Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.
2007-07-01
To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. Thismore » paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and complicates the redox chemistry. Whilst some features of the redox chemistry in TBP appear similar to the corresponding reactions in aqueous HNO{sub 3}, there are notable differences in rates, the forms of the rate equations and mechanisms. Secondly, to underpin the development of advanced single cycle flowsheets using the complexant aceto-hydroxamic acid, we have also characterised in some detail its redox chemistry and solvent extraction behaviour with both Np and Pu ions. We find that simple hydroxamic acids are remarkably rapid reducing agents for Np(VI). They also reduce Pu(VI) and cause a much slower reduction of Pu(IV) through a complex mechanism involving acid hydrolysis of the ligand. AHA is a strong hydrophilic and selective complexant for the tetravalent actinide ions as evidenced by stability constant and solvent extraction data for An(IV), M(III) and U(VI) ions. This has allowed the successful design of U/Pu+Np separation flowsheets suitable for advanced fuel cycles. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, N.
1995-05-02
This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).
Code of Federal Regulations, 2010 CFR
2010-01-01
... transuranic elements. Different technical processes can accomplish this separation. However, over the years Purex has become the most commonly used and accepted process. Purex involves the dissolution of... facilities have process functions similar to each other, including: irradiated fuel element chopping, fuel...
Method of separating and recovering uranium and related cations from spent Purex-type systems
Mailen, J.C.; Tallent, O.K.
1987-02-25
A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.
Chemical interaction matrix between reagents in a Purex based process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.
2008-07-01
The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less
Separation of uranium from technetium in recovery of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Friedman, H. A.
1984-06-01
A method for decontaminating uranium product from the Purex 5 process is described. Hydrazine is added to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO2(2+)) uranium and heptavalent technetius (TcO4-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H2O2O4), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.
Separation of uranium from technetium in recovery of spent nuclear fuel
Friedman, H.A.
1984-06-13
A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.
Separation of uranium from technetium in recovery of spent nuclear fuel
Friedman, Horace A.
1985-01-01
A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.
Separation of uranium from technetium in recovery of spent nuclear fuel
Pruett, D.J.; McTaggart, D.R.
1983-08-31
Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.
Separation of uranium from technetium in recovery of spent nuclear fuel
Pruett, David J.; McTaggart, Donald R.
1984-01-01
Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.
Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations
NASA Astrophysics Data System (ADS)
Warburton, Jamie Lee
To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.
The application of N,N-dimethyl-3-oxa-glutaramic acid (DOGA) in the PUREX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianchen, Wang; Jing, Chen
2007-07-01
The new salt-free complexant, DOGA for separating trace Pu(IV) and Np(IV) from U(VI) nitric acid solution was studied. DOGA has stronger complexing abilities to Pu(IV) and Np(IV), but complexing ability of DOGA to U(VI) was weaker. The DOGA can be used in the PUREX process to separate Pu(IV) and Np(IV) from U(VI) nitric solution. On one hand, U(IV) in the nitric acid solution containing trace Pu(IV) and Np(IV) was extracted by 30%TBP - kerosene(v/v) in the presence of DOGA, but Pu(IV) and Np(IV) were kept in the aqueous phase. On the other hand, Pu(IV) and Np(IV) loading in 30% TBPmore » - kerosene were effectively stripped by DOGA into the aqueous phase, but U(VI) loading in 30% TBP - kerosene was remained in 30% TBP - kerosene. DOGA is a promising complexant to separate Pu(IV) and Np(IV) from U(VI) solution in the U-cycle of the PUREX process. (authors)« less
Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent
Horwitz, E.P.; Kalina, D.G.
1984-05-21
A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.
Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent
Horwitz, E. Philip; Kalina, Dale G.
1986-01-01
A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.
Chemical Processing Department monthly report, October 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1962-11-21
This report, from the Chemical Processing Department at HAPO, for October, 1962 discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.
Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent
Horwitz, E.P.; Kalina, D.G.
1986-03-04
A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.
Fritz, Brad G; Patton, Gregory W
2006-01-01
While other research has reported on the concentrations of (129)I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operating between 1983 and 1990, during which time (129)I concentrations in air and milk were measured. After the cessation of chemical processing, plant emissions decreased 2.5 orders of magnitude over an 8-year period. An evaluation of (129)I and (127)I concentration data in air and milk spanning the PUREX operation and post-closure period was conducted to compare the changes in environmental levels. Measured concentrations over the monitoring period were below the levels that could result in a potential annual human dose greater than 1 mSv. There was a measurable difference in the measured air concentrations of (129)I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of (129)I and concentrations in air and milk indicate that atmospheric emissions were the major source of (129)I measured in environmental samples. The measured concentrations during PUREX operations were similar to observations made around a fuel reprocessing plant in Germany. After the PUREX Plant stopped operating, (129)I concentration measurements made upwind of Hanford were similar to the results from Seville, Spain.
Radiation Chemistry of Acetohydroxamic Acid in the UREX Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karraker, D.G.
2002-07-31
The UREX process is being developed to process irradiated power reactor elements by dissolution in nitric acid and solvent extraction by a variation of the PUREX process.1 Rather than recovering both U and Pu, as in Purex, only U will be recovered by solvent extraction, hence the name ''UREX.'' A complexing agent, acetohydroxamic acid (AHA), will be added to the scrub stream to prevent the extraction of Pu(IV) and Np(VI). AHA (CH3C=ONHOH) is decomposed to gaseous products in waste evaporation, so no solid waste is generated by its addition. AHA is hydrolyzed in acid solution to acetic acid and hydroxylaminemore » at a rate dependent on the acid concentration.2-4 The fuel to be processed is ca 40 years cooled, 30,000-50,000 MWD/MT material; although only a few fission products remain, the Pu isotopes and 241Am generate a radiation field estimated to be 2.6E+02R during processing. (see Appendix for calculation.) This study was conducted to determine the effect of this level of radiation on the stability of AHA during processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Nathalie; Nash, Ken; Martin, Leigh
In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste.more » As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO 3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the variable composition of the aqueous medium. This project targets in particular two problematic issues in designing combined process systems: managing the chemistry of challenging aqueous species (like Zr 4+) and optimizing the composition and properties of combined extractant organic phases.« less
Chemical Processing Department monthly report, September 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-10-18
The September, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)
Chemical Processing Department monthly report, November 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1957-12-23
The November, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)
Complexation of lanthanides and actinides by acetohydroxamic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.J.; Sinkov, S.I.; Choppin, G.R.
2008-07-01
Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) andmore » Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)« less
PUREX/UO{sub 3} deactivation project management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D.J.
1993-12-01
From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retainedmore » during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.W. Jr.; Van Brunt, V.
1984-09-14
Purex process compatible organic systems which selectively and reversibly extract cesium, strontium, and palladium from synthetic mixed fission product solutions containing 3M HNO/sub 3/ have been developed. This advance makes the development of continuous solvent extraction processes for their recovery more likely. The most favorable cesium and strontium complexing solutions have been tested for radiation stability to 10/sup 7/ rad using a 0.4 x 10/sup 7/ rad/h /sup 60/Co source. The distribution coefficients dropped somewhat but remained above unity. For cesium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % kerosenemore » containing 0.05m Bis 4,4',(5')(1-hydroxy 2-ethylhexyl)-benzo 18-crown-6 (Crown XVII). The NNS is a sulfonic acid cation exchanger. With an aqueous phase containing 0.006M Cs/sup +1/ in contact with an equal volume of extractant the D org/aq = 1.6 at a temperature of 25 to 35/sup 0/C. For strontium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % Kerosene containing 0.02M Bis 4,4'(5') (1-hydroxyheptyl)cyclohexo 18-crown-6 (Crown XVI). With an aqueous phase containing 0.003M Sr/sup +2/ in contact with an equal volume of extractant the D org/aq = 1.98 at a temperature of 25 to 35/sup 0/C. For palladium the complexing organic solution consisted of a ratio of TBP/kerosene of 0.667 containing 0.3M Alamine 336 which is a tertiary amine anion exchanger. With an aqueous phase containing 0.0045M Pd/sup +/ in contact with an equal volume of extractant the D org/aq = 1.95 at a temperature of 25 to 35/sup 0/C.« less
Overview of reductants utilized in nuclear fuel reprocessing/recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, P.; Riddle, C.; Campbell, K.
2013-07-01
The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promisingmore » because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.« less
U.S. program assessing nuclear waste disposal in space - A status report
NASA Technical Reports Server (NTRS)
Rice, E. E.; Priest, C. C.; Friedlander, A. L.
1980-01-01
Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.
Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, R.A.; Segal, J.E.; Stanbro, W.D.
1995-08-01
This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.
The behaviour of tributyl phosphate in an organic diluent
NASA Astrophysics Data System (ADS)
Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.
2014-09-01
Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Casella, Amanda J.
2016-09-30
This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.
Hanford facility dangerous waste permit application, PUREX storage tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, C. R.
1997-09-08
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, J.S., Westinghouse Hanford
1996-05-10
This report shows the methods used to test the stack gas outlet concentration and emission rate of Volatile Organic Compounds as Total Non-Methane Hydrocarbons in parts per million by volume,grams per dry standard cubic meter, and grams per minute from the PUREX ETF stream number G6 on the Hanford Site. Test results are shown in Appendix B.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohimer, J.P.
The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.
Nuclear and chemical safety analysis: Purex Plant 1970 thorium campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldt, A.L.; Oberg, G.C.
The purpose of this document is to discuss the flowsheet and the related processing equipment with respect to nuclear and chemical safety. The analyses presented are based on equipment utilization and revised piping as outlined in the design criteria. Processing of thorium and uranium-233 in the Purex Plant can be accomplished within currently accepted levels of risk with respect to chemical and nuclear safety if minor instrumentation changes are made. Uranium-233 processing is limited to a rate of about 670 grams per hour by equipment capacities and criticality safety considerations. The major criticality prevention problems result from the potential accumulationmore » of uranium-233 in a solvent phase in E-H4 (ICU concentrator), TK-J1 (IUC receiver), and TK-J21 (2AF pump tank). The same potential problems exist in TK-J5 (3AF pump tank) and TK-N1 (3BU receiver), but the probabilities of reaching a critical condition are not as great. In order to prevent the excessive accumulation of uranium-233 in any of these vessels by an extraction mechanism, it is necessary to maintain the uranium-233 and salting agent concentrations below the point at which a critical concentration of uranium-233 could be reached in a solvent phase.« less
NASA Astrophysics Data System (ADS)
Madic, Charles; Bourges, Jacques; Dozol, Jean-François
1995-09-01
To reduce the long-term potential hazards associated with the management of nuclear wastes generated by nuclear fuel reprocessing, one alternative is the transmutation of long-lived radionuclides into short-lived radionuclides by nuclear means (P & T strategy). In this context, according to the law passed by the French Parliament on 30 December 1991, the CEA launched the SPIN program for the design of long-lived radionuclide separation and nuclear incineration processes. The research in progress to define separation processes focused mainly on the minor actinides (neptunium, americium and curium) and some fission products, like cesium and technetium. To separate these long-lived radionuclides, two strategies were developed. The first involves research on new operating conditions for improving the PUREX fuel reprocessing technology. This approach concerns the elements neptunium and technetium (iodine and zirconium can also be considered). The second strategy involves the design of new processes; DIAMEX for the co-extraction of minor actinides from the high-level liquid waste leaving the PUREX process, An(III)/Ln(III) separation using tripyridyltriazine derivatives or picolinamide extracting agents; SESAME for the selective separation of americium after its oxidation to Am(IV) or Am(VI) in the presence of a heteropolytungstate ligand, and Cs extraction using a new class of extracting agents, calixarenes, which exhibit exceptional Cs separation properties, especially in the presence of sodium ion. This lecture focuses on the latest achievements in these research areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shank, E.M.
1959-06-23
Information obtained from HAPO during visit by M.K. Twichell, UCNC, and E.M. Shank, ORNL, is given. Included are the tentative procedures for obtaining and transmitting information to the Eurochemic company. Discussions are given on pulsed columns, corrosion, puse generators, centrifuges, valves, in-line instrumentation, evaporators, resin column design, off-gas processing, solvent recovery, liquid-waste handling, process control, equipment decontamination, criticality, radiation protection, diluent, and solvent stability, backmixing in a pulsed column, and use of 40% TBP in the purex flowsheet.
PUREX/UO3 Facilities deactivation lessons learned history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, M.S.
1996-09-19
Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitricmore » acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were accompanied by and were an integral part of sweeping ``culture changes,`` the story of the lessons learned during the PUREX Deactivation Project are worth recounting. Foremost among the lessons is recognizing the benefits of ``right to left`` project planning. A deactivation project must start by identifying its end points, then make every task, budget, and organizational decision based on reaching those end points. Along with this key lesson is the knowledge that project planning and scheduling should be tied directly to costing, and the project status should be checked often (more often than needed to meet mandated reporting requirements) to reflect real-time work. People working on a successful project should never be guessing about its schedule or living with a paper schedule that does not represent the actual state of work. Other salient lessons were learned in the PUREX/UO3 Deactivation Project that support these guiding principles. They include recognizing the value of independent review, teamwork, and reengineering concepts; the need and value of cooperation between the DOE, its contractors, regulators, and stakeholders; and the essential nature of early and ongoing communication. Managing a successful project also requires being willing to take a fresh look at safety requirements and to apply them in a streamlined and sensible manner to deactivating facilities; draw on the enormous value of resident knowledge acquired by people over years and sometimes decades of working in old plants; and recognize the value of bringing in outside expertise for certain specialized tasks.This approach makes possible discovering the savings that can come when many creative options are pursued persistently and the wisdom of leaving some decisions to the future. The essential job of a deactivation project is to place a facility in a safe, stable, low-maintenance mode, for an interim period. Specific end points are identified to recognize and document this state. Keeping the limited objectives of the project in mind can guide decisions that reduce risks with minimal manipulation of physical materials, minimal waste generation, streamline regulations and safety requirements where possible, and separate the facility from ongoing entanglements with operating systems. Thus, the ``parked car`` state is achieved quickly and directly. The PUREX Deactivation Lessons Learned History was first issued in January 1995. Since then, several key changes have occurred in the project, making it advisable to revise and update the document. This document is organized with the significant lessons learned captured at the end of each section, and then recounted in Section 11.0, ``Lessons Consolidated.`` It is hoped and believed that the lessons learned on the PUREX Deactivation Project will have value to other facilities both inside and outside the DOE complex.« less
Studies in support of an SNM cutoff agreement: The PUREX exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanbro, W.D.; Libby, R.; Segal, J.
1995-07-01
On September 23, 1993, President Clinton, in a speech before the United Nations General Assembly, called for an international agreement banning the production of plutonium and highly enriched uranium for nuclear explosive purposes. A major element of any verification regime for such an agreement would probably involve inspections of reprocessing plants in Nuclear Nonproliferation Treaty weapons states. Many of these are large facilities built in the 1950s with no thought that they would be subject to international inspection. To learn about some of the problems that might be involved in the inspection of such large, old facilities, the Department ofmore » Energy, Office of Arms Control and Nonproliferation, sponsored a mock inspection exercise at the PUREX plant on the Hanford Site. This exercise examined a series of alternatives for inspections of the PUREX as a model for this type of facility at other locations. A series of conclusions were developed that can be used to guide the development of verification regimes for a cutoff agreement at reprocessing facilities.« less
De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.
1978-01-01
Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.
TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, B.
2011-08-24
Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePoorter, G.L.; Rofer-DePoorter, C.K.
1976-01-01
Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions. (auth)
Private Sector Initiative Between the U.S. and Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1998-09-30
OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Patton, Gregory W.
2006-01-01
While other research has reported on the concentrations of 129I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operational between 1983 and 1990, during which time 129I concentrations in air and milk were measured. After the cessation of operations in 1990, plant emissions decreased 2.5 orders of magnitude over an 8 year period, and monitoring of environmental levels continued. An evaluation of air and milk 129I concentration data spanning the PUREX operation andmore » post closure period was conducted to compare the changes in environmental levels of 129I measured. Measured concentrations over the monitoring period were below levels that could result in a potential human dose greater than 10 uSv. There was a significant and measurable difference in the measured air concentrations of 129I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of 129I and concentrations in air and milk indicate that atmospheric emissions were responsible for the 129I concentrations measured in environmental samples. The measured concentrations during PUREX operation were similar to observations made around a fuel reprocessing plant in Germany.« less
CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S.
2012-08-29
The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
STALLINGS, MARY
This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less
Process control plan for 242-A Evaporator Campaign 95-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, E.Q.; Guthrie, M.D.
1995-05-18
The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaignmore » 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shekhar; Koganti, S.B.
2008-07-01
Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing basedmore » FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)« less
Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.
1993-09-01
An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: tomore » determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.« less
Separations in the STATS report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choppin, G.R.
1996-12-31
The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less
TPE/REE separation with the use of zirconium salt of HDBP
NASA Astrophysics Data System (ADS)
Glekov, R. G.; Shmidt, O. V.; Palenik, Yu. V.; Goletsky, N. D.; Sukhareva, S. Yu.; Fedorov, Yu. S.; Zilberman, B. Ya.
2003-01-01
Partitioning of long-lived radionuclides (minor actinides, fission products) is considered as TBP-compatible ZEALEX-process for extraction separation of transplutonium elements (TPE) and rare-earth elements (REE), as well as Y, Mo, Fe and residual amounts of Np, Pu, U. Zirconium salt of dibutyl phosphoric acid (ZS-HDBP) dissolved in 30 % TBP is used as a solvent. The process was tested in multistage centrifugal contactors. Lanthanides, Y and TPE, as well as Mo, Fe were extracted from high-level Purex raffinate, Am and ceric subgroup of REE being separated from the polyvalent elements by stripping with HNO3. TPE/REE partitioning was achieved in the second cycle of the ZEALEX-process using DTPA in formic acid media. The integral decontamination factor of Am from La and Ce after both cycles is >200, from Pr and Nd 20-30 and from Sm and Eu 3.6; REE strips in both cycles contained <0,1% of the initial amount of TPE.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jostsons, A.; Ridal, A.; Mercer, D.J.
1996-05-01
The Synroc Demonstration Plant (SDP) was designed and constructed at Lucas Heights to demonstrate the feasibility of Synroc production on a commercial scale (10 kg/hr) with simulated Purex liquid HLW. Since commissioning of the SDP in 1987, over 6000 kg of Synroc has been fabricated with a range of feeds and waste loadings. The SDP utilises uniaxial hot-pressing to consolidate Synroc. Pressureless sintering and hot-isostatic pressing have also been studied at smaller scales. The results of this extensive process development have been incorporated in a conceptual design for a radioactive plant to condition HLW from a reprocessing plant with amore » capacity to treat 800 tpa of spent LWR fuel. Synroic containing TRU, including Pu, and fission products has been fabricated and characterised in a glove-box facility and hot cells, respectively. The extensive experience in processing of Synroc over the past 15 years is summarised and its relevance to immobilization of surplus plutonium is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce J. Mincher; Guiseppe Modolo; Strephen P. Mezyk
2009-01-01
Solvent extraction is the most commonly used process scale separation technique for nuclear applications and it benefits from more than 60 years of research and development and proven experience at the industrial scale. Advanced solvent extraction processes for the separation of actinides and fission products from dissolved nuclear fuel are now being investigated worldwide by numerous groups (US, Europe, Russia, Japan etc.) in order to decrease the radiotoxic inventories of nuclear waste. While none of the advanced processes have yet been implemented at the industrial scale their development studies have sometimes reached demonstration tests at the laboratory scale. Most ofmore » the partitioning strategies rely on the following four separations: 1. Partitioning of uranium and/or plutonium from spent fuel dissolution liquors. 2. Separation of the heat generating fission products such as strontium and cesium. 3. Coextraction of the trivalent actinides and lanthanides. 4. Separation of the trivalent actinides from the trivalent lanthanides. Tributylphosphate (TBP) in the first separation is the basis of the PUREX, UREX and COEX processes, developed in Europe and the US, whereas monoamides as alternatives for TBP are being developed in Japan and India. For the second separation, many processes were developed worldwide, including the use of crown-ether extractants, like the FPEX process developed in the USA, and the CCD-PEG process jointly developed in the USA and Russia for the partitioning of cesium and strontium. In the third separation, phosphine oxides (CMPOs), malonamides, and diglycolamides are used in the TRUEX, DIAMEX and the ARTIST processes, respectively developed in US, Europe and Japan. Trialkylphosphine oxide(TRPO) developed in China, or UNEX (a mixture of several extractants) jointly developed in Russia and the USA allow all actinides to be co-extracted from acidic radioactive liquid waste. For the final separation, soft donor atom-containing ligands such as the bistriazinylbipyridines (BTBPs) or dithiophosphinic acids have been developed in Europe and China to selectively extract the trivalent actinides. However, in the TALSPEAK process developed in the USA, the separation is based on the relatively high affinity of aminopolycarboxylic acid complexants such as DTPA for trivalent actinides over lanthanides. In the DIDPA, SETFICS and the GANEX processes, developed in Japan and France, the group separation is accomplished in a reverse TALSPEAK process. A typical scenario is shown in Figure 1 for the UREX1a (Uranium Extraction version 1a) process. The initial step is the TBP extraction for the separation of recyclable uranium. The second step partitions the short-lived, highly radioactive cesium and strontium to minimize heat loading in the high-level waste repository. The third step is a group separation of the trivalent actinides and lanthanides with the last step being partitioning of the trivalent lanthanides from the actinides.« less
Maya, L.
1981-11-05
A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Wallace, R. K.; Ireland, J. R.
2010-09-01
This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, Charles G; Wallace, Richard K; Ireland, John R
2009-01-01
This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has beenmore » found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
NASA Astrophysics Data System (ADS)
Marc, Philippe; Magnaldo, Alastair; Godard, Jérémy; Schaer, Éric
2018-03-01
Dissolution is a milestone of the head-end of hydrometallurgical processes, as the stabilization rates of the chemical elements determine the process performance and hold-up. This study aims at better understanding the chemical and physico-chemical phenomena of uranium dioxide dissolution reactions in nitric acid media in the Purex process, which separates the reusable materials and the final wastes of the spent nuclear fuels. It has been documented that the attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites, which leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks leads to the solid cleavage. It is shown here that the dissolution of the detached fragments is much slower than the process of the complete cleavage of the solid, and occurs with no disturbing phenomena, like gas bubbling. This fact has motivated the measurement of dissolution kinetics using optical microscopy and image processing. By further discriminating between external resistance and chemical reaction, the "true" chemical kinetics of the reaction have been measured, and the highly autocatalytic nature of the reaction confirmed. Based on these results, the constants of the chemical reactions kinetic laws have also been evaluated.
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shunji Homma; Jun-ichi Ishii; Jiro Koga
2006-07-01
A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined bymore » flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)« less
ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E.; Subramanian, K.
At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include:more » (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing dissolution equilibrium, and then decomposed to {le} 100 Parts per Million (ppm) oxalate. Since AOP technology largely originated on using ultraviolet (UV) light as a primary catalyst, decomposition of the spent oxalic acid, well exposed to a medium pressure mercury vapor light was considered the benchmark. However, with multi-valent metals already contained in the feed, and maintenance of the UV light a concern; testing was conducted to evaluate the impact from removing the UV light. Using current AOP terminology, the test without the UV light would likely be considered an ozone based, dark, ferrioxalate type, decomposition process. Specifically, as part of the testing, the impacts from the following were investigated: (1) Importance of the UV light on the decomposition rates when decomposing 1 wt% spent oxalic acid; (2) Impact of increasing the oxalic acid strength from 1 to 2.5 wt% on the decomposition rates; and (3) For F-area testing, the advantage of increasing the spent oxalic acid flowrate from 40 L/min (liters/minute) to 50 L/min during decomposition of the 2.5 wt% spent oxalic acid. The results showed that removal of the UV light (from 1 wt% testing) slowed the decomposition rates in both the F & H testing. Specifically, for F-Area Strike 1, the time increased from about 6 hours to 8 hours. In H-Area, the impact was not as significant, with the time required for Strike 1 to be decomposed to less than 100 ppm increasing slightly, from 5.4 to 6.4 hours. For the spent 2.5 wt% oxalic acid decomposition tests (all) without the UV light, the F-area decompositions required approx. 10 to 13 hours, while the corresponding required H-Area decompositions times ranged from 10 to 21 hours. For the 2.5 wt% F-Area sludge, the increased availability of iron likely caused the increased decomposition rates compared to the 1 wt% oxalic acid based tests. In addition, for the F-testing, increasing the recirculation flow rates from 40 liter/minute to 50 liter/minute resulted in an increased decomposition rate, suggesting a better use of ozone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Jarvinen, G. D.; Wallace, R. K.
