in Europe for future mobile systems, for which the optimum choice of antenna technology has been found to be the key to efficient use of spectrum and power resources.

  13. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  14. The ECLSS Advanced Automation Project Evolution and Technology Assessment

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.

  15. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  16. Advanced Education and Technology Business Plan, 2011-14

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. Its core businesses are to: (1) provide strategic leadership for Campus Alberta and Alberta Innovates; and (2) engage learners, industry and the community in learning…

  17. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  18. Infrared detectors: Advances, challenges and new technologies

    NASA Astrophysics Data System (ADS)

    Karim, Amir; Andersson, Jan Y.

    2013-12-01

    Human knowledge of infrared (IR) radiation is about 200 years old. However it was in the late 20th century that we developed a wide range of smart technologies for detection and started to take advantage for our benefit. Today IR detector technology is in its 3rd generation and comes with challenging demands. Based on the propagation of IR radiation through free space it is divided into different transmission windows. The most interesting for thermal imaging are the mid-wave IR (MWIR) and the long-wave IR (LW IR). Infrared detectors for thermal imaging have a number of applications in industry, security, search & rescue, surveillance, medicine, research, meteorology, climatology and astronomy. Currently high-performance IR imaging technology is mainly based on epitaxially grown structures of the small-bandgap bulk alloy mercury-cadmium-telluride (MCT), indium antimonide (InSb) and GaAs based quantum-well infrared photodetectors (QWIPs), depending on the application and wavelength range. However, they operate at low temperatures requiring costly and bulky cryogenic systems. In addition there is always a need for better performance, which generates possibilities for developing new technologies. Some emerging technologies are quantum dot infrared photodetectors (QDIPs), type-II strained layer super-lattice, and QDIPs with type-II band alignment. In this report a brief review of the current and new technologies for high performance IR detectors, will be presented.

  19. The use of advanced technology for visual inspection training.

    PubMed

    Gramopadhye, A; Bhagwat, S; Kimbler, D; Greenstein, J

    1998-10-01

    In the past, training with traditional methods was shown to improve inspection performance. However, advances in technology have automated training and revolutionized the way training will be delivered in the future. Examples of such technology include computer-based simulators, digital interactive video, computer-based training, and intelligent tutoring systems. Despite the lower cost and increased availability of computer technology, the application of advanced technology to training within the manufacturing industry and specifically for inspection has been limited. In this vein, a case study is presented which shows how advanced technology along with our basic knowledge of training principles, can be used to develop a computer-based training program for a contact lens inspection task. Improvements due to computer-based inspection training were measured in an evaluation study and are reported. PMID:9703350

  20. Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992

    SciTech Connect

    Not Available

    1993-03-01

    This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

  1. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  2. The UniProtKB guide to the human proteome

    PubMed Central

    Breuza, Lionel; Poux, Sylvain; Estreicher, Anne; Famiglietti, Maria Livia; Magrane, Michele; Tognolli, Michael; Bridge, Alan; Baratin, Delphine; Redaschi, Nicole

    2016-01-01

    Advances in high-throughput and advanced technologies allow researchers to routinely perform whole genome and proteome analysis. For this purpose, they need high-quality resources providing comprehensive gene and protein sets for their organisms of interest. Using the example of the human proteome, we will describe the content of a complete proteome in the UniProt Knowledgebase (UniProtKB). We will show how manual expert curation of UniProtKB/Swiss-Prot is complemented by expert-driven automatic annotation to build a comprehensive, high-quality and traceable resource. We will also illustrate how the complexity of the human proteome is captured and structured in UniProtKB. Database URL: www.uniprot.org PMID:26896845

  3. Medical technology advances from space research.

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1971-01-01

    NASA-sponsored medical R & D programs for space applications are reviewed with particular attention to the benefits of these programs to earthbound medical services and to the general public. Notable among the results of these NASA programs is an integrated medical laboratory equipped with numerous advanced systems such as digital biotelemetry and automatic visual field mapping systems, sponge electrode caps for electroencephalograms, and sophisticated respiratory analysis equipment.

  4. Underground communications and tracking technology advances

    SciTech Connect

    Fiscor, S.

