Science.gov

Sample records for advanced quantum devices

  1. Quantum functional devices for advanced electronics

    NASA Astrophysics Data System (ADS)

    Yokoyama, N.; Muto, S.; Imamura, K.; Takatsu, M.; Mori, T.; Sugiyama, Y.; Sakuma, Y.; Nakao, H.; Adachihara, T.

    Recent research in semiconductor device technology seems to be focused on reducing the cost and power dissipation of traditional Si CMOS integrated circuits, rather than developing new and advanced semiconductor devices. We believe however, that devices enter the nanometer-scale regime in the next century, where quantum mechanical effects play an important role in the device's function; therefore, it is important to continue basic research into the physics and technology of nanometer scale structures and device applications in order to cultivate "nanoelectronics". This paper reviews our research activities on quantum functional devices and discusses our future research direction.

  2. Advanced semiconductor quantum well devices for infrared applications

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir V.

    High performance mid-wavelength infrared (MWIR) light emitting diodes (LEDs) are needed for chemical sensing, analysis and medical imaging. Efficient long wavelength infrared (LWIR) photodetectors are highly desirable for remote sensing and space exploration. The goal of this work is to investigate new mid-infrared LEDs and to optimize existing LWIR quantum well infrared photodetectors (QWIPs). Type-II "W" InAs/InGaSb/AlGaAsSb quantum wells were incorporated as optically active layers in MWIR LEDs. Influence of MBE crystal growth conditions on the density of Shockley-Read-Hall centers in the "W" quantum wells was studied and the optimal growth conditions were identified. A qualitative physical model was developed to describe relative importance of the radiative and non-radiative processes for various temperature ranges. MWIR LED structures lattice-matched to InAs and GaSb substrates were grown. Devices on InAs substrates were found to be at least twice as efficient as devices grown on GaSb. LEDs on InAs had 4.5 mum emission wavelength and 26.5 muW/A external efficiency. Possibility to operate GaAs/AIGaAs QWIP under normal-to-surface light incidence was studied. Metal nano-particle surface coating was developed and processes responsible for, light coupling into the QWIP were investigated. QWIP structure itself was optimized to eliminate Si-diffusion-assisted dark current enhancement by employing a new doping profile in the quantum wells. Devices with the new doping profile had an order of magnitude lower dark current and 20% higher photoresponse than commercially available QWIPs.

  3. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  4. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  5. Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials

    DTIC Science & Technology

    1991-03-01

    Improved Quantum PE 61153N Device Properties Using Highly Strained Materials PE 1401N~R&T 414s 001-02 IN G. AUTHOR(S) (William J. Schaff , S.D. Offsey and...DECEMBER 15, 1989 CORNELL UNIVERSITY.......................... ITHACA, NY 14853-5401 PREPARED BY: WJ. Schaff ........ S.D. Offsey I - L.F. Eastman D ’’. i...Mandeville, R. Saito, P.J. Tasker, W.J. Schaff and L.F. Eastman, 12th IEEE/Comell Conference on’Advanced Concepts in High Speed Semiconductor Devices

  6. Advanced Technology for Improved Quantum Device Properties Using Highly Strained Materials

    DTIC Science & Technology

    1989-06-15

    PREPARED BY: W.J. Schaff S.D. OffseyI DL)L.,C ;.. $T A H. Park At~pio-ved tc- ;p7ua~ic tel-e:a~o L.F. Eastman q uoig4 04 Table of Contents Page...Graded-Index Separate-Confinement Heterostructure Single Quantum Well Lasers Grown by Molecular Beam Epitaxy", S.D. Offsey, W.J. Schaff , P.J. Tasker, H...gle Confinement Single Quantum Well Lasers Grown by Molecular Beam Epitaxy", S.D. Offsey, W.J. Schaff , P.J. Tasker and L.F. Eastman, Device Research

  7. Quantum Device Development

    DTIC Science & Technology

    1988-10-25

    Wavepacket Calculations .. .. ....... ... 22 b. Quantum Transport Theory .. .. .... ....... 29 c. Scattering-State Calculations. .. .... ..... 33 8. Device...much smaller than the depletion layer widths and diffusion lengths that provide the basis for conventional transistor function . A step can be taken in...outside the quantum well) the electron density is simply given by the Fermi distribution function . The quantized states in the quantum well are found by

  8. Single electron effects in silicon quantum devices

    NASA Astrophysics Data System (ADS)

    Prati, Enrico

    2013-05-01

    The integration of atomic physics with quantum device technology contributed to the exploration of the field of single electron nanoelectronics originally developed in single electron quantum dots. Here the basic concepts of single electron nanoelectronics, including key aspects of architectures, quantum transport in silicon devices, single electron transistors, few atom devices, single charge/spin dynamics, and the role of valleys and bands are reviewed. Future applications in fundamental physics and classical and quantum information technologies are discussed, by highlighting the critical aspects which currently impose limits to the most advanced developments at the 10-nm node.

  9. 25th anniversary article: Colloidal quantum dot materials and devices: a quarter-century of advances.

    PubMed

    Kim, Jin Young; Voznyy, Oleksandr; Zhitomirsky, David; Sargent, Edward H

    2013-09-25

    Colloidal quantum dot (CQD) optoelectronics offers a compelling combination of low-cost, large-area solution processing, and spectral tunability through the quantum size effect. Since early reports of size-tunable light emission from solution-synthesized CQDs over 25 years ago, tremendous progress has been made in synthesis and assembly, optical and electrical properties, materials processing, and optoelectronic applications of these materials. Here some of the major developments in this field are reviewed, touching on key milestones as well as future opportunities.

  10. Quantum memories: emerging applications and recent advances.

    PubMed

    Heshami, Khabat; England, Duncan G; Humphreys, Peter C; Bustard, Philip J; Acosta, Victor M; Nunn, Joshua; Sussman, Benjamin J

    2016-11-12

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  11. Quantum memories: emerging applications and recent advances

    PubMed Central

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  12. Quantum memories: emerging applications and recent advances

    NASA Astrophysics Data System (ADS)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-11-01

    Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.

  13. STIR: Advanced Quantum Sensing

    DTIC Science & Technology

    2014-07-18

    STIR: Advanced Quantum Sensing Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to- noise...Quantum Sensing Report Title Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to-noise ratio. We...Kevin Lyons, Andrew N. Jordan, Trent M. Graham, Paul G. Kwiat. Strengthening weak- value amplification with recycled photons , Physical Review A, (08

  14. Quantum Device Development

    DTIC Science & Technology

    1990-07-20

    elements of the density matrix . This leads us to a quantum kinetic theory . 3. QUANTUM KINETIC THEORY A quantum kinetic theory is expressed in terms of...the single-particle density matrix p(z, z’), or a mathematically equivalent object such as the Wigner dis- tribution function . The time evolution of p...mod- eled by elementary quantum theory because theform of the density matrix in equilibrium, p oc e- PH, assures us that the electrons actually occupy

  15. Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Niebuhr, Jason; Cruz, Santana; Lamoreaux, chris

    2007-01-01

    The advanced resistive exercise device (ARED), now at the prototype stage of development, is a versatile machine that can be used to perform different customized exercises for which, heretofore, it has been necessary to use different machines. Conceived as a means of helping astronauts and others to maintain muscle and bone strength and endurance in low-gravity environments, the ARED could also prove advantageous in terrestrial settings (e.g., health clubs and military training facilities) in which many users are exercising simultaneously and there is heavy demand for use of exercise machines.

  16. Recent advances on integrated quantum communications

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Diamanti, Eleni

    2016-08-01

    In recent years, the use of integrated technologies for applications in the field of quantum information processing and communications has made great progress. The resulting devices feature valuable characteristics such as scalability, reproducibility, low cost and interconnectivity, and have the potential to revolutionize our computation and communication practices in the future, much in the way that electronic integrated circuits have drastically transformed our information processing capacities since the last century. Among the multiple applications of integrated quantum technologies, this review will focus on typical components of quantum communication systems and on overall integrated system operation characteristics. We are interested in particular in the use of photonic integration platforms for developing devices necessary in quantum communications, including sources, detectors and both passive and active optical elements. We also illustrate the challenges associated with performing quantum communications on chip, by using the case study of quantum key distribution—the most advanced application of quantum information science. We conclude with promising perspectives in this field.

  17. Interfacing external quantum devices to a universal quantum computer.

    PubMed

    Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz

    2011-01-01

    We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.

  18. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  19. Multiphoton quantum interference in a multiport integrated photonic device.

    PubMed

    Metcalf, Benjamin J; Thomas-Peter, Nicholas; Spring, Justin B; Kundys, Dmytro; Broome, Matthew A; Humphreys, Peter C; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Gates, James C; Smith, Brian J; Langford, Nathan K; Smith, Peter G R; Walmsley, Ian A

    2013-01-01

    Increasing the complexity of quantum photonic devices is essential for many optical information processing applications to reach a regime beyond what can be classically simulated, and integrated photonics has emerged as a leading platform for achieving this. Here we demonstrate three-photon quantum operation of an integrated device containing three coupled interferometers, eight spatial modes and many classical and nonclassical interferences. This represents a critical advance over previous complexities and the first on-chip nonclassical interference with more than two photonic inputs. We introduce a new scheme to verify quantum behaviour, using classically characterised device elements and hierarchies of photon correlation functions. We accurately predict the device's quantum behaviour and show operation inconsistent with both classical and bi-separable quantum models. Such methods for verifying multiphoton quantum behaviour are vital for achieving increased circuit complexity. Our experiment paves the way for the next generation of integrated photonic quantum simulation and computing devices.

  20. Quantum Transport in Semiconductor Devices

    DTIC Science & Technology

    1994-06-30

    TITLE AND SUBTITLE S. FUNDING NUMBERS " Quantum Transport in Semiconductor Devices" 6. AUTHOR(S) ,DftftLo3-91-6-oo 7 David K. Ferry 7. PERFORMING...OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL NZIN 1540-01-280-5500 Standard Form 298 (Rev 2-89) PrinCrlt>• oy ANSI SIC Z39-18 QUANTUM ... TRANSPORT IN SEMICONDUCTOR DEVICES Final Report on DAAL03-91-G-0067 (28461-EL) David K. Ferry, Principal Investigator Department of Electrical Engineering

  1. Advanced quantum communication systems

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan Robert

    Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.

  2. Advanced resistive exercise device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)

    2008-01-01

    The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.

  3. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  4. Advanced Quantum Communication Protocols

    DTIC Science & Technology

    2005-12-17

    theoretically optimal configuration, and compared hyperentangled and multi-pair encoding. Table of Contents: Summary 2 Relativistic Quantum Cryptography ( RQC ...error rates, for 4- and 6-state RQC 4. Intensity pulses to generate uniform time-interval probability distributions 5. Schematic of photon-arrival...Protocols: Scientific Progress and Accomplishments “Relativistic” Quantum Cryptography We have implemented relativistic quantum cryptography ( RQC ) using

  5. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  6. Carbon Nanotubes Based Quantum Devices

    NASA Technical Reports Server (NTRS)

    Lu, Jian-Ping

    1999-01-01

    This document represents the final report for the NASA cooperative agreement which studied the application of carbon nanotubes. The accomplishments are reviewed: (1) Wrote a review article on carbon nanotubes and its potentials for applications in nanoscale quantum devices. (2) Extensive studies on the effects of structure deformation on nanotube electronic structure and energy band gaps. (3) Calculated the vibrational spectrum of nanotube rope and the effect of pressure. and (4) Investigate the properties of Li intercalated nanotube ropes and explore their potential for energy storage materials and battery applications. These studies have lead to four publications and seven abstracts in international conferences.

  7. Beyond Moore's law: towards competitive quantum devices

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2015-05-01

    A century after the invention of quantum theory and fifty years after Bell's inequality we see the first quantum devices emerge as products that aim to be competitive with the best classical computing devices. While a universal quantum computer of non-trivial size is still out of reach there exist a number commercial and experimental devices: quantum random number generators, quantum simulators and quantum annealers. In this colloquium I will present some of these devices and validation tests we performed on them. Quantum random number generators use the inherent randomness in quantum measurements to produce true random numbers, unlike classical pseudorandom number generators which are inherently deterministic. Optical lattice emulators use ultracold atomic gases in optical lattices to mimic typical models of condensed matter physics. In my talk I will focus especially on the devices built by Canadian company D-Wave systems, which are special purpose quantum simulators for solving hard classical optimization problems. I will review the controversy around the quantum nature of these devices and will compare them to state of the art classical algorithms. I will end with an outlook towards universal quantum computing and end with the question: which important problems that are intractable even for post-exa-scale classical computers could we expect to solve once we have a universal quantum computer?

  8. Advanced Modeling of Micromirror Devices

    NASA Technical Reports Server (NTRS)

    Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.

    1995-01-01

    The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.

  9. Individual carbon nanotubes for quantum electronic and quantum photonic devices

    NASA Astrophysics Data System (ADS)

    Ai, Nan

    2011-12-01

    Carbon nanotubes (CNTs) are promising materials since their unique one dimensional geometry leads to remarkable physical properties such as ballistic transport, long mean free path, large direct band gaps, high mechanical tensile strength and strong exciton binding energies, which make them attractive candidates for applications in high-performance nanoelectronics and nanophotonics. CNT-based field-effect transistors (CNT-FETs) are considered to be ideally suited for future nanoelectronics. Single CNT-FETs made by depositing metal electrodes on top of individual CNTs with E-beam lithography have achieved great performance but are limited for massive large area integrated circuit fabrication. Therefore, this thesis demonstrates characteristics of CNT-FETs made by registered in-plane growth utilizing tailored nanoscale catalyst patterns and chemical vapor deposition (CVD), resulting in CNT arrays directly bridging source and drain. The demonstrated access to individual CNTs with pronounced semiconducting behavior opens also the possibility to form more advanced nanoelectronic structures such as CNT quantum dots. CNT-based single electron transistors (CNT-SETS) are promising for quantum electronic devices operating with ultra-low power consumption and allow fundamental studies of electron transport. In addition to existing CNT-SETS based on individual CNTs, we have fabricated the first CNT-SETS based on in-plane grown CNTs using the CVD technique. The demonstrated utilization of registered in-plane growth opens possibilities to create novel SET device geometries which are more complex, i.e. laterally ordered and scalable, as required for advanced quantum electronic devices. Blinking and spectral diffusion are hallmarks of nanoscale light emitters and a challenge for creating stable fluorescent biomarkers or efficient nonclassical light sources. The studies of blinking of CNTs are still in the explorative stage. In this thesis, I show the first experimental

  10. Completely device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Aguilar, Edgar A.; Ramanathan, Ravishankar; Kofler, Johannes; Pawłowski, Marcin

    2016-08-01

    Quantum key distribution (QKD) is a provably secure way for two distant parties to establish a common secret key, which then can be used in a classical cryptographic scheme. Using quantum entanglement, one can reduce the necessary assumptions that the parties have to make about their devices, giving rise to device-independent QKD (DIQKD). However, in all existing protocols to date the parties need to have an initial (at least partially) random seed as a resource. In this work, we show that this requirement can be dropped. Using recent advances in the fields of randomness amplification and randomness expansion, we demonstrate that it is sufficient for the message the parties want to communicate to be (partially) unknown to the adversaries—an assumption without which any type of cryptography would be pointless to begin with. One party can use her secret message to locally generate a secret sequence of bits, which can then be openly used by herself and the other party in a DIQKD protocol. Hence our work reduces the requirements needed to perform secure DIQKD and establish safe communication.

  11. Current Distributions in Quantum Hall Effect Devices

    PubMed Central

    Cage, M. E.

    1997-01-01

    This paper addresses the question of how current is distributed within quantum Hall effect devices. Three types of flow patterns most often mentioned in the literature are considered. They are: (1) skipping orbits along the device periphery (which arise from elastic collisions off hard-walled potentials); (2) narrow conducting channels along the device sides (which are presumed to be generated from confining potentials); and (3) currents distributed throughout the device (which are assumed to arise from a combination of confining and charge-redistribution potentials). The major conclusions are that skipping orbits do not occur in quantum Hall effect devices, and that nearly all of the externally applied current is located within the device interior rather than along the device edges. PMID:27805115

  12. A quantum optical firewall based on simple quantum devices

    NASA Astrophysics Data System (ADS)

    Amellal, H.; Meslouhi, A.; Hassouni, Y.; El Baz, M.

    2015-07-01

    In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as "Faked State Attack."

  13. Quantum key distribution based on quantum dimension and independent devices

    NASA Astrophysics Data System (ADS)

    Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-03-01

    In this paper, we propose a quantum key distribution (QKD) protocol based on only a two-dimensional Hilbert space encoding a quantum system and independent devices between the equipment for state preparation and measurement. Our protocol is inspired by the fully device-independent quantum key distribution (FDI-QKD) protocol and the measurement-device-independent quantum key distribution (MDI-QKD) protocol. Our protocol only requires the state to be prepared in the two-dimensional Hilbert space, which weakens the state preparation assumption in the original MDI-QKD protocol. More interestingly, our protocol can overcome the detection loophole problem in the FDI-QKD protocol, which greatly limits the application of FDI-QKD. Hence our protocol can be implemented with practical optical components.

  14. Superconducting quantum-interference devices

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Holdeman, L. B.

    1975-01-01

    Published document discusses devices which are based on weak-link Josephson elements that join superconductors. Links can take numerous forms, and circuitry utilizing links can perform many varied functions with unprecedented sensitivity. Theoretical review of Josephson's junctions include tunneling junctions, point contact devices, microbridges, and proximity-effect devices.

  15. Silicon Metal-Oxide-Semiconductor Quantum Devices

    NASA Astrophysics Data System (ADS)

    Nordberg, Eric

    This thesis presents stable quantum dots in a double gated silicon metal-oxide-semiconductor (MOS) system with an open-lateral geometry. In recent years, semiconductor lateral quantum dots have emerged as an appealing approach to quantum computing. Silicon offers the potential for very long electron spin decoherence times in these dots. Several important steps toward a functioning silicon-based electron spin qubit are presented, including stable Coulomb blockade within a quantum dot, a tunable double quantum dot, and integrated charge sensing. A fabrication process has been created to make low-disorder constrictions on relatively high mobility Si-MOS material and to facilitate essentially arbitrary gate geometries. Within this process, changes in mobility and charge defect densities are measured for critical process steps. This data was used to guide the fabrication of devices culminating, in this work, with a clean, stable quantum dot in a double-gated MOS system. Stable Coulomb-blockade behavior showing single-period conductance oscillations was observed in MOS quantum dots. Measured capacitances within each device and capacitances calculated via modeling are compared, showing that the measured Coulomb-blockade is consistent with a lithographically defined quantum dot, as opposed to a disorder dot within a single constriction. A tunable double dot is also observed. Laterally coupled charge sensing of quantum dots is highly desirable because it enables measurement even when conduction through the quantum dot itself is suppressed. Such charge sensing is demonstrated in this system. The current through a point contact constriction located near a quantum dot shows sharp 2% changes corresponding to charge transitions between the dot and a nearby lead. The coupling capacitance between the charge sensor and the quantum dot is extracted and agrees well with a capacitance model of the integrated sensor and quantum dot system.

  16. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  17. Quantum heat engines and refrigerators: continuous devices.

    PubMed

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  18. Photovoltaic and thermophotovoltaic devices with quantum barriers

    DOEpatents

    Wernsman, Bernard R.

    2007-04-10

    A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.

  19. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  20. Device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Hänggi, Esther

    2010-12-01

    In this thesis, we study two approaches to achieve device-independent quantum key distribution: in the first approach, the adversary can distribute any system to the honest parties that cannot be used to communicate between the three of them, i.e., it must be non-signalling. In the second approach, we limit the adversary to strategies which can be implemented using quantum physics. For both approaches, we show how device-independent quantum key distribution can be achieved when imposing an additional condition. In the non-signalling case this additional requirement is that communication is impossible between all pairwise subsystems of the honest parties, while, in the quantum case, we demand that measurements on different subsystems must commute. We give a generic security proof for device-independent quantum key distribution in these cases and apply it to an existing quantum key distribution protocol, thus proving its security even in this setting. We also show that, without any additional such restriction there always exists a successful joint attack by a non-signalling adversary.

  1. Quantum computing with realistically noisy devices.

    PubMed

    Knill, E

    2005-03-03

    In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming that a quantum computer could be constructed, it would in practice be required to function with noisy devices called 'gates'. These gates cause decoherence of the fragile quantum states that are central to the computer's operation. The goal of so-called 'fault-tolerant quantum computing' is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources comparable to the digital resources available in today's computers, we show that non-trivial quantum computations at EPGs of as high as one per cent could be implemented.

  2. Atom-by-Atom Construction of a Quantum Device.

    PubMed

    Petta, Jason R

    2017-03-28

    Scanning tunneling microscopes (STMs) are conventionally used to probe surfaces with atomic resolution. Recent advances in STM include tunneling from spin-polarized and superconducting tips, time-domain spectroscopy, and the fabrication of atomically precise Si nanoelectronics. In this issue of ACS Nano, Tettamanzi et al. probe a single-atom transistor in silicon, fabricated using the precision of a STM, at microwave frequencies. While previous studies have probed such devices in the MHz regime, Tettamanzi et al. probe a STM-fabricated device at GHz frequencies, which enables excited-state spectroscopy and measurements of the excited-state lifetime. The success of this experiment will enable future work on quantum control, where the wave function must be controlled on a time scale that is much shorter than the decoherence time. We review two major approaches that are being pursued to develop spin-based quantum computers and highlight some recent progress in the atom-by-atom fabrication of donor-based devices in silicon. Recent advances in STM lithography may enable practical bottom-up construction of large-scale quantum devices.

  3. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  4. Measurement-device-independent quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  5. Thermoelectric Devices Advance Thermal Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Thermoelectric (TE) devices heat, cool, and generate electricity when a temperature differential is provided between the two module faces. In cooperation with NASA, Chico, California-based United States Thermoelectric Consortium Inc. (USTC) built a gas emissions analyzer (GEA) for combustion research. The GEA precipitated hydrocarbon particles, preventing contamination that would hinder precise rocket fuel analysis. The USTC research and design team uses patent-pending dimple, pin-fin, microchannel and microjet structures to develop and design heat dissipation devices on the mini-scale level, which not only guarantee high performance of products, but also scale device size from 1 centimeter to 10 centimeters. USTC continues to integrate the benefits of TE devices in its current line of thermal management solutions and has found the accessibility of NASA technical research to be a valuable, sustainable resource that has continued to positively influence its product design and manufacturing

  6. Center for advanced microstructures and devices (CAMD)

    NASA Astrophysics Data System (ADS)

    Craft, B. C.; Feldman, M.; Morikawa, E.; Poliakoff, E. D.; Saile, V.; Scott, J. D.; Stockbauer, R. L.

    1992-01-01

    The new synchrotron-radiation facility, Center for Advanced Microstructures and Devices, at Louisiana State University is described with regard to the status of installation of the storage ring, implementation of the various programs, and construction of the first beamlines.

  7. Insertion devices at the advanced photon source

    SciTech Connect

    Moog, E.R.