2008-10-01
This paper summarizes the results of an extension to an earlier study [ ] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the PUREX, UREX+, and COEX reprocessing schemes. This study focuses on the materials associated with the UREX, COEX, THOREX, and PYROX reprocessing schemes. This study also examines what is required to render plutonium as “unattractive.” Furthermore, combining the results of this study with those from the earlier study permits a comparison of the uranium and thorium based fuel cycles on the basis of the attractiveness of the SNM associated with each fuelmore » cycle. Both studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of “attractiveness levels” that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.« less
Aspects of remote maintenance in an FRG reprocessing plant from the manufacturer's viewpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitzchel, G.; Tennie, M.; Saal, G.
In April 1986 a consortium led by Kraftwerk Union AG was commissioned by the German society for nuclear fuel reprocessing (DWK) to build the first West German commercial reprocessing plant for spent fuel assemblies. The main result of the planning efforts regarding remote maintenance operations inside the main process building was the introduction of FEMO technology (FEMO is an acronym based on German for remote handling modular technique). According to this technology the two cells in which the actual reprocessing (which is based on the PUREX technique) takes place are provided with frames to accommodate the process components (tanks, pumps,more » agitators, etc.), each frame together with the components which it supports forming one module. The two cells are inaccessible and windowless. For handling operations each cell is equipped with an overhead crane and a crane-like manipulator carrier system (MTS) with power manipulator. Viewing of the operations from outside the cells is made possible by television (TV) cameras installed at the crane, the MTS, and the manipulator. This paper addresses some examples of problems that still need to be solved in connection with FEMO handling. In particular, the need for close cooperation between the equipment operator, the component designer, the process engineer, the planning engineer, and the licensing authorities will be demonstrated.« less
PROCESSING OF NEUTRON-IRRADIATED URANIUM
Hopkins, H.H. Jr.
1960-09-01
An improved "Purex" process for separating uranium, plutonium, and fission products from nitric acid solutions of neutron-irradiated uranium is offered. Uranium is first extracted into tributyl phosphate (TBP) away from plutonium and fission products after adjustment of the acidity from 0.3 to 0.5 M and heating from 60 to 70 deg C. Coextracted plutonium, ruthenium, and fission products are fractionally removed from the TBP by three scrubbing steps with a 0.5 M nitric acid solution of ferrous sulfamate (FSA), from 3.5 to 5 M nitric acid, and water, respectively, and the purified uranium is finally recovered from the TBP by precipitation with an aqueous solution of oxalic acid. The plutonium in the 0.3 to 0.5 M acid solution is oxidized to the tetravalent state with sodium nitrite and extracted into TBP containing a small amount of dibutyl phosphate (DBP). Plutonium is then back-extracted from the TBP-DBP mixture with a nitric acid solution of FSA, reoxidized with sodium nitrite in the aqueous strip solution obtained, and once more extracted with TBP alone. Finally the plutonium is stripped from the TBP with dilute acid, and a portion of the strip solution thus obtained is recycled into the TBPDBP for further purification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDeavitt, Sean M.
The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU)more » isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being “blind” to the intense gamma field that typically accompanies used fuel – simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the more significant hazards from a radiation protection standpoint. However, alpha and neutron emitting uranium and TRU elements represent the more significant safeguards and security concerns. Table 1.1 presents a representative PWR inventory of the uranium and actinide isotopes present in a used fuel assembly. The uranium and actinide isotopes (chiefly the Pu, Am and Cm elements) are all emitters of alpha particles and some of them release significant quantities of neutrons through spontaneous fissions« less
Hexavalent Americium recovery using Copper(III) periodate
McCann, Kevin; Brigham, Derek M.; Morrison, Samuel; ...
2016-10-31
Separation of americium from the lanthanides is considered one of the most difficult separation steps in closing the nuclear fuel cycle. One approach to this separation could involve oxidizing americium to the hexavalent state to form a linear dioxo cation while the lanthanides remain as trivalent ions. This work considers aqueous soluble Cu 3+ periodate as an oxidant under molar nitric acid conditions to separate hexavalent Am with diamyl amylphosphonate (DAAP) in n-dodecane. Initial studies assessed the kinetics of Cu 3+ periodate autoreduction in acidic media to aid in development of the solvent extraction system. Following characterization of the Cumore » 3+ periodate oxidant, solvent extraction studies optimized the recovery of Am from varied nitric acid media and in the presence of other fission product, or fission product surrogate, species. Short aqueous/organic contact times encouraged successful recovery of Am (distribution values as high as 2) from nitric acid media in the absence of redox active fission products. In the presence of a post-plutonium uranium redox extraction (post-PUREX) simulant aqueous feed, precipitation of tetravalent species (Ce, Ru, Zr) occurred and the distribution values of 241Am were suppressed, suggesting some oxidizing capacity of the Cu 3+ periodate is significantly consumed by other redox active metals in the simulant. Furthermore, the manuscript demonstrates Cu 3+ periodate as a potentially viable oxidant for Am oxidation and recovery and notes the consumption of oxidizing capacity observed in the presence of the post-PUREX simulant feed will need to be addressed for any approach seeking to oxidize Am for separations relevant to the nuclear fuel cycle.« less
Hexavalent Americium Recovery Using Copper(III) Periodate
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Kevin; Brigham, Derek M.; Morrison, Samuel
2016-11-21
Separation of americium from the lanthanides is considered one of the most difficult separation steps in closing the nuclear fuel cycle. One approach to this separation could involve oxidizing americium to the hexavalent state to form a linear dioxo cation while the lanthanides remain as trivalent ions. This work considers aqueous soluble Cu3+ periodate as an oxidant under molar nitric acid conditions to separate hexavalent Am with diamyl amylphosphonate (DAAP) in n-dodecane. Initial studies assessed the kinetics of Cu3+ periodate auto-reduction in acidic media to aid in development of the solvent extraction system. Following characterization of the Cu3+ periodate oxidant,more » solvent extraction studies optimized the recovery of Am from varied nitric acid media and in the presence of other fission product, or fission product surrogate, species. Short aqueous/organic contact times encouraged successful recovery of Am (distribution values as high as 2) from nitric acid media in the absence of redox active fission products. In the presence of a post-PUREX simulant aqueous feed, precipitation of tetravalent species (Ce, Ru, Zr) occurred and the distribution values of 241Am were suppressed, suggesting some oxidizing capacity of the Cu3+ periodate is significantly consumed by other redox active metals in the simulant. The manuscript demonstrates Cu3+ periodate as a potentially viable oxidant for Am oxidation and recovery and notes the consumption of oxidizing capacity observed in the presence of the post-PUREX simulant feed will need to be addressed for any approach seeking to oxidize Am for separations relevant to the nuclear fuel cycle.« less
Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.
Merk, B; Litskevich, D; Gregg, R; Mount, A R
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.
Das, Arya; Ali, Sk Musharaf
2018-02-21
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
NASA Astrophysics Data System (ADS)
Das, Arya; Ali, Sk. Musharaf
2018-02-01
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list
Litskevich, D.; Gregg, R.; Mount, A. R.
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara
CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as amore » dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation system. The in-cell crane in CA-5 was renovated to increase driving efficiency. At the renovation for the in-cell crane, full scale mockup test and 3D simulation test had been executed in advance. After the renovation, hot tests in the CPF had been resumed from JFY 2002. New equipments such as dissolver, extractor, electrolytic device, etc. were installed in CA-3 conformably to the new design laid out in order to ensure the function and space. Glove boxes in the analysis laboratory were renewed in order to let it have flexibility from the viewpoint of conducting basic experiments (ex. U crystallization). Glove boxes and hoods were newly installed in the laboratory A for basic research and analysis, especially on MA chemistries. One laboratory (the laboratory C) was established to research about dry reprocessing. The renovation of the CPF has been executed in order to contribute to the development on the advanced fast reactor fuel cycle system, which will give us many sort of technical subject and experimental theme to be solved in the 2. Generation of the CPF.« less
The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, C.; Thomas, I.
2013-07-01
This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less
Micro-Raman Technology to Interrogate Two-Phase Extraction on a Microfluidic Device.
Nelson, Gilbert L; Asmussen, Susan E; Lines, Amanda M; Casella, Amanda J; Bottenus, Danny R; Clark, Sue B; Bryan, Samuel A
2018-05-21
Microfluidic devices provide ideal environments to study solvent extraction. When droplets form and generate plug flow down the microfluidic channel, the device acts as a microreactor in which the kinetics of chemical reactions and interfacial transfer can be examined. Here, we present a methodology that combines chemometric analysis with online micro-Raman spectroscopy to monitor biphasic extractions within a microfluidic device. Among the many benefits of microreactors is the ability to maintain small sample volumes, which is especially important when studying solvent extraction in harsh environments, such as in separations related to the nuclear fuel cycle. In solvent extraction, the efficiency of the process depends on complex formation and rates of transfer in biphasic systems. Thus, it is important to understand the kinetic parameters in an extraction system to maintain a high efficiency and effectivity of the process. This monitoring provided concentration measurements in both organic and aqueous plugs as they were pumped through the microfluidic channel. The biphasic system studied was comprised of HNO 3 as the aqueous phase and 30% (v/v) tributyl phosphate in n-dodecane comprised the organic phase, which simulated the plutonium uranium reduction extraction (PUREX) process. Using pre-equilibrated solutions (post extraction), the validity of the technique and methodology is illustrated. Following this validation, solutions that were not equilibrated were examined and the kinetics of interfacial mass transfer within the biphasic system were established. Kinetic results of extraction were compared to kinetics already determined on a macro scale to prove the efficacy of the technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman-Pollard, J.R.
1994-03-02
This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less
Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Wilmarth, B.; Restivo, M.
2017-03-13
Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation ormore » exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.« less
Radiation Stability of Benzyl Tributyl Ammonium Chloride towards Technetium-99 Extraction - 13016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, Patricia; Horkley, Jared; Campbell, Keri
2013-07-01
A closed nuclear fuel cycle combining new separation technologies along with generation III and generation IV reactors is a promising way to achieve a sustainable energy supply. But it is important to keep in mind that future recycling processes of used nuclear fuel (UNF) must minimize wastes, improve partitioning processes, and integrate waste considerations into processes. New separation processes are being developed worldwide to complement the actual industrialized PUREX process which selectively separates U(VI) and Pu(IV) from the raffinate. As an example, the UREX process has been developed in the United States to co-extract hexavalent uranium (U) and hepta-valent technetiummore » (Tc) by tri-n-butyl phosphate (TBP). Tc-99 is recognized to be one of the most abundant, long-lived radio-toxic isotopes in UNF (half-life, t{sub 1/2} = 2.13 x 10{sup 5} years), and as such, is targeted in UNF separation strategies for isolation and encapsulation in solid waste-forms for final disposal in a nuclear waste repository. Immobilization of Tc-99 by a durable solid waste-form is a challenge, and its fate in new advanced technology processes is of importance. It is essential to be able to quantify and locate 1) its occurrence in any new developed flowsheets, 2) its chemical form in the individual phases of a process, 3) its potential quantitative transfer in any waste streams, and consequently, 4) its quantitative separation for either potential transmutation to Ru-100 or isolation and encapsulation in solid waste-forms for ultimate disposal. In addition, as a result of an U(VI)-Tc(VII) co-extraction in a UREX-based process, Tc(VII) could be found in low level waste (LLW) streams. There is a need for the development of new extraction systems that would selectively extract Tc-99 from LLW streams and concentrate it for feed into high level waste (HLW) for either Tc-99 immobilization in metallic waste-forms (Tc-Zr alloys), and/or borosilicate-based waste glass. Studies have been launched to investigate the suitability of new macro-compounds such as crown-ethers, aza-crown ethers, quaternary ammonium salts, and resorcin-arenes for the selective extraction of Tc-99 from nitric acid solutions. The selectivity of the ligand is important in evaluating potential separation processes and also the radiation stability of the molecule is essential for minimization of waste and radiolysis products. In this paper, we are reporting the extraction of TcO{sub 4}{sup -} by benzyl tributyl ammonium chloride (BTBA). Experimental efforts were focused on determining the best extraction conditions by varying the ligand's matrix conditions and concentration, as well as varying the organic phase composition (i.e. diluent variation). Furthermore, the ligand has been investigated for radiation stability. The ?-irradiation was performed on the neat organic phases containing the ligand at different absorbed doses to a maximum of 200 kGy using an external Co-60 source. Post-irradiation solvent extraction measurements will be discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.
2012-08-29
We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides amore » set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.« less
Back-end of the fuel cycle - Indian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattal, P.K.
Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less
Industrial scale-plant for HLW partitioning in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.
1996-12-31
Radiochemical plant of PA <> at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m{sup 3} HLW and 235 MCi of radionuclides was included in glass. However only 1100 m{sup 3} and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology andmore » equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA <> in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, R. B.
The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Christopher E.; Lawter, Amanda R.; Qafoku, Nikolla
Isotopes of iodine were generated during plutonium production from nine production reactors at the U.S. Department of Energy Hanford Site. The long half-life 129I generated at the Hanford Site during reactor operations was 1) stored in single-shell and double-shell tanks, 2) discharged to liquid disposal sites (e.g., cribs and trenches), 3) released to the atmosphere during fuel reprocessing operations, or 4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater, including the plume in the 200-UP-1more » operable unit. There is also 129I remaining in the vadose zone beneath disposal or leak locations. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited.« less
Safeguard monitoring of direct electrolytic reduction
NASA Astrophysics Data System (ADS)
Jurovitzki, Abraham L.
Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2). Electrochemical analysis was demonstrated to be effective at detecting even very dilute concentrations of actinides as evidence for a diversion attempt.
UNIT OPERATIONS SECTION MONTHLY PROGRESS REPORT, OCTOBER 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whatley, M.E.; Haas, P.A.; Horton, R.W.
1962-04-01
Additional runs were made in the 6-in.-dia. separation column. The kinetics of the methane --copper oxide reaction was investigated in deep bed tests. The work on the development of the shear included a satisfactory method of ng, preliminary test of an outer gag faced with rubber, and a metallic inner gsg contoured to the shape of a sheared assembly. The mechanical dejacketing of the SRE Core I fuel, NaK-bonded, stainless steel-clad uranium slugs, was successfully completed. The effective therrnal conductivity of a packed bed of 0.023-in. steel shot was approximately 0.33 Btu/hr- deg Fft at 200 deg F. Flow capacitymore » for the compound extraction scrub column equipped with sieve plates (0.125-in.-dia. was determined. Average waste calcination rates for Purex were higher by a factor of 1.5 to 2.0 than rates for TBP-25. (auth)« less
SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Samuel A.; Levitskaia, Tatiana G.
2013-09-29
There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, R. B.
The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludgemore » in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.« less
Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua
2016-08-15
During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130°C, a heavy "red oil" layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Americium-241 in surface soil associated with the Hanford site and vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, K.R.; Gilbert, R.O.; Gano, K.A.
1981-05-01
Various kinds of surface soil samples were collected and analyzed for Americium-241 (/sup 241/Am) to examine the feasibility of improving soil sample data for the Hanford Surface Environmental Surveillance Program. Results do not indicate that a major improvement would occur if procedures were changed from the current practices. Conclusions from this study are somewhat tempered by the very low levels of /sup 241/Am (< 0.10 pCi/g dry weight) detected in surface soil samples and by the fact that statistical significance depended on the type of statistical tests used. In general, the average concentration of /sup 241/Am in soil crust (0more » to 1.0 cm deep) was greater than the corresponding subsurface layer (1.0 to 2.5 cm deep), and the average concentration of /sup 241/Am in some onsite samples collected near the PUREX facility was greater than comparable samples collected 60 km upwind at an offsite location.« less
8 CFR 204.3 - Orphan cases under section 101(b)(1)(F) of the Act (non-Convention cases).
Code of Federal Regulations, 2013 CFR
2013-01-01
... advanced processing application (or the advanced processing application concurrently with the orphan... home study preparer and/or fingerprint check. Advanced processing application means Form I-600A (Application for Advanced Processing of Orphan Petition) completed in accordance with the form's instructions...
8 CFR 204.3 - Orphan cases under section 101(b)(1)(F) of the Act (non-Convention cases).
Code of Federal Regulations, 2010 CFR
2010-01-01
... advanced processing application (or the advanced processing application concurrently with the orphan... home study preparer and/or fingerprint check. Advanced processing application means Form I-600A (Application for Advanced Processing of Orphan Petition) completed in accordance with the form's instructions...
8 CFR 204.3 - Orphan cases under section 101(b)(1)(F) of the Act (non-Convention cases).
Code of Federal Regulations, 2014 CFR
2014-01-01
... advanced processing application (or the advanced processing application concurrently with the orphan... home study preparer and/or fingerprint check. Advanced processing application means Form I-600A (Application for Advanced Processing of Orphan Petition) completed in accordance with the form's instructions...
8 CFR 204.3 - Orphan cases under section 101(b)(1)(F) of the Act (non-Convention cases).
Code of Federal Regulations, 2011 CFR
2011-01-01
... advanced processing application (or the advanced processing application concurrently with the orphan... home study preparer and/or fingerprint check. Advanced processing application means Form I-600A (Application for Advanced Processing of Orphan Petition) completed in accordance with the form's instructions...
8 CFR 204.3 - Orphan cases under section 101(b)(1)(F) of the Act (non-Convention cases).
Code of Federal Regulations, 2012 CFR
2012-01-01
... advanced processing application (or the advanced processing application concurrently with the orphan... home study preparer and/or fingerprint check. Advanced processing application means Form I-600A (Application for Advanced Processing of Orphan Petition) completed in accordance with the form's instructions...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold F. McFarlane; Terry Todd
2013-11-01
Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore.more » Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.« less
NASA Technical Reports Server (NTRS)
Bayless, E. O., Jr.
1991-01-01
Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.
Overview of reductants utilized in nuclear fuel reprocessing/recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell
2013-10-01
Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but itmore » is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold promises as a replacement for AHA. FHA undergoes hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. Unfortunately, FHA powder was not stable in the experiments we ran in our laboratory. In addition, AHA and FHA also decompose to hydroxylamine which may undergo an autocatalytic reaction. Other reductants are available and could be extremely useful for actinides separation. The review presents the current plutonium reductants used in used nuclear fuel reprocessing and will introduce innovative and novel reductants that could become reducers for future research on UNF separation.« less
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.
ERIC Educational Resources Information Center
Dunlap, Dale
This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…
Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; King, W.; Hay, M.
Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less
Reducing Actinide Production Using Inert Matrix Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deinert, Mark
2017-08-23
The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessingmore » that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.« less
Advanced concepts in joining by conventional processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, G.R.; Fasching-James, A.A.; Onsoien, M.I.
1994-12-31
Innovations which can be made to conventional arc welding processes so that advanced materials can be more efficiently joined are considered. Three examples are discussed: (1) GTA welding of iron aluminides, (2) GMA welding of advanced steels, and (3) SMA welding of structural steels. Advanced materials present new challenges for the materials joining specialist. The three examples discussed in this paper demonstrate, however, that modest but creative alterations of conventional GTAW, GMAW, or SMAW processes can provide new and better controls for solving advanced materials joining problems.
Advance care planning in a community setting.
Connolly, Josaleen; Milligan, Stuart; Stevens, Elaine; Jackson, Susan; Rooney, Kevin
2015-02-10
To evaluate the effects of implementing an advance care planning process within pilot sites in North Ayrshire in 2010, focusing on people with palliative care needs. Data were collected from participants in advance care planning training using a questionnaire. Semi-structured interviews were conducted and an audit of documentation was undertaken. Thirty nine questionnaires were returned, a response rate of 16%. Twenty four out of 25 (96%) participants rated the training as having improved their understanding of the advance care planning process. The general consensus in interviews was that advance care planning is a worthwhile process. Participants reported patients achieving their preferred place of end of life care and greater consultation regarding hospitalisation. Within the pilot sites, advance care planning training enhanced the ability of professionals to implement the advance care planning process and record the wishes of patients and residents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liby, Alan L; Rogers, Hiram
The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less
Cognitive correlates of performance in advanced mathematics.
Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin
2012-03-01
Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.
An economic analysis of the processing technologies in CDW recycling platforms.
Oliveira Neto, Raul; Gastineau, Pascal; Cazacliu, Bogdan Grigore; Le Guen, Lauredan; Paranhos, Régis Sebben; Petter, Carlos Otávio
2017-02-01
This paper proposes an economic analysis of three different types of processing in CDW (construction and demolition waste) recycling platforms, according to the sophistication of the processing technologies (current advanced, advanced and advanced sorting). The methodology that is adopted is in the economic evaluation concept of projects and is classified with a scoping study phase. In these contexts, three levels of CDW processing capabilities for recycling platforms are analyzed (100, 300 and 600 thousand tons per year). This article considers databases obtained from similar projects that have been published in the specialized literature; the data sources are primarily from the European continent. The paper shows that current advanced process has better economic performance, in terms of IRR, related to the other two processes. The IRR associated with advanced and advanced sorting processes could be raised by, (i) higher price of secondary primary material, and/or (ii) higher capacity of platforms, and/or (iii) higher sharing of secondary primary material in the total production. The first two points depend on the market conditions (prices and total quantity of CDW available) and (potential) fiscal or incentive policies. The last one depends on technological progress. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains reports which were presented at the 41st International Society For The Advancement of Material and Process Engineering Symposium and Exhibition. Topics include: structural integrity of aging aircraft; composite materials development; affordable composites and processes; corrosion characterization of aging aircraft; adhesive advances; composite design; dual use materials and processing; repair of aircraft structures; adhesive inspection; materials systems for infrastructure; fire safety; composite impact/energy absorption; advanced materials for space; seismic retrofit; high temperature resins; preform technology; thermoplastics; alternative energy and transportation; manufacturing; and durability. Individual reports have been processed separately for the United States Department of Energy databases.
Wafer hot spot identification through advanced photomask characterization techniques
NASA Astrophysics Data System (ADS)
Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike
2016-10-01
As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.
2007-06-01
microstructures through advanced powder processing , (7) nondestructive evaluation of ceramic armor, (8) investigation of the relation between quasi-static...of a green microstructure of a compact prepared by this process using Superior Graphite 490 powder that had been twice beneficiated by settling and...create a dense, uniform microstructure of highly oriented grains • Determined the relationship between processing parameters, such as shear and solids
NASA Astrophysics Data System (ADS)
Saab, Mohamad; Réal, Florent; Šulka, Martin; Cantrel, Laurent; Virot, François; Vallet, Valérie
2017-06-01
Tributyl-phosphate (TBP), a ligand used in the PUREX liquid-liquid separation process of spent nuclear fuel, can form an explosive mixture in contact with nitric acid that might lead to a violent explosive thermal runaway. In the context of safety of a nuclear reprocessing plant facility, it is crucial to predict the stability of TBP at elevated temperatures. So far, only the enthalpies of formation of TBP are available in the literature with rather large uncertainties, while those of its degradation products, di-(HDBP) and mono-(H2MBP), are unknown. In this goal, we have used state-of-the art quantum chemical methods to compute the formation enthalpies and entropies of TBP and its degradation products di-(HDBP) and mono-(H2MBP) in gas and liquid phases. Comparisons of levels of quantum chemical theory revealed that there are significant effects of correlation on their electronic structures, pushing for the need of not only high level of electronic correlation treatment, namely, local coupled cluster with single and double excitation operators and perturbative treatment of triple excitations, but also extrapolations to the complete basis to produce reliable and accurate thermodynamics data. Solvation enthalpies were computed with the conductor-like screening model for real solvents [COSMO-RS], for which we observe errors not exceeding 22 kJ mol-1. We thus propose with final uncertainty of about 20 kJ mol-1 standard enthalpies of formation of TBP, HDBP, and H2MBP which amounts to -1281.7 ± 24.4, -1229.4 ± 19.6, and -1176.7 ± 14.8 kJ mol-1, respectively, in the gas phase. In the liquid phase, the predicted values are -1367.3 ± 24.4, -1348.7 ± 19.6, and -1323.8± 14.8 kJ mol-1, to which we may add about -22 kJ mol-1 error from the COSMO-RS solvent model. From these data, the complete hydrolysis of TBP is predicted as an exothermic phenomena but showing a slightly endergonic process.