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  5. DOE planning workshop advanced biomedical technology initiative

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy has mad major contributions in the biomedical sciences with programs in medical applications and instrumentation development, molecular biology, human genome, and computational sciences. In an effort to help determine DOE`s role in applying these capabilities to the nation`s health care needs, a planning workshop was held on January 11--12, 1994. The workshop was co-sponsored by the Department`s Office of Energy Research and Defense Programs organizations. Participants represented industry, medical research institutions, national laboratories, and several government agencies. They attempted to define the needs of the health care industry. identify DOE laboratory capabilities that address these needs, and determine how DOE, in cooperation with other team members, could begin an initiative with the goals of reducing health care costs while improving the quality of health care delivery through the proper application of technology and computational systems. This document is a report of that workshop. Seven major technology development thrust areas were considered. Each involves development of various aspects of imaging, optical, sensor and data processing and storage technologies. The thrust areas as prioritized for DOE are: (1) Minimally Invasive Procedures; (2) Technologies for Individual Self Care; (3) Outcomes Research; (4) Telemedicine; (5) Decision Support Systems; (6) Assistive Technology; (7) Prevention and Education.

  6. Standards Advisor-Advanced Information Technology for Advanced Information Delivery

    NASA Technical Reports Server (NTRS)

    Hawker, J. Scott

    2003-01-01

    Developers of space systems must deal with an increasing amount of information in responding to extensive requirements and standards from numerous sources. Accessing these requirements and standards, understanding them, comparing them, negotiating them and responding to them is often an overwhelming task. There are resources to aid the space systems developer, such as lessons learned and best practices. Again, though, accessing, understanding, and using this information is often more difficult than helpful. This results in space systems that: 1. Do not meet all their requirements. 2. Do not incorporate prior engineering experience. 3. Cost more to develop. 4. Take longer to develop. The NASA Technical Standards Program (NTSP) web site at http://standards.nasa.gov has made significant improvements in making standards, lessons learned, and related material available to space systems developers agency-wide. The Standards Advisor was conceived to take the next steps beyond the current product, continuing to apply evolving information technology that continues to improve information delivery to space systems developers. This report describes the features of the Standards Advisor and suggests a technical approach to its development.

  7. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  8. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  9. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  10. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  11. Advanced technology and truth in advertising

    NASA Astrophysics Data System (ADS)

    Landauer, Rolf

    1990-09-01

    Most proposals for new technological approaches fail, and that is reasonable. Despite that, most of the technological proposals arising from basic science are promoted unhesitantly, with little attention to critical appraisal, even little opportunity for the presentation of criticism. We discuss several case histories related to devices intended to displace the transistor in computer logic. Our list includes devices using control of quantum mechanically coherent electron transmission, devices operating at a molecular level, and devices using nonlinear electromagnetic interaction. Neural networks are placed in a different category; something seems to be coming out of this field after several decades of effort.

  12. Advance Power Technology Demonstration on Starshine 3

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  13. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  14. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  15. They watch and wonder. Public attitudes toward advanced technology

    NASA Technical Reports Server (NTRS)

    Laporte, T.; Metlay, D.

    1975-01-01

    The relationship of technological development to individual and community response was investigated to provide a general conceptual, as well as empirical basis, for an understanding of the impact of advanced technologies on social life. Results of the surveys are presented in tables and graphs.

  16. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    ERIC Educational Resources Information Center

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  17. Advances in Science and Technology Education. ICASE 1987 Yearbook.

    ERIC Educational Resources Information Center

    Holbrook, Jack, Comp.; Chisman, Dennis, Comp.

    This yearbook gathers together trends and advances in science and technology education. The articles were reproduced by ICASE to give a better insight into recent developments and to promote international communication. Short accounts on the authors are given to indicate their involvement in science and technology education and the source of their…

  18. Advanced technology for controlling pollutant emissions from supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.; Diehl, L. A.

    1980-01-01

    Gas turbine engine combustor technology for the reduction of pollutant emissions is summarized. Variations of conventional combustion systems and advanced combustor concepts are discussed. Projected results from far term technology efforts aimed at applying the premixed prevaporized and catalytic combustion techniques to aircraft combustion systems indicate a potential for significant reductions in pollutant emission levels.

  19. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  20. MentorLinks: Advancing Technological Education, 2008-2010

    ERIC Educational Resources Information Center

    Hause, Ellen M., Ed.

    2010-01-01

    MentorLinks, part of the Advancing Technological Education program supported by the National Science Foundation and administered by the American Association of Community Colleges (AACC), provides technical assistance and networking opportunities to improve community college programs that prepare technicians in the science, technology, engineering,…

  1. New Opportunities with the Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Bauer, Robert

    1998-01-01

    Various issues associated with the Advanced Communications Technology Satellite (ACTS) are presented in viewgraph form. Specific topics include: 1) ACTS program review; 2) Spot beam locations; 3) Key ACTS technologies; 4) ACTS accomplishments; 5) Experiments operations; 6) Inclined orbit opportunity, mission and impact; 7) Modifications summary; 8) Experiment opportunity, categories, processes; and 9) Recent and ongoing activity.