    1996-07-01

    The insertion devices being installed at the Advanced Photon Source cause the stored particle beam to wiggle, emitting x-rays with each wiggle. These x-rays combine to make an intense beam of radiation. Both wiggler and undulator types of insertion devices are being installed; the characteristics of the radiation produced by these two types of insertion devices are discussed, along with the reasons for those characteristics.

  8. Simulation of Ultra-Small Electronic Devices: The Classical-Quantum Transition Region

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    Concern is increasing about how quantum effects will impact electronic device operation as down-scaling continues along the SIA Roadmap through 2010. This document describes part of a new semiconductor device modeling (SDM) program at NAS to investigate these concerns by utilizing advanced NAS and third-party numerical computation software to rapidly implement and investigate electronic device models including quantum effects. This SDM project will investigate quantum effects in devices in the classical-quantum transition region, especially sub-0.1 mm MOSFETs. Specific tasks planned for this project include the use of quantum corrections to the classical drift-diffusion and hydrodynamic models of electron transport, arid the use of nominally quantum models including significant scattering.

  9. Tunable graphene dc superconducting quantum interference device.

    PubMed

    Girit, Caglar; Bouchiat, V; Naaman, O; Zhang, Y; Crommie, M F; Zettl, A; Siddiqi, I

    2009-01-01

    Graphene exhibits unique electrical properties on account of its reduced dimensionality and "relativistic" band structure. When contacted with two superconducting electrodes, graphene can support Cooper pair transport, resulting in the well-known Josephson effect. We report here the fabrication and operation of a two junction dc superconducting quantum interference device (SQUID) formed by a single graphene sheet contacted with aluminum/palladium electrodes in the geometry of a loop. The supercurrent in this device can be modulated not only via an electrostatic gate but also by an applied magnetic fielda potentially powerful probe of electronic transport in graphene and an ultrasensitive platform for nanomagnetometry.

  10. Quantum Device Applications of Mesoscopic Superconductivity

    NASA Astrophysics Data System (ADS)

    Hakonen, P. J.

    2006-08-01

    A brief account is given on the possibilities of mesoscopic superconductivity in low-noise amplifier and detector applications. In particular, three devices will be described: 1) Bloch oscillating transistor (BOT), 2) Inductively-read superconducting Cooper pair transistor (L-SET), and 3) Quantum capacitive phase detector (C-SET). The BOT is a low-noise current amplifier while the L-SET and C-SET act as ultra-sensitive charge and phase detectors, respectively. The basic operating principles and the main characteristics of these devices will be reviewed and discussed.

  11. Quantum key distribution device with coherent states

    NASA Astrophysics Data System (ADS)

    Lodewyck, Jérôme; Bloch, Matthieu; García-Patrón, Raúl; Fossier, Simon; Karpov, Evgueni; Diamanti, Eleni; Debuisschert, Thierry; Cerf, Nicolas J.; Tualle-Brouri, Rosa; McLaughlin, Steven W.; Grangier, Philippe

    2007-09-01

    We report on both theoretical and experimental aspects of a fully implemented quantum key distribution device with coherent states. This system features a final key rate of more than 2 kb/s over 25 km of optical fiber. It comprises all required elements for field operation: a compact optical setup, a fast secret bit extraction using efficient LDPC codes, privacy amplification algorithms and a classical channel software. Both hardware and software are operated in real time.

  12. Quantum chromodynamics with advanced computing

    SciTech Connect

    Kronfeld, Andreas S.; /Fermilab

    2008-07-01

    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.

  13. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect

    2009-12-11

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  14. Physics of Quantum Structures in Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Andersen, John D.

    2005-01-01

    There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

  15. Using Quantum Confinement to Uniquely Identify Devices

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  16. Using Quantum Confinement to Uniquely Identify Devices

    PubMed Central

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-01-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435

  17. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  18. Measurement-device-independent quantum cryptography

    SciTech Connect

    Xu, Feihu; Curty, Marcos; Qi, Bing; Lo, Hoi-Kwong

    2014-12-18

    In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD, together with its assumptions, strengths, and weaknesses.

  19. Measurement-device-independent quantum cryptography

    DOE PAGES

    Xu, Feihu; Curty, Marcos; Qi, Bing; ...

    2014-12-18

    In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. In addition, it can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue toward secure QKD realisations. In this study, we review the latest developments in the framework of mdiQKD,more » together with its assumptions, strengths, and weaknesses.« less

  20. The Quantum Hydrodynamic Model for Semiconductor Devices: Theory and Computations

    DTIC Science & Technology

    2007-11-02

    Quantum transport effects including electron or hole tunneling through potential barriers and buildup in quantum wells are important in predicting...semiconductor device. A new extension of the classical hydrodynamic model to include quantum transport effects was derived. This "smooth" quantum

  1. Quantum Effects in Nanoscale MOSFET Devices at Low Temperature

    NASA Astrophysics Data System (ADS)

    Day, Alexandra

    2014-03-01

    MOSFET transistors are a key component of virtually all modern electronic devices. Today's most advanced MOSFETs are small enough that quantum mechanical effects become relevant when considering their function and use. This project, completed at the National Institute of Standards and Technology as part of a Society of Physics Students internship, presents a first step in describing the theoretical behavior of nanoscale MOSFETs at low temperature. I acknowledge generous support from the Society of Physics Students and the National Institute of Standards and Technology.

  2. Quantum device prospects of superconducting nanodiamond films

    NASA Astrophysics Data System (ADS)

    Mtsuko, D.; Churochkin, D.; Bhattacharyya, S.

    2016-02-01

    Nanostructured semiconducting carbon system, described by as a superlattice-like structure demonstrated its potential in switching device applications based on the quantum tunneling through the insulating carbon layer. This switching property can be enhanced further with the association of Josephson's tunneling between two superconducting carbon (diamond) grains separated by a very thin layer of carbon which holds the structure of the film firmly. The superconducting nanodiamond heterostructures form qubits which can lead to the development of quantum computers provided the effect of disorder present in these structure can be firmly understood. Presently we concentrate on electrical transport properties of heavily boron-doped nanocrystalline diamond films around the superconducting transition temperature measured as a function of magnetic fields and the applied bias current. Microstructure of these films is described by a two dimensional superlattice system which can also contain paramagnetic impurities. We report observation of anomalous negative Hall resistance in these films close to the superconductor-insulator-normal phase transition in the resistance versus temperature plots at low bias currents at zero and low magnetic field. The negative Hall effect is found to be suppressed as the bias current increase. Magnetoresistance study shows a distinct peak at zero field when measured in the low current regimes which suggest a superconductor-insulator-superconductor structure of films. Current vs. voltage characteristics show signature of π-Josephson like behaviour which can give rise to a characteristic frequency of several hundred of gigahertz. Signature of spin flipping also shows novel spintronic device applications.

  3. Detector-device-independent quantum key distribution

    SciTech Connect

    Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony; Bussières, Félix; Thew, Rob; Zbinden, Hugo

    2014-12-01

    Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.

  4. Colloidal quantum dot light-emitting devices.

    PubMed

    Wood, Vanessa; Bulović, Vladimir

    2010-01-01

    Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  5. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  6. Advancements in the Field of Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  7. Advances in Lattice Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    McGlynn, Greg

    In this thesis we make four contributions to the state of the art in numerical lattice simulations of quantum chromodynamics (QCD). First, we present the most detailed investigation yet of the autocorrelations of topological observations in hybrid Monte Carlo simulations of QCD and of the effects of the boundary conditions on these autocorrelations. This results in a numerical criterion for deciding when open boundary conditions are useful for reducing these autocorrelations, which are a major barrier to reliable calculations at fine lattice spacings. Second, we develop a dislocation-enhancing determinant, and demonstrate that it reduces the autocorrelation time of the topological charge. This alleviates problems with slow topological tunneling at fine lattice spacings, enabling simulations on fine lattices to be completed with much less computational effort. Third, we show how to apply the recently developed zMobius technique to hybrid Monte Carlo evolutions with domain wall fermions, achieving nearly a factor of two speedup in the light quark determinant, the single most expensive part of the calculation. The dislocation-enhancing determinant and the zMobius technique have enabled us to begin simulations of fine ensembles with four flavors of dynamical domain wall quarks. Finally, we show how to include the previously-neglected G1 operator in nonperturbative renormalization of the DeltaS = 1 effective weak Hamiltonian on the lattice. This removes an important systematic error in lattice calculations of weak matrix elements, in particular the important K → pipi decay.

  8. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  9. DSP control of superconducting quantum interference devices

    SciTech Connect

    Bracht, R.R.; Kung, Pang-Jen; Lewis, P.S.; Flynn, E.R.

    1994-08-01

    Superconducting quantum interference devices (SQUIDS) are used to defect very law level magnetic fields. Los Alamos National Laboratory is involved in developing digital signal processing (DSP) based instrumentation for these devices in conjunction with detecting magnetic flux from the human brain. This field of application is known as magnetoencephalography (MEG). The magnetic signals generated by the brain are on the order of a billion times smaller than the earth`s magnetic field, yet they can readily be detected with these highly ,sensitive magnetic detectors. Los Alamos National Laboratory has developed and implemented DSP control of the SQUID system. This has been accomplished by using an AT&T DSP32C DSP in conjunction with dual 18 bit a-to-d and d-to-a converters. The DSP performs the signal demodulation by synchronously sampling the recovered signal and applying the appropriate full wave rectification. The signal is then integrated and filtered and applied to the output. Also, the modulation signal is generated with the DSP system. All of the flux lock loop electronics are replaced except for the low noise analog preamplifier at the front of the recovery components. The system has been tested with both an electronic SQUID simulator and a low temperature thin film SQUID from Conductus. A number of experiments have been performed to allow evaluation of the system improvement made possible by use of DSP control.

  10. Advances toward high spectral resolution quantum X-ray calorimetry

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.

    1988-01-01

    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  11. Some Recent Advances in Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay

    2012-05-01

    In my talk I discussed three recent advances in loop quantum cosmology: 1) Path integral formulation and its WKB approximation; 2) Cosmological spin foams and lessons they provide; and 3) Probability of a slow roll inflationary phase compatible with the 7 year WMAP data. In addition to presenting an overview, this discussion also provides the necessary background for a number of talks in the parallel sessions.

  12. Superconducting quantum interference device instruments and applications

    NASA Astrophysics Data System (ADS)

    Fagaly, R. L.

    2006-10-01

    Superconducting quantum interference devices (SQUIDs) have been a key factor in the development and commercialization of ultrasensitive electric and magnetic measurement systems. In many cases, SQUID instrumentation offers the ability to make measurements where no other methodology is possible. We review the main aspects of designing, fabricating, and operating a number of SQUID measurement systems. While this article is not intended to be an exhaustive review on the principles of SQUID sensors and the underlying concepts behind the Josephson effect, a qualitative description of the operating principles of SQUID sensors and the properties of materials used to fabricate SQUID sensors is presented. The difference between low and high temperature SQUIDs and their suitability for specific applications is discussed. Although SQUID electronics have the capability to operate well above 1MHz, most applications tend to be at lower frequencies. Specific examples of input circuits and detection coil configuration for different applications and environments, along with expected performance, are described. In particular, anticipated signal strength, magnetic field environment (applied field and external noise), and cryogenic requirements are discussed. Finally, a variety of applications with specific examples in the areas of electromagnetic, material property, nondestructive test and evaluation, and geophysical and biomedical measurements are reviewed.

  13. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  14. Advances in superconducting quantum electronic microcircuit fabrication

    NASA Technical Reports Server (NTRS)

    Kirschman, R. K.; Notarys, H. A.; Mercereau, J. E.

    1975-01-01

    Standard microelectronic fabrication techniques have been utilized to produce batch quantities of superconducting quantum electronic devices and circuits. The overall goal is a fabrication technology yielding circuits that are rugged and stable and capable of being fabricated controllably and reproducibly in sizeable quantities. Our progress toward this goal is presented, with primary emphasis on the most recent work, which includes the use of electron-beam lithography and techniques of hybrid microelectronics. Several prototype microcircuits have been successfully fabricated. These microcircuits are formed in a thin-film parent material consisting of layers of superconducting and normal metals, and use proximity-effect structures as the active circuit elements.

  15. Progress in single quantum well structures for high power laser device applications

    NASA Astrophysics Data System (ADS)

    Waters, R. G.; Tihanyi, P. L.; Hill, D. S.; Soltz, B. A.

    1988-01-01

    Recent advances made toward performance optimization of (Al)GaAs quantum well lasers are described. Topics covered include: laser reliability for broad-area devices emitting less than 300 mW and its relation to the epitaxial structure and operating current density; parametric crystal growth studies and the implications for device efficiency; realization of 57 percent cw power conversion efficiency in an oxide-defined device; progress in dry-etching technology including array fabrication and development of device-quality laser facets suitable for integration. Finally, work in the high-power regime is discussed. This includes broad-area, single-emitter lasers emitting 6W cw.

  16. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    PubMed Central

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  17. Plasma etching for advanced polymer optical devices

    NASA Astrophysics Data System (ADS)

    Bitting, Donald S.

    Plasma etching is a common microfabrication technique which can be applied to polymers as well as glasses, metals, and semiconductors. The fabrication of low loss and reliable polymer optical devices commonly makes use of advanced microfabrication processing techniques similar in nature to those utilized in standard semiconductor fabrication technology. Among these techniques, plasma/reactive ion etching is commonly used in the formation of waveguiding core structures. Plasma etching is a powerful processing technique with many potential applications in the emerging field of polymer optical device fabrication. One such promising application explored in this study is in the area of thin film-substrate adhesion enhancement. Two approaches involving plasma processing were evaluated to improve substrate-thin film adhesion in the production of polymer waveguide optical devices. Plasma treatment of polymer substrates such as polycarbonate has been studied to promote the adhesion of fluoropolymer thin film coatings for waveguide device fabrication. The effects of blanket oxygen plasma etchback on substrate, microstructural substrate feature formation, and the long term performance and reliability of these methods were investigated. Use of a blanket oxygen plasma to alter the polycarbonate surface prior to fluoropolymer casting was found to have positive but limited capability to improve the adhesive strength between these polymers. Experiments show a strong correlation between surface roughness and adhesion strength. The formation of small scale surface features using microlithography and plasma etching on the polycarbonate surface proved to provide outstanding adhesion strength when compared to any other known treatment methods. Long term environmental performance testing of these surface treatment methods provided validating data. Test results showed these process approaches to be effective solutions to the problem of adhesion between hydrocarbon based polymer

  18. Nano-Bio Quantum Technology for Device-Specific Materials

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  19. Quantum reading of unitary optical devices

    SciTech Connect

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-12-04

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported.

  20. Unconditionally secure device-independent quantum key distribution with only two devices

    NASA Astrophysics Data System (ADS)

    Barrett, Jonathan; Colbeck, Roger; Kent, Adrian

    2012-12-01

    Device-independent quantum key distribution is the task of using uncharacterized quantum devices to establish a shared key between two users. If a protocol is secure, regardless of the device behavior, it can be used to generate a shared key even if the supplier of the devices is malicious. To date, all device-independent quantum key distribution protocols that are known to be secure require separate isolated devices for each entangled pair, which is a significant practical limitation. We introduce a protocol that requires Alice and Bob to have only one device each. Although inefficient and unable to tolerate reasonable levels of noise, our protocol is unconditionally secure against an adversarial supplier limited only by locally enforced signaling constraints.

  1. Long-Distance Measurement-Device-Independent Multiparty Quantum Communication

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-01

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  2. Low contact resistance in epitaxial graphene devices for quantum metrology

    SciTech Connect

    Yager, Tom E-mail: ywpark@snu.ac.kr; Lartsev, Arseniy; Lara-Avila, Samuel; Kubatkin, Sergey; Cedergren, Karin; Yakimova, Rositsa; Panchal, Vishal; Kazakova, Olga; Tzalenchuk, Alexander; Kim, Kyung Ho; Park, Yung Woo E-mail: ywpark@snu.ac.kr

    2015-08-15

    We investigate Ti/Au contacts to monolayer epitaxial graphene on SiC (0001) for applications in quantum resistance metrology. Using three-terminal measurements in the quantum Hall regime we observed variations in contact resistances ranging from a minimal value of 0.6 Ω up to 11 kΩ. We identify a major source of high-resistance contacts to be due bilayer graphene interruptions to the quantum Hall current, whilst discarding the effects of interface cleanliness and contact geometry for our fabricated devices. Moreover, we experimentally demonstrate methods to improve the reproducibility of low resistance contacts (<10 Ω) suitable for high precision quantum resistance metrology.

  3. Implementing quantum Fourier transform with integrated photonic devices

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    2014-03-01

    Many quantum algorithms that exhibit exponential speedup over their classical counterparts employ the quantum Fourier transform, which is used to solve interesting problems such as prime factorization. Meanwhile, nonclassical interference of single photons achieved on integrated platforms holds the promise of achieving large-scale quantum computation with multiport devices. An optical multiport device can be built to realize any quantum circuit as a sequence of unitary operations performed by beam splitters and phase shifters on path-encoded qudits. In this talk, I will present a recursive scheme for implementing quantum Fourier transform with a multimode interference photonic integrated circuit. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

  4. Patterned semiconductor inverted quantum dot photonic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.

    2016-03-01

    A novel inverted quantum dot structure is presented, which consists of an InGaAs quantum well that has been periodically perforated and then filled with the higher bandgap GaAs barrier material. This structure exhibits a unique quantized energy structure something like a planar atomic bond structure and formation of allowed and forbidden energy bands instead of highly localized, fully discrete states. We describe the growth, processing and characteristics of inverted quantum dot structures and outline interesting and potentially important effects arising from the introduction of nanoscale features (<50 nm) in the active medium.

  5. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  6. Multiplexed charge-locking device for large arrays of quantum devices

    SciTech Connect

    Puddy, R. K. Smith, L. W; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Smith, C. G.; Al-Taie, H.; Kelly, M. J.; Pepper, M.

    2015-10-05

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  7. Experimental device-independent tests of classical and quantum dimensions

    NASA Astrophysics Data System (ADS)

    Ahrens, Johan; Badziag, Piotr; Cabello, Adán; Bourennane, Mohamed

    2012-08-01

    A fundamental resource in any communication and computation task is the amount of information that can be transmitted and processed. The classical information encoded in a set of states is limited by the number of distinguishable states or classical dimension dc of the set. The sets used in quantum communication and information processing contain states that are neither identical nor distinguishable, and the quantum dimension dq of the set is the dimension of the Hilbert space spanned by these states. An important challenge is to assess the (classical or quantum) dimension of a set of states in a device-independent way, that is, without referring to the internal working of the device generating the states. Here we experimentally test dimension witnesses designed to efficiently determine the minimum dimension of sets of (three or four) photonic states from the correlations originated from measurements on them, and distinguish between classical and quantum sets of states.

  8. Measurement-device-independent quantum communication with an untrusted source

    NASA Astrophysics Data System (ADS)

    Xu, Feihu

    2015-07-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.

  9. Experimental device-independent tests of classical and quantum entropy

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Zhang, Wei; Chen, Sijing; You, Lixing; Wang, Zhen; Huang, Yidong

    2016-12-01

    In quantum information processing, it is important to witness the entropy of the message in the device-independent way which was proposed recently [R. Chaves, J. B. Brask, and N. Brunner, Phys. Rev. Lett. 115, 110501 (2015), 10.1103/PhysRevLett.115.110501]. In this paper, we theoretically obtain the minimal quantum entropy for three widely used linear dimension witnesses, which is considered "a difficult question." Then we experimentally test the classical and quantum entropy in a device-independent manner. The experimental results agree well with the theoretical analysis, demonstrating that entropy is needed in quantum systems that is lower than the entropy needed in classical systems with the given value of the dimension witness.

  10. Gradient-Doped Thermophotovoltaic Devices based on Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Fayaz Movahed, Hamidreza

    Electromagnetic radiation emitted from hot objects represents a sizeable supply of energy; however, even for relatively hot bodies, its flux peaks in the short-wavelength infrared between 1 and 3 mum, standing in the way of its photovoltaic harvest using the most widely-available optoelectronic materials such as Si and CdTe. Colloidal quantum dots combine low-cost solution-processing with bandgap tunability in this spectral region, thereby offering a route to harnessing thermal power photovoltaically. Here we report thermophotovoltaic devices constructed using colloidal quantum dots that harvest infrared radiation from an 800°C blackbody source. Only by constructing a gradient-doped colloidal quantum dot thermophotovoltaic device were we able to achieve thermophotovoltaic power generation with a power conversion efficiency of 0.39%. The device showed stable operation at ambient temperatures above 100°C.

  11. Measurement-device-independent entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan

    2016-05-01

    We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.

  12. Improved superconducting quantum interference devices by resistance asymmetry

    NASA Astrophysics Data System (ADS)

    Testa, G.; Pagano, S.; Sarnelli, E.; Calidonna, C. R.; Furnari, M. Mango

    2001-10-01

    Direct current superconducting quantum interference devices made by Josephson junctions with asymmetric shunt resistances have been numerically investigated in the low temperature regime. When combined with a damping resistance, the asymmetry leads to a flux to voltage transfer coefficient several times larger than the one typical of symmetric devices, together with a lower magnetic flux noise. These results show that this type of asymmetric device may replace the standard ones in a large number of magnetometric applications, improving the sensitivity performance. The large transfer coefficient may also simplify the readout electronics allowing a direct coupling of asymmetric devices to an external preamplifier, without the need of an impedance matching flux transformer.

  13. Quantum computation: algorithms and implementation in quantum dot devices

    NASA Astrophysics Data System (ADS)

    Gamble, John King

    In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques

  14. Experimental measurement-device-independent quantum random-number generation

    NASA Astrophysics Data System (ADS)

    Nie, You-Qi; Guan, Jian-Yu; Zhou, Hongyi; Zhang, Qiang; Ma, Xiongfeng; Zhang, Jun; Pan, Jian-Wei

    2016-12-01

    The randomness from a quantum random-number generator (QRNG) relies on the accurate characterization of its devices. However, device imperfections and inaccurate characterizations can result in wrong entropy estimation and bias in practice, which highly affects the genuine randomness generation and may even induce the disappearance of quantum randomness in an extreme case. Here we experimentally demonstrate a measurement-device-independent (MDI) QRNG based on time-bin encoding to achieve certified quantum randomness even when the measurement devices are uncharacterized and untrusted. The MDI-QRNG is randomly switched between the regular randomness generation mode and a test mode, in which four quantum states are randomly prepared to perform measurement tomography in real time. With a clock rate of 25 MHz, the MDI-QRNG generates a final random bit rate of 5.7 kbps. Such implementation with an all-fiber setup provides an approach to construct a fully integrated MDI-QRNG with trusted but error-prone devices in practice.

  15. Experimental Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei

    2013-09-01

    Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

  16. Optimal Device Independent Quantum Key Distribution

    PubMed Central

    Kamaruddin, S.; Shaari, J. S.

    2016-01-01

    We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160

  17. Nonreciprocal quantum interactions and devices via autonomous feedforward

    NASA Astrophysics Data System (ADS)

    Metelmann, A.; Clerk, A. A.