Sudore, Rebecca L.; Stewart, Anita L.; Knight, Sara J.; McMahan, Ryan D.; Feuz, Mariko; Miao, Yinghui; Barnes, Deborah E.
2013-01-01
Introduction Advance directives have traditionally been considered the gold standard for advance care planning. However, recent evidence suggests that advance care planning involves a series of multiple discrete behaviors for which people are in varying stages of behavior change. The goal of our study was to develop and validate a survey to measure the full advance care planning process. Methods The Advance Care Planning Engagement Survey assesses “Process Measures” of factors known from Behavior Change Theory to affect behavior (knowledge, contemplation, self-efficacy, and readiness, using 5-point Likert scales) and “Action Measures” (yes/no) of multiple behaviors related to surrogate decision makers, values and quality of life, flexibility for surrogate decision making, and informed decision making. We administered surveys at baseline and 1 week later to 50 diverse, older adults from San Francisco hospitals. Internal consistency reliability of Process Measures was assessed using Cronbach's alpha (only continuous variables) and test-retest reliability of Process and Action Measures was examined using intraclass correlations. For discriminant validity, we compared Process and Action Measure scores between this cohort and 20 healthy college students (mean age 23.2 years, SD 2.7). Results Mean age was 69.3 (SD 10.5) and 42% were non-White. The survey took a mean of 21.4 minutes (±6.2) to administer. The survey had good internal consistency (Process Measures Cronbach's alpha, 0.94) and test-retest reliability (Process Measures intraclass correlation, 0.70; Action Measures, 0.87). Both Process and Action Measure scores were higher in the older than younger group, p<.001. Conclusion A new Advance Care Planning Engagement Survey that measures behavior change (knowledge, contemplation, self-efficacy, and readiness) and multiple advance care planning actions demonstrates good reliability and validity. Further research is needed to assess whether survey scores improve in response to advance care planning interventions and whether scores are associated with receipt of care consistent with one's wishes. PMID:24039772
Rankin, S A; Bradley, R L; Miller, G; Mildenhall, K B
2017-12-01
Over the past century, advancements within the mainstream dairy foods processing industry have acted in complement with other dairy-affiliated industries to produce a human food that has few rivals with regard to safety, nutrition, and sustainability. These advancements, such as milk pasteurization, may appear commonplace in the context of a modern dairy processing plant, but some consideration of how these advancements came into being serve as a basis for considering what advancements will come to bear on the next century of processing advancements. In the year 1917, depending on where one resided, most milk was presented to the consumer through privately owned dairy animals, small local or regional dairy farms, or small urban commercial dairies with minimal, or at best nascent, processing capabilities. In 1917, much of the retail milk in the United States was packaged and sold in returnable quart-sized clear glass bottles fitted with caps of various design and composition. Some reports suggest that the cost of that quart of milk was approximately 9 cents-an estimated $2.00 in 2017 US dollars. Comparing that 1917 quart of milk to a quart of milk in 2017 suggests several differences in microbiological, compositional, and nutritional value as well as flavor characteristics. Although a more comprehensive timeline of significant processing advancements is noted in the AppendixTable A1 to this paper, we have selected 3 advancements to highlight; namely, the development of milk pasteurization, cleaning and sanitizing technologies, and sanitary specifications for processing equipment. Finally, we provide some insights into the future of milk processing and suggest areas where technological advancements may need continued or strengthened attention and development as a means of securing milk as a food of high safety and value for the next century to come. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Multiyear Subcontractor Selection Criteria Analysis.
1983-09-01
advancement are program instability, higher costs, and increased lead-times. Compounding the instability created by advancing technology are changes in...drive smaller firms out of business (17:46). Technology is advancing at an ever increasing pace, demanding higher performance and larger amounts of engi...Process Adding to the external factors mentioned above, the weapon systems acquisition process tends to retard pro- ductivity advancements by its very
Advanced planning for ISS payload ground processing
NASA Astrophysics Data System (ADS)
Page, Kimberly A.
2000-01-01
Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .
Participation in the Center for Advanced Processing and Packaging Studies
2009-11-24
University, the University ofCalifomia, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...University, the University of California, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...amyloliquefaciens, spore inactivation, FT-IR spectroscopy, infrared 11 spectroscopy 12 13 14 15 16 17 Department of Food Science and Technology
Advanced resin systems and 3D textile preforms for low cost composite structures
NASA Technical Reports Server (NTRS)
Shukla, J. G.; Bayha, T. D.
1993-01-01
Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.
Advanced information processing system for advanced launch system: Avionics architecture synthesis
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.
1991-01-01
The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.
The Vanderbilt Professional Nursing Practice Program, part 3: managing an advancement process.
Steaban, Robin; Fudge, Mitzie; Leutgens, Wendy; Wells, Nancy
2003-11-01
Consistency of performance standards across multiple clinical settings is an essential component of a credible advancement system. Our advancement process incorporates a central committee, composed of nurses from all clinical settings within the institution, to ensure consistency of performance in inpatient, outpatient, and procedural settings. An analysis of nurses advanced during the first 18 months of the program indicates that performance standards are applicable to nurses in all clinical settings. The first article (September 2003) in this 3-part series described the foundation for and the philosophical background of the Vanderbilt Professional Nursing Practice Program (VPNPP), the career advancement program underway at Vanderbilt University Medical Center. Part 2 described the development of the evaluation tools used in the VPNPP, the implementation and management of this new system, program evaluation, and improvements since the program's inception. The purpose of this article is to review the advancement process, review the roles of those involved in the process, and to describe outcomes and lessons learned.
Advanced Manufacturing Systems in Food Processing and Packaging Industry
NASA Astrophysics Data System (ADS)
Shafie Sani, Mohd; Aziz, Faieza Abdul
2013-06-01
In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.
Process for producing advanced ceramics
Kwong, Kyei-Sing
1996-01-01
A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.
NASA Astrophysics Data System (ADS)
Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi
2010-09-01
This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2014-09-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2013-12-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
Advanced Research Deposition System (ARDS) for processing CdTe solar cells
NASA Astrophysics Data System (ADS)
Barricklow, Keegan Corey
CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation (PECSS), Electron Reflector (ER) using Cd1-xMgxTe (CMT) structure and alternative device structures. The ARDS has been instrumental in the collaborative research with many institutions.
Aerospace Materials Process Modelling
1988-08-01
development of advanced technologies for the fabrication of close-tolerance parts, in conjunction with the development of advanced materials, plays a key...1883. 17. Gegel, H. L., et al., "Materials Modeling and Intrinsic Workability for Simulation of Bulk Deformiti6n," Advanced Technology of Plasticity, Vol...process in the last three decades. As a result of technological advances gained in aerospace industry there has been an increasing demand for the
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
McGhie-Anderson, Rose Lavine
The purpose of this study was to gain an understanding of the social processes associated with the decision of diploma and associate degree nurses to advance academically. Advanced nursing education needs to be pursued along the continuum of the nursing career path. This education process is indispensable to the role of nurses as educator, manager, nurse leader, and researcher who will effect policy changes, assume leadership roles as revolutionary thinkers, and implement paradigmatic shifts. Data were collected from two groups of participants using face-to-face, semistructured interviews. Group 1 consisted of diploma and associate degree nurses; Group 2 consisted of baccalaureate, masters, and doctoral degree nurses who have progressed academically. Emerging from the thick, rich data were core categories of rewarding, motivating, and supporting as critical factors that influence professional advancement. This qualitative study elucidated that professional advancement was the social process that grounds. The emergent theory was the theory of professional advancement.
Advanced bulk processing of lightweight materials for utilization in the transportation sector
NASA Astrophysics Data System (ADS)
Milner, Justin L.
The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.
The Advanced Credential for Health Education Specialists: A Seven-Year Project
ERIC Educational Resources Information Center
Dennis, Dixie L.; Lysoby, Linda
2010-01-01
The only advanced credential exam for health educators, The Master Certified Health Education Specialist (MCHES), involved a seven-year process. The process began in December 2004, with the information from the Competency Update Project (CUP) report that health educators practice at entry- and advanced-levels of practice. In October 2011, the date…
5th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Cook, M. B. (Editor); Stanley, D. Cross (Editor)
2003-01-01
Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.
Tailoring advanced technologies for air traffic control : the importance of the development process
DOT National Transportation Integrated Search
1995-04-01
This paper describes a process that is currently being applied to the : development and assessment of an advanced air traffic control (ATC) system, the : Center TRACON Automation System (CTAS). This process deviates from established : practices of AT...
Advanced processing for high-bandwidth sensor systems
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.
2000-11-01
Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.
van Oorschot, B; Simon, A
2006-11-01
To analyse and compare the surveys on German doctors and judges on end of life decision making regarding their attitudes on the advance directive and on the dying process. The respondents were to indicate their agreement or disagreement to eight statements on the advance directive and to specify their personal view on the beginning of the dying process. 727 doctors (anaesthetists or intensive-care physicians, internal specialists and general practitioners) in three federal states and 469 judges dealing with guardianship matters all over Germany. Comparisons of means, analyses of variance, pivot tables (chi(2) test) and factor analyses (varimax with Kaiser normalisation). Three attitude groups on advance directive were disclosed by the analysis: the decision model, which emphasises the binding character of a situational advance directive; the deliberation model, which puts more emphasis on the communicative aspect; and the delegation model, which regards the advance directive as a legal instrument. The answers regarding the beginning of the dying process were broadly distributed, but no marked difference was observed between the responding professions. The dying process was assumed by most participants to begin with a life expectancy of only a few days. A high degree of valuation for advance directive was seen in both German doctors and judges; most agreed to the binding character of the situational directive. Regarding the different individual concepts of the dying process, a cross-professional discourse on the contents of this term seems to be overdue.
Jarvis, Benjamin; Johnson, Tricia; Butler, Peter; O'Shaughnessy, Kathryn; Fullam, Francis; Tran, Lac; Gupta, Richa
2013-10-01
To assess the impact of using an advanced electronic health record (EHR) on hospital quality and patient satisfaction. This retrospective, cross-sectional analysis was conducted in 2012 to evaluate the association between advanced EHR use (Healthcare Information Management Systems Society [HIMSS] Stage 6 or 7 as of December 2012) and estimated process and experience of care scores for hospitals under the Medicare Hospital Value-Based Purchasing Program, using data from the American Hospital Association for 2008 to 2010. Generalized linear regression models were fit to test the association between advanced EHR use with process of care and experience of care, controlling for hospital characteristics. In a second analysis, the models included variables to account for HIMSS stage of advanced EHR use. The study included 2,988 hospitals, with 248 (8.3%) classified as advanced EHR users (HIMSS Stage 6 or 7). After controlling for hospital characteristics, advanced EHR use was associated with a 4.2-point-higher process of care score (P < .001). Hospitals with Stage 7 EHRs had 11.7 points higher process of care scores, but Stage 6 users had scores that were not substantially different from those of nonadvanced users. There was no significant difference in estimated experience of care scores by level of advanced EHR use. This study evaluated the effectiveness of the U.S. federal government's investment in hospital information technology infrastructure. Results suggest that the most advanced EHRs have the greatest payoff in improving clinical process of care scores, without detrimentally impacting the patient experience.
Advanced process control framework initiative
NASA Astrophysics Data System (ADS)
Hill, Tom; Nettles, Steve
1997-01-01
The semiconductor industry, one the world's most fiercely competitive industries, is driven by increasingly complex process technologies and global competition to improve cycle time, quality, and process flexibility. Due to the complexity of these problems, current process control techniques are generally nonautomated, time-consuming, reactive, nonadaptive, and focused on individual fabrication tools and processes. As the semiconductor industry moves into higher density processes, radical new approaches are required. To address the need for advanced factory-level process control in this environment, Honeywell, Advanced Micro Devices (AMD), and SEMATECH formed the Advanced Process Control Framework Initiative (APCFI) joint research project. The project defines and demonstrates an Advanced Process Control (APC) approach based on SEMATECH's Computer Integrated Manufacturing (CIM) Framework. Its scope includes the coordination of Manufacturing Execution Systems, process control tools, and wafer fabrication equipment to provide necessary process control capabilities. Moreover, it takes advantage of the CIM Framework to integrate and coordinate applications from other suppliers that provide services necessary for the overall system to function. This presentation discusses the key concept of model-based process control that differentiates the APC Framework. This major improvement over current methods enables new systematic process control by linking the knowledge of key process settings to desired product characteristics that reside in models created with commercial model development tools The unique framework-based approach facilitates integration of commercial tools and reuse of their data by tying them together in an object-based structure. The presentation also explores the perspective of each organization's involvement in the APCFI project. Each has complementary goals and expertise to contribute; Honeywell represents the supplier viewpoint, AMD represents the user with 'real customer requirements', and SEMATECH provides a consensus-building organization that widely disseminates technology to suppliers and users in the semiconductor industry that face similar equipment and factory control systems challenges.
TC-99 Decontaminant from heat treated gaseous diffusion membrane -Phase I, Part B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Restivo, M.; Duignan, M.
2017-11-01
Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation or exactmore » form in the gaseous diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal or leaching desorption, which is independent of the technetium oxidation states, to perform an insitu removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste. Based on the positive results of the first part of this work1 the use of steam as a thermal decontamination agent was further explored with a second piece of used barrier material from a different location. This new series of tests included exposing more of the material surface to the flow of high temperature steam through the change in the reactor design, subjecting it to alternating periods of stream and vacuum, as well as determining if a lower temperature steam, i.e., 121°C (250°F) would be effective, too. Along with these methods, one other simpler method involving the leaching of the Tc-99 contaminated barrier material with a 1.0 M aqueous solution of ammonium carbonate, with and without sonication, was evaluated.« less
Barney, Gary S.; Brownell, Lloyd E.
1977-01-01
A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.
7 CFR 1781.12 - Preapplication and application processing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... WATERSHED (WS) LOANS AND ADVANCES § 1781.12 Preapplication and application processing. (a) WS and RCD loans... and assembled in accordance with applicable RUS Instruction 1780. (b) Watershed advances. Applications...
7 CFR 1781.12 - Preapplication and application processing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... WATERSHED (WS) LOANS AND ADVANCES § 1781.12 Preapplication and application processing. (a) WS and RCD loans... and assembled in accordance with applicable RUS Instruction 1780. (b) Watershed advances. Applications...
7 CFR 1781.12 - Preapplication and application processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... WATERSHED (WS) LOANS AND ADVANCES § 1781.12 Preapplication and application processing. (a) WS and RCD loans... and assembled in accordance with applicable RUS Instruction 1780. (b) Watershed advances. Applications...
7 CFR 1781.12 - Preapplication and application processing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... WATERSHED (WS) LOANS AND ADVANCES § 1781.12 Preapplication and application processing. (a) WS and RCD loans... and assembled in accordance with applicable RUS Instruction 1780. (b) Watershed advances. Applications...
7 CFR 1781.12 - Preapplication and application processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... WATERSHED (WS) LOANS AND ADVANCES § 1781.12 Preapplication and application processing. (a) WS and RCD loans... and assembled in accordance with applicable RUS Instruction 1780. (b) Watershed advances. Applications...
A Research Program on Artificial Intelligence in Process Engineering.
ERIC Educational Resources Information Center
Stephanopoulos, George
1986-01-01
Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…
A Reverse Osmosis System for an Advanced Separation Process Laboratory.
ERIC Educational Resources Information Center
Slater, C. S.; Paccione, J. D.
1987-01-01
Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)
ERIC Educational Resources Information Center
Morrison, David L.; And Others
1982-01-01
Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)
Hutchison, Lauren A; Raffin-Bouchal, Donna S; Syme, Charlotte A; Biondo, Patricia D; Simon, Jessica E
2017-09-01
Objectives Advance care planning is the process by which people reflect upon their wishes and values for healthcare, discuss their choices with family and friends and document their wishes. Readiness represents a key predictor of advance care planning participation; however, the evidence for addressing readiness is scarce within the renal failure context. Our objectives were to assess readiness for advance care planning and barriers and facilitators to advance care planning uptake in a renal context. Methods Twenty-five participants (nine patients, nine clinicians and seven family members) were recruited from the Southern Alberta Renal Program. Semi-structured interviews were recorded, transcribed and then analyzed using interpretive description. Results Readiness for advance care planning was driven by individual values perceived by a collaborative encounter between clinicians and patients/families. If advance care planning is not valued, then patients/families and clinicians are not ready to initiate the process. Patients and clinicians are delaying conversations until "illness burden necessitates," so there is little "advance" care planning, only care planning in-the-moment closer to the end of life. Discussion The value of advance care planning in collaboration with clinicians, patients and their surrogates needs reframing as an ongoing process early in the patient's illness trajectory, distinguished from end-of-life decision making.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... procedures DOE uses to process loan applications submitted to DOE's Advanced Technology Vehicles... procedures DOE uses to process loan applications submitted to DOE's Advanced Technology Vehicles... requirements as described above for any information submitted through the Title XVII loan application process...
Advanced Manufacturing Research | NREL
engineering research in advanced manufacturing is focused on the identification and development of advanced materials and advanced processes that drive the impact of new energy technologies. Our world-class strategies, and policy evaluation. We partner with industry to bridge innovation gaps in advanced
2017-08-01
of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics...manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that...geometries, we develop a methodology that couples experimental data and modelling to convert the scan paths into spatially resolved local thermal histories
Advance statements in the new Victorian Mental Health Act.
Saraf, Sudeep
2015-06-01
There is growing recognition of the utility of advance statements in the area of mental health. The definition of advance statements and procedure for making and varying advance statements under the Victorian legislation is described. The implications for psychiatrists, mental health tribunals and the process should the psychiatrist vary their decision from that made in the advance statement are discussed. Advance statements being enshrined in legislation is another step in the direction of recovery-oriented service provision for persons with mental illness. The challenge for services will be to develop systems and processes that promote increased uptake of these instruments to empower persons with mental illness to participate in their treatment. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Advanced Manufacturing Processes in the Motor Vehicle Industry
DOT National Transportation Integrated Search
1983-05-01
Advanced manufacturing processes, which include a range of automation and management techniques, are aiding U.S. motor vehicle manufacturers to reduce vehicle costs. This report discusses these techniques in general and their specific applications in...
Energy conversion and storage program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1992-03-01
The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.
Leoni-Scheiber, Claudia; Gothe, Raffaella Matteucci; Müller-Staub, Maria
2016-02-01
The attitude of nurses influences their application of the Advanced Nursing Process. Studies reveal deficits in the application of the Advanced Nursing Process that is based on valid assessments and nursing classifications. These deficits affect decision-making and – as a result – nursing care quality. In German speaking countries nurses' attitudes towards nursing diagnoses as part of the Advanced Nursing Process were not yet measured. The aim of this study was to evaluate the effects of an educational intervention on nurses' attitude. A quasi-experimental intervention study was carried out in Austria and Germany. Before and after a standardised educational intervention 51 nurses estimated their attitude with the instrument Positions on Nursing Diagnosis (PND). Analyses were performed by Wilcoxon- and U-tests. Before the educational intervention the average attitude score of the Austrian nurses was more positive than in the German group. After the study intervention both groups regarded nursing diagnostics statistically significant more convincing and better understandable. However, both groups still described the application of the Advanced Nursing Process as difficult and demanding to perform. In the future, more attention should be given to the reflexion and development of nurses' attitude towards the Advanced Nursing Process because attitudes lead nurses' actions. In further studies influencing organizational and structural factors in diverse settings will be analysed.
Synthetic Biology Guides Biofuel Production
Connor, Michael R.; Atsumi, Shota
2010-01-01
The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
Karayanidis, Frini; Jamadar, Sharna; Ruge, Hannes; Phillips, Natalie; Heathcote, Andrew; Forstmann, Birte U.
2010-01-01
Recent research has taken advantage of the temporal and spatial resolution of event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) to identify the time course and neural circuitry of preparatory processes required to switch between different tasks. Here we overview some key findings contributing to understanding strategic processes in advance preparation. Findings from these methodologies are compatible with advance preparation conceptualized as a set of processes activated for both switch and repeat trials, but with substantial variability as a function of individual differences and task requirements. We then highlight new approaches that attempt to capitalize on this variability to link behavior and brain activation patterns. One approach examines correlations among behavioral, ERP and fMRI measures. A second “model-based” approach accounts for differences in preparatory processes by estimating quantitative model parameters that reflect latent psychological processes. We argue that integration of behavioral and neuroscientific methodologies is key to understanding the complex nature of advance preparation in task-switching. PMID:21833196
Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)
2016-05-06
10.1002/9781119296126.ch29 14. ABSTRACT (Maximum 200 words) Advances in the fundamental understanding of microstructure evolution and plastic flow during...Abstract Advances in the fundamental understanding of microstructure evolution and plastic flow during primary and secondary processing of titanium...generation of rolling-direction secondary tension stresses. Important factors in such failures have been deduced to include the plastic properties and the
ERIC Educational Resources Information Center
Stanford, Linda
This course curriculum is intended for use by community college insructors and administrators in implementing an advanced information processing course. It builds on the skills developed in the previous information processing course but goes one step further by requiring students to perform in a simulated office environment and improve their…
Kozlowski, Steve W J; Chao, Georgia T
2018-01-01
Psychologists have studied small-group and team effectiveness for decades, and although there has been considerable progress, there remain significant challenges. Meta-analyses and systematic research have provided solid evidence for core team cognitive, motivational, affective, and behavioral processes that contribute to team effectiveness and empirical support for interventions that enhance team processes (e.g., team design, composition, training, and leadership); there has been substantial evidence for a science of team effectiveness. Nonetheless, there have also been concerns that team processes, which are inherently dynamic, have primarily been assessed as static constructs. Team-level processes and outcomes are multilevel phenomena that emerge, bottom-up from the interactions among team members over time, under the shifting demands of a work context. Thus, theoretical development that appropriately conceptualizes the multiple levels, process dynamics, and emergence of team phenomena over time are essential to advance understanding. Moreover, these conceptual advances necessitate innovative research methodologies to better capture team process dynamics. We explicate this foundation and then describe 2 promising streams of scientific inquiry-team interaction sensors and computational modeling-that are advancing new, unobtrusive measurement techniques and process-oriented research methods focused on understanding the dynamics of cohesion and cognition in teamwork. These are distinct lines of research, each endeavoring to advance the science, but doing so through the development of very different methodologies. We close by discussing the near-term research challenges and the potential long-term evolution of these innovative methods, with an eye toward the future for process-oriented theory and research on team effectiveness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin
2017-04-01
To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.
NASA Technical Reports Server (NTRS)
Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.
1991-01-01
An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.
HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES
This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...
Optical Multiple Access Network (OMAN) for advanced processing satellite applications
NASA Technical Reports Server (NTRS)
Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.
1991-01-01
An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.
47 CFR 51.5 - Terms and definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... The Communications Act of 1934, as amended. Advanced intelligent network. Advanced intelligent network is a telecommunications network architecture in which call processing, call routing, and network... carrier's network. Advanced services. The term “advanced services” is defined as high speed, switched...
Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review.