  2. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  3. The role of voice technology in advanced helicopter cockpits

    NASA Technical Reports Server (NTRS)

    Harper, H. P.

    1982-01-01

    The status of voice output and voice recognition technology in relation to helicopter cockpit applications is described. The maturing of this technology provides many opportunities for new approaches to crew workload reduction. The helicopter operating environment, potential application areas, and the impact on advanced cockpit design are discussed.

  4. On the Horizon: New Advances in Security Technology

    ERIC Educational Resources Information Center

    Gamble, Cheryl

    2005-01-01

    The worlds of security and technology have been on an intersecting course since the first published account of the use of fingerprint identification made news in 1880 (although unpublished reports suggest its use as early as 1858). In the three and one half years since the September 11 attacks, technological advances across the security field have…

  5. The Federal Government's Role in Advancing Computer Technology

    ERIC Educational Resources Information Center

    Information Hotline, 1978

    1978-01-01

    As part of the Federal Data Processing Reorganization Study submitted by the Science and Technology Team, the Federal Government's role in advancing and diffusing computer technology is discussed. Findings and conclusions assess the state-of-the-art in government and in industry, and five recommendations provide directions for government policy…

  6. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  7. Advanced Mathematical Thinking in a Technological Workplace.

    ERIC Educational Resources Information Center

    Magajna, Zlatan; Monaghan, John

    2003-01-01

    Examines the use of mathematics in a computer-aided design and manufacturing setting, whether this mathematics is related to school mathematics, how technicians understand this mathematics, and the role of technology in the technicians' mathematics-related problem solving activities. Focuses on technician's calculations of the interval volume of…

  8. Technological Advances--New Opportunities for Educators.

    ERIC Educational Resources Information Center

    Senese, Donald J.

    Pointing out a serious decline in the educational attainment of the nation's youth, this discussion of ways in which technology can begin to renew and improve education in American schools argues that, just as cable television and computer teleconferencing opened communication capabilities, the microcomputer presents unlimited possibilities for…

  9. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  10. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  13. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  14. Advanced helmet tracking technology developments for naval aviation

    NASA Astrophysics Data System (ADS)

    Brindle, James H.

    1996-06-01

    There is a critical need across the Services to improve the effectiveness of aircrew within the crewstation by capitalizing on the natural psycho-motor skills of the pilot through the use of a variety of helmet-mounted visual display and control techniques. This has resulted in considerable interest and significant ongoing research and development efforts on the part of the Navy, as well as the Army and the Air Force, in the technology building blocks associated with this area, such as advanced head position sensing or head tracking technologies, helmet- mounted display optics and electronics, and advanced night vision or image intensification technologies.

  15. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    NASA Astrophysics Data System (ADS)

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-06-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.

  16. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation.

    PubMed

    Sheynkman, Gloria M; Shortreed, Michael R; Cesnik, Anthony J; Smith, Lloyd M

    2016-06-12

    Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631

  17. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    PubMed Central

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-01-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631

  18. Metabolomics Coupled with Proteomics Advancing Drug Discovery toward More Agile Development of Targeted Combination Therapies*

    PubMed Central

    Wang, Xijun; Zhang, Aihua; Wang, Ping; Sun, Hui; Wu, Gelin; Sun, Wenjun; Lv, Haitao; Jiao, Guozheng; Xu, Hongying; Yuan, Ye; Liu, Lian; Zou, Dixin; Wu, Zeming; Han, Ying; Yan, Guangli; Dong, Wei; Wu, Fangfang; Dong, Tianwei; Yu, Yang; Zhang, Shuxiang; Wu, Xiuhong; Tong, Xin; Meng, Xiangcai

    2013-01-01

    To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways. PMID:23362329

  19. Advanced Proteomic Analyses Yield a Deep Catalog of Ubiquitylation Targets in Arabidopsis[W

    PubMed Central

    Kim, Do-Young; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.