    2017-01-01

    In a recent work [A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015), 10.1103/PhysRevX.5.021025], a general reservoir engineering approach for generating nonreciprocal quantum interactions and devices was described. We show here how in many cases this general recipe can be viewed as an example of autonomous feedforward: the full dissipative evolution is identical to the unconditional evolution in a setup where an observer performs an ideal quantum measurement of one system, and then uses the results to drive a second system. We also extend the application of this approach to nonreciprocal quantum amplifiers, showing the added functionality possible when using two engineered reservoirs. In particular, we demonstrate how to construct an ideal phase-preserving cavity-based amplifier which is fully nonreciprocal, quantum limited, and free of any fundamental gain-bandwidth constraint.

  18. Mini array of quantum Hall devices based on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.; Iisakka, I.; Immonen, P.; Manninen, A. J.; Satrapinski, A.

    2016-05-01

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux RH,2 at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×RH,2 = 2 h/e2 was smaller than the relative standard uncertainty of the measurement (<1 × 10-7) limited by the used resistance bridge.

  19. Advanced-Retarded Differential Equations in Quantum Photonic Systems

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique

    2017-02-01

    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.

  20. Advanced-Retarded Differential Equations in Quantum Photonic Systems

    PubMed Central

    Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique

    2017-01-01

    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090

  1. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients.

    PubMed

    Ming, Kevin; Kim, Jisung; Biondi, Mia J; Syed, Abdullah; Chen, Kun; Lam, Albert; Ostrowski, Mario; Rebbapragada, Anu; Feld, Jordan J; Chan, Warren C W

    2015-03-24

    Inorganic nanoparticles are ideal precursors for engineering barcodes for rapidly detecting diseases. Despite advances in the chemical design of these barcodes, they have not advanced to clinical use because they lack sensitivity and are not cost-effective due to requirement of a large read-out system. Here we combined recent advances in quantum dot barcode technology with smartphones and isothermal amplification to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We characterized the analytical performance of this device and demonstrated that the device is capable of detecting down to 1000 viral genetic copies per milliliter, and this enabled the diagnosis of patients infected with HIV or hepatitis B. More importantly, the barcoding enabled us to detect multiple infectious pathogens simultaneously, in a single test, in less than 1 h. This multiplexing capability of the device enables the diagnosis of infections that are difficult to differentiate clinically due to common symptoms such as a fever or rash. The integration of quantum dot barcoding technology with a smartphone reader provides a capacity for global surveillance of infectious diseases and the potential to accelerate knowledge exchange transfer of emerging or exigent disease threats with healthcare and military organizations in real time.

  2. ARED (Advanced-Resistive Exercise Device) Update

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This viewgraph presentation describes ARED which is a new hardware exercise device for use on the International Space Station. Astronaut physiological adaptations, muscle parameters, and cardiovascular parameters are also reviewed.

  3. Recent Advances in Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet

    2007-04-01

    Einstein's theory of classical general relativity explains the dynamics of our universe at low energies to an excellent precision. However, it breaks down at the Planck scale before the big bang singularity is reached. Relativity thus fails to tell us about the origin of our cosmos and leaves open various questions which are expected to be answered by a quantum theory of gravity. We will review recent developments in loop quantum cosmology which is a quantization of cosmological spacetimes based on loop quantum gravity -- a non-perturbative background independent quantization of gravity. Because, of fundamental discreteness of quantum geometry underlying loop quantum gravity, novel features arise. In particular, for quantum states representing a large classical universe at late times there is an upper bound on the gravitational curvature, of the order of 1/(Planck length)^2. Thus, non-perturbative quantum gravity effects forbid the cosmological dynamics from entering a regime where curvature or energy density blow up. Evolution in loop quantum cosmology is non-singular. In models studied so far, the backward evolution of our expanding universe does not lead to a big bang but a big bounce to a contracting branch when the gravitational curvature reaches Planck scale. These results which have now been established for various homogeneous spacetimes provide a new paradigm of the genesis of our universe and lead to useful insights on the generic resolution of space-like singularities through quantum gravity effects.

  4. Development of quantum device simulator NEMO-VN1

    NASA Astrophysics Data System (ADS)

    Hien, Dinh Sy; Thi Luong, Nguyen; Hoang Minh, Le; Tien Phuc, Tran; Thanh Trung, Pham; Dong, Bui An; Thu Thao, Huynh Lam; Van Le Thanh, Nguyen; Tuan, Thi Tran Anh; Hoang Trung, Huynh; Thi Thanh Nhan, Nguyen; Viet Nga, Dinh

    2009-09-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  5. Quantum Fluctuation Theorem in an Interacting Setup: Point Contacts in Fractional Quantum Hall Edge State Devices

    NASA Astrophysics Data System (ADS)

    Komnik, A.; Saleur, H.

    2011-09-01

    We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage.

  6. Quantum fluctuation theorem in an interacting setup: point contacts in fractional quantum Hall edge state devices.

    PubMed

    Komnik, A; Saleur, H

    2011-09-02

    We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage.

  7. Guidewire-Controlled Advancement of the Amplatz Thrombectomy Device

    SciTech Connect

    Mueller-Huelsbeck, Stefan; Schwarzenberg, Helmut; Heller, Martin

    1998-01-15

    The Amplatz Thrombectomy Device (ATD) is a percutaneous rotational catheter proven to homogenize thrombus. The catheter design allows neither application over a coaxial running guidewire nor the use of the device as a monorail system. We report a technical modification that provides guided advancement of the catheter over a wire in order to prevent failure of application and to facilitate the interventional procedure.

  8. Femtosecond Optics: Advanced Devices and Ultrafast Phenomena

    DTIC Science & Technology

    2007-05-31

    periodically poled lithium niobate (PPLN), which already represents a significant advance . Gain is given by G=0.25(1+ exp(gl)), where for 7 t2 PPLN, g...H. Sotobayashi, J.T. Gopinath, and E.P. Ippen, ൟ cm long Bi20 3-based EDFA for picosecond pulse amplification with 80 nm gain bandwidth," IEEE...will be minimized by keeping the data in the optical domain. Such all- optical networks require advanced photonic technologies for a variety of

  9. Excitability in optically injected semiconductor lasers: Contrasting quantum- well- and quantum-dot-based devices

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Bonatto, C.; Huyet, G.; Hegarty, S. P.

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  10. Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices.

    PubMed

    Kelleher, B; Bonatto, C; Huyet, G; Hegarty, S P

    2011-02-01

    Excitability is a generic prediction for an optically injected semiconductor laser. However, the details of the phenomenon differ depending on the type of device in question. For quantum-well lasers very complicated multipulse trajectories can be found, while for quantum-dot lasers the situation is much simpler. Experimental observations show the marked differences in the pulse shapes while theoretical considerations reveal the underlying mechanism responsible for the contrast, identifying the increased stability of quantum-dot lasers to perturbations as the root.

  11. Contact printing of quantum dot light-emitting devices.

    PubMed

    Kim, LeeAnn; Anikeeva, Polina O; Coe-Sullivan, Seth A; Steckel, Jonathan S; Bawendi, Moungi G; Bulović, Vladimir

    2008-12-01

    We demonstrate a solvent-free contact printing process for deposition of patterned and unpatterned colloidal quantum dot (QD) thin films as the electroluminescent layers within hybrid organic-QD light-emitting devices (QD-LEDs). Our method benefits from the simplicity, low cost, and high throughput of solution-processing methods, while eliminating exposure of device structures to solvents. Because the charge transport layers in hybrid organic/inorganic QD-LEDs consist of solvent-sensitive organic thin films, the ability to avoid solvent exposure during device growth, as presented in this study, provides a new flexibility in choosing organic materials for improved device performance. In addition, our method allows us to fabricate both monochrome and red-green-blue patterned electroluminescent structures with 25 microm critical dimension, corresponding to 1000 ppi (pixels-per-inch) print resolution.

  12. Pauli spin blockade in CMOS double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Corna, A.; Maurand, R.; Crippa, A.; Orlov, A.; Barraud, S.; Hutin, L.; Vinet, M.; Jehl, X.; De Franceschi, S.; Sanquer, M.

    2017-03-01

    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.

  13. Measurement-Device-Independent Quantum Key Distribution over 200 km

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

    2014-11-01

    Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

  14. Insecurity of Detector-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Huang, Anqi; Sun, Shihai; Xu, Feihu; Makarov, Vadim; Curty, Marcos

    2016-12-01

    Detector-device-independent quantum key distribution (DDI-QKD) held the promise of being robust to detector side channels, a major security loophole in quantum key distribution (QKD) implementations. In contrast to what has been claimed, however, we demonstrate that the security of DDI-QKD is not based on postselected entanglement, and we introduce various eavesdropping strategies that show that DDI-QKD is in fact insecure against detector side-channel attacks as well as against other attacks that exploit devices' imperfections of the receiver. Our attacks are valid even when the QKD apparatuses are built by the legitimate users of the system themselves, and thus, free of malicious modifications, which is a key assumption in DDI-QKD.

  15. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  16. Experimental investigations of quantum confined silicon nanoparticle light emitting devices

    NASA Astrophysics Data System (ADS)

    Ligman, Rebekah Kristine

    2007-12-01

    As the demands on our world's energy resources continue to grow, alternative high efficiency materials such as quantum confined silicon nanoparticles (Si nps) are desirable for their potential low cost application in white light illumination, in optical displays, and in on-chip optical interconnects. Many fabrication and passivation techniques exist that produce Si nps with high photogenerated quantum yield. However, high electrically generated Si np quantum efficiency has eluded our society. Predominantly due to the lack of a stable surface passivation and a device fabrication technique that preserves the Si np optical properties. To amend these deficiencies, the passivation of nonthermal plasma fabricated Si nps with a surface oxide grown under UV exposure was first investigated. Control over the surface oxidized Si np (Si/SiO2) passivation growth was demonstrated and the optical stability of Si/SiO2 nps was suitable for demonstrating Si np electroluminescence (EL). Two approaches for constructing hybrid organic light emitting diode (OLED) devices around nonthermal plasma fabricated Si nps were then investigated. Multilayer devices, composed of a nonthermal plasma fabricated Si np layer embedded within an OLED, were first studied. However, no EL from Si nps was obtained using the multilayer device architecture due to poor control over the Si np film thickness. Single layer polymer(Si/SiO2) hybrid devices, composed of nps randomly dispersed within an extrinsic conductive polymer, were then studied and EL from Si/SiO2 nps was obtained. The hybrid device optical and electrical response was enhanced over the control devices, possibly due to morphology changes induced by the Si/SiO2 nps. The energy transfer (ET) processes in single layer polymer(Si/SiO 2) hybrid devices were then investigated by imposing known spatial separations between the intrinsic conductive polymers and Si/SiO2 nps. No measurable Si/SiO2 np emission was observed from the intrinsic hybrid devices

  17. Thermal state truncation by using quantum-scissors device

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-xia; Xu, Xue-xiang; Yuan, Hong-chun

    2017-01-01

    A non-Gaussian state being a mixture of the vacuum and single-photon states can be generated by truncating a thermal state in a quantum-scissors device of Pegg et al. (1998) [12]. In contrast to the thermal state, the generated state shows nonclassical property including the negativity of Wigner function. Besides, signal amplification and signal-to-noise ratio enhancement can be achieved.

  18. Method of making an improved superconducting quantum interference device

    DOEpatents

    Wu, Cheng-Teh; Falco, Charles M.; Kampwirth, Robert T.

    1977-01-01

    An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper.

  19. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  20. Advanced Interconnect and Device-Field Modeling

    DTIC Science & Technology

    2007-01-15

    Essaaidi NATO Advanced Research Workshop : Bianisotropics 2002, 99th Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco...Bianisotropics 2002, 99th Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco. Study of Substrates Bi-anisotropy Effects on...Conference on Electromagnetics of Complex Media 8-11May, 2002, Marrakech , Morocco. Dielectric Substrates Anisotropic Effects on The Characteristics of

  1. The theory research of multi-user quantum access network with Measurement Device Independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ji, Yi-Ming; Li, Yun-Xia; Shi, Lei; Meng, Wen; Cui, Shu-Min; Xu, Zhen-Yu

    2015-10-01

    Quantum access network can't guarantee the absolute security of multi-user detector and eavesdropper can get access to key information through time-shift attack and other ways. Measurement-device-independent quantum key distribution is immune from all the detection attacks, and accomplishes the safe sharing of quantum key. In this paper, that Measurement-device-independent quantum key distribution is used in the application of multi-user quantum access to the network is on the research. By adopting time-division multiplexing technology to achieve the sharing of multiuser detector, the system structure is simplified and the security of quantum key sharing is acquired.

  2. Advanced colour processing for mobile devices

    NASA Astrophysics Data System (ADS)

    Gillich, Eugen; Dörksen, Helene; Lohweg, Volker

    2015-02-01

    Mobile devices such as smartphones are going to play an important role in professionally image processing tasks. However, mobile systems were not designed for such applications, especially in terms of image processing requirements like stability and robustness. One major drawback is the automatic white balance, which comes with the devices. It is necessary for many applications, but of no use when applied to shiny surfaces. Such an issue appears when image acquisition takes place in differently coloured illuminations caused by different environments. This results in inhomogeneous appearances of the same subject. In our paper we show a new approach for handling the complex task of generating a low-noise and sharp image without spatial filtering. Our method is based on the fact that we analyze the spectral and saturation distribution of the channels. Furthermore, the RGB space is transformed into a more convenient space, a particular HSI space. We generate the greyscale image by a control procedure that takes into account the colour channels. This leads in an adaptive colour mixing model with reduced noise. The results of the optimized images are used to show how, e. g., image classification benefits from our colour adaptation approach.

  3. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  4. An Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients

    NASA Astrophysics Data System (ADS)

    Ming, Kevin

    Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.9 billion subscriptions globally, handheld mobile-cellular devices can be programmed to spatially map, temporally track, and transmit information on infections over wide geographical space and boundaries. Current cell phone diagnostic technologies have poor limit of detection, dynamic range, and cannot detect multiple pathogen targets simultaneously, limiting their utility to single infections with high load. Here we combined recent advances in quantum dot barcode technology for molecular detection with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We validated our device using a variety of synthetic genomic targets for the respiratory virus and blood-borne pathogens, and demonstrated that it could detect clinical samples after simple amplification. More importantly, we confirmed that the device is capable of detecting patients infected with a single or multiple infectious pathogens (e.g., HIV and hepatitis B) in a single test. This device advances the capacity for global surveillance of infectious diseases and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.

  5. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  6. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  7. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  8. Micron size superconducting quantum interference devices of lead (Pb)

    NASA Astrophysics Data System (ADS)

    Paul, Sagar; Biswas, Sourav; Gupta, Anjan K.

    2017-02-01

    Micron size superconducting quantum interference devices (μ-SQUID) of lead (Pb), for probing nano-magnetism, were fabricated and characterized. In order to get continuous Pb films with small grain size, Pb was thermally evaporated on a liquid nitrogen cooled Si substrate. Pb was sandwiched between two thin Cr layers for improved adhesion and protection. The SQUID pattern was made by e-beam lithography with Pb lift-off after deposition. The current-voltage characteristics of these devices show a critical current, which exhibits the expected SQUID oscillations with magnetic field, and two re-trapping currents. As a result these devices have hysteresis at low temperatures, which disappears just below the critical temperature.

  9. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  10. Mathematical foundations of quantum mechanics: An advanced short course

    NASA Astrophysics Data System (ADS)

    Moretti, Valter

    2016-08-01

    This paper collects and extends the lectures I gave at the “XXIV International Fall Workshop on Geometry and Physics” held in Zaragoza (Spain) during September 2015. Within these lectures I review the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas, mathematical tools and theorems also related to the representation of physical symmetries. The final step consists of an elementary introduction the so-called (C∗-) algebraic formulation of quantum theories.

  11. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers.

  12. Future Opportunities for Advancing Glucose Test Device Electronics

    PubMed Central

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-01-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano “ink” composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, “ink,” and continuous processing development presents the opportunity for research collaboration with medical device designers. PMID:22027300

  13. Recent Advances in Quantum Dynamics of Bimolecular Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Dong H.; Guo, Hua

    2016-05-01

    In this review, we survey the latest advances in theoretical understanding of bimolecular reaction dynamics in the past decade. The remarkable recent progress in this field has been driven by more accurate and efficient ab initio electronic structure theory, effective potential-energy surface fitting techniques, and novel quantum scattering algorithms. Quantum mechanical characterization of bimolecular reactions continues to uncover interesting dynamical phenomena in atom-diatom reactions and beyond, reaching an unprecedented level of sophistication. In tandem with experimental explorations, these theoretical developments have greatly advanced our understanding of key issues in reaction dynamics, such as microscopic reaction mechanisms, mode specificity, product energy disposal, influence of reactive resonances, and nonadiabatic effects.

  14. Feasible attack on detector-device-independent quantum key distribution.

    PubMed

    Wei, Kejin; Liu, Hongwei; Ma, Haiqiang; Yang, Xiuqing; Zhang, Yong; Sun, Yongmei; Xiao, Jinghua; Ji, Yuefeng

    2017-03-27

    Recently, to bridge the gap between security of Measurement-device-independent quantum key distribution (MDI-QKD) and a high key rate, a novel protocol, the so-called detector-device-independent QKD (DDI-QKD), has been independently proposed by several groups and has attracted great interest. A higher key rate is obtained, since a single photon bell state measurement (BSM) setup is applied to DDI-QKD. Subsequently, Qi has proposed two attacks for this protocol. However, the first attack, in which Bob's BSM setup is assumed to be completely a "black box", is easily prevented by using some additional monitoring devices or by specifically characterizing the BSM. The second attack, which combines the blinding attack and the detector wavelength-dependent efficiency, is not explicitly discussed, and its feasibility is not experimentally confirmed. Here, we show that the second attack is not technically viable because of an intrinsically wavelength-dependent property of a realistic beam splitter, which is an essential component in DDI-QKD. Moreover, we propose a feasible attack that combines a well-known attack-detector blinding attack with intrinsic imperfections of single-photon detectors. The experimental measurement and proof-of-principle test results confirm that our attack can allow Eve to get a copy of quantum keys without being detected and that it is feasible with current technology.

  15. Statistical benchmarking for orthogonal electrostatic quantum dot qubit devices

    NASA Astrophysics Data System (ADS)

    Gamble, John; Frees, Adam; Friesen, Mark; Coppersmith, S. N.

    2014-03-01

    Quantum dots in semiconductor systems have emerged as attractive candidates for the implementation of quantum information processors because of the promise of scalability, manipulability, and integration with existing classical electronics. A limitation in current devices is that the electrostatic gates used for qubit manipulation exhibit strong cross-capacitance, presenting a barrier for practical scale-up. Here, we introduce a statistical framework for making precise the notion of orthogonality. We apply our method to analyze recently implemented designs at the University of Wisconsin-Madison that exhibit much increased orthogonal control than was previously possible. We then use our statistical modeling to future device designs, providing practical guidelines for devices to have robust control properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy Nuclear Security Administration under contract DE-AC04-94AL85000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, by ARO (W911NF-12-0607), and by the United States Department of Defense.

  16. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots.

    PubMed

    Pietryga, Jeffrey M; Park, Young-Shin; Lim, Jaehoon; Fidler, Andrew F; Bae, Wan Ki; Brovelli, Sergio; Klimov, Victor I

    2016-09-28

    The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminescent solar concentrators; and control of intraband relaxation for enhanced carrier multiplication in advanced QD photovoltaics. We examine the considerable recent progress on these multiple fronts of nanocrystal research, which has resulted in the first commercialized QD technologies. These successes explain the continuing appeal of this field to a broad community of scientists and engineers, which in turn ensures even more exciting results to come from future exploration of this fascinating class of materials.

  17. Self-assembling hybrid diamond-biological quantum devices

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  18. Josephson phase diffusion in the superconducting quantum interference device ratchet

    SciTech Connect

    Spiechowicz, Jakub; Łuczka, Jerzy

    2015-05-15

    We study diffusion of the Josephson phase in the asymmetric superconducting quantum interference device (SQUID) subjected to a time-periodic current and pierced by an external magnetic flux. We analyze a relation between phase diffusion and quality of transport characterized by the dc voltage across the SQUID and efficiency of the device. In doing so, we concentrate on the previously reported regime [J. Spiechowicz and J. Łuczka, New J. Phys. 17, 023054 (2015)] for which efficiency of the SQUID attains a global maximum. For long times, the mean-square displacement of the phase is a linear function of time, meaning that diffusion is normal. Its coefficient is small indicating rather regular phase evolution. However, it can be magnified several times by tailoring experimentally accessible parameters like amplitudes of the ac current or external magnetic flux. Finally, we prove that in the deterministic limit this regime is essentially non-chaotic and possesses an unexpected simplicity of attractors.

  19. Nano-superconducting quantum interference devices with suspended junctions

    SciTech Connect

    Hazra, D.; Hasselbach, K.; Kirtley, J. R.

    2014-04-14

    Nano-Superconducting Quantum Interference Devices (nano-SQUIDs) are usually fabricated from a single layer of either Nb or Al. We describe here a simple method for fabricating suspended nano-bridges in Nb/Al thin-film bilayers. We use these suspended bridges, which act as Josephson weak links, to fabricate nano-SQUIDs which show critical current oscillations at temperatures up to 1.5 K and magnetic flux densities up to over 20 mT. These nano-SQUIDs exhibit flux modulation depths intermediate between all-Al and all-Nb devices, with some of the desirable characteristics of both. The suspended geometry is attractive for magnetic single nanoparticle measurements.

  20. Rigidity of quantum steering and one-sided device-independent verifiable quantum computation

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Alexandru; Wallden, Petros; Kashefi, Elham

    2017-02-01

    The relationship between correlations and entanglement has played a major role in understanding quantum theory since the work of Einstein et al (1935 Phys. Rev. 47 777–80). Tsirelson proved that Bell states, shared among two parties, when measured suitably, achieve the maximum non-local correlations allowed by quantum mechanics (Cirel’son 1980 Lett. Math. Phys. 4 93–100). Conversely, Reichardt et al showed that observing the maximal correlation value over a sequence of repeated measurements, implies that the underlying quantum state is close to a tensor product of maximally entangled states and, moreover, that it is measured according to an ideal strategy (Reichardt et al 2013 Nature 496 456–60). However, this strong rigidity result comes at a high price, requiring a large number of entangled pairs to be tested. In this paper, we present a significant improvement in terms of the overhead by instead considering quantum steering where the device of the one side is trusted. We first demonstrate a robust one-sided device-independent version of self-testing, which characterises the shared state and measurement operators of two parties up to a certain bound. We show that this bound is optimal up to constant factors and we generalise the results for the most general attacks. This leads us to a rigidity theorem for maximal steering correlations. As a key application we give a one-sided device-independent protocol for verifiable delegated quantum computation, and compare it to other existing protocols, to highlight the cost of trust assumptions. Finally, we show that under reasonable assumptions, the states shared in order to run a certain type of verification protocol must be unitarily equivalent to perfect Bell states.