Poza-Nogueiras, Verónica; Rosales, Emilio; Pazos, Marta; Sanromán, M Ángeles
2018-06-01
Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES
The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...
Waldron, Nicholas; Johnson, Claire E; Saul, Peter; Waldron, Heidi; Chong, Jeffrey C; Hill, Anne-Marie; Hayes, Barbara
2016-10-06
Advance cardiopulmonary resuscitation (CPR) decision-making and escalation of care discussions are variable in routine clinical practice. We aimed to explore physician barriers to advance CPR decision-making in an inpatient hospital setting and develop a pragmatic intervention to support clinicians to undertake and document routine advance care planning discussions. Two focus groups, which involved eight consultants and ten junior doctors, were conducted following a review of the current literature. A subsequent iterative consensus process developed two intervention elements: (i) an updated 'Goals of Patient Care' (GOPC) form and process; (ii) an education video and resources for teaching advance CPR decision-making and communication. A multidisciplinary group of health professionals and policy-makers with experience in systems development, education and research provided critical feedback. Three key themes emerged from the focus groups and the literature, which identified a structure for the intervention: (i) knowing what to say; (ii) knowing how to say it; (iii) wanting to say it. The themes informed the development of a video to provide education about advance CPR decision-making framework, improving communication and contextualising relevant clinical issues. Critical feedback assisted in refining the video and further guided development and evolution of a medical GOPC approach to discussing and recording medical treatment and advance care plans. Through an iterative process of consultation and review, video-based education and an expanded GOPC form and approach were developed to address physician and systemic barriers to advance CPR decision-making and documentation. Implementation and evaluation across hospital settings is required to examine utility and determine effect on quality of care.
NASA Technical Reports Server (NTRS)
Cole, Richard
1991-01-01
The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).
NASA Technical Reports Server (NTRS)
Murray, R. W.
1973-01-01
A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.
Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2003-01-01
Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.
ERIC Educational Resources Information Center
Stanford, Linda
This course curriculum is intended for use in an advanced information processing course. It builds on the skills developed in the previous information processing course but goes one step further by requiring students to perform in a simulated office environment and improve their decision-making skills. This volume contains two parts of the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... Solar and Wind Energy Development AGENCY: Bureau of Land Management. ACTION: Advance notice of proposed... to establish a competitive process for leasing public lands for solar and wind energy development... process for issuing Right-of-Way (ROW) leases for solar and wind energy development that is based upon the...
Application of advanced on-board processing concepts to future satellite communications systems
NASA Technical Reports Server (NTRS)
Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.
1979-01-01
An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.
NASA Technical Reports Server (NTRS)
Ingham, J. D.
1984-01-01
This report is a summary of assessments by Chem Systems Inc. and a further evaluation of the impacts of research advances on energy efficiency and the potential for future industrial production of acetone-butanol-ethanol (ABE) solvents and other products by biocatalyzed processes. Brief discussions of each of the assessments made by CSI, followed by estimates of minimum projected energy consumption and costs for production of solvents by ABE biocatalyzed processes are included. These assessments and further advances discussed in this report show that substantial decreases in energy consumption and costs are possible on the basis of specific research advances; therefore, it appears that a biocatalyzed process for ABE can be developed that will be competitive with conventional petrochemical processes for production of n-butanol and acetone. (In this work, the ABE process was selected and utilized only as an example for methodology development; other possible bioprocesses for production of commodity chemicals are not intended to be excluded.) It has been estimated that process energy consumption can be decreased by 50%, with a corresponding cost reduction of 15-30% (in comparison with a conventional petrochemical process) by increasing microorganism tolerance to n-butanol and efficient recovery of product solvents from the vapor phase.
Advanced imaging programs: maximizing a multislice CT investment.
Falk, Robert
2008-01-01
Advanced image processing has moved from a luxury to a necessity in the practice of medicine. A hospital's adoption of sophisticated 3D imaging entails several important steps with many factors to consider in order to be successful. Like any new hospital program, 3D post-processing should be introduced through a strategic planning process that includes administrators, physicians, and technologists to design, implement, and market a program that is scalable-one that minimizes up front costs while providing top level service. This article outlines the steps for planning, implementation, and growth of an advanced imaging program.
Primary healthcare NZ nurses' experiences of advance directives: understanding their potential role.
Davidson, Raewyn; Banister, Elizabeth; de Vries, Kay
2013-07-01
Advance directives are one aspect of advance care planning designed to improve end of life care. The New Zealand Nurses Organisation released their first mission statement in 2010 concerning advance directives suggesting an increase in the use of these. A burgeoning older population, expected to rise over the next few years, places the primary healthcare nurse in a pivotal role to address the challenges in constructing advance directives. While literature supports the role for primary healthcare nurses in promoting advance directives, no research was found on this role in the New Zealand context. This paper presents results of a qualitative study conducted in New Zealand with 13 senior primary healthcare nurses with respect to their knowledge, attitudes, and experiences of advance directives. Results of the analysis revealed a dynamic process involving participants coming to understand their potential role in this area. This process included reflection on personal experience with advance directives; values and ethics related to end of life issues; and professional actions.
NASA Astrophysics Data System (ADS)
Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.
2014-03-01
We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.
Dierkes, M
1990-05-01
This article provides an overview of the new developments in social scientific technology research which have changed considerably as a result of public debate and reactions to the importance of advancements in technology. The shift in emphasis, away from the effects of technology to its shaping, is described and certain hypotheses and concepts of advancement in the study of the social conditions underlying technical development processes are presented.
Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh
2015-08-18
Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.; McCorkle, D.; Yang, C.
Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less
Carbamazepine is an anthropogenic pharmaceutical found in wastewater effluents that is quite resistant to removal by conventional wastewater treatment processes. Hydroxyl radical-based advanced oxidation processes can transform carbamazepine into degradation products but cannot m...
DOT National Transportation Integrated Search
2010-01-01
The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...
NASA Technical Reports Server (NTRS)
1985-01-01
The function design of the Input/Output (I/O) services for the Advanced Information Processing System (AIPS) proof of concept system is described. The data flow diagrams, which show the functional processes in I/O services and the data that flows among them, are contained. A complete list of the data identified on the data flow diagrams and in the process descriptions are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less
Advances in multi-scale modeling of solidification and casting processes
NASA Astrophysics Data System (ADS)
Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang
2011-04-01
The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less
Automatic process control in anaerobic digestion technology: A critical review.
Nguyen, Duc; Gadhamshetty, Venkataramana; Nitayavardhana, Saoharit; Khanal, Samir Kumar
2015-10-01
Anaerobic digestion (AD) is a mature technology that relies upon a synergistic effort of a diverse group of microbial communities for metabolizing diverse organic substrates. However, AD is highly sensitive to process disturbances, and thus it is advantageous to use online monitoring and process control techniques to efficiently operate AD process. A range of electrochemical, chromatographic and spectroscopic devices can be deployed for on-line monitoring and control of the AD process. While complexity of the control strategy ranges from a feedback control to advanced control systems, there are some debates on implementation of advanced instrumentations or advanced control strategies. Centralized AD plants could be the answer for the applications of progressive automatic control field. This article provides a critical overview of the available automatic control technologies that can be implemented in AD processes at different scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions.
Cole, Kevin P; Groh, Jennifer McClary; Johnson, Martin D; Burcham, Christopher L; Campbell, Bradley M; Diseroad, William D; Heller, Michael R; Howell, John R; Kallman, Neil J; Koenig, Thomas M; May, Scott A; Miller, Richard D; Mitchell, David; Myers, David P; Myers, Steven S; Phillips, Joseph L; Polster, Christopher S; White, Timothy D; Cashman, Jim; Hurley, Declan; Moylan, Robert; Sheehan, Paul; Spencer, Richard D; Desmond, Kenneth; Desmond, Paul; Gowran, Olivia
2017-06-16
Advances in drug potency and tailored therapeutics are promoting pharmaceutical manufacturing to transition from a traditional batch paradigm to more flexible continuous processing. Here we report the development of a multistep continuous-flow CGMP (current good manufacturing practices) process that produced 24 kilograms of prexasertib monolactate monohydrate suitable for use in human clinical trials. Eight continuous unit operations were conducted to produce the target at roughly 3 kilograms per day using small continuous reactors, extractors, evaporators, crystallizers, and filters in laboratory fume hoods. Success was enabled by advances in chemistry, engineering, analytical science, process modeling, and equipment design. Substantial technical and business drivers were identified, which merited the continuous process. The continuous process afforded improved performance and safety relative to batch processes and also improved containment of a highly potent compound. Copyright © 2017, American Association for the Advancement of Science.
ERIC Educational Resources Information Center
Billings, Paul H.
This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 6-hour introductory module on statistical process control (SPC), designed to develop competencies in the following skill areas: (1) identification of the three classes of SPC use; (2) understanding a process and how it works; (3)…
Advanced Platform Systems Technology study. Volume 3: Supporting data
NASA Technical Reports Server (NTRS)
1983-01-01
The overall study effort proceeded from the identification of 106 technology topics to the selection of 5 for detail trade studies. The technical issues and options were evaluated through the trade process. Finally, individual consideration was given to costs and benefits for the technologies identified for advancement. Eight priority technology items were identified for advancement. Supporting data generated during the trade selection and trade study process were presented. Space platform requirements, trade study and cost benefits analysis, and technology advancement planning are advanced. The structured approach used took advantage of a number of forms developed to ensure that a consistent approach was employed by each of the diverse specialists that participated. These forms were an intrinsic part of the study protocol.
ERIC Educational Resources Information Center
Koichu, Boris
2010-01-01
This article discusses an issue of inserting mathematical knowledge within the problem-solving processes. Relatively advanced mathematical knowledge is defined in terms of "three mathematical worlds"; relatively advanced problem-solving behaviours are defined in terms of taxonomies of "proof schemes" and "heuristic behaviours". The relationships…
Mask cost of ownership for advanced lithography
NASA Astrophysics Data System (ADS)
Muzio, Edward G.; Seidel, Philip K.
2000-07-01
As technology advances, becoming more difficult and more expensive, the cost of ownership (CoO) metric becomes increasingly important in evaluating technical strategies. The International SEMATECH CoC analysis has steadily gained visibility over the past year, as it attempts to level the playing field between technology choices, and create a fair relative comparison. In order to predict mask cots for advanced lithography, mask process flows are modeled using bets-known processing strategies, equipment cost, and yields. Using a newly revised yield mode, and updated mask manufacture flows, representative mask flows can be built. These flows are then used to calculate mask costs for advanced lithography down to the 50 nm node. It is never the goal of this type of work to provide absolute cost estimates for business planning purposes. However, the combination of a quantifiable yield model with a clearly defined set of mask processing flows and a cost model based upon them serves as an excellent starting point for cost driver analysis and process flow discussion.
Microeconomics of advanced process window control for 50-nm gates
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.
2002-07-01
Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.
Introduction to the Special Issue on Digital Signal Processing in Radio Astronomy
NASA Astrophysics Data System (ADS)
Price, D. C.; Kocz, J.; Bailes, M.; Greenhill, L. J.
2016-03-01
Advances in astronomy are intimately linked to advances in digital signal processing (DSP). This special issue is focused upon advances in DSP within radio astronomy. The trend within that community is to use off-the-shelf digital hardware where possible and leverage advances in high performance computing. In particular, graphics processing units (GPUs) and field programmable gate arrays (FPGAs) are being used in place of application-specific circuits (ASICs); high-speed Ethernet and Infiniband are being used for interconnect in place of custom backplanes. Further, to lower hurdles in digital engineering, communities have designed and released general-purpose FPGA-based DSP systems, such as the CASPER ROACH board, ASTRON Uniboard, and CSIRO Redback board. In this introductory paper, we give a brief historical overview, a summary of recent trends, and provide an outlook on future directions.
Adding structure to the transition process to advanced mathematical activity
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann
2010-03-01
The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.
State of the Art Assessment of Simulation in Advanced Materials Development
NASA Technical Reports Server (NTRS)
Wise, Kristopher E.
2008-01-01
Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-08-01
The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of amore » variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 2 CHEMICALS § 713.4 Advance declaration requirements for additionally planned production... additionally planned production, processing, or consumption of Schedule 2 chemicals. 713.4 Section 713.4...
Online POMDP Algorithms for Very Large Observation Spaces
2017-06-06
stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015. • Luo, Yuanfu, Haoyu Bai...and Wee Sun Lee. "Adaptive stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015
Code of Federal Regulations, 2011 CFR
2011-01-01
... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 2 CHEMICALS § 713.4 Advance declaration requirements for additionally planned production... additionally planned production, processing, or consumption of Schedule 2 chemicals. 713.4 Section 713.4...
A Review on Advanced Treatment of Pharmaceutical Wastewater
NASA Astrophysics Data System (ADS)
Guo, Y.; Qi, P. S.; Liu, Y. Z.
2017-05-01
The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.
Advances in microscale separations towards nanoproteomics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Lian; Piehowski, Paul D.; Shi, Tujin
Microscale separations (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. While significant advances have been achieved in MS-based proteomics, the current platforms still face a significant challenge in overall sensitivity towards nanoproteomics (i.e., with less than 1 g total amount of proteins available) applications such as cellular heterogeneity in tissue pathologies. Herein, we review recent advances in microscale separation techniques and integrated sample processing systems that improve the overall sensitivity and coverage of the proteomics workflow, and their contributionsmore » towards nanoproteomics applications.« less
Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin
2013-09-01
Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.
Advanced High-Level Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, David K.; Vienna, John D.; Schweiger, Michael J.
2015-07-01
The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less
Educators' Perspectives: Survey on the 2009 CEC Advanced Content Standards
ERIC Educational Resources Information Center
Othman, Lama Bergstrand; Kieran, Laura; Anderson, Christine J.
2015-01-01
Educators who pursue an advanced degree or certification in special education must learn and master the Advanced Content Standards as set forth by the Council for Exceptional Children. These six content standards were validated by the CEC to guide educators through the process of assuming an advanced role in special education teaching or…
The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.
1978-01-01
An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Griffin, D. E. (Editor); Stanley, D. C. (Editor)
2001-01-01
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.
Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.
1994-12-01
The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potentialmore » to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.« less
USDA-ARS?s Scientific Manuscript database
In telogenetic and soil-mantled karst aquifers, the movement of autogenic recharge through the epikarstic zone and into the regional aquifer can be a complex process and have implications for flooding, groundwater contamination, and other difficult to capture processes. Recent advances in instrument...
A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...
Advancing Knowledge in Schools through Consultative Knowledge Linking.
ERIC Educational Resources Information Center
Kratochwill, Thomas R.
Consultation services have been considered an essential and important role for school psychologists throughout the history of the field. Traditionally consultation has been cast as a problem-solving process, nevertheless, it can be thought of as a knowledge-linking process in which psychologists advance knowledge in schools to various mediators…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... Collection; Unemployment Insurance (UI) Title XII Advances and Voluntary Repayment Process; Extension Without... assessed. Currently, ETA is soliciting comments concerning the collection process for data on UI Title XII... request (ICR) can be obtained by contacting Mr. Gibbons. SUPPLEMENTARY INFORMATION: I. Background Title...
Advanced Instruction: Facilitation of Individual Learning Processes in Large Groups
ERIC Educational Resources Information Center
Putz, Claus; Intveen, Geesche
2009-01-01
By supplying various combinations of advanced instructions and different forms of exercises individual learning processes within the impartation of basic knowledge can be activated and supported at best. The fundamentals of our class "Introduction to spatial-geometric cognition using CAD" are constructional inputs, which systematically induce the…
Milovanov, Riia; Huotilainen, Minna; Esquef, Paulo A A; Alku, Paavo; Välimäki, Vesa; Tervaniemi, Mari
2009-08-28
We examined 10-12-year old elementary school children's ability to preattentively process sound durations in music and speech stimuli. In total, 40 children had either advanced foreign language production skills and higher musical aptitude or less advanced results in both musicality and linguistic tests. Event-related potential (ERP) recordings of the mismatch negativity (MMN) show that the duration changes in musical sounds are more prominently and accurately processed than changes in speech sounds. Moreover, children with advanced pronunciation and musicality skills displayed enhanced MMNs to duration changes in both speech and musical sounds. Thus, our study provides further evidence for the claim that musical aptitude and linguistic skills are interconnected and the musical features of the stimuli could have a preponderant role in preattentive duration processing.
Microbial ecology to manage processes in environmental biotechnology.
Rittmann, Bruce E
2006-06-01
Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.
Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Chris; Willis, William; Carter, Robert
2013-07-01
Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for usemore » as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)« less
Montana Advanced Biofuels Great Falls Approval
This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable
Society of the plastic industry process emission initiatives
NASA Technical Reports Server (NTRS)
Mcdermott, Joseph
1994-01-01
At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.
Fabrication of advanced electrochemical energy materials using sol-gel processing techniques
NASA Technical Reports Server (NTRS)
Chu, C. T.; Chu, Jay; Zheng, Haixing
1995-01-01
Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Advance directives: the clinical nurse specialist as a change agent.
Meehan, Karen Anne
2009-01-01
The purpose of this article is to describe the impact the clinical nurse specialist (CNS) has on the advance directive process within the cardiac surgery patient population. As a change agent, the CNS needs to be able to increase the number of advance directives obtained and increase the provision of dignified, self-directed, quality patient care. With requirements from The Joint Commission and the Patient Self-determination Act, the change in process must take place to ensure that healthcare professionals are doing all they can do to carry out a patient's wishes. The 6-Source Influencer Model is applied to a case study to illustrate the role of the CNS as a change agent. Following this model, the CNS can facilitate lasting institutional change in the advance directive process. Based on the example, it is possible that a CNS can act as a change agent for other patient populations within the healthcare setting.
Vadose Zone Transport Field Study: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Andy L.; Conrad, Mark E.; Daily, William D.
2006-07-31
From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets tomore » validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.« less
Advanced Information Processing System - Fault detection and error handling
NASA Technical Reports Server (NTRS)
Lala, J. H.
1985-01-01
The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.
U.S. Climate Change Technology Program: Strategic Plan
2006-09-01
and Long Term, provides details on the 85 technologies in the R&D portfolio. 21 (Figure 2-1) Continuing Process The United States, in partnership with...locations may be centered near or in residential locations, and work processes and products may be more commonly communicated or delivered via digital... chemical properties, along with advanced methods to simulate processes , will stem from advances in computational technology. Current Portfolio The current
The Politburo’s Management of Its America Problem.
1981-04-01
long-term process of extending the Soviet political presence into more and more previously Western-influenced areas. The leadership expects occasional...major setbacks as inevitable incidents in this process of advance on a gradually broadening front. The Soviet leaders are well aware that not every...objective, self-propelled phenomena that are incrementally and inevitably erod- ing U.S. influence and in the process advancing that of the Soviet Union. In
Energy Conversion and Storage Program
NASA Astrophysics Data System (ADS)
Cairns, E. J.
1993-06-01
This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vijay; Denton, David; SHarma, Pradeep
The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less
Advance care planning in CKD/ESRD: an evolving process.
Holley, Jean L
2012-06-01
Advance care planning was historically considered to be simply the completion of a proxy (health care surrogate designation) or instruction (living will) directive that resulted from a conversation between a patient and his or her physician. We now know that advance care planning is a much more comprehensive and dynamic patient-centered process used by patients and families to strengthen relationships, achieve control over medical care, prepare for death, and clarify goals of care. Some advance directives, notably designated health care proxy documents, remain appropriate expressions of advance care planning. Moreover, although physician orders, such as do-not-resuscitate orders and Physician Orders for Life-Sustaining Treatment, may not be strictly defined as advance directives, their completion, when appropriate, is an integral component of advance care planning. The changing health circumstances and illness trajectory characteristic of ESRD mandate that advance care planning discussions adapt to a patient's situation and therefore must be readdressed at appropriate times and intervals. The options of withholding and withdrawing dialysis add ESRD-specific issues to advance care planning in this population and are events each nephrologist will at some time confront. Advance care planning is important throughout the spectrum of ESRD and is a part of nephrology practice that can be rewarding to nephrologists and beneficial to patients and their families.
Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program
NASA Technical Reports Server (NTRS)
Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.
1995-01-01
In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.
Solar synthesis of advanced materials: A solar industrial program initiative
NASA Astrophysics Data System (ADS)
Lewandowski, A.
1992-06-01
This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).
7 CFR 4288.130 - Payment applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid contracts...
7 CFR 4288.130 - Payment applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid contracts...
7 CFR 4288.130 - Payment applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program... identify the process and procedures the Agency will use to make payments to eligible advanced biofuel producers. In order to receive payments under this Program, eligible advanced biofuel producers with valid...
ERIC Educational Resources Information Center
Edie, Dan D.; Dunham, Michael G.
1987-01-01
Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…
Advance Manufacturing Office FY 2017 Budget At-A-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-01
The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.
Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.
2007-01-01
Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice-proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris-rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.
NASA Astrophysics Data System (ADS)
Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.
2017-09-01
With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.
Advanced information processing system
NASA Technical Reports Server (NTRS)
Lala, J. H.
1984-01-01
Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.
The aluminum smelting process.
Kvande, Halvor
2014-05-01
This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.
2014-01-01
This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722
Status and directions of modified tribological surfaces by ion processes
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1988-01-01
An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.
Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials.
Padmajan Sasikala, Suchithra; Poulin, Philippe; Aymonier, Cyril
2016-04-13
Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.
2014-01-01
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627
Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I
2014-04-30
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, Charles G; Wallace, Richard K; Ireland, John R
2009-01-01
This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs to bemore » rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, C. G.; Ebbinghaus, B. B.; Sleaford, Brad W.
2009-07-09
This paper is an extension to earlier studies [1,2] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, coextraction, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant State and sub-national group capabilities. This study also considers those materials that will be recycled and burned, possibly multiple times, in LWRs [e.g., plutonium in the form of mixed oxide (MOX) fuel]. The primary conclusion of this study is that all fissile material needs tomore » be rigorously safeguarded to detect diversion by a State and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities [3]. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.« less
Some observations on the interdigitation of advances in medical science and mathematics.
Glamore, Michael James; West, James L; O'leary, James Patrick
2013-12-01
The immense advancement of our understanding of disease processes has not been a uniform progression related to the passage of time. Advances have been made in "lurches" and "catches" since the advent of the written word. There has been a remarkable interdependency between such advances in medicine and advances in mathematics that has proved beneficial to both. This work explores some of these critical relationships and documents how the individuals involved contributed to advances in each.
Technology and development requirements for advanced coal conversion systems
NASA Technical Reports Server (NTRS)
1981-01-01
A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.
Advances in microscale separations towards nanoproteomics applications
Yi, Lian; Piehowski, Paul D.; Shi, Tujin; ...
2017-07-21
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. But, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1 μg total proteins (e.g., cellular heterogeneity in tissue pathologies). We review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, andmore » their contributions towards nanoproteomics applications.« less
Advances in microscale separations towards nanoproteomics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Lian; Piehowski, Paul D.; Shi, Tujin
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. But, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1 μg total proteins (e.g., cellular heterogeneity in tissue pathologies). We review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, andmore » their contributions towards nanoproteomics applications.« less
USDA-ARS?s Scientific Manuscript database
Progress in the understanding of physical, chemical, and biological processes influencing water quality, coupled with advancements in the collection and analysis of hydrologic data, provide opportunities for significant innovations in the manner and level with which watershed-scale processes may be ...
Adding Structure to the Transition Process to Advanced Mathematical Activity
ERIC Educational Resources Information Center
Engelbrecht, Johann
2010-01-01
The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…
2010-04-29
Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to
Strategic planning by the palliative care steering committee of the Middle East Cancer Consortium.