    2013-01-01

    The posttranslational addition of ubiquitin (Ub) profoundly controls the half-life, interactions, and/or trafficking of numerous intracellular proteins. Using stringent two-step affinity methods to purify Ub-protein conjugates followed by high-sensitivity mass spectrometry, we identified almost 950 ubiquitylation substrates in whole Arabidopsis thaliana seedlings. The list includes key factors regulating a wide range of biological processes, including metabolism, cellular transport, signal transduction, transcription, RNA biology, translation, and proteolysis. The ubiquitylation state of more than half of the targets increased after treating seedlings with the proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-Leu-al), strongly suggesting that Ub addition commits many to degradation by the 26S proteasome. Ub-attachment sites were resolved for a number of targets, including six of the seven Lys residues on Ub itself with a Lys-48>Lys-63>Lys-11>>>Lys-33/Lys-29/Lys-6 preference. However, little sequence consensus was detected among conjugation sites, indicating that the local environment has little influence on global ubiquitylation. Intriguingly, the level of Lys-11–linked Ub polymers increased substantially upon MG132 treatment, revealing that they might be important signals for proteasomal breakdown. Taken together, this proteomic analysis illustrates the breadth of plant processes affected by ubiquitylation and provides a deep data set of individual targets from which to explore the roles of Ub in various physiological and developmental pathways. PMID:23667124

  20. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  1. Economic impact of applying advanced technologies to transport airplanes.

    NASA Technical Reports Server (NTRS)

    Carline, A. J. K.

    1972-01-01

    Various technologies have been studied which could have application to the design of future transport airplanes. These technologies include the use of supercritical aerodynamics, composite materials, and active control systems, together with advanced engine designs that provide lower noise and pollutant levels. The economic impact of each technology is shown for a typical fleet of 195-passenger, transcontinental commercial transports cruising at both 0.9M and 0.98M. Comparisons are made with conventional transports cruising at 0.82M. Effects of combining the technologies are discussed. An R & D program aimed at bringing the technologies to fruition is outlined.

  2. Advanced protection technology for ground combat vehicles.

    PubMed

    Bosse, Timothy G

    2012-01-01

    Just as highway drivers use radar detectors to attempt to stay ahead of police armed with the latest radar technology, the Armed Forces are locked in a spiral to protect combat vehicles and their crews against the latest threats in both the contemporary operating environment and the anticipated operating environment (ie, beyond 2020). In response to bigger, heavier, or better-protected vehicles, adversaries build and deploy larger explosive devices or bombs. However, making improvements to combat vehicles is much more expensive than deploying larger explosives. In addition, demand is increasing for lighter-weight vehicles capable of rapid deployment. Together, these two facts give the threat a clear advantage in the future. To protect vehicles and crews, technologies focusing on detection and hit avoidance, denial of penetration, and crew survivability must be combined synergistically to provide the best chance of survival on the modern battlefield. PMID:22865132

  3. Recent advances in offshore pipeline technology

    SciTech Connect

    Bruschi, R.; Vitali, L.

    1994-12-31

    Since the pioneering construction of the TRANSMED pipeline system across the Sicily Channel in the early 80`s, offshore pipeline technology has been progressing towards more and more difficult environments. Now the projects envisaged for the 90`s are venturing far beyond the challenges of the recent past. The scope of this paper is to present the recent research efforts aimed at tackling the main design aspects of the new challenges. Particular attention will be given to the experiences and achievements on the last few years in transmission pipelines across the European Continental Shelf, e.g. in the Central and Southern North Sea and across the Mediterranean Sea. Technologies, tools and purpose developed criteria will be discussed. The performance of current operating pipeline systems will be reviewed and incentives to rationalize design criteria and guidelines will be illustrated.

  4. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  5. Advanced technology for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1973-01-01

    Combustor research programs are described whose purpose is to demonstrate significantly lower exhaust emission levels. The proposed EPA regulations covering the allowable levels of emissions will require a major technological effort if these levels are to be met by 1979. Pollution reduction technology is being pursued by NASA through a combination of in-house research, contracted progams, and university grants. In-house research with the swirl-can modular combustor and the double-annular combustor has demonstrated significant reduction in the level of NO(x) emissions. The work is continuing in an attempt to further reduce these levels by improvements in module design and in air-fuel scheduling. Research on the reduction of idle emissions has included the conversion of conventional duplex fuel nozzles to air-assisted nozzles and exploration of the potential improvements possible with fuel staging and variable combustor geometry.

  6. Recent advances in magnetic heat pump technology

    NASA Astrophysics Data System (ADS)

    Uherka, Kenneth L.; Hull, John R.; Scheihing, Paul E.