  1. Generating entangled quantum microwaves in a Josephson-photonics device

    NASA Astrophysics Data System (ADS)

    Dambach, Simon; Kubala, Björn; Ankerhold, Joachim

    2017-02-01

    When connecting a voltage-biased Josephson junction in series to several microwave cavities, a Cooper-pair current across the junction gives rise to a continuous emission of strongly correlated photons into the cavity modes. Tuning the bias voltage to the resonance where a single Cooper pair provides the energy to create an additional photon in each of the cavities, we demonstrate the entangling nature of these creation processes by simple witnesses in terms of experimentally accessible observables. To characterize the entanglement properties of the such created quantum states of light to the fullest possible extent, we then proceed to more elaborate entanglement criteria based on the knowledge of the full density matrix and provide a detailed study of bi- and multipartite entanglement. In particular, we illustrate how due to the relatively simple design of these circuits changes of experimental parameters allow one to access a wide variety of entangled states differing, e.g., in the number of entangled parties or the dimension of state space. Such devices, besides their promising potential to act as a highly versatile source of entangled quantum microwaves, may thus represent an excellent natural testbed for classification and quantification schemes developed in quantum information theory.

  2. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  3. Investigation of quantum confinement in silicon and germanium semiconductor nanocrystals and their application in photonic devices

    NASA Astrophysics Data System (ADS)

    Delgado, Gildardo Rios

    1997-09-01

    A series of coordinated optical experiments were instrumental in developing a fundamental understanding of the optical and electronic properties of indirect energy gap nanocrystals. This dissertation points out critical interpretations in this new field. Nanocrystals represent a novel form of crystalline materials which have captured much attention due to their enhanced optical and electronic properties. Most commonly used semiconductors have band gap energies in the infrared to near infrared regions which make them undesirable for many optoelectronic devices. However, in nanocrystals theoretical models confirm that quantum confinement effects provide energy levels which allow for visible photoluminescence (PL). Quantum confinement effects enable indirect band gap semiconductors to become efficient visible light emitters. Optical results presented in this dissertation indicate that in the case of Si and Ge nanocrystals when the structures are on the order of 2 and 2-10 nanometers respectively, quantum confined energy levels become available that allow for efficient blue luminescence. Furthermore, results on nanocrystalline Si and Ge and comparison with theoretical models clearly demonstrate that efficient photoluminescence (PL) results from quantum confinement effects where the critical features are the size and the shape of nanostructures, and the surface termination. Silicon and germanium nanocrystals enable many advanced optoelectronic devices such as flat panel displays and optical memories. In this dissertation, I will discuss how Si and Ge nanocrystals were used to fabricate low-cost and easily processed blue electroluminescent devices. The active EL material consists of Si or Ge nanocrystals embedded in various host matrices such as polyvinylcarbazole (PVK) and other organic polymers. Major advantages of this composite material system are the ease of producing high quality, thin, conformal EL films. Several device configurations were used that rely on

  4. Device-dependent and device-independent quantum key distribution without a shared reference frame

    NASA Astrophysics Data System (ADS)

    Slater, Joshua A.; Branciard, Cyril; Brunner, Nicolas; Tittel, Wolfgang

    2014-04-01

    Standard quantum key distribution (QKD) protocols typically assume that the distant parties share a common reference frame. In practice, however, establishing and maintaining a good alignment between distant observers is rarely a trivial issue, which may significantly restrain the implementation of long-distance quantum communication protocols. Here we propose simple QKD protocols that do not require the parties to share any reference frame, and study their security and feasibility in both the usual device-dependent (DD) case—in which the two parties use well characterized measurement devices—as well as in the device-independent (DI) case—in which the measurement devices can be untrusted, and the security relies on the violation of a Bell inequality. To illustrate the practical relevance of these ideas, we present a proof-of-principle demonstration of our protocols using polarization entangled photons distributed over a coiled 10-km long optical fiber. We consider two situations, in which either the fiber spool's polarization transformation freely drifts, or randomly chosen polarization transformations are applied. The correlations obtained from measurements allow, with high probability, to generate positive asymptotic secret key rates in both the DD and DI scenarios (under the fair-sampling assumption for the latter case).

  5. Are bioresorbable polylactate devices comparable to titanium devices for stabilizing Le Fort I advancement?

    PubMed

    Blakey, G H; Rossouw, E; Turvey, T A; Phillips, C; Proffit, W R; White, R P

    2014-04-01

    The purpose of this study was to evaluate whether skeletal and dental outcomes following Le Fort I surgery differed when stabilization was performed with polylactate bioresorbable devices or titanium devices. Fifty-seven patients with preoperative records and at least 1 year postoperative records were identified and grouped according to the stabilization method. All cephalometric X-rays were traced and digitized by a single operator. Analysis of covariance was used to compare the postsurgical change between the two stabilization methods. Twenty-seven patients received bioresorbable devices (group R), while 30 received titanium devices (group M). There were no statistically significant differences between the two groups with respect to gender, race/ethnicity, age, or dental and skeletal movements during surgery. Subtle postsurgical differences were noted, but were not statistically significant. Stabilization of Le Fort I advancement with polylactate bioresorbable and titanium devices produced similar clinical outcomes at 1 year following surgery.

  6. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  7. Advanced Sensor Fish Device for ImprovedTurbine Design

    SciTech Connect

    Carlson, Thomas J.

    2009-09-14

    Juvenile salmon (smolts) passing through hydroelectric turbines are subjected to environmental conditions that can potentially kill or injure them. Many turbines are reaching the end of their operational life expectancies and will be replaced with new turbines that incorporate advanced “fish friendly” designs devised to prevent injury and death to fish. To design a fish friendly turbine, it is first necessary to define the current conditions fish encounter. One such device used by biologists at Pacific Northwest National Laboratory was the sensor fish device to collect data that measures the forces fish experience during passage through hydroelectric projects.

  8. Double relaxation oscillation superconducting quantum interference devices with gradiometric layout

    SciTech Connect

    van Duuren, M.J.; Brons, G.C.; Adelerhof, D.J.; Flokstra, J.; Rogalla, H.

    1997-10-01

    Double relaxation oscillation superconducting quantum interference devices (DROSs) with a gradiometric signal SQUID and either a reference SQUID or a reference junction will be presented in this article. The devices are user friendly, particularly those with a reference junction. Because of the large flux-to-voltage transfer of {partial_derivative}V/{partial_derivative}{Phi}=0.7{endash}1mV/{Phi}{sub 0}, the devices can be operated in a flux locked loop based on direct voltage readout without loss of sensitivity. The typical white flux noise of the DROSs amounts to {radical}S{sub {Phi}}=5{endash}6{mu}{Phi}{sub 0}/{radical}Hz, which corresponds to an energy resolution {epsilon}=S{sub {Phi}}/2L{sub sq}{approx_equal}200h. Coupled to an external planar first-order gradiometer, a white magnetic field sensitivity of {radical}S{sub B}{lt}2fT/{radical}Hz was measured inside a magnetically shielded room. {copyright} {ital 1997 American Institute of Physics.}

  9. Quantum-ring spin interference device tuned by quantum point contacts

    NASA Astrophysics Data System (ADS)

    Diago-Cisneros, Leo; Mireles, Francisco

    2013-11-01

    We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a function of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.

  10. Quantum-ring spin interference device tuned by quantum point contacts

    SciTech Connect

    Diago-Cisneros, Leo; Mireles, Francisco

    2013-11-21

    We introduce a spin-interference device that comprises a quantum ring (QR) with three embedded quantum point contacts (QPCs) and study theoretically its spin transport properties in the presence of Rashba spin-orbit interaction. Two of the QPCs conform the lead-to-ring junctions while a third one is placed symmetrically in the upper arm of the QR. Using an appropriate scattering model for the QPCs and the S-matrix scattering approach, we analyze the role of the QPCs on the Aharonov-Bohm (AB) and Aharonov-Casher (AC) conductance oscillations of the QR-device. Exact formulas are obtained for the spin-resolved conductances of the QR-device as a function of the confinement of the QPCs and the AB/AC phases. Conditions for the appearance of resonances and anti-resonances in the spin-conductance are derived and discussed. We predict very distinctive variations of the QR-conductance oscillations not seen in previous QR proposals. In particular, we find that the interference pattern in the QR can be manipulated to a large extend by varying electrically the lead-to-ring topological parameters. The latter can be used to modulate the AB and AC phases by applying gate voltage only. We have shown also that the conductance oscillations exhibits a crossover to well-defined resonances as the lateral QPC confinement strength is increased, mapping the eigenenergies of the QR. In addition, unique features of the conductance arise by varying the aperture of the upper-arm QPC and the Rashba spin-orbit coupling. Our results may be of relevance for promising spin-orbitronics devices based on quantum interference mechanisms.

  11. Mandibular Advancing Positive Pressure Apnea Remediation Device (MAPPARD)

    DTIC Science & Technology

    2014-06-01

    wiki/Starling_resistor Lankford, D. A., Proctor, C. D., & Richard, R. (2005). Continuous positive airway pressure (CPAP) changes in bariatric surgery ...Mandibular Advancing Device (after Schlaflabor-Saletu, n.d.). ............ 8  Figure 4.  Uvulopalatopharyngoplasty (before and after surgery ) (from...Lastly, when behavioral and medical techniques have been exhausted the last OSA reduction technique is surgery . Within the last 25 years, the

  12. Single Cell Magnetic Measurements with a Superconducting Quantum Interference Device

    NASA Astrophysics Data System (ADS)

    Palmstrom, Johanna C.; Arps, Jennifer; Dwyer, Bo; Kalisky, Beena; Kirtley, John R.; Moler, Kathryn A.; Qian, Lisa C.; Rosenberg, Aaron J.; Rutt, Brian; Tee, Sui Seng; Theis, Eric; Urbach, Elana; Wang, Yihua

    2014-03-01

    Magnetic nanoparticles play an important role in numerous biomedical applications such as magnetic resonance imaging and targeted drug delivery. There is a need for tools to characterize individual magnetic nanoparticles and the magnetic properties of individual cells. We use a scanning superconducting quantum interference device (SQUID) to observe the magnetic fields from single mammalian cells loaded with superparamagnetic iron oxide nanoparticles. We show that the SQUID is a useful tool for imaging biological magnetism and is capable of resolving cell to cell variations in magnetic dipole moments. We hope to correlate these magnetic images with real space imaging techniques such as optical and scanning electron microscopy. The visualization of single cell magnetism can be used to optimize biological magnetic imaging techniques, such as MRI, by quantifying the strength of magnetic dipole moments of in vitro magnetic labeling. This work is supported by a National Science Foundation Graduate Research Fellowship and a Gabilan Stanford Graduate Fellowship.

  13. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, Claude; Martinis, John M.; Clarke, John

    1986-01-01

    A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

  14. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, C.; Martinis, J.M.; Clarke, J.

    1984-04-27

    A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

  15. Insertion devices for the Advanced Light Source at LBL

    SciTech Connect

    Hassenzahl, W.; Chin, J.; Halbach, K.; Hoyer, E.; Humphries, D.; Kincaid, B.; Savoy, R.

    1989-03-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab.

  16. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  17. Quantum transport in multiple-barrier resonant-tunneling devices

    NASA Astrophysics Data System (ADS)

    Newaz, A. K. M.

    I have studied experimentally the quantum transport in multiple-barrier resonant-tunneling devices, namely double-barrier resonant-tunneling diodes (DBRTD) and triple-barrier resonant-tunneling diodes (TBRTD), to understand the tunneling processes in multiple-barrier resonant structures. We have performed various types of transport measurements, such as current, conductance, resonant magnetotunneling spectroscopy and shot noise measurements at low temperature (T=4.2K). To test the validity of the in-plane momentum conservation rule when electrons tunnel through a multiple-barrier resonant-tunneling device, I have studied in details the current and conductance with and without magnetic field perpendicular to the interfaces. We have found conclusive evidence that though this conservation rule governs the tunneling processes in DBRTD, the conservation rule breaks down in TBRTD. In addition, I have observed profound effect of nonparabolicity in the tunneling processes. By measuring the shot noise in TBRTDs at low temperature, I have found that the shot noise in a TBRTD is reduced over the Poissonian value, 2 eI, whenever the differential conductance is positive and is enhanced over 2eI when the differential conductance is negative. This behavior, although qualitatively similar to that found in DBRTD, differs from it in important details. In TBRTDs the noise reduction is considerably greater than that predicted by a semiclassical model, and the enhancement does not correlate with the strength of the negative differential conductance. Moreover, I have not observed any signature of the effect of the coherent tunneling on the shot noise suppression in coherently coupled TBRTDs. This suggests that the phase coherence does not have any effect on the shot noise suppression. On the other hand, the failure of a semiclassical model to explain shot noise suppression suggests an incomplete understanding of the noise properties of multiple-barrier heterostructures and a need for

  18. Nanoengineered quantum dot medium for space optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Oktyabrsky, S.; Tokranov, V.; Yakimov, M.; Sergeev, A.; Mitin, V.

    2012-10-01

    Resistance to temperature and ionizing radiation of space optoelectronic devices can be improved through control of carrier kinetics in nanoscale systems. Recent results in the science and technology of self-assembled heteroepitaxial InAs quantum dot (QD) medium related to photonic applications are discussed. Focus is placed on management of carrier kinetics via nanoengineering of electronic spectrum and potential profiles in the QD ensemble using modeling and controlled fabrication of QDs with molecular beam epitaxy. Shape-engineered QD sheets embedded into GaAs quantum wells were found to withstand two orders of magnitude higher proton dose than QWs and to account for high luminescence efficiency and thermally stable laser diodes. Built-in charge in QDs is responsible for improvement of both near and mid-IR optical absorption, but also control photoelectron lifetime in the structures. The negatively charged QD medium was the first QD material that has recently shown credible improvement of solar cell efficiency. It has resulted from IR energy harvesting and suppressed fast electron capture processes. It is thus expected that QD InAs/GaAs photovoltaics will overcome the efficiency and lifespan of multi-junction solar cells. Potentials due to QD built-in charge are also responsible for improved photoelectron lifetime in QD infrared photodetectors. QD correlated clusters provide even higher collective potential barriers around clusters and constitute the novel approach to the optoelectronic materials combining manageable photoelectron lifetime, high mobility, and tunable localized and conducting states.

  19. Loss-tolerant measurement-device-independent quantum private queries

    NASA Astrophysics Data System (ADS)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  20. Loss-tolerant measurement-device-independent quantum private queries

    PubMed Central

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors. PMID:28051101

  1. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    SciTech Connect

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven Reitzenstein, Stephan; Strittmatter, André

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  2. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    NASA Astrophysics Data System (ADS)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2015-07-01

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  3. Realizing a partial general quantum cloning machine with superconducting quantum-interference devices in a cavity QED

    SciTech Connect

    Fang Baolong; Yang Zhen; Ye Liu

    2009-05-15

    We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.

  4. The superconducting quantum interference device microstrip amplifier: Computer models

    SciTech Connect

    Mu''ck, Michael; Clarke, John

    2000-12-01

    Computer models are presented for a microstrip amplifier based on a dc superconducting quantum interference device (SQUID). In this device, the signal is applied between one end of the spiral input coil and the square washer on which it is deposited. The amplifier exhibits substantial power gain when the signal frequency is such that a half wavelength is approximately equal to the length of the microstrip formed by the coil and the groundplane. The resonant frequency is lowered significantly by the inductance of the square washer transformed into the input coil; this reduction is consistent with predictions of a simple model and with analog simulations. With the washer grounded, the gain of the amplifier peaks at a frequency that is lowered from the unloaded resonant frequency by the damping of the resistance associated with the source. The position and magnitude of the peak are in good agreement with both a lumped circuit model and with a model representing the microstrip as a transmission line. When the counter electrode of the SQUID is grounded and the washer floats, feedback from the output of the SQUID to the input via the capacitance of the microstrip plays a major role and is well described by simulations using the transmission line model. Measurements of the input impedance of the microstrip amplifier show that the return loss can be positive or negative, depending on the sign of the feedback and whether the frequency is above or below the resonant frequency. This behavior is in good accord with simulations.

  5. High-Tc superconducting quantum interference devices: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Chang; Chen, Ji-Chen; Chen, Kuen-Lin; Wu, Chiu-Hsien; Horng, Herng-Er; Yang, S. Y.

    2008-07-01

    In this paper, an overview of the current status of high-Tc superconducting quantum interference devices (SQUIDs), from device engineering to biomagnetic applications, is given. The authors offer a description of the current status of SQUID sensors, challenges encountered, and the solution of fabricating SQUID sensors with low flux noises. The current challenge that we face is to fabricate high-Tc SQUIDs that are not only more reproducible than the current technology but also capable of providing a high IcRn product and fabricating SQUID with high yield. Improvement of flux noises and fabrication yield in the integrated multichoices directly coupled SQUID magnetometer or gradiometer with series SQUID array are presented. High-Tc SQUID magnetometers exhibiting magnetic field sensitivity of ˜30-50fT/Hz1/2 or better at 100Hz was demonstrated by incorporating serial SQUID into the pickup loop of the magnetometers. New technologies currently being developed and applications for high-Tc SQUIDs are addressed.

  6. Device-independent quantum key distribution based on measurement inputs

    NASA Astrophysics Data System (ADS)

    Rahaman, Ramij; Parker, Matthew G.; Mironowicz, Piotr; Pawłowski, Marcin

    2015-12-01

    We provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key. The main advantage of these protocols is a smaller vulnerability to imperfect random number generators made possible by feature (a). We prove the security and the robustness of such protocols. We show that using our method it is possible to construct a QKD protocol which retains its security even if the source of randomness used by communicating parties is strongly biased. As a proof of principle, an explicit example of a protocol based on the Hardy's paradox is presented. Moreover, in the noiseless case, the protocol is secure in a natural way against any type of memory attack, and thus allows one to reuse the device in subsequent rounds. We also analyze the robustness of the protocol using semidefinite programming methods. Finally, we present a postprocessing method, and observe a paradoxical property that rejecting some random part of the private data can increase the key rate of the protocol.

  7. Quantum logical gates with four-level superconducting quantum interference devices coupled to a superconducting resonator

    SciTech Connect

    He Xiaoling; Luo Junyan; Yang Chuiping; Li Sheng; Han Siyuan

    2010-08-15

    We propose a way for realizing a two-qubit controlled phase gate with superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. In this proposal, the two lowest levels of each SQUID serve as the logical states and two intermediate levels of each SQUID are used for the gate realization. We show that neither adjustment of SQUID level spacings during the gate operation nor uniformity in SQUID parameters is required by this proposal. In addition, this proposal does not require the adiabatic passage or a second-order detuning and thus the gate is much faster.

  8. Integration of isothermal amplification methods in microfluidic devices: Recent advances.

    PubMed

    Giuffrida, Maria Chiara; Spoto, Giuseppe

    2017-04-15

    The integration of nucleic acids detection assays in microfluidic devices represents a highly promising approach for the development of convenient, cheap and efficient diagnostic tools for clinical, food safety and environmental monitoring applications. Such tools are expected to operate at the point-of-care and in resource-limited settings. The amplification of the target nucleic acid sequence represents a key step for the development of sensitive detection protocols. The integration in microfluidic devices of the most popular technology for nucleic acids amplifications, polymerase chain reaction (PCR), is significantly limited by the thermal cycling needed to obtain the target sequence amplification. This review provides an overview of recent advances in integration of isothermal amplification methods in microfluidic devices. Isothermal methods, that operate at constant temperature, have emerged as promising alternative to PCR and greatly simplify the implementation of amplification methods in point-of-care diagnostic devices and devices to be used in resource-limited settings. Possibilities offered by isothermal methods for digital droplet amplification are discussed.

  9. Innovative Ge Quantum Dot Functional Sensing/Metrology Devices

    DTIC Science & Technology

    2015-05-20

    QDs of desired size with high addressability In order to fully exert quantum mechanics effects arising from zero-dimensional quantum -dot structures...Final 3. DATES COVERED (From - To) 20140507 - 20150506 4. TITLE AND SUBTITLE Innovative Ge Quantum Dot Functional Sensing/Metrology...distinctive Coulomb blockade and quantum confinement effects onto nanometer-scaled QD structures, inducing size-tunable electronic structure

  10. Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices

    NASA Astrophysics Data System (ADS)

    Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Ooi, Boon S.

    2014-11-01

    The advances in lasers, electronic and photonic integrated circuits (EPIC), optical interconnects as well as the modulation techniques allow the present day society to embrace the convenience of broadband, high speed internet and mobile network connectivity. However, the steep increase in energy demand and bandwidth requirement calls for further innovation in ultra-compact EPIC technologies. In the optical domain, advancement in the laser technologies beyond the current quantum well (Qwell) based laser technologies are already taking place and presenting very promising results. Homogeneously grown quantum dot (Qdot) lasers and optical amplifiers, can serve in the future energy saving information and communication technologies (ICT) as the work-horse for transmitting and amplifying information through optical fiber. The encouraging results in the zero-dimensional (0D) structures emitting at 980 nm, in the form of vertical cavity surface emitting laser (VCSEL), are already operational at low threshold current density and capable of 40 Gbps error-free transmission at 108 fJ/bit. Subsequent achievements for lasers and amplifiers operating in the O-, C-, L-, U-bands, and beyond will eventually lay the foundation for green ICT. On the hand, the inhomogeneously grown quasi 0D quantum dash (Qdash) lasers are brilliant solutions for potential broadband connectivity in server farms or access network. A single broadband Qdash laser operating in the stimulated emission mode can replace tens of discrete narrow-band lasers in dense wavelength division multiplexing (DWDM) transmission thereby further saving energy, cost and footprint. We herein reviewed the1 progress of both Qdots and Qdash devices, based on the InAs/InGaAlAs/InP and InAs/InGaAsP/InP material systems, from the angles of growth and device performance. In particular, we discussed the progress in lasers, semiconductor optical amplifiers (SOA), mode locked lasers, and superluminescent diodes, which are the building

  11. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  12. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    NASA Technical Reports Server (NTRS)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  13. The Quantum Speed up as Advanced Cognition of the Solution

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2009-03-01

    Solving a problem requires a problem solving step (deriving, from the formulation of the problem, the solution algorithm) and a computation step (running the algorithm). The latter step is generally oblivious of the former. We unify the two steps into a single physical interaction: a many body interaction in an idealized classical framework, a measurement interaction in the quantum framework. The many body interaction is a useful conceptual reference. The coordinates of the moving parts of a perfect machine are submitted to a relation representing problem-solution interdependence. Moving an “input” part nondeterministically produces a solution through a many body interaction. The kinematics and the statistics of this problem solving mechanism apply to quantum computation—once the physical representation is extended to the oracle that produces the problem. Configuration space is replaced by phase space. The relation between the coordinates of the machine parts now applies to a set of variables representing the populations of the qubits of a quantum register during reduction. The many body interaction is replaced by the measurement interaction, which changes the population variables from the values before to the values after measurement (and the forward evolution into the backward evolution, the same unitary transformation but ending with the state after measurement). Quantum computation is reduction on the solution of the problem under the problem-solution interdependence relation. The speed up is explained by a simple consideration of time-symmetry, it is the gain of information about the solution due to backdating, to before running the algorithm, a time-symmetric part of the reduction on the solution. This advanced cognition of the solution reduces the solution space to be explored by the algorithm. The quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of the information acquired by reading the solution (i.e. by

  14. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    NASA Astrophysics Data System (ADS)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  15. Superconducting Quantum Interference Devices for the Detection of Magnetic Flux and Application to Airborne High Frequency Direction Finding

    DTIC Science & Technology

    2015-03-26

    SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR THE DETECTION OF MAGNETIC FLUX AND APPLICATION TO AIRBORNE HIGH FREQUENCY DIRECTION FINDING THESIS...SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR THE DETECTION OF MAGNETIC FLUX AND APPLICATION TO AIRBORNE HIGH FREQUENCY DIRECTION FINDING THESIS Presented to the...SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES FOR THE DETECTION OF MAGNETIC FLUX AND APPLICATION TO AIRBORNE HIGH FREQUENCY DIRECTION FINDING THESIS Travis

  16. Bell nonlocality: a resource for device-independent quantum information protocols

    NASA Astrophysics Data System (ADS)

    Acin, Antonio

    2015-05-01

    Bell nonlocality is not only one of the most fundamental properties of quantum physics, but has also recently acquired the status of an information resource for device-independent quantum information protocols. In the device-independent approach, protocols are designed so that their performance is independent of the internal working of the devices used in the implementation. We discuss all these ideas and argue that device-independent protocols are especially relevant or cryptographic applications, as they are insensitive to hacking attacks exploiting imperfections on the modelling of the devices.