Moore, Shannon Y; Pirrello, Rosene D; Christianson, Sonya K; Ferris, Frank D
2011-04-01
High quality comprehensive palliative care is a critical need for millions of patients and families, but remains only a dream in many parts of the world. The failure to do a strategic planning process is one obstacle to advancing education and pain prevention and relief. The Middle Eastern Cancer Consortium Steering Committee attendees completed an initial strategic planning process and identified "developmental steps" to advance palliative care. Underscoring the multi-disciplinary nature of comprehensive palliative care, discipline-specific planning was done (adult and pediatric cancer and medicine, pharmacy, nursing) in a separate process from country-specific planning. Delineating the layers of intersection and differences between disciplines and countries was very powerful. Finding the common strengths and weaknesses in the status quo creates the potential for a more powerful regional response to the palliative care needs. Implementing and refining these preliminary strategic plans will augment and align the efforts to advance palliative care education and pain management in the Middle East. The dream to prevent and relieve suffering for millions of patients with advanced disease will become reality with a powerful strategic planning process well implemented.
Xin, Fengxue; Dong, Weiliang; Jiang, Yujia; Ma, Jiangfeng; Zhang, Wenming; Wu, Hao; Zhang, Min; Jiang, Min
2018-06-01
Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.
NASA IVHM Technology Experiment for X-vehicles (NITEX)
NASA Technical Reports Server (NTRS)
Sandra, Hayden; Bajwa, Anupa
2001-01-01
The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.
Advances in induction-heated plasma torch technology
NASA Technical Reports Server (NTRS)
Poole, J. W.; Vogel, C. E.
1972-01-01
Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.
CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...
ERIC Educational Resources Information Center
Alemán Bañón, José; Fiorentino, Robert; Gabriele, Alison
2014-01-01
Different theoretical accounts of second language (L2) acquisition differ with respect to whether or not advanced learners are predicted to show native-like processing for features not instantiated in the native language (L1). We examined how native speakers of English, a language with number but not gender agreement, process number and gender…
Advanced Polymer Processing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muenchausen, Ross E.
Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.
Xue, Chuang; Zhao, Jingbo; Chen, Lijie; Yang, Shang-Tian; Bai, Fengwu
Butanol as an advanced biofuel has gained great attention due to its environmental benefits and superior properties compared to ethanol. However, the cost of biobutanol production via conventional acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is not economically competitive, which has hampered its industrial application. The strain performance and downstream process greatly impact the economics of biobutanol production. Although various engineered strains with carefully orchestrated metabolic and sporulation-specific pathways have been developed, none of them is ideal for industrial biobutanol production. For further strain improvement, it is necessary to develop advanced genome editing tools and a deep understanding of cellular functioning of genes in metabolic and regulatory pathways. Processes with integrated product recovery can increase fermentation productivity by continuously removing inhibitory products while generating butanol (ABE) in a concentrated solution. In this review, we provide an overview of recent advances in C. acetobutylicum strain engineering and process development focusing on in situ product recovery. With deep understanding of systematic cellular bioinformatics, the exploration of state-of-the-art genome editing tools such as CRISPR-Cas for targeted gene knock-out and knock-in would play a vital role in Clostridium cell engineering for biobutanol production. Developing advanced hybrid separation processes for in situ butanol recovery, which will be discussed with a detailed comparison of advantages and disadvantages of various recovery techniques, is also imperative to the economical development of biobutanol. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ibarra-Castanedo, Clemente; Sfarra, Stefano; Klein, Matthieu; Maldague, Xavier
2017-05-01
The experimental results from infrared thermography surveys over two buildings externally exposed walls are presented. Data acquisition was performed on a static configuration by recording direct and indirect solar loading during several days and was processed using advanced signal processing techniques in order to increase signal-to-noise ratio and signature contrast of the elements of interest. It is demonstrated that it is possible to detect the thermal signature of large internal structures as well as surface features under such thermographic scenarios. Results from a long-wave microbolometer compared favorably to those from a mid-wave cooled infrared camera for the detection of large subsurface features from unprocessed images. In both cases, however, advanced signal processing greatly improved contrast of the internal features.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
Carr, Prudence R; Holleczek, Bernd; Stegmaier, Christa; Brenner, Hermann; Hoffmeister, Michael
2017-06-01
Background: Red and processed meats have been shown to be associated with colorectal adenomas in many, but not all, studies, and the association according to the type of colorectal adenoma or the location in the colorectum is unclear. Objectives: We investigated the association of meat intake in relation to colorectal polyps and further investigated the association according to histologic subtypes and subsites in a large population-based screening study in Germany. Design: In this cross-sectional study, 15,950 participants aged ≥55 y underwent a screening colonoscopy. We calculated prevalence ratios (PRs) and 95% CIs for associations between meat intake and the most-advanced findings from a colonoscopy with the use of log binomial regression. Results: Overall, 3340 participants (20.4%) had nonadvanced adenomas, 1643 participants (10.0%) had advanced adenomas, and 189 participants (1.2%) had colorectal cancer. We observed no statistically significant association between red or processed meat consumption and the prevalence of any adenomas or advanced adenomas [highest compared with lowest: red meat, PR: 1.07 (95% CI: 0.83, 1.37); processed meat, PR: 1.11 (95% CI: 0.91, 1.36)]. In site-specific analyses, although no dose-response relation was observed, processed meat was positively associated with the prevalence of advanced adenomas in the rectum only (multiple times per day compared with <1 time/wk, PR: 1.87; 95% CI: 1.19, 2.95). Poultry intake was not associated with any outcome. Conclusions: On the basis of this large colonoscopy-based study, there are no significant associations between red or processed meat intake and the prevalence of any adenomas or advanced adenomas. However, processed meat may be positively associated with the prevalence of advanced adenomas in the rectum, but prospective cohort studies are needed to further clarify this association. There is no association between poultry consumption and the prevalence of colorectal polyps in this study. © 2017 American Society for Nutrition.
Advanced Materials and Processing for Drug Delivery: The Past and the Future
Zhang, Ying; Chan, Hon Fai; Leong, Kam W.
2012-01-01
Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. PMID:23088863
Electrochemical carbon dioxide concentrator advanced technology tasks
NASA Technical Reports Server (NTRS)
Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.
1975-01-01
Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janicki, G.; Bailey, V.; Schjelderup, H.
The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.
Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang
2018-04-13
To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.
7 CFR 54.1016 - Advance information concerning service rendered.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... applicant under the regulations, or other notification concerning the determination of compliance of...
Data Processing (Advanced Business Programming) Volume II. Instructor's Guide.
ERIC Educational Resources Information Center
Litecky, Charles R.; Lamkin, Tim
This curriculum guide for an advanced course in data processing is for use as a companion publication to a textbook or textbooks; references to appropriate textbooks are given in most units. Student completion of assignments in Volume I, available separately (see ED 220 604), is a prerequisite. Topics covered in the 18 units are introduction,…
ERIC Educational Resources Information Center
Averitt, Sallie D.
This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills and instructing them in basic calculator…
Advanced oxidation processes (AOPs) provide a promising treatment option for the destruction of MTBE directly in surface and ground waters. An ongoing study is evaluating the ability of three AOPs; hydrogen peroxide/ozone (H2O2/ O3), ultraviolet irradiation/ozone (UV/O3) and ultr...
ERIC Educational Resources Information Center
Lambert, Heather C.; McColl, Mary Ann; Gilbert, Julie; Wong, Jiahui; Murray, Gale; Shortt, Samuel E. D.
2005-01-01
Purpose: The purpose of this study was to describe factors contributing to the decision-making processes of elderly persons as they formulate advance directives in long-term care. Design and Methods: This study was qualitative, based on grounded theory. Recruitment was purposive and continued until saturation was reached. Nine residents of a…
ERIC Educational Resources Information Center
Battalio, John T.
2002-01-01
Describes the influence that Extensible Markup Language (XML) will have on the software documentation process and subsequently on the curricula of advanced undergraduate and master's programs in technical communication. Recommends how curricula of advanced undergraduate and master's programs in technical communication ought to change in order to…
ERIC Educational Resources Information Center
Gambescia, Stephen F.; Lysoby, Linda; Perko, Michael; Sheu, Jiunn-Jye
2016-01-01
The purpose of this article is to demonstrate how one profession used an "experience documentation process" to grant advanced certification to qualified certified health education specialists. The competency validation process approved by the certifying organization serves as an example of an additional method, aside from traditional…
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis P.; Joshi, Jitendra A.
2004-01-01
This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washiya, Tadahiro; Komaki, Jun; Funasaka, Hideyuki
Japan Atomic Energy Agency (JAEA) has been developing the new aqueous reprocessing system named 'NEXT' (New Extraction system for TRU recovery)1-2, which provides many advantages as waste volume reduction, cost savings by advanced components and simplification of process operation. Advanced head-end systems in the 'NEXT' process consist of fuel disassembly system, fuel shearing system and continuous dissolver system. We developed reliable fuel disassembly system with innovative procedure, and short-length shearing system and continuous dissolver system can be provided highly concentrated dissolution to adapt to the uranium crystallization process. We have carried out experimental studies, and fabrication of engineering-scale test devicesmore » to confirm the systems performance. In this paper, research and development of advanced head-end systems are described. (authors)« less
ADVANCED SULFUR CONTROL CONCEPTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael
Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less
Advances in Polyhydroxyalkanoate (PHA) Production.
Koller, Martin
2017-11-02
This editorial paper provides a synopsis of the contributions to the Bioengineering special issue "Advances in Polyhydroxyalkanoate (PHA) Production". It illustrates the embedding of the issue's individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products.
Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz
2017-08-01
Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certain claim settlement and advance decision functions that, by statute or delegation, are vested in the... SETTLING PERSONNEL AND GENERAL CLAIMS AND PROCESSING ADVANCE DECISION REQUESTS § 282.4 Policy. It is DoD policy that: (a) Claims shall be settled and advance decisions rendered in accordance with all pertinent...
32 CFR 37.1210 - Advanced research.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 1 2011-07-01 2011-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...
32 CFR 37.1210 - Advanced research.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 1 2013-07-01 2013-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...
32 CFR 37.1210 - Advanced research.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...
32 CFR 37.1210 - Advanced research.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...
32 CFR 37.1210 - Advanced research.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 1 2012-07-01 2012-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...
Advanced Query Formulation in Deductive Databases.
ERIC Educational Resources Information Center
Niemi, Timo; Jarvelin, Kalervo
1992-01-01
Discusses deductive databases and database management systems (DBMS) and introduces a framework for advanced query formulation for end users. Recursive processing is described, a sample extensional database is presented, query types are explained, and criteria for advanced query formulation from the end user's viewpoint are examined. (31…
NASA Astrophysics Data System (ADS)
Strippoli, L. S.; Gonzalez-Arjona, D. G.
2018-04-01
GMV extensively worked in many activities aimed at developing, validating, and verifying up to TRL-6 advanced GNC and IP algorithms for Mars Sample Return rendezvous working under different ESA contracts on the development of advanced algorithms for VBN sensor.
DOT National Transportation Integrated Search
1998-05-01
Recent technological advances in computer hardware, software, and image processing have led to the development of automated license plate reading equipment. This equipment has primarily been developed for enforcement and security applications, such a...
Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer
Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas
2016-01-01
Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227
Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer.
Hrebien, Sarah; O'Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Garcia-Murillas, Isaac; Turner, Nicholas
2016-01-01
Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48-72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77-0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EWSUK,KEVIN G.
1999-11-24
Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referredmore » to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.« less
Advances in biologically inspired on/near sensor processing
NASA Astrophysics Data System (ADS)
McCarley, Paul L.
1999-07-01
As electro-optic sensors increase in size and frame rate, the data transfer and digital processing resource requirements also increase. In many missions, the spatial area of interest is but a small fraction of the available field of view. Choosing the right region of interest, however, is a challenge and still requires an enormous amount of downstream digital processing resources. In order to filter this ever-increasing amount of data, we look at how nature solves the problem. The Advanced Guidance Division of the Munitions Directorate, Air Force Research Laboratory at Elgin AFB, Florida, has been pursuing research in the are of advanced sensor and image processing concepts based on biologically inspired sensory information processing. A summary of two 'neuromorphic' processing efforts will be presented along with a seeker system concept utilizing this innovative technology. The Neuroseek program is developing a 256 X 256 2-color dual band IRFPA coupled to an optimized silicon CMOS read-out and processing integrated circuit that provides simultaneous full-frame imaging in MWIR/LWIR wavebands along with built-in biologically inspired sensor image processing functions. Concepts and requirements for future such efforts will also be discussed.
Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.
Ioannou, L A; Li Puma, G; Fatta-Kassinos, D
2015-04-09
Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.
Lou, Jie-Chung; Lin, Chung-Yi; Han, Jia-Yun; Tseng, Wei-Biu; Hsu, Kai-Lin; Chang, Ting-Wei
2012-06-01
Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC, UV(254), and AOC) from water, experimental results indicate that the removal rate of AOC at the Cheng Ching Lake water treatment plant (which utilizes advanced water treatment processes, and is hereinafter referred to as CCLWTP) is 54%, while the removal rate of AOC at the Gong Yuan water treatment plant (which uses traditional water treatment processes, and is hereinafter referred to as GYWTP) is 36%. In advanced water treatment units, new coagulation-sedimentation processes, rapid filters, and biological activated carbon filters can effectively remove AOC, total organic carbon (TOC), and dissolved organic carbon (DOC). In traditional water treatment units, coagulation-sedimentation processes are most effective in removing AOC. Simulation results and calculations made using the AutoNet method indicate that TOC, TDS, NH(3)-N, and NO(3)-N should be regularly monitored in the CCLWTP, and that TOC, temperature, and NH(3)-N should be regularly monitored in the GYWTP.
Cumulative latency advance underlies fast visual processing in desynchronized brain state
Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan
2014-01-01
Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals. PMID:24347634
Cumulative latency advance underlies fast visual processing in desynchronized brain state.
Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan
2014-01-07
Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.
Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A
2018-04-01
Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electrochemical advanced oxidation processes: today and tomorrow. A review.
Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco
2014-01-01
In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.
Gong, Xing-Chu; Chen, Teng; Qu, Hai-Bin
2017-03-01
Quality by design (QbD) concept is an advanced pharmaceutical quality control concept. The application of QbD concept in the research and development of pharmaceutical processes of traditional Chinese medicines (TCM) mainly contains five parts, including the definition of critical processes and their evaluation criteria, the determination of critical process parameters and critical material attributes, the establishment of quantitative models, the development of design space, as well as the application and continuous improvement of control strategy. In this work, recent research advances in QbD concept implementation methods in the secondary development of Chinese patent medicines were reviewed, and five promising fields of the implementation of QbD concept were pointed out, including the research and development of TCM new drugs and Chinese medicine granules for formulation, modeling of pharmaceutical processes, development of control strategy based on industrial big data, strengthening the research of process amplification rules, and the development of new pharmaceutical equipment.. Copyright© by the Chinese Pharmaceutical Association.
Advanced coal cleaning meets acid rain emission limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boron, D.J.; Matoney, J.P.; Albrecht, M.C.
1987-03-01
The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.
Advanced Material Strategies for Next-Generation Additive Manufacturing
Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen
2018-01-01
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754
Advanced Material Strategies for Next-Generation Additive Manufacturing.
Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin
2018-01-22
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.
Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian
2014-08-01
Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.
New perspectives for Advanced Oxidation Processes.
Dewil, Raf; Mantzavinos, Dionissios; Poulios, Ioannis; Rodrigo, Manuel A
2017-06-15
Advanced Oxidation Processes (AOPs) are called to fill the gap between the treatability attained by conventional physico-chemical and biological treatments and the day-to-day more exigent limits fixed by environmental regulations. They are particularly important for the removal of anthropogenic pollutants and for this reason, they have been widely investigated in the last decades and even applied in the treatment of many industrial wastewater flows. However, despite the great development reached, AOPs cannot be considered mature yet and there are many new fields worthy of research. Some of them are going to be briefly introduced in this paper, including hybrid processes, heterogeneous semiconductor photocatalysis, sulphate-radical oxidation and electrochemical advanced oxidation for water/wastewater treatment. Moreover, the use of photoelectrochemical processes for energy production is discussed. The work ends with some perspectives that can be of interest for the ongoing and future research. Copyright © 2017. Published by Elsevier Ltd.
Advances in diffusion MRI acquisition and processing in the Human Connectome Project
Sotiropoulos, Stamatios N; Jbabdi, Saad; Xu, Junqian; Andersson, Jesper L; Moeller, Steen; Auerbach, Edward J; Glasser, Matthew F; Hernandez, Moises; Sapiro, Guillermo; Jenkinson, Mark; Feinberg, David A; Yacoub, Essa; Lenglet, Christophe; Ven Essen, David C; Ugurbil, Kamil; Behrens, Timothy EJ
2013-01-01
The Human Connectome Project (HCP) is a collaborative 5-year effort to map human brain connections and their variability in healthy adults. A consortium of HCP investigators will study a population of 1200 healthy adults using multiple imaging modalities, along with extensive behavioral and genetic data. In this overview, we focus on diffusion MRI (dMRI) and the structural connectivity aspect of the project. We present recent advances in acquisition and processing that allow us to obtain very high-quality in-vivo MRI data, while enabling scanning of a very large number of subjects. These advances result from 2 years of intensive efforts in optimising many aspects of data acquisition and processing during the piloting phase of the project. The data quality and methods described here are representative of the datasets and processing pipelines that will be made freely available to the community at quarterly intervals, beginning in 2013. PMID:23702418
Advance identification of disposal areas (ADID), a planning process used to identify wetlands and other waters that are generally suitable or unsuitable for the discharge of dredged and fill material.
Cummings, E Mark; Davies, Patrick T
2002-01-01
The effects of marital conflict on children's adjustment are well documented. For the past decade research has increasingly focused on advancing a process-level understanding of these effects, that is, accounting for the particular responses and patterns embedded within specific contexts, histories, and developmental periods that account for children's outcomes over time. As a vehicle for presenting an update, this review follows the framework for process-oriented research initially proposed by Cummings and Cummings (1988), concentrating on recent research developments, and also considering new and emerging themes in this area of research. In this regard, areas of advancement include (a) greater articulation of the effects of specific context/stimulus characteristics of marital conflict, (b) progress in identifying the psychological response processes in children (e.g., cognitive, emotional, social, physiological) that are affected and their possible role in accounting for relations between marital conflict and child outcomes, (c) greater understanding of the role of child characteristics, family history, and other contextual factors, including effects on children due to interrelations between marital conflict and parenting, and (d) advances in the conceptualization of children's outcomes, including that effects may be more productively viewed as dynamic processes of functioning rather than simply clinical diagnoses. Understanding of the impact of marital conflict on children as a function of time-related processes remains a gap in a process-oriented conceptualization of effects. Based on this review, a revised model for a process-oriented approach on the effects of marital discord on children is proposed and suggestions are made for future research directions.
Increasing advance personal planning: the need for action at the community level.
Waller, Amy; Sanson-Fisher, Rob; Ries, Nola; Bryant, Jamie
2018-05-09
Advance personal planning is the process by which people consider, document and communicate their preferences for personal, financial and health matters in case they lose the ability to make decisions or express their wishes in the future. Advance personal planning is most often undertaken by individuals who are seriously ill, often in the context of a medical crisis and/or at the time of admission to hospital. However, the clinical utility and legal validity of the planning process may be compromised in these circumstances. Patients may lack sufficient capacity to meaningfully engage in advance personal planning; there may be insufficient time to adequately reflect on and discuss wishes with key others; and there may also be limited opportunity for inter-professional input and collaboration in the process. Here, we propose an agenda for research to advance the science of advance personal planning by promoting a 'whole community' approach. Adoption of advance personal planning at a community level may be achieved using a variety of strategies including public media campaigns, intervening with professionals across a range of health care and legal settings, and mobilising support from influential groups and local government. One potentially promising method for encouraging earlier adoption of advance personal planning among a broader population involves a community action approach, whereby multiple evidence-based strategies are integrated across multiple access points. Community action involves calling on community members, professionals, community and/or government organisations to work collaboratively to design and systematically implement intervention strategies with the aim of bringing about desired behaviour change. An example of a community action trial to improving uptake and quality of advance personal planning is described. While promising, there is a need for rigorous evidence to demonstrate whether a community action approach is effective in establishing whole community adoption of advance personal planning.
Pešoutová, Radka; Stříteský, Luboš; Hlavínek, Petr
2014-01-01
This study investigates the oxidation of selected endocrine disrupting compounds (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol) during ozonation and advanced oxidation of biologically treated municipal wastewater effluents in a pilot scale. Selected estrogenic substances were spiked in the treated wastewater at levels ranging from 1.65 to 3.59 μg · L(-1). All estrogens were removed by ozonation by more than 99% at ozone doses ≥1.8 mg · L(-1). At a dose of 4.4 · mg L(-1) ozonation reduced concentrations of estrone, 17β-estradiol, estriol and 17α-ethinylestradiol by 99.8, 99.7, 99.9 and 99.7%, respectively. All tested advanced oxidation processes (AOPs) achieved high removal rates but they were slightly lower compared to ozonation. The lower removal rates for all tested advanced oxidation processes are caused by the presence of naturally occurring hydroxyl radical scavengers - carbonates and bicarbonates.
Industrial implementation of spatial variability control by real-time SPC
NASA Astrophysics Data System (ADS)
Roule, O.; Pasqualini, F.; Borde, M.
2016-10-01
Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.
Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie
2018-03-01
Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.
78 FR 40745 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
.... Description: The Advance Planning Document (APD) process, established in the rules at 45 CFR part 95, subpart F, is the procedure by which States request and obtain approval for Federal financial participation... Advance Planning Document 34 1.2 120 4,896 Operational Advance Planning Document 20 1 30 600 Estimated...
Specification for Qualification and Certification for Level II - Advanced Welders.
ERIC Educational Resources Information Center
American Welding Society, Miami, FL.
This document defines the requirements and program for the American Welding Society (AWS) to certify advanced-level welders through an evaluation process entailing performance qualification and practical knowledge tests requiring the use of advanced reading, computational, and manual skills. The following items are included: statement of the…
78 FR 14556 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... for ACF. OMB No.: 0992-0005. Description: The Advance Planning Document (APD) process, established in... Biennial Reports 54 1 1.50 81 Advance Planning Document 34 1.2 120 4,896 Operational Advance Planning... for the proper performance of the functions of the agency, including whether the information shall...
Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol
advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean Cities provides advanced biofuel, which includes fuels derived from approved renewable biomass, excluding corn starch-based ethanol. Other advanced biofuels may include sugarcane-based fuels, renewable diesel co-processed with
Listening Instruction and Practice for Advanced ESL Students.
ERIC Educational Resources Information Center
Godfrey, Dennis
This paper attempts to enact Rivers' (1971 and 1972) urgings to base ESL listening instruction on both psychological and linguistic findings and contends that advanced ESL students' listening needs call for improvement in processing spoken English discourse. Psychological data on memory span is cited to demonstrate that advanced ESL students…
[Advance in interferogram data processing technique].
Jing, Juan-Juan; Xiangli, Bin; Lü, Qun-Bo; Huang, Min; Zhou, Jin-Song
2011-04-01
Fourier transform spectrometry is a type of novel information obtaining technology, which integrated the functions of imaging and spectra, but the data that the instrument acquired is the interference data of the target, which is an intermediate data and couldn't be used directly, so data processing must be adopted for the successful application of the interferometric data In the present paper, data processing techniques are divided into two classes: general-purpose and special-type. First, the advance in universal interferometric data processing technique is introduced, then the special-type interferometric data extracting method and data processing technique is illustrated according to the classification of Fourier transform spectroscopy. Finally, the trends of interferogram data processing technique are discussed.
Advanced technology development for image gathering, coding, and processing
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.
1990-01-01
Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.