    Magnetic heat pump (MHP)/refrigeration systems, incorporating state-of-the-art superconducting magnet technology, were assessed for industrial applications ranging from the liquefaction of gases (20 K to 100 K range) to cold storage refrigeration for food preservation (250 K to 320 K range). Initial market penetration of MHP technology is anticipated to occur in the gas liquefaction sector, since the performance advantages of magnetic refrigeration cycles relative to gas compression cycles and other conventional systems are more pronounced in the lower temperature ranges. Design options for rotary MHP devices include alternative regeneration schemes to obtain the temperature spans necessary for industrial applications. The results of preliminary design assessment studies indicate that active magnetic regenerator concepts, in which the magnetic working material also serves as the regenerative medium, offer advantages over alternative MHP designs for industrial applications.

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).

  8. Advanced control technology for LSST platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1981-01-01

    Basic technology in the design, mechanization, and analysis of control systems for large flexible space structures was examined. The focus of the platform control effort was on pointing control. The reason for this emphasis was because of the unique problems in this area posed by multiple independent experiment packages operating simultaneously on a single platform. Attitude control and stationkeeping were also addressed for future consideration.

  9. Advancements in the micromirror array projector technology

    NASA Astrophysics Data System (ADS)

    Beasley, David B.; Bender, Matt W.; Crosby, Jay; Messer, Tim; Saylor, Daniel A.

    2003-09-01

    The Micromirror Array Projector System (MAPS) is a state-of-the-art dynamic scene projector developed by Optical Sciences Corporation (OSC) for Hardware-In-the-Loop (HWIL) simulation and sensor test applications. Since the introduction of the first MAPS in 2001, OSC has continued to improve the technology and develop systems for new projection and test applications. The MAPS is based upon the Texas Instruments Digital Micromirror Device (DMD) which has been modified to project high resolution, realistic imagery suitable for testing sensors and seekers operating in the UV, visible, NIR, and IR wavebands. This paper reviews the basic design and describes recent developments and new applications of the MAPS technology. Recent developments for the MAPS include increasing the format of the micromirror array to 1024x768 and increasing the binary frame rate to 10KHz. The MAPS technology has also been applied to the design of a Mobile Extended Spectrum Electro-Optical Test Set (MESEOTS). This test set is designed for testing UV, visible, NIR and IR sensors as well as laser rangefinders, laser trackers, and laser designators. The design and performance of the improved MAPS and the MESEOTS are discussed in paper.

  10. Commercial development of advanced PFBC technology

    SciTech Connect

    McClung, J.D.

    1995-12-31

    In the 1970s, the coal-fired power generation industry recognized that the declining price of electricity over the previous five decades was coming to an end. Maximum use had been made of existing cycle efficiencies and scale-up. As researchers looked for a new approach, the focus shifted from the fully developed Rankine cycle to a new array of coal-fired plants using combined-cycle technology. Now, coal-fired combined-cycle plants are being introduced that shift power production to the Brayton cycle. Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are two technologies at the forefront of this approach. The PFBC approach burns coal in a fluidized bed combustor at elevated pressure. The plant generates electricity from a gas turbine (expanding the hot, pressurized products of combustion) in addition to the conventional steam (bottoming) cycle. Such a plant can achieve thermal efficiencies of about 40 percent and have a levelized busbar cost below any competing coal-based technology. In addition to the economic benefits, the {open_quotes}built-in{close_quotes} feature of environmental control (SO{sub 2} and NO{sub x}) in the combustion process eliminates the need for external gas cleanup such as scrubbers. A PFBC can burn a wider range of coals than a pulverized-coal-fired (PCF) boiler and is simpler to operate and maintain than an IGCC power plant.

  11. Advanced lost foam from casting technology

    SciTech Connect

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  12. Advances in VRLA battery technology for telecommunications

    NASA Astrophysics Data System (ADS)

    Misra, Sudhan S.

    Wide scale use of the newly emergent VRLA (valve-regulated lead-acid) battery in telecommunication applications and the subsequent problems encountered early in their deployment history spurred intense efforts to improve the design as a continuous endeavor. After implementing improvements to battery placement and containment design to prevent the sudden onset of thermal runaway, the focus of the development work has been on cell internals. These include improved grid and strap alloys, superior AGM (absorbent glass mat) separator that retains compression in the cell, use of beneficial additives to the active materials and the need to avoid contaminants that promote detrimental side reactions. These improvements are now resulting in a vastly superior VRLA experience in the telecommunication applications. To further improve the reliability demanded by today's communication and internet environment VRLA battery installations should include continuous cell/module and system monitoring similar to that incorporated in competing advanced battery systems under development.