  17. Charge Carrier Processes in Photovoltaic Materials and Devices: Lead Sulfide Quantum Dots and Cadmium Telluride

    NASA Astrophysics Data System (ADS)

    Roland, Paul

    Charge separation, transport, and recombination represent fundamental processes for electrons and holes in semiconductor photovoltaic devices. Here, two distinct materials systems, based on lead sulfide quantum dots and on polycrystalline cadmium telluride, are investigated to advance the understanding of their fundamental nature for insights into the material science necessary to improve the technologies. Lead sulfide quantum dots QDs have been of growing interest in photovoltaics, having recently produced devices exceeding 10% conversion efficiency. Carrier transport via hopping through the quantum dot thin films is not only a function of inter-QD distance, but of the QD size and dielectric media of the surrounding materials. By conducting temperature dependent transmission, photoluminescence, and time resolved photoluminescence measurements, we gain insight into photoluminescence quenching and size-dependent carrier transport through QD ensembles. Turning to commercially relevant cadmium telluride (CdTe), we explore the high concentrations of self-compensating defects (donors and acceptors) in polycrystalline thin films via photoluminescence from recombination at defect sites. Low temperature (25 K) photoluminescence measurements of CdTe reveal numerous radiative transitions due to exciton, trap assisted, and donor-acceptor pair recombination events linked with various defect states. Here we explore the difference between films deposited via close space sublimation (CSS) and radio frequency magnetron sputtering, both as-grown and following a cadmium chloride treatment. The as-grown CSS films exhibited a strong donor-acceptor pair transition associated with deep defect states. Constructing photoluminescence spectra as a function of time from time-resolved photoluminescence data, we report on the temporal evolution of this donor-acceptor transition. Having gained insight into the cadmium telluride film quality from low temperature photoluminescence measurements

  18. A voltage biased superconducting quantum interference device bootstrap circuit

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoming; Zhang, Yi; Wang, Huiwu; Wang, Yongliang; Mück, Michael; Dong, Hui; Krause, Hans-Joachim; Braginski, Alex I.; Offenhäusser, Andreas; Jiang, Mianheng

    2010-06-01

    We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ0 Hz - 1/2 and a magnetic field resolution of less than 3 fT Hz - 1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.

  19. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin

    PubMed Central

    2015-01-01

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) use of the Forster resonance energy transfer coupling between bR and QDs to achieve an efficient absorbing layer for dye-sensitized solar cells. This proposed approach is based on the unique optical characteristics of QDs, on the photovoltaic properties of bR, and on state-of-the-art nanobioengineering technologies. It permits spatial and optical coupling together with control of hybrid material components on the bionanoscale. This method paves the way to the development of the solid-state photovoltaic device with the efficiency increased to practical levels. PMID:25383133

  20. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  1. [Device-aided therapies in advanced Parkinson's disease].

    PubMed

    Timofeeva, A A

    2016-01-01

    Advanced stages of Parkinson's disease (PD) is a consequence of the severe neurodegenerative process and are characterized by the development of motor fluctuations and dyskinesia, aggravation of non-motor symptoms. Treatment with peroral and transdermal drugs can't provide an adequate control of PD symptoms and quality-of-life of the patients at this stage of disease. Currently, three device-aided therapies: deep brain stimulation (DBS), intrajejunal infusion of duodopa, subcutaneous infusion of apomorphine can be used in treatment of patients with advanced stages of PD. Timely administration of device-aided therapies and right choice of the method determine, to a large extent, the efficacy and safety of their use. Despite the high efficacy of all three methods with respect to the fluctuation of separate symptoms, each method has its own peculiarities. The authors reviewed the data on the expediency of using each method according to the severity of motor and non-motor symptoms, patient's age, PD duration, concomitant pathology and social support of the patients.

  2. Recent Advances in Conjugated Polymers for Light Emitting Devices

    PubMed Central

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  3. Investigations of quantum effect semiconductor devices: The tunnel switch diode and the velocity modulation transistor

    NASA Astrophysics Data System (ADS)

    Daniel, Erik Stephen

    In this thesis we present the results of experimental and theoretical studies of two quantum effect devices--the Tunnel Switch Diode (TSD) and the Velocity Modulation Transistor (VMT). We show that TSD devices can be fabricated such that they behave (semi-quantitatively) as predicted by simple analytical models and more advanced drift-diffusion simulations. These devices possess characteristics, such as on-state currents which range over nearly five orders of magnitude, and on/off current ratios which are even larger, which may allow for a practical implementation of a very dense transistorless SRAM architecture and possibly other novel circuit designs. We demonstrate that many TSD properties can be explained by analogy to a thyristor. In particular, we show that the thin oxide layer in the TSD plays a critical role, and that this can be understood in terms of current injection through the oxide, analogous to transport through the "current limiting" layer in a thyristor. As this oxide layer can be subjected to extreme stress during device operation, we have studied the effect of this stress on device behavior. We demonstrate many significant stress-dependent effects, and identify structures and operation modes which minimize these effects. We propose an InAs/GaSb/AlSb VMT which may allow for larger conductance modulation and higher temperature operation than has been demonstrated in similar GaAs/AlAs structures. Fundamental differences in device operation in the two materials systems and unusual transport mechanisms in the InAs/GaSb/AlSb system are identified as a result of the band lineups in the two systems. Boltzmann transport simulations are developed and presented, allowing a qualitative description of the transport in the InAs/GaSb/AlSb structure. Band structure calculations are carried out, allowing for device design. While no working VMT devices were produced, this is believed to be due to processing and crystal growth problems. We present methods used to

  4. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K.

  5. Insertion device operating experience at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Grimmer, John; Ramanathan, Mohan; Smith, Martin; Merritt, Michael

    2002-03-01

    The Advanced Photon Source has 29 insertion devices (IDs) installed in the 7 GeV electron storage ring; 28 of these devices, most of which are 3.3 cm period undulators, use two horizontal permanent magnet structures positioned over a straight vacuum chamber. A support and drive mechanism allows the vertical gap between the magnet structures to be varied, thus changing the x-ray energy produced by the ID [J. Viccaro, Proc. SPIE 1345, 28 (1990); E. Gluskin, J. Synchrotron Radiat. 5, 189 (1998)]. Most of these IDs use a drive scheme with two stepper motors, one driving each end through a mechanism synchronizing the upper and lower magnet structures. Our experience in almost 5 yr of operating this system will be discussed. All of the IDs are in continuous operation for approximately 10 weeks at a time. Reliability of operation is of paramount importance, as access to the storage ring for servicing of a single ID inhibits operation for all users. Our experience in achieving highly reliable ID operation is reviewed. Accuracy of operation and repeatability over time are also vital. To this end, these devices use absolute optical linear encoders with submicron resolution for primary position feedback. Absolute rotary encoders are used as a backup to the linear encoders. The benefits and limitations of each type of encoder, and our experience dealing with radiation and electrical noise are reviewed. The insertion devices operate down to gaps as small as 8.5 mm, with clearance over the vacuum chamber as small as 200 μm. The vacuum chamber has a minimum wall thickness of only 1 mm. A number of levels of safeguards are used to prevent contact between the magnet structure and the vacuum chamber. These safeguards and their evolution after gaining operational experience are presented.

  6. Research advances on potential neurotoxicity of quantum dots.

    PubMed

    Wu, Tianshu; Zhang, Ting; Chen, Yilu; Tang, Meng

    2016-03-01

    With rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in biological and biomedical studies, including neuroscience, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs with a growing number of studies. However, the knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, while a potential risk of neurotoxicity arises if mass production of QDs leads to increased exposure and distribution in the nervous system. Owing to the quantum size effect of QDs, they are capable of crossing the blood-brain barrier or moving along neural pathways and entering the brain. Nevertheless, the interactions of QDs with cells and tissues in the central nervous system are not well understood. This review highlighted research advances on the neurotoxicity of QDs in the central nervous system, including oxidative stress injury, elevated cytoplasmic Ca(2+) levels and autophagy to damage in vitro neural cells, and impairments of synaptic transmission and plasticity as well as brain functions in tested animals, with the hope of throwing light on future research directions of QD neurotoxicity, which is a demanding topic that requires further exploration.

  7. Microtesla magnetic resonance imaging with a superconducting quantum interference device

    SciTech Connect

    McDermott, Robert; Lee, SeungKyun; ten Haken, Bennie; Trabesinger, Andreas H.; Pines, Alexander; Clarke, John

    2004-03-15

    We have constructed a magnetic resonance imaging (MRI) scanner based on a dc Superconducting QUantum Interference Device (SQUID) configured as a second-derivative gradiometer. The magnetic field sensitivity of the detector is independent of frequency; it is therefore possible to obtain high-resolution images by prepolarizing the nuclear spins in a field of 300 mT and detecting the signal at 132 fYT, corresponding to a proton Larmor frequency of 5.6 kHz. The reduction in the measurement field by a factor of 10,000 compared with conventional scanners eliminates inhomogeneous broadening of the nuclear magnetic resonance lines, even in fields with relatively poor homogeneity. The narrow linewidths result in enhanced signal-to-noise ratio and spatial resolution for a fixed strength of the magnetic field gradients used to encode the image. We present two-dimensional images of phantoms and pepper slices, obtained in typical magnetic field gradients of 100 fYT/m, with a spatial resolution of about 1mm. We further demonstrate a slice-selected image of an intact pepper. By varying the time delay between removal of the polarizing field and initiation of the spin echo sequence we acquire T1-weighted contrast images of water phantoms, some of which are doped with a paramagnetic salt; here, T1 is the nuclear spin-lattice relaxation time. The techniques presented here could readily be adapted to existing multichannel SQUID systems used for magnetic source imaging of brain signals. Further potential applications include low-cost systems for tumor screening and imaging peripheral regions of the body.

  8. Utilization of Quantum Distribution Functions for Ultra-Submicron Device Transport.

    DTIC Science & Technology

    1982-06-18

    semiclassical semiconductor transport picture. The basic three semiconductor quantum transport equations were derived using the Wigner distribution...and two-dimensional superlattices; for these devices, it is clear that quantum transport will indeed be necessary to explain their semiconductor transport characteristics.

  9. Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot

    NASA Astrophysics Data System (ADS)

    Cao, Jin; Xie, Jing-Wei; Wei, Xiang; Zhou, Jie; Chen, Chao-Ping; Wang, Zi-Xing; Jhun, Chulgyu

    2016-12-01

    A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2@8 V with the Commission Internationale de l’Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED. Project supported by the National Natural Science Foundation of China (Grant No. 21302122) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13ZR1416600).

  10. Radiation doses to insertion devices at the Advanced Photon Source

    SciTech Connect

    Moog, E.R.; Den Hartog, P.K.; Semones, E.J.; Job, P.K.

    1997-09-01

    Dose measurements made on and around the insertion devices (IDs) at the Advanced Photon Source are reported. Attempts are made to compare these dose rates to dose rates that have been reported to cause radiation-induced demagnetization, but comparisons are complicated by such factors as the particular magnet material and the techniques used in its manufacture, the spectrum and type of radiation, and the demagnetizing field seen by the magnet. The spectrum of radiation at the IDs. It has almost no effect on the dose to the downstream ends of the IDs, however, since much of the radiation travels through the ID vacuum chamber and cannot be readily shielded. Opening the gaps of the IDs during injection and at other times also helps decrease the radiation exposure.

  11. 78 FR 3319 - Amendments to Existing Validated End User Authorizations: Advanced Micro Devices China, Inc., Lam...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... Authorizations: Advanced Micro Devices China, Inc., Lam Research Corporation, SK hynix Semiconductor (China) Ltd... Advanced Micro Devices China Inc.'s (AMD China) current list of eligible destinations. BIS also amends the...-User Authorizations in the PRC Revisions to the List of Eligible Destinations for Advanced...

  12. Towards noise engineering: Recent insights in low-frequency excess flux noise of superconducting quantum devices

    NASA Astrophysics Data System (ADS)

    Kempf, Sebastian; Ferring, Anna; Enss, Christian

    2016-10-01

    The comprehensive analysis of low-frequency excess flux noise both in terms of magnetic flux noise S Φ , 1 / f and energy sensitivity ɛ1/f of 84 superconducting quantum devices studied at temperatures below 1 K reveals a universal behavior. When analyzing data in terms of ɛ1/f, we find that noise spectra of independent devices cross each other all at certain crossing frequencies fc. Besides this main result of our paper, we further show that superconducting quantum interference device (SQUID) arrays systematically feature higher noise exponents than single SQUIDs and give evidence for a material and device type dependence of low-frequency excess flux noise. The latter results facilitate to engineer the shape of magnetic flux noise spectra and thus to experimentally modify key properties such as coherence or measurement times of superconducting quantum devices.

  13. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  14. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  15. Fundamental Quantum 1/F Noise in Ultrasmall Semi Conductor Devices and Their Optimal Design Principles.

    DTIC Science & Technology

    1986-05-01

    quantum 1/f noise will be derived again in three steps: first we consider just a single mode of the electromagnetic field in a coherent state and...Univ. of NRnn ad FL. Some suggestions are given at the end of Sec. IV. For devices larger than 10.100 microns coherent state quantum (1/f) noise bec...suggestions are given at the end of Sec. IV. For devices larger than 10 - 100 microns coherent state quantum 1/f noise becomes important according to

  16. Programming and Tuning a Quantum Annealing Device to Solve Real World Problems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Smelyanskiy, Vadim

    2015-03-01

    Solving real-world applications with quantum algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language to tuning parameters of the quantum algorithm that have a significant impact on the performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. Although we will focus on applications of interest to NASA's Quantum Artificial Intelligence Laboratory, the methods and concepts presented here apply to a broader family of hard discrete optimization problems, including those that occur in many machine-learning algorithms.

  17. Review on the degradation and device physics of quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Afshar, Elham N.; Rouhi, Rasoul; Gorji, Nima E.

    2015-12-01

    Briefly, we reviewed the latest progress in energy conversion efficiency and degradation rate of the quantum dot (QD) solar cells. QDs are zero dimension nanoparticles with tunable size and accordingly tunable band gap. The maximum performance of the most advanced QD solar cells was reported to be around 10%. Nevertheless, majority of research groups do not investigate the stability of such devices. QDs are cheaper replacements for silicon or other thin film materials with a great potential to significantly increase the photon conversion efficiency via two ways: (i) creating multiple excitons by absorbing a single hot photon, and (ii) formation of intermediate bands (IBs) in the band gap of the background semiconductor that enables the absorption of low energy photons (two-step absorption of sub-band gap photons). Apart from low conversion efficiency, QD solar cells also suffer from instability under real operation and stress conditions. Strain, dislocations and variation in size of the dots (under pressure of the other layers) are the main degradation resources. While some new materials (i.e. perovskites) showed an acceptable high performance, the QD devices are still inefficient with an almost medium rate of 4% (2010) to 10% (2015).

  18. 76 FR 48169 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Microbiology/ Medical Countermeasure Devices; Public Meeting AGENCY: Food and Drug Administration, HHS. ACTION... following public meeting: ``Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical... multiplexed microbiology/medical countermeasure (MCM) devices, their clinical application and public...

  19. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.

    PubMed

    Dey, D; Goswami, T

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  20. Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters.

    PubMed

    Matsumoto, Takahiro; Iwayama, Sho; Saito, Takao; Kawakami, Yasuyuki; Kubo, Fumio; Amano, Hiroshi

    2012-10-22

    We report the successful fabrication of a compact deep ultraviolet emission device via a marriage of AlGaN quantum wells and graphene nanoneedle field electron emitters. The device demonstrated a 20-mW deep ultraviolet output power and an approximately 4% power efficiency. The performance of this device may lead toward the realization of an environmentally friendly, convenient and practical deep ultraviolet light source.

  1. Near net shape forming of advanced structural ceramic devices

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Chih

    This research applied a combination of rapid prototyping techniques and ceramic gelcasting processes in the design and manufacturing of advanced structural ceramic components that cannot be fabricated by other shape-forming processes. An Assembly Mold SDM process, a derivative process of Shape Deposition Manufacturing, was adopted along with modified gelcasting with great success. The fabricated gas turbine rotors, inlet nozzles, and mesoscale burner arrays have demonstrated superior shape accuracy, mechanical strength, and surface smoothness with a feature size of 200 mum. The design concepts and functionalities of the ceramic devices were verified with performance tests. The shape complexity and surface quality of ceramic parts have been further improved by the use of a mold assembly made of a low melting temperature metal alloy. The introduction of metal alloy required modifications in the mold design, machining procedure, and ceramic processing. A complete shape forming process (from slurry to final parts) was developed for the low melting temperature metal alloy. In addition, the choice of ceramic material now includes SiC, which is critical to the development of micro heat exchangers. Forty-channel, high-aspect-ratio structured SiC heat exchangers were fabricated, and the thermal conductivity value of SiC was found to be comparable to that of steel. The catalyst deposition and ceramic precursor impregnation processes were proposed to enable use of the SiC heat exchangers as micro reactors. Micro-electro-mechanical-systems (MEMS)-related techniques such as SU-8 deep photolithography and polydimethylsiloxane (PDMS) soft lithography were combined with gelcasting to make micro patterns on structural ceramics. A feature size of 125 mum and aspect ratio of 8 have been achieved in the preliminary experiments. Based on the fabricated ceramic devices, a graphical method to characterize the shape attributes of complex-shaped components was proposed and used to compare

  2. Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation

    DTIC Science & Technology

    2007-11-02

    inexpensive way to analyze and design the semiconductor devices before expensive device processing. Since traditional equivalent circuit models and...are described, along with representative simulation results for various devices, such as Si- MESFET , Si-MOSFET and GaAs- MESFET . ^CQTJM^1^^0^ 8... determined by how accurately carrier transport is described. Generally, the more sophisticated the approach, the heavier the computational burden

  3. Simulation of electron transport in quantum well devices

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Gullapalli, K. K.; Reddy, V. R.; Neikirk, D. P.

    1992-01-01

    Double barrier resonant tunneling diodes (DBRTD) have received much attention as possible terahertz devices. Despite impressive experimental results, the specifics of the device physics (i.e., how the electrons propagate through the structure) are only qualitatively understood. Therefore, better transport models are warranted if this technology is to mature. In this paper, the Lattice Wigner function is used to explain the important transport issues associated with DBRTD device behavior.

  4. Quantum devices in silicon/silicon germanium heterostructures

    NASA Astrophysics Data System (ADS)

    Slinker, Keith A.

    This thesis presents the fabrication and characterization of silicon/silicon-germanium quantum wells, quantum dots, and quantum point contacts. These systems are promising for quantum computing applications due to the long predicted spin lifetimes. In addition, the valley states in Si/SiGe two-dimensional electron gases (2DEGs) are a novel phenomenon in regards to nanostructures, and characterizing these states is also necessary for potential computing applications. However, working with these heterostructures---especially in regards to metal Schottky gating---has proved historically challenging such that single electron transistors had not been achieved at the onset of this research. The first quantum dots in Si/SiGe are presented, defined completely by CF4 reactive ion etch without the use of metal gates. Etch-defined 2DEG side gates are used to modulate the potential of the quantum dot. Results for various metal gating schemes are also presented, culminating in the first Schottky-gated quantum dots in Si/SiGe. Differing from the etch-defined dots, the tunnel junctions of the metal-etch hybrid dot are fully tunable by the voltage applied to the top gates. Hall measurements of multiple heterostructures are presented, providing evidence that many of the challenges associated with gating Si/SiGe can be attributed to undepleted dopants in the supply layer. These dopants screen the top gates but can be detected as a parallel conduction channel in Hall measurements taken at a 2 K. A fully top-gate defined quantum dot was fabricated on an optimized Si/SiGe heterostructure, and the single particle excited states were resolved for the first time in Si/SiGe. Finally, quantum point contacts were defined by metal top gates, and the conduction was mapped out over a large range of magnetic field and voltages on the gates. The positions of the conductance steps are used to extract the valley splitting---a quantity that had been measured in a bulk 2DEG but not in a nanostructure

  5. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  6. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    PubMed

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  7. W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution.

    PubMed

    Zhu, Changhua; Xu, Feihu; Pei, Changxing

    2015-12-08

    W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network.

  8. Plug-and-play measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Choi, Yujun; Kwon, Osung; Woo, Minki; Oh, Kyunghwan; Han, Sang-Wook; Kim, Yong-Su; Moon, Sung

    2016-03-01

    Quantum key distribution (QKD) guarantees unconditional communication security based on the laws of quantum physics. However, practical QKD suffers from a number of quantum hackings due to the device imperfections. From the security standpoint, measurement-device-independent quantum key distribution (MDI-QKD) is in the limelight since it eliminates all the possible loopholes in detection. Due to active control units for mode matching between the photons from remote parties, however, the implementation of MDI-QKD is highly impractical. In this paper, we propose a method to resolve the mode matching problem while minimizing the use of active control units. By introducing the plug-and-play (P&P) concept into MDI-QKD, the indistinguishability in spectral and polarization modes between photons can naturally be guaranteed. We show the feasibility of P&P MDI-QKD with a proof-of-principle experiment.

  9. W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution

    PubMed Central

    Zhu, Changhua; Xu, Feihu; Pei, Changxing

    2015-01-01

    W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289

  10. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    SciTech Connect

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-09-08

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. We report ultra-fast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects of electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices.