1994-12-01
The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less
Innovations in nanotechnology for water treatment
Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette
2015-01-01
Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA. PMID:25609931
Müller-Staub, Maria; de Graaf-Waar, Helen; Paans, Wolter
2016-11-01
Nurses are accountable to apply the nursing process, which is key for patient care: It is a problem-solving process providing the structure for care plans and documentation. The state-of-the art nursing process is based on classifications that contain standardized concepts, and therefore, it is named Advanced Nursing Process. It contains valid assessments, nursing diagnoses, interventions, and nursing-sensitive patient outcomes. Electronic decision support systems can assist nurses to apply the Advanced Nursing Process. However, nursing decision support systems are missing, and no "gold standard" is available. The study aim is to develop a valid Nursing Process-Clinical Decision Support System Standard to guide future developments of clinical decision support systems. In a multistep approach, a Nursing Process-Clinical Decision Support System Standard with 28 criteria was developed. After pilot testing (N = 29 nurses), the criteria were reduced to 25. The Nursing Process-Clinical Decision Support System Standard was then presented to eight internationally known experts, who performed qualitative interviews according to Mayring. Fourteen categories demonstrate expert consensus on the Nursing Process-Clinical Decision Support System Standard and its content validity. All experts agreed the Advanced Nursing Process should be the centerpiece for the Nursing Process-Clinical Decision Support System and should suggest research-based, predefined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions, and patient outcomes.
Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.
Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor
2005-01-01
An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.
Effect of processing on Polymer/Composite structure and properties
NASA Technical Reports Server (NTRS)
1982-01-01
Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.
Advances in Polyhydroxyalkanoate (PHA) Production
2017-01-01
This editorial paper provides a synopsis of the contributions to the Bioengineering special issue “Advances in Polyhydroxyalkanoate (PHA) Production”. It illustrates the embedding of the issue’s individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products. PMID:29099065
1982-06-23
Administration Systems Research and Development Service 14, Spseq Aese Ce ’ Washington, D.C. 20591 It. SeppkW•aae metm The work reported in this document was...consider sophisticated signal processing techniques as an alternative method of improving system performanceH Some work in this area has already taken place...demands on the frequency spectrum. As noted in Table 1-1, there has been considerable work on advanced signal processing in the MLS context
1999-01-01
Control Conference Proceedings, Orlando (1997), p 143. 5 US Patent # 5,196,109 (1993): " Trivalent chromium electrolytes and plating processes...Summary -Electroplating 7.1. Introduction 7.2. Process Description 7.2.1 Trivalent chrome plating 7.2.2. Composite electroplating 7.2.3. Alloy...requirements of chromium without the environmental and health hazards associated with chromic acid. Ideally, the process would not use any EPA 17
Recent advances in nuclear magnetic resonance quantum information processing.
Criger, Ben; Passante, Gina; Park, Daniel; Laflamme, Raymond
2012-10-13
Quantum information processors have the potential to drastically change the way we communicate and process information. Nuclear magnetic resonance (NMR) has been one of the first experimental implementations of quantum information processing (QIP) and continues to be an excellent testbed to develop new QIP techniques. We review the recent progress made in NMR QIP, focusing on decoupling, pulse engineering and indirect nuclear control. These advances have enhanced the capabilities of NMR QIP, and have useful applications in both traditional NMR and other QIP architectures.
1986-08-01
THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc
Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)
NASA Astrophysics Data System (ADS)
Ashcraft, Todd W.; Atac, Robert
2012-06-01
Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.
Competing power-generating technologies for the 21st century
NASA Astrophysics Data System (ADS)
Troost, G. K.
1994-04-01
Several new and advanced power-generating systems are presently being developed, e.g., fuel cells, advanced heat pumps, high-performance gas turbines. An analysis of these systems is presented and is based on projections of comparative studies and relevant trends. For advanced systems, a trade-off between efficiency gain and projected development cost is crucial. Projections for market conditions in the 21st century and, in particular, environmental issues are made in order to assess market-entry opportunities. Results from various case studies indicate challenging opportunities in process and metallurgical industries; several process-integrated configurations are being studied.
Advanced Antenna Measurement Processing
2014-06-18
reflector antenna where the reflector functions as a passive scatterer. Here we proposed to demonstrate this separation scheme using experimentally derived...orders in the multiple reflections between these antennas . The nature of these composite patterns is not known a priori so one cannot know the accuracy...SECURITY CLASSIFICATION OF: This research project is focused on the advancement of methods of post measurement processing of antenna pattern
ERIC Educational Resources Information Center
Bogard, Treavor; Liu, Min; Chiang, Yueh-hui Vanessa
2013-01-01
This multiple-case study examined how advanced learners solved a complex problem, focusing on how their frequency and application of cognitive processes contributed to differences in performance outcomes, and developing a mental model of a problem. Fifteen graduate students with backgrounds related to the problem context participated in the study.…
ERIC Educational Resources Information Center
Averitt, Sallie D.
This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills in working with line graphs and teaching…
Conducting Nursing Research to Advance and Inform Health Policy.
Ellenbecker, Carol Hall; Edward, Jean
2016-11-01
The primary roles of nurse scientists in conducting health policy research are to increase knowledge in the discipline and provide evidence for informing and advancing health policies with the goal of improving the health outcomes of society. Health policy research informs, characterizes, explains, or tests hypotheses by employing a variety of research designs. Health policy research focuses on improving the access to care, the quality and cost of care, and the efficiency with which care is delivered. In this article, we explain how nurses might envision their research in a policy process framework, describe research designs that nurse researchers might use to inform and advance health policies, and provide examples of research conducted by nurse researchers to explicate key concepts in the policy process framework. Health policies are well informed and advanced when nurse researchers have a good understanding of the political process. The policy process framework provides a context for improving the focus and design of research and better explicating the connection between research evidence and policy. Nurses should focus their research on addressing problems of importance that are on the healthcare agenda, work with interdisciplinary teams of researchers, synthesize, and widely disseminate results.
Karci, Akin
2014-03-01
Advanced oxidation processes based on the generation of reactive species including hydroxyl radicals are viable options in eliminating a wide array of refractory organic contaminants in industrial effluents. The assessment of transformation products and toxicity should be, however, the critical point that would allow the overall efficiency of advanced oxidation processes to be better understood and evaluated since some transformation products could have an inhibitory effect on certain organisms. This article reviews the most recent studies on transformation products and toxicity for evaluating advanced oxidation processes in eliminating classes of compounds described as "textile chemicals" from aqueous matrices and poses questions in need of further investigation. The scope of this paper is limited to the scientific studies with two classes of textile chemicals, namely chlorophenols and alkylphenol ethoxylates, whose use in textile industry is a matter of debate due to health risks to humans and harm to the environment. The article also raises the critical question: What is the state of the art knowledge on relationships between transformation products and toxicity? Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Brock, L. D.; Lala, J.
1986-01-01
The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles. The AIPS architecture also has attributes to enhance system effectiveness such as graceful degradation, growth and change tolerance, integrability, etc. Two key building blocks being developed by the AIPS program are a fault and damage tolerant processor and communication network. A proof-of-concept system is now being built and will be tested to demonstrate the validity and performance of the AIPS concepts.
How clinical observation enhances recruitment and selection.
Sutherland, Clare
2012-11-01
A survey of nurse managers in Derby Hospitals NHS Foundation Trust in 2010 found 51 practitioners working at an advanced clinical level, but there were variations in titles, pay bands, clinical skills and academic qualifications. This prompted the introduction of a local framework to support the development of the advanced nurse practitioner (ANP) role and a review of the interview process to enable managers to assess applicants' skills, competencies and knowledge. The process is now used in practice, with candidates' clinical skills now observed as part of the ANP selection process. This article describes how the new process works.
NASA Technical Reports Server (NTRS)
Caron, R. H.; Rifman, S. S.; Simon, K. W.
1974-01-01
The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.
Assessment of advanced coal gasification processes
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.
1981-01-01
A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.
Advanced Metalworking Solutions for Naval Systems That Go in Harm’s Way.
2011-01-01
Cox, Titanium Fabrication Corporation, MMC, NSWCCD, ABS, and NMC. Navy Metalworking Center • Advanced Metallic Materials NMC has a successful record...Current efforts involve titanium , high-strength steel, and other alternate materials. 4 ADVANcED METALLic MATEriALS A cost-effective manufacturing solution...Manufacturing and Sustainment Technologies (iMAST). Improved shaft cladding materials and processes, which will increase the life of the main propulsion
Assurance Technology Challenges of Advanced Space Systems
NASA Technical Reports Server (NTRS)
Chern, E. James
2004-01-01
The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
Competency frameworks for advanced practice nursing: a literature review.
Sastre-Fullana, P; De Pedro-Gómez, J E; Bennasar-Veny, M; Serrano-Gallardo, P; Morales-Asencio, J M
2014-12-01
This paper describes a literature review that identified common traits in advanced practice nursing that are specific to competency development worldwide. There is a lack of international agreement on the definition of advanced practice nursing and its core competencies. Despite the lack of consensus, there is an ongoing process worldwide to establish and outline the standards and competencies for advanced practice nursing roles. International agencies, such as the International Council of Nurses, have provided general definitions for advanced practice nursing. Additionally, a set of competency standards for this aim has been developed. A literature review and a directed search of institutional websites were performed to identify specific developments in advanced practice nursing competencies and standards of practice. To determine a competency map specific to international advanced practice nursing, key documents were analysed using a qualitative approach based on content analysis to identify common traits among documents and countries. The review process identified 119 relevant journal articles related to advanced practice nursing competencies. Additionally, 97 documents from grey literature that were related to advanced practice nursing competency mapping were identified. From the text analysis, 17 worldwide transversal competency domains emerged. Despite the variety of patterns in international advanced practice nursing development, essential competency domains can be found in most national frameworks for the role development of international advanced practice nursing. These 17 core competencies can be used to further develop instruments that assess the perceived competency of advanced practice nurses. The results of this review can help policy developers and researchers develop instruments to compare advanced practice nursing services in various contexts and to examine their association with related outcomes. © 2014 International Council of Nurses.
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-10-22
Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.
Soft computing in design and manufacturing of advanced materials
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex
1993-01-01
The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.
Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.
Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook
2014-01-01
Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed.
The Path to Advanced Practice Licensure for Clinical Nurse Specialists in Washington State.
Schoonover, Heather
The aim of this study was to provide a review of the history and process to obtaining advanced practice licensure for clinical nurse specialists in Washington State. Before 2016, Washington State licensed certified nurse practitioners, certified nurse midwives, and certified nurse anesthetists under the designation of an advanced registered nurse practitioner; however, the state did not recognize clinical nurse specialists as advanced practice nurses. The work to drive the rule change began in 2007. The Washington Affiliate of the National Association of Clinical Nurse Specialists used the Power Elite Theory to guide advocacy activities, building coalitions and support for the desired rule changes. On January 8, 2016, the Washington State Nursing Care Quality Assurance Commission voted to amend the state's advanced practice rules, including clinical nurse specialists in the designation of an advanced practice nurse. Since the rule revision, clinical nurse specialists in Washington State have been granted advanced registered nurse practitioner licenses. Driving changes in state regulatory rules requires diligent advocacy, partnership, and a deep understanding of the state's rule-making processes. To be successful in changing rules, clinical nurse specialists must build strong partnerships with key influencers and understand the steps in practice required to make the desired changes.
Li, Kangkang; Yu, Hai; Yan, Shuiping; Feron, Paul; Wardhaugh, Leigh; Tade, Moses
2016-10-04
Using a rigorous, rate-based model and a validated economic model, we investigated the technoeconomic performance of an aqueous NH 3 -based CO 2 capture process integrated with a 650-MW coal-fired power station. First, the baseline NH 3 process was explored with the process design of simultaneous capture of CO 2 and SO 2 to replace the conventional FGD unit. This reduced capital investment of the power station by US$425/kW (a 13.1% reduction). Integration of this NH 3 baseline process with the power station takes the CO 2 -avoided cost advantage over the MEA process (US$67.3/tonne vs US$86.4/tonne). We then investigated process modifications of a two-stage absorption, rich-split configuration and interheating stripping to further advance the NH 3 process. The modified process reduced energy consumption by 31.7 MW/h (20.2% reduction) and capital costs by US$55.4 million (6.7% reduction). As a result, the CO 2 -avoided cost fell to $53.2/tonne: a savings of $14.1 and $21.9/tonne CO 2 compared with the NH 3 baseline and advanced MEA process, respectively. The analysis of energy breakdown and cost distribution indicates that the technoeconomic performance of the NH 3 process still has great potential to be improved.
Pharmacological Findings on the Biochemical Bases of Memory Processes: A General View
Izquierdo, Iván; Cammarota, Martín; Medina, Jorge H.; Bevilaqua, Lia R. M.
2004-01-01
We have advanced considerably in the past 2 to 3 years in understanding the molecular mechanisms of consolidation, retrieval, and extinction of memories, particularly of fear memory. This advance was mainly due to pharmacological studies in many laboratories using localized brain injections of molecularly specific substances. One area in which significant advances have been made is in understanding that many different brain structures are involved in different memories, and that often several brain regions are involved in processing the same memory. These regions can cooperate or compete with each other, depending on circumstances that are beginning to be identified quite clearly. Another aspect in which major advances were made was retrieval and post-retrieval events, especially extinction, pointing to new therapeutic approaches to fearmotivated mental disorders. PMID:15656267
Building successful coalitions for promoting advance care planning.
Marchand, Lucille; Fowler, Kathryn J; Kokanovic, Obrad
2006-01-01
Advance care planning (ACP) has had few successful initiatives. This qualitative study explores the challenges and successes of an advance care planning coalition in Wisconsin called Life Planning 2000 using key informant interviews (n = 24) and grounded theory. Major themes included: commitment (the need for leadership, recruitment of key members, and funding); cohesiveness (disparate groups collaborating toward a common purpose), and outcomes (shift in paradigm from signing documents to process of advanced care planning, new-found collaborative relationships, and educational tool development). Coalitions need to define short-, intermediate-, and long-term goals that result in measurable outcomes and an evaluation process. Resources must be commensurate with goals. Strong leadership, paid staff adequate funding, and the collaboration of diverse groups working toward common goals are the basic requirements of a successful coalition.
Chemical Disposition of Plutonium in Hanford Site Tank Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Jones, Susan A.
2015-05-07
This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less
78 FR 37819 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
.... Description: The Advance Planning Document (APD) process, established in the rules at 45 CFR Part 95, Subpart F, is the procedure by which States request and obtain approval for Federal financial participation... Advance Planning Document 34 1.2 120 4,896 Operational Advance Planning Document 20 1 30 600 [[Page 37820...
Technology advancement of the electrochemical CO2 concentrating process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.
1979-01-01
Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).
7 CFR 1781.3 - Authorities, responsibilities, and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND WATERSHED (WS) LOANS AND ADVANCES § 1781.3 Authorities, responsibilities, and delegation of... area. (b) RUS receives and processes applications for WS loans and NRCS WS advances and RCD loans and makes and services such loan and advances. WS loans are made by RUS from either Public Law 534 (78th...
2001 Industry Studies: Advanced Manufacturing
2001-05-28
oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology
Advanced Gradient Heating Facility
NASA Technical Reports Server (NTRS)
2004-01-01
The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.
Interaction patterns between parents with advanced cancer and their adolescent children.
Sheehan, Denice Kopchak; Draucker, Claire Burke
2011-10-01
Advanced cancer profoundly affects those with the illness and their families. The interaction patterns between parents with advanced cancer and their adolescent children are likely to influence how a family experiences a parent's dying process. There is little information on such interactions. This study aimed to develop an explanatory model that explains interaction patterns between parents with advanced cancer and their adolescent children and to identify strategies to prepare children for their lives after a parent dies. Semi-structured interviews were conducted with 9 parents with advanced cancer, 7 of their spouses/partners, and 10 of their adolescent children. The interviews were recorded, transcribed verbatim, and analyzed using a constructionist grounded theory approach. Twenty-six family participants were interviewed. Their main concern was not having enough time together. In response, they described a four-stage process for optimizing the time they had left together: coming to know our time together is limited, spending more time together, extending our time together, and giving up our time together to end the suffering. The adolescents and their ill parents did not change their interaction patterns until they realized their time together was limited by the advanced cancer. Then they spent more time together to make things easier for each other. Time was of great importance to the parents and adolescents; all the participants structured their stories in relation to the concept of time. The model reflects the dynamic process by which families continuously adapt their relationships in the face of advanced cancer. 2010 John Wiley & Sons, Ltd.
Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.
2007-06-28
This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased themore » base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.« less
ERIC Educational Resources Information Center
Vigneau, Francois; Bors, Douglas A.
2008-01-01
Various taxonomies of Raven's Advanced Progressive Matrices (APM) items have been proposed in the literature to account for performance on the test. In the present article, three such taxonomies based on information processing, namely Carpenter, Just and Shell's [Carpenter, P.A., Just, M.A., & Shell, P., (1990). What one intelligence test…
The Space Shuttle Columbia Preservation Project - The Debris Loan Process
NASA Technical Reports Server (NTRS)
Thurston, Scott; Comer, Jim; Marder, Arnold; Deacon, Ryan
2005-01-01
The purpose of this project is to provide a process for loan of Columbia debris to qualified researchers and technical educators to: (1) Aid in advanced spacecraft design and flight safety development (2) Advance the study of hypersonic re-entry to enhance ground safety. (3) Train and instruct accident investigators and (4) Establish an enduring legacy for Space Shuttle Columbia and her crew.
ERIC Educational Resources Information Center
Murillo, Leo
2017-01-01
The purpose of this causal comparative study is to determine whether the assistant principal decision-making process and their years of experience influence the advanced diploma rates in high schools on Long Island, New York. The subjects for this study were 75 assistant principals in Long Island high schools during 2016. Assistant principals'…
Advanced Transport Operating System (ATOPS) utility library software description
NASA Technical Reports Server (NTRS)
Clinedinst, Winston C.; Slominski, Christopher J.; Dickson, Richard W.; Wolverton, David A.
1993-01-01
The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honma, George
The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will bemore » used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).« less
[Nursing process in advanced cardiopulmonary resuscitation].
Lucio Peña, Gerardo; Fuentes Leonardo, Ana María
2002-01-01
The process male nurse is a systematic and organized method to offer effective and efficient cares guided to the achievement of solving real problems of health, reducing the incidence and the duration. It is organized and systematic for that consists of five sequential and interrelated steps: Valuation, diagnostic, planning, execution and evaluation, in which are carried out interrelated actions, thought to maximize the long term results. The nurse process is based on the notion that the success of the cares is measured by the degree of effectiveness and the degree of satisfaction and the patient's progress. Applying this method in the Advanced Cardiac Live Support (ACLS) the identification of a cardiovascular or cardiopulmonary urgency was achieved that implies advanced treatment of the air road, defibrillation and appropriate medications to the circumstances. The ACLS challenges the nurses in charge from the patient's attention to make decisions quick low pressure and in dramatic scenes. Reason why it develops the flowing process male nurse in the advanced cardiopulmonary reanimation due to the incidence of these events in the National Institute of Cardiology Ignacio Chávez, which should guarantee the benefit of services in basic and advanced cardiopulmonary reanimation for personal with a high formation level in all the units of intensive cares and services of hospitalization in integrated form and stratified this way to avoid that it progresses to situations that cause the death or leave irreversible sequels since in the central nervous system the time it is a factor critical for the treatment of this events.
Bagal, Manisha V; Gogate, Parag R
2013-09-01
In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Survey of advanced nuclear technologies for potential applications of sonoprocessing.
Rubio, Floren; Blandford, Edward D; Bond, Leonard J
2016-09-01
Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T
2011-01-01
The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.
Biofuels from food processing wastes.
Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo
2016-04-01
Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.
Rüdt, Matthias; Briskot, Till; Hubbuch, Jürgen
2017-03-24
Process analytical technologies (PAT) for the manufacturing of biologics have drawn increased interest in the last decade. Besides being encouraged by the Food and Drug Administration's (FDA's) PAT initiative, PAT promises to improve process understanding, reduce overall production costs and help to implement continuous manufacturing. This article focuses on spectroscopic tools for PAT in downstream processing (DSP). Recent advances and future perspectives will be reviewed. In order to exploit the full potential of gathered data, chemometric tools are widely used for the evaluation of complex spectroscopic information. Thus, an introduction into the field will be given. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
β-Decay Studies of r-Process Nuclei Using the Advanced Implantation Detector Array (AIDA)
NASA Astrophysics Data System (ADS)
Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.
Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K; Paul Burket, P
2009-03-31
Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.« less
FAST-TRAC evaluation : evaluation summary report
DOT National Transportation Integrated Search
FAST-TRAC is an Intelligent Transportation System (ITS) that integrates advanced traffic control with a variety of advanced traffic information systems through centralized collection, processing, and dissemination of traffic data. The Road Commission...
Pariseau-Legault, Pierre; Lallier, Melisa
2016-07-01
Advanced practice nurses are working in a highly interdisciplinary and political context. Such situations can influence the deliberative and ethical decision-making processes in which they are also involved. This can subsequently compromise their abilities to protect their moral integrity, to find innovative and nondualistic solutions to complex ethical problems, and to collaborate with other health professionals. The authors constructed a training program inspired by discourse and narrative ethics. The objective pursued was to develop advanced practice nurses' moral integrity, highlight the ethical component of their clinical judgement, and foster the development of their deliberative competencies. The pedagogical process proposed exposes how an ethical curriculum adapted to the context in which advanced practice nurses evolve can address power relationships inherent in ethical decision making. The authors suggest that this pedagogical approach has the potential to optimize the consolidation of ethical, reflective, and deliberative competencies among advanced practice nurses. [J Nurs Educ. 2016;55(7):399-402.]. Copyright 2016, SLACK Incorporated.
Major advances in fresh milk and milk products: fluid milk products and frozen desserts.
Goff, H D; Griffiths, M W
2006-04-01
Major technological advances in the fluid milk processing industry in the last 25 yr include significant improvements in all the unit operations of separation, standardization, pasteurization, homogenization, and packaging. Many advancements have been directed toward production capacity, automation, and hygienic operation. Extended shelf-life milks are produced by high heat treatment, sometimes coupled with microfiltration or centrifugation. Other nonthermal methods have also been investigated. Flavored milk beverages have increased in popularity, as have milk beverages packaged in single-service, closeable plastic containers. Likewise, the frozen dairy processing industry has seen the development of large-capacity, automated processing equipment for a wide range of products designed to gain market share. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. Incidents of foodborne disease associated with dairy products continue to occur, necessitating even greater diligence in the control of pathogen transmission. Analytical techniques for the rapid detection of specific types of microorganisms have been developed and greatly improved during this time. Despite tremendous technological advancements for processors and a greater diversity of products for consumers, per capita consumption of fluid milk has declined and consumption of frozen dairy desserts has been steady during this 25-yr period.
Quantum image processing: A review of advances in its security technologies
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Le, Phuc Q.
In this review, we present an overview of the advances made in quantum image processing (QIP) comprising of the image representations, the operations realizable on them, and the likely protocols and algorithms for their applications. In particular, we focus on recent progresses on QIP-based security technologies including quantum watermarking, quantum image encryption, and quantum image steganography. This review is aimed at providing readers with a succinct, yet adequate compendium of the progresses made in the QIP sub-area. Hopefully, this effort will stimulate further interest aimed at the pursuit of more advanced algorithms and experimental validations for available technologies and extensions to other domains.
Advances in natural language processing.
Hirschberg, Julia; Manning, Christopher D
2015-07-17
Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area. Copyright © 2015, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paul S.; Crump, John W.; Ackley, Keith A.
1992-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE).
Advanced Stirling Convertor Testing at GRC
NASA Technical Reports Server (NTRS)
Schifer, Nick; Oriti, Salvatore M.
2013-01-01
NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor)
1993-01-01
The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.
Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review
NASA Astrophysics Data System (ADS)
Hardwicke, Canan U.; Lau, Yuk-Chiu
2013-06-01
Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.
Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth
2002-01-01
The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.