  13. Deep Imaging: How Much of the Proteome Does Current Top-Down Technology Already Resolve?

    PubMed Central

    Wright, Elise P.; Prasad, Kali A. G.; Padula, Matthew P.; Coorssen, Jens R.

    2014-01-01

    Effective proteome analyses are based on interplay between resolution and detection. It had been claimed that resolution was the main factor limiting the use of two-dimensional gel electrophoresis. Improved protein detection now indicates that this is unlikely to be the case. Using a highly refined protocol, the rat brain proteome was extracted, resolved, and detected. In order to overcome the stain saturation threshold, high abundance protein species were excised from the gel following standard imaging. Gels were then imaged again using longer exposure times, enabling detection of lower abundance, less intensely stained protein species. This resulted in a significant enhancement in the detection of resolved proteins, and a slightly modified digestion protocol enabled effective identification by standard mass spectrometric methods. The data indicate that the resolution required for comprehensive proteome analyses is already available, can assess multiple samples in parallel, and preserve critical information concerning post-translational modifications. Further optimization of staining and detection methods promises additional improvements to this economical, widely accessible and effective top-down approach to proteome analysis. PMID:24489691

  14. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  15. Commercialization of Australian advanced infrared technology

    NASA Astrophysics Data System (ADS)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  16. Recent advances in DNA assembly technologies.

    PubMed

    Chao, Ran; Yuan, Yongbo; Zhao, Huimin

    2014-06-01

    DNA assembly is one of the most important foundational technologies for synthetic biology and metabolic engineering. Since the development of the restriction digestion and ligation method in the early 1970s, a significant amount of effort has been devoted to developing better DNA assembly methods with higher efficiency, fidelity, and modularity, as well as simpler and faster protocols. This review will not only summarize the key DNA assembly methods and their recent applications, but also highlight the innovations in assembly schemes and the challenges in automating the DNA assembly methods. PMID:24903193

  17. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  18. Advances in Detector Technology for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    McCreight, Craig; Cheng, P. L. (Technical Monitor)

    1995-01-01

    Progress in semiconductor materials and processing technology has allowed the development of infrared detector arrays with unprecedented sensitivity, for imaging and spectroscopic applications in astronomy. The earlier discrete-detector approach has been replaced by large-element (up to 1024 x 1024 pixel), multiplexed devices. Progress has been made against a number of key limiting factors, such as quantum efficiency, noise, spectral response, linearity, and dark current. Future developments will focus on the need for even larger arrays, which operate at higher temperatures.

  19. Recent Advances in DNA Assembly Technologies

    PubMed Central

    Chao, Ran; Yuan, Yongbo; Zhao, Huimin

    2014-01-01

    DNA assembly is one of the most important foundational technologies for synthetic biology and metabolic engineering. Since the development of the restriction digestion and ligation method in the early 1970s, a significant amount of effort has been devoted to developing better DNA assembly methods with higher efficiency, fidelity, and modularity, as well as simpler and faster protocols. This review will not only summarize the key DNA assembly methods and their recent applications, but also highlight the innovations in assembly schemes and the challenges in automating the DNA assembly methods. PMID:24903193

  20. Advanced technologies for rocket single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Wilhite, Alan W.; Bush, Lance B.; Cruz, Christopher I.; Lepsch, Roger A.; Morris, W. Douglas; Stanley, Douglas O.; Wurster, Kathryn E.

    1991-01-01

    A single-stage-to-orbit vertical takeoff/horizontal landing rocket vehicle was studied to determine the benefits of advanced technology. Advanced technologies that were included in the study were variable mixture ratio oxygen/hydrogen rocket engines and materials, structures, and subsystem technologies currently being developed in the National Aero-Space Plane Program. The application of advanced technology results in an 85 percent reduction in vehicle dry weight. With advanced materials, an external thermal protection system, like the Space Shuttle tiles, was not required. Compared to an all-airbreathing horizontal takeoff/horizontal landing vehicle using the same advanced technologies and mission requirements, the rocket vehicle is lighter in dry weight and has fewer subsystems. To increase reliability and safety, operational features were included in the rocket vehicle-robust subsystems, 5 percent additional margin, no slush hydrogen, fail-operational with an engine out, and a crew escape module. The resulting vehicle grew in dry weight and was still lower in dry weight than the airbreathing vehicle.