  11. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    PubMed Central

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-01-01

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. Here we report ultrafast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects of electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices. PMID:26345390

  12. Using advanced mobile devices in nursing practice--the views of nurses and nursing students.

    PubMed

    Johansson, Pauline; Petersson, Göran; Saveman, Britt-Inger; Nilsson, Gunilla

    2014-09-01

    Advanced mobile devices allow registered nurses and nursing students to keep up-to-date with expanding health-related knowledge but are rarely used in nursing in Sweden. This study aims at describing registered nurses' and nursing students' views regarding the use of advanced mobile devices in nursing practice. A cross-sectional study was completed in 2012; a total of 398 participants replied to a questionnaire, and descriptive statistics were applied. Results showed that the majority of the participants regarded an advanced mobile device to be useful, giving access to necessary information and also being useful in making notes, planning their work and saving time. Furthermore, the advanced mobile device was regarded to improve patient safety and the quality of care and to increase confidence. In order to continuously improve the safety and quality of health care, advanced mobile devices adjusted for nursing practice should be further developed, implemented and evaluated in research.

  13. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  14. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  15. Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device

    SciTech Connect

    Li, Hai-Ou; Cao, Gang; Xiao, Ming You, Jie; Wei, Da; Tu, Tao; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen

    2014-11-07

    We demonstrate the development of a double quantum dot with an integrated charge sensor fabricated in undoped GaAs/AlGaAs heterostructures using a double top-gated design. Based on the evaluation of the integrated charge sensor, the double quantum dot can be tuned to a few-electron region. Additionally, the inter-dot coupling of the double quantum dot can be tuned to a large extent according to the voltage on the middle gate. The quantum dot is shown to be tunable from a single dot to a well-isolated double dot. To assess the stability of such design, the potential fluctuation induced by 1/f noise was measured. Based on the findings herein, the quantum dot design developed in the undoped GaAs/AlGaAs semiconductor shows potential for the future exploitation of nano-devices.

  16. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    SciTech Connect

    McEntee, Jarlath; Polagye, Brian; Fabien, Brian; Thomson, Jim; Kilcher, Levi; Marnagh, Cian; Donegan, James

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  17. Advanced fiber lasers and related all-fiber devices

    NASA Astrophysics Data System (ADS)

    Srinivasan, Balaji

    2000-11-01

    :ZBLAN. The demonstration of substantial second order nonlinearities (~1 pm/V) at UNM using thermal- assisted poling in normally symmetry forbidden silica glass has inspired worldwide research efforts aimed at achieving similar nonlinearities in fibers. All-fiber electro-optic devices based on such poled fibers are anticipated to enhance the performance of various lasers, including modelocked and tunable fiber lasers. This dissertation presents the first demonstration of stable, electro-optically tunable fiber Bragg gratings (FBGs) with a tuning range of 20 pm (2.5 GHz), which should enable applications such as reconfigurable add/drop filters and actively modelocked all-fiber lasers. Two key steps in the fabrication of the tunable FBGs viz. the fabrication of thermally stable FBGs, and a novel method for in-situ monitoring of fiber polishing are also demonstrated. Finally, this dissertation discusses issues related to the demonstration of all-fiber electro- optically tunable polarization rotators and their possible impact on future advanced fiber lasers.

  18. Point-of-Care (POC) Devices by Means of Advanced MEMS

    PubMed Central

    Karsten, Stanislav L.; Tarhan, Mehmet C.; Kudo, Lili C.; Collard, Dominique; Fujita, Hiroyuki

    2015-01-01

    Microelectromechanical systems (MEMS) have become an invaluable technology to advance the development of point-of-care (POC) devices for diagnostics and sample analyses. MEMS can transform sophisticated methods into compact and cost-effective microdevices that offer numerous advantages at many levels. Such devices include microchannels, microsensors, etc., that have been applied to various miniaturized POC products. Here we discuss some of the recent advances made in the use of MEMS devices for POC applications. PMID:26459443

  19. Durable left ventricular assist device therapy in advanced heart failure: Patient selection and clinical outcomes

    PubMed Central

    Shah, Sachin P.; Mehra, Mandeep R.

    2016-01-01

    The increasing adoption of left ventricular assist devices (LVADs) into clinical practice is related to a combination of engineering advances in pump technology and improvements in understanding the appropriate clinical use of these devices in the management of patients with advanced heart failure. This review intends to assist the clinician in identifying candidates for LVAD implantation, to examine long-term outcomes and provide an overview of the common complications related to use of these devices. PMID:27056652

  20. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Peng-Bo; Xiang, Ze-Liang; Rabl, Peter; Nori, Franco

    2016-07-01

    We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

  1. Long-distance quantum key distribution with imperfect devices

    SciTech Connect

    Lo Piparo, Nicoló; Razavi, Mohsen

    2014-12-04

    Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R{sub QKD}. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.

  2. Source-Device-Independent Ultrafast Quantum Random Number Generation

    NASA Astrophysics Data System (ADS)

    Marangon, Davide G.; Vallone, Giuseppe; Villoresi, Paolo

    2017-02-01

    Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit /s .

  3. Long-distance quantum key distribution with imperfect devices

    NASA Astrophysics Data System (ADS)

    Lo Piparo, Nicoló; Razavi, Mohsen

    2014-12-01

    Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, RQKD. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.

  4. Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities.

    PubMed

    Heuff, Romey F; Swift, Jody L; Cramb, David T

    2007-04-28

    Semiconductor nanocrystals (quantum dots) have been increasingly employed in measuring the dynamic behavior of biomacromolecules using fluorescence correlation spectroscopy. This poses a challenge, because quantum dots display their own dynamic behavior in the form of intermittent photoluminescence, also known as blinking. In this review, the manifestation of blinking in correlation spectroscopy will be explored, preceded by an examination of quantum dot blinking in general.

  5. Natural Framework for Device-Independent Quantification of Quantum Steerability, Measurement Incompatibility, and Self-Testing.

    PubMed

    Chen, Shin-Liang; Budroni, Costantino; Liang, Yeong-Cherng; Chen, Yueh-Nan

    2016-06-17

    We introduce the concept of assemblage moment matrices, i.e., a collection of matrices of expectation values, each associated with a conditional quantum state obtained in a steering experiment. We demonstrate how it can be used for quantum states and measurements characterization in a device-independent manner, i.e., without invoking any assumption about the measurement or the preparation device. Specifically, we show how the method can be used to lower bound the steerability of an underlying quantum state directly from the observed correlation between measurement outcomes. Combining such device-independent quantifications with earlier results established by Piani and Watrous [Phys. Rev. Lett. 114, 060404 (2015)], our approach immediately provides a device-independent lower bound on the generalized robustness of entanglement, as well as the usefulness of the underlying quantum state for a type of subchannel discrimination problem. In addition, by proving a quantitative relationship between steering robustness and the recently introduced incompatibility robustness, our approach also allows for a device-independent quantification of the incompatibility between various measurements performed in a Bell-type experiment. Explicit examples where such bounds provide a kind of self-testing of the performed measurements are provided.

  6. Natural Framework for Device-Independent Quantification of Quantum Steerability, Measurement Incompatibility, and Self-Testing

    NASA Astrophysics Data System (ADS)

    Chen, Shin-Liang; Budroni, Costantino; Liang, Yeong-Cherng; Chen, Yueh-Nan

    2016-06-01

    We introduce the concept of assemblage moment matrices, i.e., a collection of matrices of expectation values, each associated with a conditional quantum state obtained in a steering experiment. We demonstrate how it can be used for quantum states and measurements characterization in a device-independent manner, i.e., without invoking any assumption about the measurement or the preparation device. Specifically, we show how the method can be used to lower bound the steerability of an underlying quantum state directly from the observed correlation between measurement outcomes. Combining such device-independent quantifications with earlier results established by Piani and Watrous [Phys. Rev. Lett. 114, 060404 (2015)], our approach immediately provides a device-independent lower bound on the generalized robustness of entanglement, as well as the usefulness of the underlying quantum state for a type of subchannel discrimination problem. In addition, by proving a quantitative relationship between steering robustness and the recently introduced incompatibility robustness, our approach also allows for a device-independent quantification of the incompatibility between various measurements performed in a Bell-type experiment. Explicit examples where such bounds provide a kind of self-testing of the performed measurements are provided.

  7. GaN/AlN Quantum Wells and Quantum Dots for Unipolar Devices at Telecommunication Wavelengths

    SciTech Connect

    Julien, Francois H.; Tchernycheva, Maria; Doyennette, Laetitia; Nevou, Laurent; Lupu, Anatole; Warde, Elias; Guillot, Fabien; Monroy, Eva; Bellet-Amalric, Edith

    2007-04-10

    We report on the latest achievements in terms of growth and optical investigation of ultrathin GaN/AlN isolated and coupled quantum wells grown by plasma-assisted molecular-beam epitaxy. We also present the observation of intraband absorption in self-organized GaN quantum dots and on the application to infrared photodetection at telecommunication wavelengths.

  8. Unique properties of graphene quantum dots and their applications in photonic/electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Ho

    2017-03-01

    In recent years, graphene quantum dots (GQDs) have been recognized as an attractive building block for electronic, photonic, and bio-molecular device applications. This paper reports the current status of studies on the novel properties of GQDs and their hybrids with conventional and low-dimensional materials for device applications. In this review, more emphasis is placed on the structural, electronic, and optical properties of GQDs, and device structures based on the combination of GQDs with various semiconducting/insulating materials such as graphene, silicon dioxide, Si quantum dots, silica nanoparticles, organic materials, and so on. Because of GQDs’ unique properties, their hybrid structures are employed in high-efficiency devices, including photodetectors, solar cells, light-emitting diodes, flash memory, and sensors.

  9. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  10. Development of a Quantum-Limited Microwave Amplifier using a dc Superconducting Quantum Interference Device (dc-SQUID)

    SciTech Connect

    Kinion, D

    2006-12-11

    This report summarizes the research performed on the LDRD project 02-ERD-071 to develop a quantum-limited microwave amplifier based on a dc Superconducting Quantum Interference Device (dc-SQUID). This project began in June 2002 and concluded in May 2005. This project produced the lowest noise temperature amplifiers ever produced, both in absolute terms and in relation to the Standard Quantum Limit. Being an order of magnitude lower in noise than the best HFET devices available, they are of great interest to a number of groups. Potential applications are numerous, from dark-matter searches to national security applications in Quantum Information Processing. Collaborations started during this project are continuing with the goal of single-spin detection using the rf-SET. Publications are forthcoming covering both the experimental results and the theoretical modeling. The most important publication with the noise temperature results will appear after the low frequency follow-up experiment. The other publications in production cover the input impedance measurements and the resulting transmission line models.

  11. Scaling in the quantum Hall regime of graphene Corbino devices

    SciTech Connect

    Peters, Eva C.; Burghard, Marko; Giesbers, A. J. M.; Kern, Klaus

    2014-05-19

    The scaling behavior of graphene devices in Corbino geometry was investigated through temperature dependent conductivity measurements under magnetic field. Evaluation of the Landau level width as a function of temperature yielded a relatively low temperature exponent of κ = 0.16 ± 0.05. Furthermore, an unusually large value close to 7.6 ± 0.9 was found for the universal scaling constant γ, while the determined inelastic scattering exponent of p = 2 is consistent with established scattering mechanisms in graphene. The deviation of the scaling parameters from values characteristic of conventional two-dimensional electron gases is attributed to an inhomogeneous charge carrier distribution in the Corbino devices. Direct evidence for the presence of the latter could be gained by spatially resolved photocurrent microscopy away from the charge neutrality point of the devices.

  12. Design and Implementation of Quantum Dot Enhanced Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Polly, Stephen Jade

    Photovoltaics are an essential enabling technology providing power both where it would be impractical to deliver otherwise and where sustainably produced--and recently, economically competitive--energy is demanded. Significant effort has gone into increasing the efficiency of these devices since their initial development in the 1950s. The most dramatic enhancements have been from the judicious choice of material used for photon collection, with current state of the art (SOA) conversion efficiencies reaching 46%. Further improvements may be engineered through exploration of next-generation methodologies, such as the incorporation of quantum dots (QDs), to maximally exploit the solar spectrum and develop solar cells producing both large current densities and large voltages compared to current SOA. In this work, the electrical, optical, and mechanical properties of GaAs solar cells incorporating nanostructured InAs QDs, strain balanced with GaP, were studied. QDs allow for an increase in the current generation capabilities of the bulk GaAs semiconductor through absorption of sub-bandgap photons via bound states in the low-bandgap, low-dimensional material. QDs alter the recombination dynamics of charge carriers in the photovoltaic device, which typically led to an undesirable reduction in voltage of more than 200 mV. The addition of dopant, necessary to explore the effects of an intermediate band solar cell, showed a voltage recovery of 121 mV, with no positive or negative effects on sub-bandgap collection. Advanced characterization and data analysis techniques were developed, combining photoreflectance and temperature-dependent photoluminescence, to investigate the activation energy of bound states in the QD, which were shown to undesirably decrease by 34 meV to 40 meV with the addition of doping. Simulation of alternative structures that may help to increase this activation energy were performed using alternative strain balancing designs, and a general strain

  13. Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices

    SciTech Connect

    Cybart, Shane A. Dynes, R. C.; Wong, T. J.; Cho, E. Y.; Beeman, J. W.; Yung, C. S.; Moeckly, B. H.

    2014-05-05

    Magnetic field sensors based on two-dimensional arrays of superconducting quantum interference devices were constructed from magnesium diboride thin films. Each array contained over 30 000 Josephson junctions fabricated by ion damage of 30 nm weak links through an implant mask defined by nano-lithography. Current-biased devices exhibited very large voltage modulation as a function of magnetic field, with amplitudes as high as 8 mV.

  14. Superconducting quantum interference devices based set-up for probing current noise and correlations in three-terminal devices

    SciTech Connect

    Pfeffer, A. H.; Kaviraj, B.; Coupiac, O.; Lefloch, F.

    2012-11-15

    We have implemented a new experimental set-up for precise measurements of current fluctuations in three-terminal devices. The system operates at very low temperatures (30 mK) and is equipped with three superconducting quantum interference devices (SQUIDs) as low noise current amplifiers. A SQUID input coil is connected to each terminal of a sample allowing the acquisition of time-dependent current everywhere in the circuit. From these traces, we can measure the current mean value, the noise, and cross-correlations between different branches of a device. In this paper, we present calibration results of noise and cross-correlations obtained using low impedance macroscopic resistors. From these results, we can extract the noise level of the set-up and show that there are no intrinsic correlations due to the measurement scheme. We also studied noise and correlations as a function of a dc current and estimated the electronic temperature of various macroscopic resistors.

  15. Few-electron Qubits in Silicon Quantum Electronic Devices

    DTIC Science & Technology

    2014-09-01

    Doping Range (/cm3) 2–10x1017 6–50x1017 5–50x1017 SiGe Bottom Spacer (nm) 5 or 10 22 22 Si Quantum Well (nm) 15 18 10 SiGe Buffer Re-grow (nm) 225 225...225 SiGe Relaxed Buffer (µm) 3 3 3 27 44 University [84]. Layer thicknesses and doping profiles are listed in Table 3.1. Relaxed buffer layers are...relaxed buffer before it is polished. After polishing, the wafers are completed by growing a 225-nm thick Si0.7Ge0.3 layer, followed by a strained-Si

  16. Numerical Modeling of Two-Terminal Quantum Well Devices

    DTIC Science & Technology

    1989-04-17

    double barrier is in the WKB approximation (see Bohm; Quantum Theory, p. 286 [14c]) I ko (x)dx = (n+1/2)it (27b) Exact solutions that incorporate...probability current. It is useful to recall that the formal steps leading to the WKB approximation [14f] involves the same philosophy, but instead of solving...34/S’) 2-2(S"’/S’)] (29) As discussed by Messiah [14f], the above equation is rigorously equivalent to Schrodinger’s equation. However, in the WKB

  17. Advanced Materials for Use in Soft Self-Healing Devices.

    PubMed

    Huynh, Tan-Phat; Sonar, Prashant; Haick, Hossam

    2017-02-23

    Devices integrated with self-healing ability can benefit from long-term use as well as enhanced reliability, maintenance and durability. This progress report reviews the developments in the field of self-healing polymers/composites and wearable devices thereof. One part of the progress report presents and discusses several aspects of the self-healing materials chemistry (from non-covalent to reversible covalent-based mechanisms), as well as the required main approaches used for functionalizing the composites to enhance their electrical conductivity, magnetic, dielectric, electroactive and/or photoactive properties. The second and complementary part of the progress report links the self-healing materials with partially or fully self-healing device technologies, including wearable sensors, supercapacitors, solar cells and fabrics. Some of the strong and weak points in the development of each self-healing device are clearly highlighted and criticized, respectively. Several ideas regarding further improvement of soft self-healing devices are proposed.

  18. Coupled Quantum Dots and Photonic Crystals for Nanophotonic Devices

    DTIC Science & Technology

    2006-09-01

    Champaign, 208 North Wright Street, Urbana, IL 61801 Voice: 217 265 0563 FAX: 217 244 6375 e-mail: choquett@uiuc.edu FINAL REPORT SUBMITTED TO DR . GERNOT... Geib , C. I. H. Ashby, R. D. Twesten, 0. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, "Advances in selective wet

  19. Device-independent quantum key distribution using single-photon entanglement

    NASA Astrophysics Data System (ADS)

    Kamaruddin, S.; Shaari, J. S.

    2015-04-01

    Quantum key distribution (QKD) with security features based on the notion of nonlocality has provided valuable insights into the possibility of device-independent scenarios. The essential resource for nonlocality in Nature described by quantum physics has been mainly associated with entanglement of two particles or more, although it has been shown that nonlocality of a single particle is indeed possible. Here, we consider a quantum key distribution scheme based on Phys. Rev. A, 68 (2003) 012324 exploiting single-particle nonlocality testing to demonstrate its security. We present our analysis of security against individual attack within a device-independent scenario where Eve is constrained only by the no-signaling principle. We further consider a family of QKD protocols based on binary measurements and discuss the possibility of optimal scenarios.

  20. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    SciTech Connect

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo . E-mail: riccardo.sacco@mate.polimi.it

    2005-04-10

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions.

  1. Heralded-qubit amplifiers for practical device-independent quantum key distribution

    SciTech Connect

    Curty, Marcos; Moroder, Tobias

    2011-07-15

    Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin et al.[Phys. Rev. Lett. 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approximately 95% for both schemes, however, strongly depend on the underlying security proof.

  2. Hybrid quantum well/quantum dot structures for broad spectral bandwidth devices

    NASA Astrophysics Data System (ADS)

    Chen, Siming; Zhou, Kejia; Zhang, Ziyang; Childs, David T. D.; Orchard, Jonathan R.; Hogg, Richard A.; Kennedy, Kenneth; Hughes, Max.

    2012-02-01

    In this paper we report a hybrid quantum well (QW) and quantum dot (QD) structure to achieve a broad spontaneous emission and gain spectra. A single quantum well is introduced into a multi-layer stack of quantum dots, spectrally positioned to cancel the losses due to the second excited state of the dots. Attributed to the combined effect of QW and QDs, we show room temperature spontaneous emission with a 3dB bandwidth of ~250 nm and modal gain spanning over ~300 nm. We describe how this is achieved by careful design of the structure, balancing thermal emission from the QW and transport/capture processes in the QDs. We will also compare results from a QD-only epitaxial structure to describe how broadband gain/emission can be achieved in this new type of structure.

  3. Simple proof of the quantum benchmark fidelity for continuous-variable quantum devices

    SciTech Connect

    Namiki, Ryo

    2011-04-15

    An experimental success criterion for continuous-variable quantum teleportation and memory is to surpass the limit of the average fidelity achieved by classical measure-and-prepare schemes with respect to a Gaussian-distributed set of coherent states. We present an alternative proof of the classical limit based on the familiar notions of state-channel duality and partial transposition. The present method enables us to produce a quantum-domain criterion associated with a given set of measured fidelities.

  4. Broadband calibrated scattering parameters characterization of a superconducting quantum interference device amplifier

    SciTech Connect

    Ranzani, Leonardo; Spietz, Lafe; Aumentado, Jose

    2013-07-08

    In this work, we characterize the 2-port scattering parameters of a superconducting quantum interference device amplifier at {approx}20 mK over several gigahertz of bandwidth. The measurement reference plane is positioned on a 6.25 {Omega} microstrip line situated directly at the input and output of the device by means of a thru-reflect-line cryogenic calibration procedure. From the scattering parameters, we derive the device available power gain, isolation, and input impedance over the 2-8 GHz range. This measurement methodology provides a path towards designing wide-band matching circuits for low impedance superconducting amplifiers operating at dilution refrigerator temperatures.

  5. Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-02-01

    Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) has been proposed to raise the noise tolerability of the channel. However, in practice, the measurement device in RRDPS QKD may be imperfect. Here, we show that, with these imperfections, the security of RRDPS may be damaged by proposing two attacks for RRDPS systems with uncharacterized measurement devices. One is valid even for a system with unit total efficiency, while the other is valid even when a single-photon state is sent. To prevent these attacks, either security arguments need to be fundamentally revised or further practical assumptions on the measurement device should be put.

  6. Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope

    SciTech Connect

    Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2013-12-02

    We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.

  7. Gain dynamics of quantum dot devices for dual-state operation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Kolarczik, M.; Owschimikow, N.; Woggon, U.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-06-30

    Ground state gain dynamics of In(Ga)As-quantum dot excited state lasers are investigated via single-color ultrafast pump-probe spectroscopy below and above lasing threshold. Two-color pump-probe experiments are used to localize lasing and non-lasing quantum dots within the inhomogeneously broadened ground state. Single-color results yield similar gain recovery rates of the ground state for lasing and non-lasing quantum dots decreasing from 6 ps to 2 ps with increasing injection current. We find that ground state gain dynamics are influenced solely by the injection current and unaffected by laser operation of the excited state. This independence is promising for dual-state operation schemes in quantum dot based optoelectronic devices.

  8. Nanostructured Quantum Dots or Dashes in Photovoltaic Devices and Methods Thereof

    NASA Technical Reports Server (NTRS)

    Raffaele, Ryne P. (Inventor); Wilt, David M. (Inventor)

    2015-01-01

    A photovoltaic device includes one or more structures, an array of at least one of quantum dots and quantum dashes, at least one groove, and at least one conductor. Each of the structures comprises an intrinsic layer on one of an n type layer and a p type layer and the other one of the n type layer and the p type layer on the intrinsic layer. The array of at least one of quantum dots and quantum dashes is located in the intrinsic layer in at least one of the structures. The groove extends into at least one of the structures and the conductor is located along at least a portion of the groove.

  9. Advanced integrated safeguards using front-end-triggering devices

    SciTech Connect

    Howell, J.A.; Whitty, W.J.

    1995-12-01

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  10. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  11. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  12. 0 -π phase transition in hybrid superconductor-InSb nanowire quantum dot devices

    NASA Astrophysics Data System (ADS)

    Li, Sen; Kang, N.; Caroff, P.; Xu, H. Q.