NASA Astrophysics Data System (ADS)
Chen, Kai-Hsiung; Huang, Guo-Tsai; Hsieh, Hung-Chih; Ni, Wei-Feng; Chuang, S. M.; Chuang, T. K.; Ke, Chih-Ming; Huang, Jacky; Rao, Shiuan-An; Cumurcu Gysen, Aysegul; d'Alfonso, Maxime; Yueh, Jenny; Izikson, Pavel; Soco, Aileen; Wu, Jon; Nooitgedagt, Tjitte; Ottens, Jeroen; Kim, Yong Ho; Ebert, Martin
2017-03-01
On-product overlay requirements are becoming more challenging with every next technology node due to the continued decrease of the device dimensions and process tolerances. Therefore, current and future technology nodes require demanding metrology capabilities such as target designs that are robust towards process variations and high overlay measurement density (e.g. for higher order process corrections) to enable advanced process control solutions. The impact of advanced control solutions based on YieldStar overlay data is being presented in this paper. Multi patterning techniques are applied for critical layers and leading to additional overlay measurement demands. The use of 1D process steps results in the need of overlay measurements relative to more than one layer. Dealing with the increased number of overlay measurements while keeping the high measurement density and metrology accuracy at the same time presents a challenge for high volume manufacturing (HVM). These challenges are addressed by the capability to measure multi-layer targets with the recently introduced YieldStar metrology tool, YS350. On-product overlay results of such multi-layers and standard targets are presented including measurement stability performance.
High-autonomy control of space resource processing plants
NASA Technical Reports Server (NTRS)
Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue
1993-01-01
A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.
Aircraft gas turbine materials and processes.
Kear, B H; Thompson, E R
1980-05-23
Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.
Tracking radar advanced signal processing and computing for Kwajalein Atoll (KA) application
NASA Astrophysics Data System (ADS)
Cottrill, Stanley D.
1992-11-01
Two means are examined whereby the operations of KMR during mission execution may be improved through the introduction of advanced signal processing techniques. In the first approach, the addition of real time coherent signal processing technology to the FPQ-19 radar is considered. In the second approach, the incorporation of the MMW radar, with its very fine range precision, to the MMS system is considered. The former appears very attractive and a Phase 2 SBIR has been proposed. The latter does not appear promising enough to warrant further development.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.
2017-07-01
The diversity in hydrologic models has historically led to great controversy on the correct
approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.
2017-12-01
The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.
Production of Previews and Advanced Data Products for the ESO Science Archive
NASA Astrophysics Data System (ADS)
Rité, C.; Slijkhuis, R.; Rosati, P.; Delmotte, N.; Rino, B.; Chéreau, F.; Malapert, J.-C.
2008-08-01
We present a project being carried out by the Virtual Observatory Systems Department/Advanced Data Products group in order to populate the ESO Science Archive Facility with image previews and advanced data products. The main goal is to provide users of the ESO Science Archive Facility with the possibility of viewing pre-processed images associated with instruments like WFI, ISAAC and SOFI before actually retrieving the data for full processing. The image processing is done by using the ESO/MVM image reduction software developed at ESO, to produce astrometrically calibrated FITS images, ranging from simple previews of single archive images, to fully stacked mosaics. These data products can be accessed via the ESO Science Archive Query Form and also be viewed with the browser VirGO {http://archive.eso.org/cms/virgo}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.
Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for themore » context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.« less
Advances in molecular imaging for breast cancer detection and characterization
2012-01-01
Advances in our ability to assay molecular processes, including gene expression, protein expression, and molecular and cellular biochemistry, have fueled advances in our understanding of breast cancer biology and have led to the identification of new treatments for patients with breast cancer. The ability to measure biologic processes without perturbing them in vivo allows the opportunity to better characterize tumor biology and to assess how biologic and cytotoxic therapies alter critical pathways of tumor response and resistance. By accurately characterizing tumor properties and biologic processes, molecular imaging plays an increasing role in breast cancer science, clinical care in diagnosis and staging, assessment of therapeutic targets, and evaluation of responses to therapies. This review describes the current role and potential of molecular imaging modalities for detection and characterization of breast cancer and focuses primarily on radionuclide-based methods. PMID:22423895
Dai, Chu; Qing, Enping; Li, Yong; Zhou, Zhaoxin; Yang, Chao; Tian, Xike; Wang, Yanxin
2015-12-21
Advanced oxidation processes as a green technology have been adopted by combining the semiconductor catalyst MoSe2 with H2O2 under visible radiation. And novel three-dimensional self-assembled molybdenum diselenide (MoSe2) hierarchical microspheres from nanosheets were produced by using organic, selenium cyanoacetic acid sodium (NCSeCH2COONa) as the source of Se. The obtained products possess good crystallinity and present hierarchical structures with the average diameter of 1 μm. The band gap of MoSe2 microspheres is 1.68 eV and they present excellent photocatalytic activity under visible light irradiation in the MoSe2-H2O2 system. This effective photocatalytic mechanism was investigated in this study and can be attributed to visible-light-driven advanced oxidation processes.
[Nursing and the humanization of the end- of-life care within healthcare systems].
Gómez Arca, Marina
2014-01-01
The reflection upon the humanisation of the end-of-life process within healthcare systems and the implication of healthcare professionals is the main objective of this article. The evolution of the model of care and nurses leadership role at the end-of-life process is evaluated. This analysis starts from the first European references regarding advance wills, made in 1997 at the Oviedo Convention, until the introduction of the idea of advance directives incorporated into Spanish law in 2002. It sets the concept of advance planning in health-related decisions, which establishes a process of voluntary dialogue where every person can clarify values, preferences and wishes regarding the final moments of life, with the support of the healthcare professionals. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Davis, Pamela; Davis, Michael P.; Mobley, Jerry A.
2014-01-01
This study describes the collaboration among a school counselor, a school counselor intern, an Advanced Placement Psychology teacher, and a counselor educator to improve African-American access to Advanced Placement (AP) coursework and increase success on the AP Psychology national examination. The team initiated a process that recruited African…
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1992-01-01
The preparation is reported of carbon fiber composites using advanced polymer resins. Current and ongoing research activities include: powder towpreg process; weaving, braiding and stitching dry powder prepreg; advanced tow placement; and customized ATP towpreg. The goal of these studies is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft.
Advanced Manufacturing Technologies
NASA Technical Reports Server (NTRS)
Fikes, John
2016-01-01
Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.
Recent advances in the silvicultural use of prescribed fire
David H. van Lear
2000-01-01
Although the silvicultural use of prescribed fire has been researched for almost 70 years, new advances are still being made. These advances are primarily the result of (1) a better understanding of fire as an ecological process and (2) the use of this knowledge to restore declining ecosystems, save threatened and endangered species, enhance natural beauty, and...
Friedman, Carol; Rindflesch, Thomas C; Corn, Milton
2013-10-01
Natural language processing (NLP) is crucial for advancing healthcare because it is needed to transform relevant information locked in text into structured data that can be used by computer processes aimed at improving patient care and advancing medicine. In light of the importance of NLP to health, the National Library of Medicine (NLM) recently sponsored a workshop to review the state of the art in NLP focusing on text in English, both in biomedicine and in the general language domain. Specific goals of the NLM-sponsored workshop were to identify the current state of the art, grand challenges and specific roadblocks, and to identify effective use and best practices. This paper reports on the main outcomes of the workshop, including an overview of the state of the art, strategies for advancing the field, and obstacles that need to be addressed, resulting in recommendations for a research agenda intended to advance the field. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Del Pozzo, W.; Berry, C. P. L.; Ghosh, A.; Haines, T. S. F.; Singer, L. P.; Vecchio, A.
2018-06-01
We reconstruct posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. We use a Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability density functions with a flexible set of assumptions. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are ˜104-105 Mpc3 corresponding to ˜102-103 potential host galaxies. The localization volume is a strong function of the network signal-to-noise ratio, scaling roughly ∝ϱnet-6. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.
NASA Technical Reports Server (NTRS)
Carruth, Ralph
2008-01-01
There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.
Rashid, Haroon; Sheikh, Zeeshan; Misbahuddin, Syed; Kazmi, Murtaza Raza; Qureshi, Sameer; Uddin, Muhammad Zuhaib
2016-01-01
Tooth wear is a process that is usually a result of tooth to tooth and/or tooth and restoration contact. The process of wear essentially becomes accelerated by the introduction of restorations inside the oral cavity, especially in case of opposing ceramic restorations. The newest materials have vastly contributed toward the interest in esthetic dental restorations and have been extensively studied in laboratories. However, despite the recent technological advancements, there has not been a valid in vivo method of evaluation involving clinical wear caused due to ceramics upon restored teeth and natural dentition. The aim of this paper is to review the latest advancements in all-ceramic materials, and their effect on the wear of opposing dentition. The descriptive review has been written after a thorough MEDLINE/PubMed search by the authors. It is imperative that clinicians are aware of recent advancements and that they should always consider the type of ceramic restorative materials used to maintain a stable occlusal relation. The ceramic restorations should be adequately finished and polished after the chair-side adjustment process of occlusal surfaces. PMID:28042280
Process and information integration via hypermedia
NASA Technical Reports Server (NTRS)
Hammen, David G.; Labasse, Daniel L.; Myers, Robert M.
1990-01-01
Success stories for advanced automation prototypes abound in the literature but the deployments of practical large systems are few in number. There are several factors that militate against the maturation of such prototypes into products. Here, the integration of advanced automation software into large systems is discussed. Advanced automation systems tend to be specific applications that need to be integrated and aggregated into larger systems. Systems integration can be achieved by providing expert user-developers with verified tools to efficiently create small systems that interface to large systems through standard interfaces. The use of hypermedia as such a tool in the context of the ground control centers that support Shuttle and space station operations is explored. Hypermedia can be an integrating platform for data, conventional software, and advanced automation software, enabling data integration through the display of diverse types of information and through the creation of associative links between chunks of information. Further, hypermedia enables process integration through graphical invoking of system functions. Through analysis and examples, researchers illustrate how diverse information and processing paradigms can be integrated into a single software platform.
Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes.
Brechwald, Whitney A; Prinstein, Mitchell J
2011-03-01
This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research.
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
NASA Technical Reports Server (NTRS)
Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw
1990-01-01
Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.
Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes
Brechwald, Whitney A.; Prinstein, Mitchell J.
2013-01-01
This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
Analysis of edible oil processing options for the BIO-Plex advanced life support system
NASA Technical Reports Server (NTRS)
Greenwalt, C. J.; Hunter, J.
2000-01-01
Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.
Hinshaw, Stephen P
2002-10-01
Advances in conceptualization and statistical modeling, on the one hand, and enhanced appreciation of transactional pathways, gene-environment correlations and interactions, and moderator and mediator variables, on the other, have heightened awareness of the need to consider factors and processes that explain the development and maintenance of psychopathology. With a focus on attentional problems, impulsivity, and disruptive behavior patterns, I address the kinds of conceptual approaches most likely to lead to advances regarding explanatory models in the field. Findings from my own research program on processes and mechanisms reveal both promise and limitations. Progress will emanate from use of genetically informative designs, blends of variable and person-centered research, explicit testing of developmental processes, systematic approaches to moderation and mediation, exploitation of "natural experiments," and the conduct of prevention and intervention trials designed to accentuate explanation as well as outcome. In all, breakthroughs will occur only with advances in translational research-linking basic and applied science-and with the further development of transactional, systemic approaches to explanation.
An advanced technique for the prediction of decelerator system dynamics.
NASA Technical Reports Server (NTRS)
Talay, T. A.; Morris, W. D.; Whitlock, C. H.
1973-01-01
An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.
Bhat, Vikram; Welin, Eric R.; Guo, Xuelei; Stoltz, Brian M.
2017-01-01
An important subset of asymmetric synthesis is dynamic kinetic resolution, dynamic kinetic asymmetric processes and stereoablative transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes but recently various synthetic catalysts have been developed. This review summarizes major advances in non-enzymatic, transition metal promoted dynamic asymmetric transformations reported between 2005 and 2015. PMID:28164696
NASA Technical Reports Server (NTRS)
Craig, Douglas F.
1992-01-01
This presentation gives a brief history of the field of materials sciences and goes on to expound the advantages of the fastest growing area in that field, namely ceramics. Since ceramics are moving to fill the demand for lighter, stronger, more corrosion resistant materials, advancements will rely more on processing and modeling from the atomic scale up which is made possible by advanced analytical, computer, and processing techniques. All information is presented in viewgraph format.
NASA Technical Reports Server (NTRS)
1980-01-01
The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.
Bosselmann, Stephanie; Nagao, Masao; Chow, Keat T; Williams, Robert O
2012-09-01
Nanoparticles, of the poorly water-soluble drug, itraconazole (ITZ), were produced by the Advanced Evaporative Precipitation into Aqueous Solution process (Advanced EPAS). This process combines emulsion templating and EPAS processing to provide improved control over the size distribution of precipitated particles. Specifically, oil-in-water emulsions containing the drug and suitable stabilizers are sprayed into a heated aqueous solution to induce precipitation of the drug in form of nanoparticles. The influence of processing parameters (temperature and volume of the heated aqueous solution; type of nozzle) and formulation aspects (stabilizer concentrations; total solid concentrations) on the size of suspended ITZ particles, as determined by laser diffraction, was investigated. Furthermore, freeze-dried ITZ nanoparticles were evaluated regarding their morphology, crystallinity, redispersibility, and dissolution behavior. Results indicate that a robust precipitation process was developed such that size distribution of dispersed nanoparticles was shown to be largely independent across the different processing and formulation parameters. Freeze-drying of colloidal dispersions resulted in micron-sized agglomerates composed of spherical, sub-300-nm particles characterized by reduced crystallinity and high ITZ potencies of up to 94% (w/w). The use of sucrose prevented particle agglomeration and resulted in powders that were readily reconstituted and reached high and sustained supersaturation levels upon dissolution in aqueous media.
Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz
2013-01-01
The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.
NASA Technical Reports Server (NTRS)
Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.
1992-01-01
In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.
Alloy design for aircraft engines
NASA Astrophysics Data System (ADS)
Pollock, Tresa M.
2016-08-01
Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.
Cost analysis of colorectal cancer screening with CT colonography in Italy.
Mantellini, Paola; Lippi, Giuseppe; Sali, Lapo; Grazzini, Grazia; Delsanto, Silvia; Mallardi, Beatrice; Falchini, Massimo; Castiglione, Guido; Carozzi, Francesca Maria; Mascalchi, Mario; Milani, Stefano; Ventura, Leonardo; Zappa, Marco
2018-06-01
Unit costs of screening CT colonography (CTC) can be useful for cost-effectiveness analyses and for health care decision-making. We evaluated the unit costs of CTC as a primary screening test for colorectal cancer in the setting of a randomized trial in Italy. Data were collected within the randomized SAVE trial. Subjects were invited to screening CTC by mail and requested to have a pre-examination consultation. CTCs were performed with 64- and 128-slice CT scanners after reduced or full bowel preparation. Activity-based costing was used to determine unit costs per-process, per-participant to screening CTC, and per-subject with advanced neoplasia. Among 5242 subjects invited to undergo screening CTC, 1312 had pre-examination consultation and 1286 ultimately underwent CTC. Among 129 subjects with a positive CTC, 126 underwent assessment colonoscopy and 67 were ultimately diagnosed with advanced neoplasia (i.e., cancer or advanced adenoma). Cost per-participant of the entire screening CTC pathway was €196.80. Average cost per-participant for the screening invitation process was €17.04 and €9.45 for the pre-examination consultation process. Average cost per-participant of the CTC execution and reading process was €146.08 and of the diagnostic assessment colonoscopy process was €24.23. Average cost per-subject with advanced neoplasia was €3777.30. Cost of screening CTC was €196.80 per-participant. Our data suggest that the more relevant cost of screening CTC, amenable of intervention, is related to CTC execution and reading process.
Modeling and Advanced Control for Sustainable Process Systems
This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...
Resin transfer molding for advanced composite primary wing and fuselage structures
NASA Technical Reports Server (NTRS)
Markus, Alan
1992-01-01
The stitching and resin transfer molding (RTM) processes developed at Douglas Aircraft Co. are successfully demonstrating significant cost reductions with good damage tolerance properties. These attributes were identified as critical to application of advanced composite materials to commercial aircraft primary structures. The RTM/stitching developments, cost analyses, and test results are discussed of the NASA Advanced Composites Technology program.
Middle-Aged Independent-Living African Americans' Selections for Advance Directives: A Case Study
ERIC Educational Resources Information Center
McDaniel, Brenda J.
2013-01-01
The purpose of this collective embedded qualitative case study was to examine the perspectives of three middle-aged independent-living African Americans who had participated in the process of advance care planning (ACP) and completed at least two advance directives (ADs), a Durable Power of Attorney for Health Care (DPAHC) and a Living Will (LW).…
ERIC Educational Resources Information Center
Medlock, Vicky
2012-01-01
It was not all that many years ago that advancement services was thought of as the "back office"--a term that still makes veterans in the field cringe. Historically, the role of advancement services was keeping donor and alumni records up-to-date, processing gifts, sending receipts, and generating fundraising progress reports. However,…
Flow Patterns During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)
2002-01-01
Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis J.
2014-01-01
Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.
Vann, Lucas; Sheppard, John
2017-12-01
Control of biopharmaceutical processes is critical to achieve consistent product quality. The most challenging unit operation to control is cell growth in bioreactors due to the exquisitely sensitive and complex nature of the cells that are converting raw materials into new cells and products. Current monitoring capabilities are increasing, however, the main challenge is now becoming the ability to use the data generated in an effective manner. There are a number of contributors to this challenge including integration of different monitoring systems as well as the functionality to perform data analytics in real-time to generate process knowledge and understanding. In addition, there is a lack of ability to easily generate strategies and close the loop to feedback into the process for advanced process control (APC). The current research aims to demonstrate the use of advanced monitoring tools along with data analytics to generate process understanding in an Escherichia coli fermentation process. NIR spectroscopy was used to measure glucose and critical amino acids in real-time to help in determining the root cause of failures associated with different lots of yeast extract. First, scale-down of the process was required to execute a simple design of experiment, followed by scale-up to build NIR models as well as soft sensors for advanced process control. In addition, the research demonstrates the potential for a novel platform technology that enables manufacturers to consistently achieve "goldenbatch" performance through monitoring, integration, data analytics, understanding, strategy design and control (MIDUS control). MIDUS control was employed to increase batch-to-batch consistency in final product titers, decrease the coefficient of variability from 8.49 to 1.16%, predict possible exhaust filter failures and close the loop to prevent their occurrence and avoid lost batches.
Advanced wastewater treatment simplified through research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souther, R.H.
A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less
Sudore, Rebecca; Le, Gem M; McMahan, Ryan; McMahon, Ryan; Feuz, Mariko; Katen, Mary; Barnes, Deborah E
2015-12-12
Advance care planning (ACP) is a process whereby patients prepare for medical decision-making. The traditional objective of ACP has focused on the completion of advance directives. We have developed a new paradigm of ACP focused on preparing patients and their loved ones for communication and informed medical decision-making. To operationalize this new paradigm of ACP, we created an interactive, patient-centered website called PREPARE ( www.prepareforyourcare.org ) designed for diverse older adults. This randomized controlled trial with blinded outcome assessment is designed to determine the efficacy of PREPARE to engage older Veterans in the ACP process. Veterans who are ≥ 60 years of age, have ≥ two medical conditions, and have seen a primary care physician ≥ two times in the last year are being randomized to one of two study arms. The PREPARE study arm reviews the PREPARE website and an easy-to-read advance directive. The control arm only reviews the advance directive. The primary outcome is documentation of an advance directive and ACP discussions. Other clinically important outcomes using validated surveys include ACP behavior change process measures (knowledge, contemplation, self-efficacy, and readiness) and a full range of ACP action measures (identifying a surrogate, identifying values and goals, choosing leeway or flexibility for the surrogate, communicating with clinicians and surrogates, and documenting one's wishes). We will also assess satisfaction with decision-making and Veteran activation within primary care visits by direct audio recording. To examine the outcomes at 1 week, 3 months, and 6 months between the two study arms, we will use mixed effects linear, Poisson, or negative binomial regression and mixed effects logistic regression. This study will determine whether PREPARE increases advance directive completion rates and engagement with the ACP process. If PREPARE is efficacious, it could prove to be an easy and effective intervention to help older adults engage in the ACP process within or outside of the medical environment. PREPARE may also help older adults communicate their medical wishes and goals to their loved ones and clinicians, improve medical decision-making, and ensure their wishes are honored over the life course. ClinicalTrials.gov NCT01550731 . Registered on 8 December 2011.
2012-02-09
different sources [12,13], but the analytical techniques needed for such analysis (XRD, INAA , & ICP-MS) are time consuming and require expensive...partial least-squares discriminant analysis (PLSDA) that used the SIMPLS solving method [33]. In the experi- ment design, a leave-one-sample-out (LOSO) para...REPORT Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources 14. ABSTRACT 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelt, Daniël M.; Gürsoy, Dogˇa; Palenstijn, Willem Jan
2016-04-28
The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it ismore » shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy's standard reconstruction method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis
The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...
2017-07-11
The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less
Visualizing time-related data in biology, a review
Secrier, Maria; Schneider, Reinhard
2014-01-01
Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an understanding of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms) is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at more involved temporal interpretation have been made in recent years, but awareness of the available resources is still limited within the scientific community. Here, we review some advances in biological visualization of time-driven processes and consider how they aid data analysis and interpretation. PMID:23585583
Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong
2016-11-01
Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.
Pelt, Daniël M.; Gürsoy, Doǧa; Palenstijn, Willem Jan; Sijbers, Jan; De Carlo, Francesco; Batenburg, Kees Joost
2016-01-01
The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it is shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy’s standard reconstruction method. PMID:27140167
Control Design for an Advanced Geared Turbofan Engine
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Litt, Jonathan S.
2017-01-01
This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 pound-force thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 feet and from 0 to 0.8 Mach. The purpose of this paper is to review the engine control design process for an advanced turbofan engine configuration. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding operational limits.
Advanced Earth-to-Orbit Propulsion Technology 1986, volume 2
NASA Technical Reports Server (NTRS)
Richmond, R. J.; Wu, S. T.
1986-01-01
Technology issues related to oxygen/hydrogen and oxygen/hydrocarbon propulsion are addressed. Specific topics addressed include: rotor dynamics; fatigue/fracture and life; bearings; combustion and cooling processes; and hydrogen environment embrittlement in advanced propulsion systems.
| Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition
Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampath, Sanjay
2015-04-02
The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is beingmore » taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property sensors. Addressing the challenges pertaining to the integration of the two materials YSZ and GDZ led to one of most the critical outcomes of this program, the development of durable multimaterial, multifunctional TBC systems.« less
Advanced instrumentation for the collection, retrieval, and processing of urban stormwater data
Robinson, Jerald B.; Bales, Jerad D.; Young, Wendi S.; ,
1995-01-01
The U.S. Geological Survey, in cooperation with the City of Charlotte and Mecklenburg County, North Carolina, has developed a data-collection network that uses advanced instrumentation to automatically collect, retrieve, and process urban stormwater data. Precipitation measurement and water-quality networks provide data for (1) planned watershed simulation models, (2) early warning of possible flooding, (3) computation of material export, and (4) characterization of water quality in relation to basin conditions. Advantages of advanced instrumentation include remote access to real-time data, reduced demands on and more efficient use of limited human resources, and direct importation of data into a geographical information system for display and graphic analysis.
Advanced refractory-metal and process technology for the fabrication of x-ray masks
NASA Astrophysics Data System (ADS)
Brooks, Cameron J.; Racette, Kenneth C.; Lercel, Michael J.; Powers, Lynn A.; Benoit, Douglas E.
1999-06-01
This paper provides an in-depth report of the advanced materials and process technology being developed for x-ray mask manufacturing at IBM. Masks using diamond membranes as replacement for silicon carbide are currently being fabricated. Alternate tantalum-based absorbers, such as tantalum boron, which offer improved etch resolution and critical dimension control, as well as higher x-ray absorption, are also being investigated. In addition to the absorber studies, the development of conductive chromium- based hard-mask films to replace the current silicon oxynitride layer is being explored. The progress of this advanced-materials work, which includes significant enhancements to x-ray mask image-placement performance, will be outlined.
Friction Stir Spot Welding of Advanced High Strength Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.
Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spotmore » welding in advanced high strength steels.« less
Activated alumina preparation and characterization: The review on recent advancement
NASA Astrophysics Data System (ADS)
Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.
2018-03-01
Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized
NASA Astrophysics Data System (ADS)
Erickson, C. M.; Martinez, A.
1993-06-01
The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.
Braking effect of climate and topography on global change-induced upslope forest expansion.
Alatalo, Juha M; Ferrarini, Alessandro
2017-03-01
Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.
Advanced CO2 removal process control and monitor instrumentation development
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Dalhausen, M. J.; Klimes, R.
1982-01-01
A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.
Advanced miniature processing handware for ATR applications
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)
2003-01-01
A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).
Bragg reflector based gate stack architecture for process integration of excimer laser annealing
NASA Astrophysics Data System (ADS)
Fortunato, G.; Mariucci, L.; Cuscunà, M.; Privitera, V.; La Magna, A.; Spinella, C.; Magrı, A.; Camalleri, M.; Salinas, D.; Simon, F.; Svensson, B.; Monakhov, E.
2006-12-01
An advanced gate stack structure, which incorporates a Bragg reflector, has been developed for the integration of excimer laser annealing into the power metal-oxide semiconductor (MOS) transistor fabrication process. This advanced gate structure effectively protects the gate stack from melting, thus solving the problem related to protrusion formation. By using this gate stack configuration, power MOS transistors were fabricated with improved electrical characteristics. The Bragg reflector based gate stack architecture can be applied to other device structures, such as scaled MOS transistors, thus extending the possibilities of process integration of excimer laser annealing.
Miller, Jeff; Sproesser, Gudrun; Ulrich, Rolf
2008-07-01
In two experiments, we used response signals (RSs) to control processing time and trace out speed--accuracy trade-off(SAT) functions in a difficult perceptual discrimination task. Each experiment compared performance in blocks of trials with constant and, hence, temporally predictable RS lags against performance in blocks with variable, unpredictable RS lags. In both experiments, essentially equivalent SAT functions were observed with constant and variable RS lags. We conclude that there is little effect of advance preparation for a given processing time, suggesting that the discrimination mechanisms underlying SAT functions are driven solely by bottom-up information processing in perceptual discrimination tasks.
Sonophotocatalysis in advanced oxidation process: a short review.
Joseph, Collin G; Li Puma, Gianluca; Bono, Awang; Krishnaiah, Duduku
2009-06-01
Sonophotocatalysis involves the use of a combination of ultrasonic sound waves, ultraviolet radiation and a semiconductor photocatalyst to enhance a chemical reaction by the formation of free radicals in aqueous systems. Researchers have used sonophotocatalysis in a variety of investigations i.e. from water decontamination to direct pollutant degradation. This degradation process provides an excellent opportunity to reduce reaction time and the amount of reagents used without the need for extreme physical conditions. Given its advantages, the sonophotocatalysis process has a futuristic application from an engineering and fundamental aspect in commercial applications. A detailed search of published reports was done and analyzed in this paper with respect to sonication, photocatalysis and advanced oxidation processes.
NASA Astrophysics Data System (ADS)
Ketkar, Supriya; Lee, Junhan; Asokamani, Sen; Cho, Winston; Mishra, Shailendra
2018-03-01
This paper discusses the approach and solution adopted by GLOBALFOUNDRIES, a high volume manufacturing (HVM) foundry, for dry-etch related edge-signature surface particle defects issue facing the sub-nm node in the gate-etch sector. It is one of the highest die killers for the company in the 14-nm node. We have used different approaches to attack and rectify the edge signature surface particle defect. Several process-related & hardware changes have been successively implemented to achieve defect reduction improvement by 63%. Each systematic process and/or hardware approach has its own unique downstream issues and they have been dealt in a route-cause-effect technique to address the issue.
Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Gayda, John; Telesman, Jack; Kantzos, Peter T.
2005-01-01
A low solvus, high refractory (LSHR) powder metallurgy disk alloy was recently designed using experimental screening and statistical modeling of composition and processing variables on sub-scale disks to have versatile processing-property capabilities for advanced disk applications. The objective of the present study was to produce a scaled-up disk and apply varied heat treat processes to enable full-scale demonstration of LSHR properties. Scaled-up disks were produced, heat treated, sectioned, and then machined into specimens for mechanical testing. Results indicate the LSHR alloy can be processed to produce fine and coarse grain microstructures with differing combinations of strength and time-dependent mechanical properties, for application at temperatures exceeding 1300 F.
Advanced engineering environment pilot project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty
2006-10-01
The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solutionmore » to deploy the AEE across the NWC.« less
Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory
NASA Astrophysics Data System (ADS)
Veal, William R.; Taylor, Dawne; Rogers, Amy L.
2009-03-01
Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.
ARPA surveillance technology for detection of targets hidden in foliage
NASA Astrophysics Data System (ADS)
Hoff, Lawrence E.; Stotts, Larry B.
1994-02-01
The processing of large quantities of synthetic aperture radar data in real time is a complex problem. Even the image formation process taxes today's most advanced computers. The use of complex algorithms with multiple channels adds another dimension to the computational problem. Advanced Research Projects Agency (ARPA) is currently planning on using the Paragon parallel processor for this task. The Paragon is small enough to allow its use in a sensor aircraft. Candidate algorithms will be implemented on the Paragon for evaluation for real time processing. In this paper ARPA technology developments for detecting targets hidden in foliage are reviewed and examples of signal processing techniques on field collected data are presented.
Boosting Manufacturing through Modular Chemical Process Intensification
None
2018-06-12
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Boosting Manufacturing through Modular Chemical Process Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-12-09
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Nijhuis, Frouke A P; van Heek, Jolien; Bloem, Bastiaan R; Post, Bart; Faber, Marjan J
2016-07-25
In advanced Parkinson's disease (PD), neurologists and patients face a complex decision for an advanced therapy. When choosing a treatment, the best available evidence should be combined with the professional's expertise and the patient's preferences. The objective of this study was to explore current decision-making in advanced PD. We conducted focus group discussions and individual interviews with patients (N = 20) who had received deep brain stimulation, Levodopa-Carbidopa intestinal gel, or subcutaneous apomorphine infusion, and with their caregivers (N = 16). Furthermore, we conducted semi-structured interviews with neurologists (N = 7) and PD nurse specialists (N = 3) to include the perspectives of all key players in this decision-making process. Data were analyzed by two researchers using a qualitative thematic analysis approach. Four themes representing current experiences with the decision-making process were identified: 1) information and information needs, 2) factors influencing treatment choice and individual decision strategies, 3) decision-making roles, and 4) barriers and facilitators to shared decision-making (SDM). Patient preferences were taken into account, however patients were not always provided with adequate information. The professional's expertise influenced the decision-making process in both positive and negative ways. Although professionals and patients considered SDM essential for the decision of an advanced treatment, they mentioned several barriers for the implementation in current practice. In this study we found several factors explaining why in current practice, evidence-based decision-making in advanced PD is not optimal. An important first step would be to develop objective information on all treatment options.
POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R; Erich Hansen, E; Bradley Pickenheim, B
2007-03-29
High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.« less
Scope of nanotechnology in modern textiles
USDA-ARS?s Scientific Manuscript database
This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...
Making the connection: advancing traffic incident management in transportation planning : a primer.
DOT National Transportation Integrated Search
2013-07-01
"The intent of this primer is to inform and guide traffic incident management (TIM) professionals and transportation planners to initiate and develop collaborative relationships and advance TIM programs through the metropolitan planning process. The ...
SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING
This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...
Center/TRACON Automation System: Development and Evaluation in the Field
DOT National Transportation Integrated Search
1993-10-01
Technological advances are changing the way that advanced air traffic control : automation should be developed and assessed. Current standards and practices of : system development place field testing at the end of the development process. : While su...
Microalgal drying and cell disruption--recent advances.
Show, Kuan-Yeow; Lee, Duu-Jong; Tay, Joo-Hwa; Lee, Tse-Min; Chang, Jo-Shu
2015-05-01
Production of intracellular metabolites or biofuels from algae involves various processing steps, and extensive work on laboratory- and pilot-scale algae cultivation, harvesting and processing has been reported. As algal drying and cell disruption are integral processes of the unit operations, this review examines recent advances in algal drying and disruption for nutrition or biofuel production. Challenges and prospects of the processing are also outlined. Engineering improvements in addressing the challenges of energy efficiency and cost-effective and rigorous techno-economic analyses for a clearer prospect comparison between different processing methods are highlighted. Holistic life cycle assessments need to be conducted in assessing the energy balance and the potential environmental impacts of algal processing. The review aims to provide useful information for future development of efficient and commercially viable algal food products and biofuels production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2013-10-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2012-03-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Process Performance of Optima XEx Single Wafer High Energy Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.
2011-01-07
To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstreammore » dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.« less
Lambert, Heather C; McColl, Mary Ann; Gilbert, Julie; Wong, Jiahui; Murray, Gale; Shortt, Samuel E D
2005-10-01
The purpose of this study was to describe factors contributing to the decision-making processes of elderly persons as they formulate advance directives in long-term care. This study was qualitative, based on grounded theory. Recruitment was purposive and continued until saturation was reached. Nine residents of a long-term-care facility were interviewed by use of a semistructured format. Open and axial coding of interview transcripts were carried out and the factors contributing to the decision process were defined. Elders based their decisions primarily on information gathered from personal experiences with death and illness. They obtained very little information from professionals or the media. Major factors considered by elders as they weighed information included spiritual, emotional, and social considerations. The factors considered during the decision-making process were oriented more toward the individual's experiences and less on contributions from objective sources than anticipated. Decision making for advance directives is a highly personalized process. The approach of health professionals when assisting with end-of-life decision making should be planned with these contributing factors in mind, so that the services offered to the individuals in this population best meet their needs.
Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.
Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel
2017-10-01
Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leake, Mark C
2016-01-01
Our understanding of the processes involved in infection has grown enormously in the past decade due in part to emerging methods of biophysics. This new insight has been enabled through advances in interdisciplinary experimental technologies and theoretical methods at the cutting-edge interface of the life and physical sciences. For example, this has involved several state-of-the-art biophysical tools used in conjunction with molecular and cell biology approaches, which enable investigation of infection in living cells. There are also new, emerging interfacial science tools which enable significant improvements to the resolution of quantitative measurements both in space and time. These include single-molecule biophysics methods and super-resolution microscopy approaches. These new technological tools in particular have underpinned much new understanding of dynamic processes of infection at a molecular length scale. Also, there are many valuable advances made recently in theoretical approaches of biophysics which enable advances in predictive modelling to generate new understanding of infection. Here, I discuss these advances, and take stock on our knowledge of the biophysics of infection and discuss where future advances may lead.
Implementation and benefits of advanced process control for lithography CD and overlay
NASA Astrophysics Data System (ADS)
Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor
2003-05-01
Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.
Invasive advance of an advantageous mutation: nucleation theory.
O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas
2006-12-01
For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.
UK Defence Acquisition Process for NEC: Transaction Governance within an Integrated Project Team
2009-04-22
3-tier framework for a study of the acquisition of an Advance Military Vehicle (AMV), we explore the shaping of the buyer -supplier relationship in...of an Advance Military Vehicle (AMV), we explore the shaping of the buyer -supplier relationship in the context of the UK defence acquisition process...of the buyer , the MoD, and how this impacts its suppliers in the defence industrial base. An historical review of defence industrial relations is
Direct Deposition of Metal (DDM) as a Repair Process for Metallic Military Parts
2013-01-20
metal powder has properties metallurgically compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer...Methodology Background During the DDM process, the energy of a high power industrial laser beam and a concentric stream of metallic alloy powder ...compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer by layer fashion, metal powder is deposited
NASA Technical Reports Server (NTRS)
1982-01-01
Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed.
2010-12-01
Life Cycle Cost Process Model (Austin, TX: The Consortium for Advanced Management International) 6 November 2009. 8 The framework begins with...Hendricks, James R. Involving the Extended Value Chain in a Target Costing/ Life Cycle Cost Process Model. Austin, TX: The Consortium for Advanced ...can have on reducing ownership costs in hundreds of other DOD programs. The early life -cycle phases (requirements/concept development) are often the
Current status and future prospects for enabling chemistry technology in the drug discovery process.
Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.
Pharmacy on demand: New technologies to enable miniaturized and mobile drug manufacturing.
Lewin, John J; Choi, Eugene J; Ling, Geoffrey
2016-01-15
Developmental pharmaceutical manufacturing systems and techniques designed to overcome the shortcomings of traditional batch processing methods are described. Conventional pharmaceutical manufacturing processes do not adequately address the needs of military and civilian patient populations and healthcare providers. Recent advances within the Defense Advanced Research Projects Agency (DARPA) Battlefield Medicine program suggest that miniaturized, flexible platforms for end-to-end manufacturing of pharmaceuticals are possible. Advances in continuous-flow synthesis, chemistry, biological engineering, and downstream processing, coupled with online analytics, automation, and enhanced process control measures, pave the way for disruptive innovation to improve the pharmaceutical supply chain and drug manufacturing base. These new technologies, along with current and ongoing advances in regulatory science, have the future potential to (1) permit "on demand" drug manufacturing on the battlefield and in other austere environments, (2) enhance the level of preparedness for chemical, biological, radiological, and nuclear threats, (3) enhance health authorities' ability to respond to natural disasters and other catastrophic events, (4) minimize shortages of drugs, (5) address gaps in the orphan drug market, (6) support and enable the continued drive toward precision medicine, and (7) enhance access to needed medications in underserved areas across the globe. Modular platforms under development by DARPA's Battlefield Medicine program may one day improve the safety, efficiency, and timeliness of drug manufacturing. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Doering, Robert
In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.
Particle Generation and Evolution in Silane/Acetylene Flames in Microgravity
NASA Technical Reports Server (NTRS)
Keil, D. G.
2001-01-01
The objective of this new experimental program is to advance the understanding of the formation of particles from gas phase combustion processes. The work will utilize the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio. A key goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release necessary to drive the combustion wave, and to locate the parts of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like "highly sooty" hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.
Particle Generation And Evolution In Silane (SiH4)/Acetylene (C2H2) Flames In Microgravity
NASA Technical Reports Server (NTRS)
Keil, D. G.
2003-01-01
The objective of this experimental program is to advance the understanding of the coupling of particle formation with gas phase combustion processes. The work utilizes the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio (Ref. 1). A goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release needed to drive the combustion wave, and to locate the steps of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like highly sooty hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.
NASA Astrophysics Data System (ADS)
Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.
2017-06-01
Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.
Process safety improvement--quality and target zero.
Van Scyoc, Karl
2008-11-15
Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The "plan, do, check, act" improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.
Rapid Thermal Processing (RTP) of semiconductors in space
NASA Technical Reports Server (NTRS)
Anderson, T. J.; Jones, K. S.
1993-01-01
The progress achieved on the project entitled 'Rapid Thermal Processing of Semiconductors in Space' for a 12 month period of activity ending March 31, 1993 is summarized. The activity of this group is being performed under the direct auspices of the ROMPS program. The main objective of this program is to develop and demonstrate the use of advanced robotics in space with rapid thermal process (RTP) of semiconductors providing the test technology. Rapid thermal processing is an ideal processing step for demonstration purposes since it encompasses many of the characteristics of other processes used in solid state device manufacturing. Furthermore, a low thermal budget is becoming more important in existing manufacturing practice, while a low thermal budget is critical to successful processing in space. A secondary objective of this project is to determine the influence of microgravity on the rapid thermal process for a variety of operating modes. In many instances, this involves one or more fluid phases. The advancement of microgravity processing science is an important ancillary objective.
DOT National Transportation Integrated Search
1974-02-01
The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...
Information Retrieval Research and ESPRIT.
ERIC Educational Resources Information Center
Smeaton, Alan F.
1987-01-01
Describes the European Strategic Programme of Research and Development in Information Technology (ESPRIT), and its five programs: advanced microelectronics, software technology, advanced information processing, office systems, and computer integrated manufacturing. The emphasis on logic programming and ESPRIT as the European response to the…
Measuring up: Advances in How We Assess Reading Ability
ERIC Educational Resources Information Center
Sabatini, John; Albro, Elizabeth; O'Reilly, Tenaha
2012-01-01
In recent decades, the science of reading acquisition, processes, and individual differences in general and special populations has been continuously advancing through interdisciplinary research in cognitive, psycholinguistic, developmental, genetic, neuroscience, cross-language studies, and experimental comparison studies of effective…
Advancing Free Flight Through Human Factors: Workshop Report
DOT National Transportation Integrated Search
1995-08-01
This report describes the results of the Advancing Free Flight Through Human : Factors technical workshop held on June 20 and 21, 1995. The purpose of this : technical workshop was to begin the process of identifying and solving human : factors issue...
Marketing potential of advanced breeding clones
USDA-ARS?s Scientific Manuscript database
The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... for OMB Review; Comment Request; Unemployment Insurance Title XII Advances and Voluntary Repayment..., ``Unemployment Insurance Title XII Advances and Voluntary Repayment Process,'' to the Office of Management and... submission of responses. Agency: DOL-ETA. [[Page 72411
Conservation of materials and energy is a major objective to the philosophy of sustainability. Where production processes can be intensified to assist these objectives, significant advances have been developed to assist conservation as well as cost. Process intensification (PI) h...
Wafer hot spot identification through advanced photomask characterization techniques: part 2
NASA Astrophysics Data System (ADS)
Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike
2017-03-01
Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.
PREFACE: 12th European Workshop on Advanced Control and Diagnosis (ACD 2015)
NASA Astrophysics Data System (ADS)
Straka, Ondřej; Punčochář, Ivo; Duník, Jindřich
2015-11-01
The 12th European Workshop on Advanced Control and Diagnosis (ACD 2015) took place at the Research Centre NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic, on November 19 - 20, 2015. The annual European Workshop on Advanced Control and Diagnosis has been organized since 2003 by Control Engineering departments of several European universities in Germany, France, the UK, Poland, Italy, Hungary, and Denmark to bring together senior and junior academics and engineers from diverse fields of automatic control, fault detection, and signal processing. The workshop provides an opportunity for researchers and developers to present their recent theoretical developments, practical applications, or even open problems. It also offers a great opportunity for industrial partners to express their needs and priorities and to review the current activities in the fields. A total of 74 papers have been submitted for ACD 2015. Based on the peer reviews 48 papers were accepted for the oral presentation and 10 papers for the poster presentation. The accepted papers covered areas of control theory and applications, identification, estimation, signal processing, and fault detection. In addition, four excellent plenary lectures were delivered by Prof. Fredrik Gustafsson (Automotive Sensor Mining for Tire Pressure Monitoring), Prof. Vladimír Havlena (Advanced Process Control for Energy Efficiency), Prof. Silvio Simani (Advanced Issues on Wind Turbine Modelling and Control), and Prof. Robert Babuška (Learning Control in Robotics). The ACD 2015 was for the first time in the workshop history co-sponsored by the International Federation of Automatic Control (IFAC). On behalf of the ACD 2015 organising committee, we would like to thank all those who prepared and submitted papers, participated in the peer review process, supported, and attended the workshop.
Collaborating with nurse leaders to develop patient safety practices.
Kanerva, Anne; Kivinen, Tuula; Lammintakanen, Johanna
2017-07-03
Purpose The organisational level and leadership development are crucial elements in advancing patient safety, because patient safety weaknesses are often caused by system failures. However, little is known about how frontline leader and director teams can be supported to develop patient safety practices. The purpose of this study is to describe the patient safety development process carried out by nursing leaders and directors. The research questions were: how the chosen development areas progressed in six months' time and how nursing leaders view the participatory development process. Design/methodology/approach Participatory action research was used to engage frontline nursing leaders and directors into developing patient safety practices. Semi-structured group interviews ( N = 10) were used in data collection at the end of a six-month action cycle, and data were analysed using content analysis. Findings The participatory development process enhanced collaboration and gave leaders insights into patient safety as a part of the hospital system and their role in advancing it. The chosen development areas advanced to different extents, with the greatest improvements in those areas with simple guidelines to follow and in which the leaders were most participative. The features of high-reliability organisation were moderately identified in the nursing leaders' actions and views. For example, acting as a change agent to implement patient safety practices was challenging. Participatory methods can be used to support leaders into advancing patient safety. However, it is important that the participants are familiar with the method, and there are enough facilitators to steer development processes. Originality/value Research brings more knowledge of how leaders can increase their effectiveness in advancing patient safety and promoting high-reliability organisation features in the healthcare organisation.
NASA Astrophysics Data System (ADS)
Tandon, Rahul; Herford, Alan S.
2013-03-01
Introduction: In recent years, advances in technology are propelling the field of oral and maxillofacial surgery into new realms. With a relatively thin alveolar mucosa overlying the underlying bone, significant diagnostic and therapeutic advantages are present. However, there remains an enormous gap between advancements in physics, in particular optics, and oral and maxillofacial surgery. Bone Pathology: Improvements in diagnosis, classification, and treatment of the various bone pathologies are still being sought after as advancements in technology continue to progress. Combining the clinical, histological, and pathological characteristics with these advancements, patients with debilitating pathologies may have more promising treatment options and prognosis. Bone Grafting: Defects in the facial bones, in particular the jaws, may be due to a number of reasons: pathology, trauma, infections, congenital deformities, or simply due to atrophy. Bone grafting is commonly employed to correct such defects, and allows new bone formation through tissue regeneration. Osseointegration: Growing use of dental implants has focused attention on osseointegration and its process. Osseointegration refers to the actual process of the direct contact between bone and implant, without an intervening soft tissue layer. The theories proposed regarding this process are many, yet there lacks a clear, unified stance on the actual process and its mechanisms. Further investigation using optical probes could provide that unifying answer. Conclusion: The primary goal of this lecture is to introduce pioneers in the field of optics to the field of oral and maxillofacial surgery. With a brief introduction into the procedures and techniques, we are hopeful to bridge the ever-widening gap between the clinical science and the basic sciences.
Role of laser beam radiance in different ceramic processing: A two wavelengths comparison
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Lawrence, Jonathan
2013-12-01
Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.
Overview on NASA's Advanced Electric Propulsion Concepts Activities
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1999-01-01
Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.
The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less
1996-09-19
This rule establishes requirements and procedures for advance payments to suppliers of Medicare Part B services. An advance payment will be made only if the carrier is unable to process a claim timely; the supplier requests advance payment; we determine that payment of interest is insufficient to compensate the supplier for loss of the use of the funds; and, we expressly approve the advance payment in writing. These rules are necessary to address deficiencies noted by the General Accounting Office in its report analyzing current procedures for making advance payments. The intent of this rule is to ensure more efficient and effective administration of this aspect of the Medicare program.
NASA Astrophysics Data System (ADS)
-Aurel Cherecheş, Ioan; -Ioana Borzan, Adela; -Laurean Băldean, Doru
2017-10-01
Study of construction and wearing process in the case of piston-rings and other significant components from internal combustion engines leads at any time to creative and useful optimizing ideas, both in designing and manufacturing phases. Main objective of the present paper is to realize an interdisciplinary research using advanced methods in piston-rings evaluation of a common vehicle on the streets which is Ford Focus FYDD. Specific objectives are a theoretical study of the idea for advanced analysis method in piston-rings evaluation and an applied research developed in at Technical University from Cluj-Napoca with the motor vehicle caught in the repairing process.
Monolithically interconnected silicon-film™ module technology
NASA Astrophysics Data System (ADS)
DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.
1999-03-01
AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.
What to do after nutrient removal?
van der Graaf, J H
2001-01-01
In the Netherlands, interest in advanced treatment is increasing now that almost all wastewater treatment plants apply full biological treatment and nutrient removal. The resulting effluents have an excellent quality which can be improved further by applying advanced treatment processes like flocculating filtration, membrane filtration, UV or activated carbon, and others. The treated effluent can be re-used for various purposes, as process water, household water, urban water, for groundwater suppletion and drinking water. Nowadays many applications are investigated. In order to confirm the applicability pilot test investigations are done at various WWTPs. The results are promising; the cost estimations show increasing prospects. This will finally lead to the maturity of the advanced treatment. It will certainly contribute to a more sustainable water cycle.