    2017-01-01

    Hybrid superconductor-semiconducting nanowire devices provide an ideal platform to investigating interesting intragap bound states, such as the Andreev bound states (ABSs), Yu-Shiba-Rusinov (YSR) states, and the Majorana bound states. The competition between Kondo correlations and superconductivity in Josephson quantum dot (QD) devices results in two different ground states and the occurrence of a 0 -π quantum phase transition. Here we report on transport measurements on hybrid superconductor-InSb nanowire QD devices with different device geometries. We demonstrate a realization of continuous gate-tunable ABSs with both 0-type levels and π -type levels. This allow us to manipulate the transition between the 0 and π junction and explore charge transport and spectrum in the vicinity of the quantum phase transition regime. Furthermore, we find a coexistence of 0-type ABS and π -type ABS in the same charge state. By measuring temperature and magnetic field evolution of the ABSs, the different natures of the two sets of ABSs are verified, being consistent with the scenario of phase transition between the singlet and doublet ground state. Our study provides insight into Andreev transport properties of hybrid superconductor-QD devices and sheds light on the crossover behavior of the subgap spectrum in the vicinity of the 0 -π transition.

  13. Investigation of thioglycerol stabilized ZnS quantum dots in electroluminescent device performance

    NASA Astrophysics Data System (ADS)

    Ethiraj, Anita Sagadevan; Rhen, Dani; Lee, D. H.; Kang, Dae Joon; Kulkarni, S. K.

    2016-05-01

    The present work is focused on the investigation of thioglycerol (TG) stabilized Zinc Sulfide Quantum dots (ZnS QDs) in the hybrid electroluminescence (EL) device. Optical absorption spectroscopy clearly indicates the formation of narrow size distributed ZnS in the quantum confinement regime. X-ray Diffraction (XRD), Photoluminescence (PL), Energy Dispersive X-ray Spectroscopy (EDS) data supports the same. The hybrid EL device with structure of ITO (indium tin oxide)//PEDOT:PSS ((poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)//HTL (α NPD- N,N'-diphenyl-N,N'-bis(1-naphthyl)-(1,1'-phenyl)-4,4'-diamine// PVK:ZnS QDs//ETL(PBD- 2-tert-butylphenyl- 5-biphenyl-1,3,4-oxadiazole)//LiF:Al (Device 1) was fabricated. Reference device without the ZnS QDs were also prepared (Device 2). The results show that the ZnS QDs based device exhibited bright electroluminescence emission of 24 cd/m2 at a driving voltage of 16 Volts under the forward bias conditions as compared to the reference device without the ZnS QDs, which showed 6 cd/m2 at ˜22 Volts.

  14. Security of a practical semi-device-independent quantum key distribution protocol against collective attacks

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Bao, Wan-Su; Li, Hong-Wei; Zhou, Chun; Li, Yuan

    2014-08-01

    Similar to device-independent quantum key distribution (DI-QKD), semi-device-independent quantum key distribution (SDI-QKD) provides secure key distribution without any assumptions about the internal workings of the QKD devices. The only assumption is that the dimension of the Hilbert space is bounded. But SDI-QKD can be implemented in a one-way prepare-and-measure configuration without entanglement compared with DI-QKD. We propose a practical SDI-QKD protocol with four preparation states and three measurement bases by considering the maximal violation of dimension witnesses and specific processes of a QKD protocol. Moreover, we prove the security of the SDI-QKD protocol against collective attacks based on the min-entropy and dimension witnesses. We also show a comparison of the secret key rate between the SDI-QKD protocol and the standard QKD.

  15. To ventricular assist devices or not: When is implantation of a ventricular assist device appropriate in advanced ambulatory heart failure?

    PubMed Central

    Cerier, Emily; Lampert, Brent C; Kilic, Arman; McDavid, Asia; Deo, Salil V; Kilic, Ahmet

    2016-01-01

    Advanced heart failure has been traditionally treated via either heart transplantation, continuous inotropes, consideration for hospice and more recently via left ventricular assist devices (LVAD). Heart transplantation has been limited by organ availability and the futility of other options has thrust LVAD therapy into the mainstream of therapy for end stage heart failure. Improvements in technology and survival combined with improvements in the quality of life have made LVADs a viable option for many patients suffering from heart failure. The question of when to implant these devices in those patients with advanced, yet still ambulatory heart failure remains a controversial topic. We discuss the current state of LVAD therapy and the risk vs benefit of these devices in the treatment of heart failure. PMID:28070237

  16. Devices in the management of advanced, chronic heart failure

    PubMed Central

    Abraham, William T.; Smith, Sakima A.

    2013-01-01

    Heart failure (HF) is a global phenomenon, and the overall incidence and prevalence of the condition are steadily increasing. Medical therapies have proven efficacious, but only a small number of pharmacological options are in development. When patients cease to respond adequately to optimal medical therapy, cardiac resynchronization therapy has been shown to improve symptoms, reduce hospitalizations, promote reverse remodelling, and decrease mortality. However, challenges remain in identifying the ideal recipients for this therapy. The field of mechanical circulatory support has seen immense growth since the early 2000s, and left ventricular assist devices (LVADs) have transitioned over the past decade from large, pulsatile devices to smaller, more-compact, continuous-flow devices. Infections and haematological issues are still important areas that need to be addressed. Whereas LVADs were once approved only for ‘bridge to transplantation’, these devices are now used as destination therapy for critically ill patients with HF, allowing these individuals to return to the community. A host of novel strategies, including cardiac contractility modulation, implantable haemodynamic-monitoring devices, and phrenic and vagus nerve stimulation, are under investigation and might have an impact on the future care of patients with chronic HF. PMID:23229137

  17. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features. Phase 4. Summary Report.

    DTIC Science & Technology

    1987-11-01

    the automated instructional system on the Advanced Simulator for Pilot Training ( ASPT ) at Williams AF8, Arizona (Faconti & Epps, 1975; Faconti...Nortimer, & Simpson, 1970; Fuller, Waag, & Martin, 1980; Knoop, 1973). The ASPT is a sophisticated research device that incorporates advanced visual and...potential of the ASPT , Gray, Chun, Warner, and Eubanks (1981) found that SIs tended to use the device in a fairly conventional manner. with few

  18. Thermal Quantum Annealing on the D-Wave device

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Vinci, Walter; Albash, Tameem; Warburton, Paul; Lidar, Daniel

    2014-03-01

    We report on new experimental results supporting previous work concluding that the D-Wave processor implements quantum annealing. We introduce techniques adopted to the D-Wave programmable annealer to correct for systematic fabrication and control errors. Correcting for systematic errors allows us to explore the behavior of the annealer at low energy scales, which were previously inaccessible. We describe the behavior of the annealer as we investigate the effect of thermal noise on the programmed Ising Hamiltonian. Thermal noise becomes dominant when we scale down the overall energy of the final-time Ising Hamiltonian, or increase the total annealing time. We found three qualitatively different thermal noise regimes; a high energy scale where ground state statistics dominates, a moderate noise regime regime where low lying excited states contribute, and a high thermal noise regime where the system dynamics are dominated by thermalization effects. The qualitative results are robust to increasing the size (number of qubits) of the benchmark Hamiltonian. We additionally investigated auto-correlations in the final state statistics.

  19. Ferrite-superconductor devices for advanced microwave applications

    SciTech Connect

    Dionne, G.F.; Oates, D.E.; Temme, D.H.; Weiss, J.A.

    1996-07-01

    Microwave devices comprising magnetized ferrite in contact with superconductor circuits designed to eliminate magnetic field penetration of the superconductor have demonstrated phase shift without significant conduction losses. The device structures are adaptable to low- or high-{Tc} superconductors. A nonoptimized design of a ferrite phase shifter that employs niobium or YBCO meanderlines has produced over 1,000 degrees of differential phase shift with a figure of merit exceeding 1,000 degrees/dB at X band. By combining superconductor meanderline sections with alternating T junctions on a ferrite substrate in a configuration with three-fold symmetry, a low-loss three-port switching circulator has been demonstrated.

  20. BioIntraface®: the next quantum in medical devices.

    PubMed

    Jarrell, John D

    2013-02-01

    BioIntraface®, Inc., located in Riverside, Rhode Island, was formed in February of 2009 to commercialize its biomaterials surface treatment technologies. The platform technologies involve the creation of economical, multifunctional metal oxide and polymer materials and coatings to control the bioactivity and antimicrobial properties of medical devices and implants. Biointraface® has continued optimizing and validating coatings for promising applications in orthopaedics, dentistry, catheters, wound dressings, topical antimicrobial products, and cosmetics applications. It has also obtained third-party verification of ISO biocompatibility testing for eight coatings with increasing levels of antimicrobial agents, where no cytotoxicity was indicated and similar tests showing long lasting antimicrobial efficacy against multiple strains of bacteria.

  1. Unconventional Correlation between Quantum Hall Transport Quantization and Bulk State Filling in Gated Graphene Devices

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Wen, Bo; Ma, Eric Y.; Diankov, Georgi; Han, Zheng; Amet, Francois; Taniguchi, Takashi; Watanabe, Kenji; Goldhaber-Gordon, David; Dean, Cory R.; Shen, Zhi-Xun

    2016-10-01

    We report simultaneous transport and scanning microwave impedance microscopy to examine the correlation between transport quantization and filling of the bulk Landau levels in the quantum Hall regime in gated graphene devices. Surprisingly, a comparison of these measurements reveals that quantized transport typically occurs below the complete filling of bulk Landau levels, when the bulk is still conductive. This result points to a revised understanding of transport quantization when carriers are accumulated by gating. We discuss the implications on transport study of the quantum Hall effect in graphene and related topological states in other two-dimensional electron systems.

  2. Proximity effect bilayer nano superconducting quantum interference devices for millikelvin magnetometry

    SciTech Connect

    Blois, A. Rozhko, S.; Romans, E. J.; Hao, L.; Gallop, J. C.

    2013-12-21

    Superconducting quantum interference devices (SQUIDs) incorporating thin film nanobridges as weak links have sensitivities approaching that required for single spin detection at 4.2 K. However, due to thermal hysteresis they are difficult to operate at much lower temperatures which hinder their application to many quantum measurements. To overcome this, we have developed nanoscale SQUIDs made from titanium-gold proximity bilayers. We show that their electrical properties are consistent with a theoretical model developed for heat flow in bilayers and demonstrate that they enable magnetic measurements to be made on a sample at system temperatures down to 60 mK.

  3. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources

    PubMed Central

    Wang, Qin; Wang, Xiang-Bin

    2014-01-01

    We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000

  4. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  5. Simulations of Thermal Quantum Annealing on the D-Wave Device

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Vinci, Walter; Mishra, Anurag; Warburton, Paul; Lidar, Daniel

    2014-03-01

    We report on classical and quantum simulations to model the open-system dynamics of the D-Wave programmable annealer as we increase the thermal noise level on the device. We consider three models for the device: (1) the evolution is described by a classical simulated annealer acting on the final-time Ising Hamiltonian; (2) the evolution is described by an O(3) model with a time-dependent Hamiltonian; (3) the evolution is described by a quantum adiabatic Markovian master equation with a time dependent Hamiltonian. We increase the thermal noise level by either decreasing the overall energy scale of the final-time Ising Hamiltonian or by increasing the total annealing time. Using a benchmark Ising Hamiltonian, we show that all three models give distinct predictions for the behavior of the system as the noise level on the device is increased. The only model that captures the results of the device over the entire range of noise levels studied is the quantum master equation, ruling out the two classical models considered here.

  6. Novel device-based interventional strategies for advanced heart failure

    PubMed Central

    Vanderheyden, Marc; Bartunek, Jozef

    2016-01-01

    While heart failure is one of the leading causes of mortality and morbidity, our tools to provide ultimate treatment solutions are still limited. Recent developments in new devices are designed to fill this therapeutic gap. The scope of this review is to focus on two particular targets, namely (1) left ventricular geometric restoration and (2) atrial depressurization. (1) Reduction of the wall stress by shrinking the ventricular cavity has been traditionally attempted surgically. Recently, the Parachute device (CardioKinetix Inc., Menlo Park, CA, USA) has been introduced to restore ventricular geometry and cardiac mechanics. The intervention aims to partition distal dysfunctional segments that are non-contributory to the ventricular mechanics and forward cardiac output. (2) Diastolic heart failure is characterized by abnormal relaxation and chamber stiffness. The main therapeutic goal achieved should be the reduction of afterload and diastolic pressure load. Recently, new catheter-based approaches were proposed to reduce left atrial pressure and ventricular decompression: the InterAtrial Shunt Device (IASD™) (Corvia Medical Inc., Tewksbury, MA, USA) and the V-Wave Shunt (V-Wave Ltd, Or Akiva, Israel). Both are designed to create a controlled atrial septal defect in symptomatic patients with heart failure. While the assist devices are aimed at end-stage heart failure, emerging device-based percutaneous or minimal invasive techniques comprise a wide spectrum of innovative concepts that target ventricular remodeling, cardiac contractility or neuro-humoral modulation. The clinical adoption is in the early stages of the initial feasibility and safety studies, and clinical evidence needs to be gathered in appropriately designed clinical trials. PMID:26966444

  7. N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case

    PubMed Central

    Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo

    2016-01-01

    We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing. PMID:27452275

  8. Theoretical simulation of negative differential transconductance in lateral quantum well nMOS devices

    NASA Astrophysics Data System (ADS)

    Vyas, P. B.; Naquin, C.; Edwards, H.; Lee, M.; Vandenberghe, W. G.; Fischetti, M. V.

    2017-01-01

    We present a theoretical study of the negative differential transconductance (NDT) recently observed in the lateral-quantum-well Si n-channel field-effect transistors [J. Appl. Phys. 118, 124505 (2015)]. In these devices, p+ doping extensions are introduced at the source-channel and drain-channel junctions, thus creating two potential barriers that define the quantum well across whose quasi-bound states resonant/sequential tunneling may occur. Our study, based on the quantum transmitting boundary method, predicts the presence of a sharp NDT in devices with a nominal gate length of 10-to-20 nm at low temperatures ( ˜10 K). At higher temperatures, the NDT weakens and disappears altogether as a result of increasing thermionic emission over the p+ potential barriers. In larger devices (with a gate length of 30 nm or longer), the NDT cannot be observed because of the low transmission probability and small energetic spacing (smaller than kBT ) of the quasi-bound states in the quantum well. We speculate that the inability of the model to predict the NDT observed in 40 nm gate-length devices may be due to an insufficiently accurate knowledge of the actual doping profiles. On the other hand, our study shows that NDT suitable for novel logic applications may be obtained at room temperature in devices of the current or near-future generation (sub-10 nm node), provided an optimal design can be found that minimizes the thermionic emission (requiring high p+ potential-barriers) and punch-through (that meets the opposite requirement of potential-barriers low enough to favor the tunneling current).

  9. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    SciTech Connect

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  10. Subspace projection method for unstructured searches with noisy quantum oracles using a signal-based quantum emulation device

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Ostrove, Corey I.

    2017-01-01

    This paper describes a novel approach to solving unstructured search problems using a classical, signal-based emulation of a quantum computer. The classical nature of the representation allows one to perform subspace projections in addition to the usual unitary gate operations. Although bandwidth requirements will limit the scale of problems that can be solved by this method, it can nevertheless provide a significant computational advantage for problems of limited size. In particular, we find that, for the same number of noisy oracle calls, the proposed subspace projection method provides a higher probability of success for finding a solution than does an single application of Grover's algorithm on the same device.

  11. A band-modulation device in advanced FDSOI technology: Sharp switching characteristics

    NASA Astrophysics Data System (ADS)

    El Dirani, Hassan; Solaro, Yohann; Fonteneau, Pascal; Legrand, Charles-Alex; Marin-Cudraz, David; Golanski, Dominique; Ferrari, Philippe; Cristoloveanu, Sorin

    2016-11-01

    A band-modulation device is demonstrated experimentally in advanced FDSOI (Fully Depleted SOI). The Z2-FET (Zero Impact Ionization and Zero Subthreshold Slope FET) is a very recent sharp switching device which achieves remarkable performance in terms of leakage current and triggering control. The device is fabricated with Ultra-Thin Body and Buried Oxide (UTBB) Silicon-On-Insulator (SOI) technology, features an extremely sharp on-switch, low leakage and an adjustable triggering voltage (VON). The Z2-FET operation relies on the modulation of electrons and holes injection barriers. In this paper, we show, for the first time, experimental data obtained with the most advanced FDSOI node.

  12. A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Kula, Mathias; Luo, Yi

    2006-01-01

    A generalized quantum chemical approach for electron transport in molecular devices is developed. It allows one to treat devices where the metal electrodes and the molecule are either chemically or physically bonded on equal footing. An extension to include the vibration motions of the molecule has also been implemented which has produced the inelastic electron-tunneling spectroscopy of molecular electronics devices with unprecedented accuracy. Important information about the structure of the molecule and of metal-molecule contacts that are not accessible in the experiment are revealed. The calculated current-voltage (I-V) characteristics of different molecular devices, including benzene-1,4-dithiolate, octanemonothiolate [H(CH2)8S], and octanedithiolate [S(CH2)8S] bonded to gold electrodes, are in very good agreement with experimental measurements.

  13. Quantum filter of spin polarized states: Metal–dielectric–ferromagnetic/semiconductor device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2014-02-01

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Recently we proposed a model for the Quantum Spin-Polarized State Filter (QSPSF). The magnetic moments are transported selectively in this model, detached from the electric charge carriers. Thus, transfer of a spin-polarized state between two conductors was predicted in a system of two levels coupled by exchange interaction. The strength of the exchange interaction between the two conductive layers depends on the thickness of the dielectric layer separating them. External magnetic fields modulate spin-polarized state transfer, due to Zeeman level shift. Therefore, a linearly growing magnetic field generates a series of current peaks in a nearby coil. Thus, our spin-state filter should contain as least three nanolayers: (1) conductive or ferromagnetic; (2) dielectric; and (3) conductive or semiconductive. The spectrum of spin-polarized states generated by the filter device consists of a series of resonance peaks. In a simple case the number of lines equals S, the total spin angular momentum of discrete states in one of the coupled nanolayers. Presently we report spin-polarized state transport in metal–dielectric–ferromagnetic (MDF) and metal–dielectric–semiconductor (MDS) three-layer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-layer devices. The theoretical model is used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment averaged over the surface of the device was carried out. The model predicts the resonance structure of the signal, although at its present accuracy it cannot predict the positions of the spectral peaks.

  14. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device

    SciTech Connect

    Nakanishi, Masakazu

    2014-10-15

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φ{sub o} = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φ{sub o}. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10{sup 7} was created as a demonstration.

  15. Measurement-device-independent quantum key distribution with q-plate

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; Ying, Sun

    2015-12-01

    The original measurement-device-independent quantum key distribution is reviewed and a modified protocol using rotation invariant photonic state is proposed. A hybrid encoding approach combined polarization qubit with orbit angular momentum qubit is adopted to overcome the polarization misalignment associated with random rotations in long-distance quantum key distribution. The initial encoding and final decoding of information in our MDI-QKD implementation protocol can be conveniently performed in the polarization space, while the transmission is done in the rotation invariant hybrid space. Our analysis indicates that both the secure key rate and transmission distance can be improved with our modified protocol owing to the lower quantum bit error rate. Furthermore, our hybrid encoding approach only needs to insert four q-plates in practical experiment and to overcome the polarization misalignment problem mentioned above without including any feedback control.

  16. Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement

    NASA Astrophysics Data System (ADS)

    Murta, Gláucia; Ramanathan, Ravishankar; Móller, Natália; Terra Cunha, Marcelo

    2016-02-01

    Here we study multiplayer linear games, a natural generalization of xor games to multiple outcomes. We generalize a recently proposed efficiently computable bound, in terms of the norm of a game matrix, on the quantum value of two-player games to linear games with n players. As an example, we bound the quantum value of a generalization of the well-known CHSH game to n players and d outcomes. We also apply the bound to show in a simple manner that any nontrivial functional box, that could lead to trivialization of communication complexity in a multiparty scenario, cannot be realized in quantum mechanics. We then present a systematic method to derive device-independent witnesses of genuine tripartite entanglement.

  17. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei

    2016-01-01

    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.

  18. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    PubMed

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  19. Note: Increasing dynamic range of digital-to-analog converter using a superconducting quantum interference device.

    PubMed

    Nakanishi, Masakazu

    2014-10-01

    Responses of a superconducting quantum interference device (SQUID) are periodically dependent on magnetic flux coupling to its superconducting ring and the period is a flux quantum (Φo = h/2e, where h and e, respectively, express Planck's constant and elementary charge). Using this periodicity, we had proposed a digital to analog converter using a SQUID (SQUID DAC) of first generation with linear current output, interval of which corresponded to Φo. Modification for increasing dynamic range by interpolating within each interval is reported. Linearity of the interpolation was also based on the quantum periodicity. A SQUID DAC with dynamic range of about 1.4 × 10(7) was created as a demonstration.

  20. Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tang, Guang-Zhao; Sun, Shi-Hai; Xu, Feihu; Chen, Huan; Li, Chun-Yan; Liang, Lin-Mei

    2016-09-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all security loopholes on detection. Previous experiments on MDI-QKD required spatially separated signal lasers and complicated stabilization systems. In this paper, we perform a proof-of-principle experimental demonstration of plug-and-play MDI-QKD over an asymmetric channel setting with a single signal laser in which the whole system is automatically stabilized in spectrum, polarization, arrival time, and phase reference. Both the signal laser and the single-photon detectors are in the possession of a common server. A passive timing-calibration technique is applied to ensure the precise and stable overlap of signal pulses. The results pave the way for the realization of a quantum network in which the users only need the encoding devices.

  1. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Chen, Teng-Yun; Yu, Zong-Wen; Liu, Hui; You, Li-Xing; Zhou, Yi-Heng; Chen, Si-Jing; Mao, Yingqiu; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Hao; Li, Ming Jun; Nolan, Daniel; Zhou, Fei; Jiang, Xiao; Wang, Zhen; Zhang, Qiang; Wang, Xiang-Bin; Pan, Jian-Wei

    2016-11-01

    Measurement-device-independent quantum key distribution (MDIQKD) with the decoy-state method negates security threats of both the imperfect single-photon source and detection losses. Lengthening the distance and improving the key rate of quantum key distribution (QKD) are vital issues in practical applications of QKD. Herein, we report the results of MDIQKD over 404 km of ultralow-loss optical fiber and 311 km of a standard optical fiber while employing an optimized four-intensity decoy-state method. This record-breaking implementation of the MDIQKD method not only provides a new distance record for both MDIQKD and all types of QKD systems but also, more significantly, achieves a distance that the traditional Bennett-Brassard 1984 QKD would not be able to achieve with the same detection devices even with ideal single-photon sources. This work represents a significant step toward proving and developing feasible long-distance QKD.

  2. Electroluminescence of carbon ‘quantum' dots - From materials to devices

    NASA Astrophysics Data System (ADS)

    Veca, L. Monica; Diac, Andreea; Mihalache, Iuliana; Wang, Ping; LeCroy, Gregory E.; Pavelescu, Emil Mihai; Gavrila, Raluca; Vasile, Eugeniu; Terec, Anamaria; Sun, Ya-Ping

    2014-10-01

    Carbon ‘quantum' dots or carbon dots have emerged as a new class of luminescent nanomaterials. While photoluminescence properties of carbon dots had targeted optical imaging and related usage, their unique excited state redox processes responsible for the luminescence emissions may find potentially significant optoelectronic applications. In this regard, we investigated the electroluminescence properties of the carbon dots integrated into multilayer light emitting diode devices. The devices emitted white light with a slight blue color, visible to naked eyes, thus validating the expectation that carbon dots may potentially serve as a new platform for electroluminescent nanomaterials.

  3. Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby

    SciTech Connect

    Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu

    2014-04-01

    A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.

  4. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2017-03-01

    We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.

  5. Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling

    SciTech Connect

    Kinion, D; Clarke, J

    2008-01-24

    The scattering parameters of an amplifier based on a dc Superconducting QUantum Interference Device (SQUID) are directly measured at 4.2 K. The results can be described using an equivalent circuit model of the fundamental resonance of the microstrip resonator which forms the input of the amplifier. The circuit model is used to determine the series capacitance required for critical coupling of the microstrip to the input circuit.

  6. Microscopic modeling of energy relaxation and decoherence in quantum optoelectronic devices at the nanoscale

    NASA Astrophysics Data System (ADS)

    Taj, D.; Iotti, R. C.; Rossi, F.

    2009-12-01

    We shall review and discuss the key problem of providing a microscopic modeling of state-of-the-art electronic quantum devices. In particular we shall focus on the description of energy-relaxation and decoherence phenomena, explicitly showing the intrinsic limitations of some of the existing treatments (the conventional Markovian approach) via analytical results, and proposing an alternative formulation of the problem in terms of a generalized Fermi's Golden Rule.

  7. Tradeoff between energy and error in the discrimination of quantum-optical devices

    SciTech Connect

    Bisio, Alessandro; Dall'Arno, Michele; D'Ariano, Giacomo Mauro

    2011-07-15

    We address the problem of energy-error tradeoff in the discrimination between two linear passive quantum optical devices with a single use. We provide an analytical derivation of the optimal strategy for beamsplitters and an iterative algorithm converging to the optimum in the general case. We then compare the optimal strategy with a simpler strategy using coherent input states and homodyne detection. It turns out that the former requires much less energy in order to achieve the same performances.

  8. Advances in nanoimprint lithography and applications in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Liang, Xiaogan

    The research work presented in this thesis focuses on three topics: (1) studies of several critical aspects of nanoimprint lithography (NIL), including methods of mold pressing, air bubble defects, and dynamic behaviors of liquid resist flow; (2) applications of NIL to the fabrication of novel nanofluidic devices, which can be used for real-time DNA detection; and (3) additional applications of structured stamps or templates in the direct engineering of functional materials. Based upon these topics, the thesis is divided into three parts. The first part describes recent studies of critical techniques of NIL. First, a novel imprint approach using electrostatic force was developed to pattern spin-on resists in ambient environment. Using this Electrostatic Force-Assisted NIL (EFAN) approach, highly uniform imprints over a 4" diameter wafer area and sub-0.5 mum overlay precision were obtained using very simple equipment. Second, another important method for performing step-and-repeat imprint in the atmosphere, dispensing-based NIL, still suffers from air bubble defects formed by feature pinning and the circling of residual air by the merge of multiple resist droplets. However, it was found that the tiny bubbles can be completely absorbed by the liquid resist. The effects of several key parameters, such as bubble size, imprinting pressure, resist viscosity and solubility, and residual layer thickness, on the air dissolution rate were studied experimentally and theoretically. Their impact to the yield and throughput of NIL was also analyzed. Third, a novel method was developed for filling liquid resists into the air gap between the structured mold and the substrate. The method is assisted by dielectrophoresis, caused by electrohydrodynamic force. The second part describes the applications of NIL to making nanofluidic channel devices and device integration. First, a novel imprint-based method was developed to fabricate precisely positioned single nanofluidic channels of

  9. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    DOE PAGES

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-09-08

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. We report ultra-fast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects ofmore » electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices.« less

  10. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices.

    PubMed

    Lee, Ki-Heon; Lee, Jeong-Hoon; Song, Woo-Seuk; Ko, Heejoo; Lee, Changho; Lee, Jong-Hyuk; Yang, Heesun

    2013-08-27

    For colloidal quantum dot light-emitting diodes (QD-LEDs), blue emissive device has always been inferior to green and red counterparts with respect to device efficiency, primarily because blue QDs possess inherently unfavorable energy levels relative to green and red ones, rendering hole injection to blue QDs from neighboring hole transport layer (HTL) inefficient. Herein, unprecedented synthesis of blue CdZnS/ZnS core/shell QDs that exhibit an exceptional photoluminescence (PL) quantum yield of 98%, extraordinarily large size of 11.5 nm with a shell thickness of 2.6 nm, and high stability against a repeated purification process is reported. All-solution-processed, multilayered blue QD-LEDs, consisting of an HTL of poly(9-vinlycarbazole), emissive layer of CdZnS/ZnS QDs, and electron transport layer of ZnO nanoparticles, are fabricated. Our best device displays not only a maximum luminance of 2624 cd/m(2), luminous efficiency of 2.2 cd/A, and external quantum efficiency of 7.1%, but also no red-shift and broadening in electroluminescence (EL) spectra with increasing voltage as well as a spectral match between PL and EL.

  11. Digital-to-analog converter using a superconducting quantum interference device.

    PubMed

    Nakanishi, Masakazu

    2012-11-01

    We developed a digital-to-analog converter (DAC) having a current output and incorporating a superconducting quantum interference device (SQUID). The linearity of the device is based on the periodic dependence of the SQUID response on the magnetic flux coupling to the SQUID ring. The period is a flux quantum (Φ(o) = h/2e, where h is Planck's constant and e is the elementary charge). Because of the device's quantum accuracy, the output is essentially linear. The SQUID DAC was constructed using a commercially available rf-SQUID, the periodicity of which has been experimentally verified below 3420 Φ(o). An adjustable number of current amplitudes are dependent on maximum output (I(max)). The output current is adjustable to ~100 000 different values when I(max) ~1 mA and ~1,000,000 when I(max) ~0.1 mA. The short-term fluctuation of ~0.15 ppm was attributable to flux resolution of the SQUID. As a demonstration, measurements showing the voltage linearity of a digital multimeter were performed.

  12. River Devices to Recover Energy with Advanced Materials (River DREAM)

    SciTech Connect

    McMahon, Daniel P.

    2013-07-03

    The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize and model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.

  13. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    SciTech Connect

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-06

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as {approx} 16 We/kg and {approx} 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is {approx} 640 m2 and {approx} 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is {approx} 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is {approx} 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  14. Advances in graphene-related technologies: synthesis, devices and outlook.

    PubMed

    Frazier, R M; Hough, W L; Chopra, N; Hathcock, K W

    2012-06-01

    Graphene has been the subject of many scientific investigations since exfoliation methods facilitated isolation of the two-dimensional material. During this time, new synthesis methods have been developed which have opened technological opportunities previously hindered by synthetic constraints. An update on the recent advances in graphene-based technologies, including synthesis and applications into electrical, mechanical and thermal uses will be covered. A special focus on the patent space and commercial landscape will be given in an effort to identify current trends and future commercialization of graphene-related technologies.

  15. Advanced Quantum Mechanical Calculation of Superheavy Ions: Energy Levels, Radiation and Finite Nuclear Size Effects

    SciTech Connect

    Glushkov, Alexander V.; Gurnitskaya, E.P.; Loboda, A.V.

    2005-10-26

    Advanced quantum approach to calculation of spectra for superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is developed and based on the gauge invariant quantum electrodynamics (QED) perturbation theory (PT). The Lamb shift polarization part is calculated in the Ueling approximation, self-energy part is defined within a new non-PT procedure of Ivanov-Ivanova. Calculation results for energy levels, hyperfine structure parameters of some heavy elements ions are presented.

  16. Device-independent characterizations of a shared quantum state independent of any Bell inequalities

    NASA Astrophysics Data System (ADS)

    Wei, Zhaohui; Sikora, Jamie

    2017-03-01

    In a Bell experiment two parties share a quantum state and perform local measurements on their subsystems separately, and the statistics of the measurement outcomes are recorded as a Bell correlation. For any Bell correlation, it turns out that a quantum state with minimal size that is able to produce this correlation can always be pure. In this work, we first exhibit two device-independent characterizations for the pure state that Alice and Bob share using only the correlation data. Specifically, we give two conditions that the Schmidt coefficients must satisfy, which can be tight, and have various applications in quantum tasks. First, one of the characterizations allows us to bound the entanglement between Alice and Bob using Renyi entropies and also to bound the underlying Hilbert space dimension. Second, when the Hilbert space dimension bound is tight, the shared pure quantum state has to be maximally entangled. Third, the second characterization gives a sufficient condition that a Bell correlation cannot be generated by particular quantum states. We also show that our results can be generalized to the case of shared mixed states.

  17. Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Lo Piparo, Nicoló; Razavi, Mohsen; Munro, William J.

    2017-02-01

    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a possible intermediate step towards the realization of quantum repeaters. Despite its relaxing some of the requirements on quantum memories, the choice of memory in relation to the layout of the setup and the protocol has a stark effect on our ability to beat existing no-memory systems. Here, we investigate the suitability of nitrogen vacancy (NV) centers, as quantum memories, in MA-MDI-QKD. We particularly show that moderate cavity enhancement is required for NV centers if we want to outperform no-memory QKD systems. Using system parameters mostly achievable by today's state of the art, we then anticipate some total key rate advantage in the distance range between 300 and 500 km for cavity-enhanced NV centers. Our analysis accounts for major sources of error including the dark current, the channel loss, and the decoherence of the quantum memories.

  18. Spin filtering and thermopower in star-coupled quantum dot devices

    NASA Astrophysics Data System (ADS)

    Andrade, J. A.; Cornaglia, Pablo S.

    2016-12-01

    We analyze the linear thermoelectric transport properties of devices with three quantum dots in a star configuration. A central quantum dot is tunnel-coupled to source and drain electrodes and to two additional quantum dots. For a wide range of parameters, in the absence of an external magnetic field, the system is a singular Fermi liquid with a nonanalytic behavior of the electric transport properties at low energies. The singular behavior is associated with the development of a ferromagnetic or an underscreened Kondo effect, depending on the parameter regime. A magnetic field drives the system into a regular Fermi liquid regime and leads to a large peak (˜kB/|e | ) in the spin thermopower as a function of the temperature, and to a ˜100 % spin polarized current for a wide range of parameters due to interference effects. We find a qualitatively equivalent behavior for systems with a larger number of side-coupled quantum dots, with the maximum value of the spin thermopower decreasing as the number of side-coupled quantum dots increases.

  19. Component mode synthesis approach for quantum mechanical electrostatic and transport analysis of nanoscale structures and devices

    NASA Astrophysics Data System (ADS)

    Gao, Zhe

    As the dimensions of commonly used semiconductor devices have shrunk into nanometer regime, it is recognized that the influence of quantum effects on their electrostatic and transport properties cannot be ignored. In the past few decades, various computational models and approaches have been developed to analyze these properties in nanostructures and devices. Among these computational models, the Schrodinger-Poisson model has been widely adopted for quantum mechanical electrostatic and transport analysis of nanostructures and devices such as quantum wires, metal--oxide--semiconductor field effect transistors (MOSFETs) and nanoelectromechanical systems (NEMS). The numerical results allow for evaluations of the electrical properties such as charge concentration and potential profile in these structures. The emergence of MOSFETs with multiple gates, such as Trigates, FinFETs and Pi-gates, offers a superior electrostatic control of devices by the gates, which can be therefore used to reduce the short channel effects within those devices. Full 2-D electrostatic and transport analysis enables a better understanding of the scalability of devices, geometric effects on the potential and charge distribution, and transport characteristics of the transistors. The Schrodinger-Poisson model is attractive due to its simplicity and straightforward implementation by using standard numerical methods. However, as it is required to solve a generalized eigenvalue problem generated from the discretization of the Schrodinger equation, the computational cost of the analysis increases quickly when the system's degrees of freedom (DOFs) increase. For this reason, techniques that enable an efficient solution of discretized Schrodinger equation in multidimensional domains are desirable. In this work, we seek to accelerate the numerical solution of the Schrodinger equation by using a component mode synthesis (CMS) approach. In the CMS approach, a nanostructure is divided into a set of

  20. Advances in quantum cascade lasers for security and crime-fighting

    NASA Astrophysics Data System (ADS)

    Normand, Erwan L.; Stokes, Robert J.; Hay, Kenneth; Foulger, Brian; Lewis, Colin

    2010-10-01

    Advances in the application of Quantum Cascade Lasers (QCL) to trace gas detection will be presented. The solution is real time (~1 μsec per scan), is insensitive to turbulence and vibration, and performs multiple measurements in one sweep. The QCL provides a large dynamic range, which is a linear response from ppt to % level. The concentration can be derived with excellent immunity from cross interference. Point sensing sensors developed by Cascade for home made and commercial explosives operate by monitoring key constituents in real time and matching this to a spatial event (i.e. sniffer device placed close to an object or person walking through portal (overt or covert). Programmable signature detection capability allows for detection of multiple chemical compounds along the most likely array of explosive chemical formulation. The advantages of configuration as "point sensing" or "stand off" will be discussed. In addition to explosives this method is highly applicable to the detection of mobile drugs labs through volatile chemical release.

  1. Monitoring critical facilities by using advanced RF devices

    SciTech Connect

    Tsai, Hanchung; Liu, Yung Y.; Shuler, James

    2013-07-01

    The ability to monitor critical environment parameters of nuclear plants at all times, particularly during and after a disruptive accident, is vital for the safety of plant personnel, rescue and recovery crews, and the surrounding communities. Conventional hard-wired assets that depend on supplied power may be decimated as a result of such events, as witnessed in the Japanese Fukushima nuclear power plant in March 2011. Self-powered monitoring devices operating on a wireless platform, on the other hand, may survive such calamity and remain functional. The devices would be pre-positioned at strategic locations, particularly where the dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance. Equipped with sensors for β-γ radiation, neutrons, hydrogen gas, temperature, humidity, pressure, and water level, as well as with criticality alarms and imaging equipment for heat, video, and other capabilities, these devices can provide vital surveillance information for assessing the extent of plant damage, mandating responses (e.g., evacuation before impending hydrogen explosion), and enabling overall safe and efficient recovery in a disaster. A radio frequency identification (RFID)-based system - called ARG-US - may be modified and adapted for this task. Developed by Argonne for DOE, ARG-US (meaning 'watchful guardian') has been used successfully to monitor and track sensitive nuclear materials packages at DOE sites. It utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users when any of the preset sensor thresholds is violated. By adding plant-specific monitoring sensors to the already strong sensor suite and adopting modular hardware, firmware, and software subsystems that are tailored for specific subsystems of a plant, a Remote Area Modular Monitoring (RAMM) system, built on a wireless sensor network (WSN) platform, is being developed

  2. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry

  3. 9 CFR 381.131 - Preparation of labeling or other devices bearing official inspection marks without advance...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... devices bearing official inspection marks without advance approval prohibited; exceptions. 381.131 Section... Preparation of labeling or other devices bearing official inspection marks without advance approval prohibited... otherwise make any marking device containing any official mark or simulation thereof, or any label...

  4. 9 CFR 381.131 - Preparation of labeling or other devices bearing official inspection marks without advance...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... devices bearing official inspection marks without advance approval prohibited; exceptions. 381.131 Section... Preparation of labeling or other devices bearing official inspection marks without advance approval prohibited... otherwise make any marking device containing any official mark or simulation thereof, or any label...

  5. Case studies in advanced monitoring with the Chronicle device.

    PubMed

    Bourge, Robert C

    2006-01-01

    Three case studies illustrate the utility of advanced implantable hemodynamic monitors (IHMs). The cases include a 70-year-old with ischemic cardiomyopathy, chronic kidney disease, and recurrent volume overload; a 53-year-old with ischemic heart disease, mild effort-related angina, and New York Heart Association class III chronic heart failure; and a 21-year-old with severe dilated cardiomyopathy, all 3 patients having an IHM. The outcomes in these cases illustrate the capability of the IHM system for monitoring and detecting early changes in hemodynamic data and the use of these data to adjust medical therapies and reduce morbidity and risk of hospitalization. When pathologic hemodynamic changes are observed, this alerts the cardiologist to search for underlying causes, even when a patient on initial questioning denies any change in compliance or symptoms.

  6. The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Zhu, Feng; Zhou, Xing-Yu; Wang, Qin

    2016-09-01

    We put forward a new scheme for implementing the measurement-device-independent quantum key distribution (QKD) with weak coherent source, while using only two different intensities. In the new scheme, we insert a beam splitter and a local detector at both Alice's and Bob's side, and then all the triggering and non-triggering signals could be employed to process parameter estimations, resulting in very precise estimations for the two-single-photon contributions. Besides, we compare its behavior with two other often used methods, i.e., the conventional standard three-intensity decoy-state measurement-device-independent QKD and the passive measurement-device-independent QKD. Through numerical simulations, we demonstrate that our new approach can exhibit outstanding characteristics not only in the secure transmission distance, but also in the final key generation rate.

  7. Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.

    PubMed

    Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu

    2016-12-01

    Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.

  8. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  9. Advance in novel boron nitride nanosheets to nanoelectronic device applications.

    PubMed

    Sajjad, Muhammad; Morell, Gerardo; Feng, Peter

    2013-06-12

    We report low-temperature synthesis of large-scale boron nitride nanosheets (BNNSs) and their applications for high-performance Schottky diode and gas sensor. Ten minutes of synthesis with a short-pulse-laser-produced plasma deposition technique yields a large amount of highly flat, transparent BNNSs. A basic reason for using short-pulse plasma beams is to avoid nanosheet thermal ablation or have low heat generated. Consequently, it greatly reduces the stress and yield large, flat BNNSs. The average size of obtained BNNS is around 10 μm and thickness is around 1.7 nm. Carbon element has been used for doping BNNSs and achieving BNNSs-based Schottky diode and gas sensing device. Typical current versus voltage characteristics of diode are examined. The breakdown reverse voltage is around -70 V. This probably indicates that the breakdown electric field of BNNSs-based diode is up to 1 × 10(8) V/cm. Sensing behavior of BNNSs-based gas sensor toward methane diluted with dry air is also characterized. The response time and recovery time are around 3 and 5 s at the operating temperature of 150 °C. Relatively, the sensor has poor sensitivity to oxygen gas.

  10. Large-area nanofabrication and applications in advanced nanoelectronic and nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Ding, Wei

    The research work presented in this dissertation includes novel large area nanofabrication techniques and their applications in advanced nanoelectronic and nanophotonic devices. The fabrications and applications include: 1) high performance transparent electrodes, 2) a novel plasmonic nanocavity and its applications in organic solar cells and light emitting diodes, and 3) a bipolar plasmonic nonlinear optical device to enhance and tune second harmonic generation. Based upon these topics, the thesis is divided into the following parts. First, a novel transparent electrode (TE), metallic deep subwavelength mesh electrode is developed and fabricated, showing better transmittance and conductance than previous TEs. Its performance dependence on nanostructure geometries and materials are investigated. The deep-subwavelength mesh electrode also has excellent antiglare properties. Such electrodes are fabricated on 4" wafer by nanoimprint, scalable to meter sizes. Second, a novel plasmonic nanocavity from the MESH is developed, named "plasmonic cavity with subwavelength hole-array (PlaCSH)", consisting of a thin MESH as a transparent front electrode, a thin metal back electrode, and in-between layer of active material. This structure is used to create high performance solar cells and LEDs. PlaCSH solar cell gives a solution to three central challenges in organic solar cells (light coupling into solar cell, light trapping in a sub-absorption-length-thick layer, and replacement of the indium-tin-oxide). Experimentally, the PlaCSH polymer SCs achieve high light coupling-efficiency/absorptance/power conversion efficiency, along with broad-band, Omni angle/polarization acceptance. In OLEDs, PlaCSH shows numerous benefits with both the small- molecule and polymer active materials. Enhanced light extraction, internal quantum efficiency, ambient light absorption, contrast, viewing angle, brightness, and decreased glare are all observed. The above experiments -- along with

  11. Novel Optoelectronic Devices Using Intersubband Transitions in Gallium Arsenide/aluminum Gallium Arsenide Quantum Wells and Superlattices: Theory, Fabrication, and Measurement

    NASA Astrophysics Data System (ADS)

    Siao, Sueh-Wen

    The applications of novel optoelectronic devices by intersubband transition in GaAs/AlGaAs quantum wells and superlattices have attract intense interest in recent years. This study is to investigate some potential applications and properties by intersubband transition in GaAs/AlGaAs quantum wells and superlattices. The study includes modeling of the intersubband transition, material designs and characterizations, device fabrication and characterization, and the investigation of novel three terminal transistors and undoped QW IR modulators. Modeling is specifically based on the envelope function approximation and transfer matrix method to calculate the energy levels and wavefunctions. The oscillator strength of intersubband transition then can be evaluated using the obtained wavefunctions. This model affords the capability to simulate arbitrary quantum well structures, since the potential profiles can be decomposed into sublayers with linear potential only. Material characterizations based on the advanced techniques such as, PL spectroscopy, Fourier Transform Infrared spectroscopy, doping profiler, and double crystal X ray, are used to study the energy levels, heavy-doping induced Burstein-Moss shift and band-narrowing effect, doping profile inside the material, and quantum well layer thickness. For most quantum effect devices, in order to contact the specific layer precisely, well-controlled fabrication techniques and procedures are very important. The diffusion length of the Au/Ge/Ni/Au ohmic contact system is on the order of 1000-4000 A on GaAs, which is not suitable for devices with thin layers. The new ohmic contact materials by Pd/Ge/Au is studied and developed for the fabrication of novel quantum well devices. This metal system has already shown very stable and wide alloying condition. Finally, in this study, three terminal infrared transistor and all-optical IR modulator based on intersubband transition are investigated. Hot electron transistor not only

  12. Advanced Controls for the Multi-pod Centipod WEC device

    SciTech Connect

    McCall, Alan; Fleming, Alex

    2016-02-15

    Dehlsen Associates, LLC (DA) has developed a Wave Energy Converter (WEC), Centipod, which is a multiple point absorber, extracting wave energy primarily in the heave direction through a plurality of point absorber floats sharing a common stable reference structure. The objective of this project was to develop advanced control algorithms that will be used to reduce Levelized Cost of Energy (LCOE). This project investigated the use of Model Predictive Control (MPC) to improve the power capture of the WEC. The MPC controller developed in this work is a state-space, “look ahead” controller approach using knowledge of past and current states to predict future states to take action with the PTO to maximize power capture while still respecting system constraints. In order to maximize power, which is the product of force and velocity, the controller must aim to create phase alignment between excitation force and velocity. This project showed a 161% improvement in the Annual Energy Production (AEP) for the Centipod WEC when utilizing MPC, compared to a baseline, fixed passive damping control strategy. This improvement in AEP was shown to provide a substantial benefit to the WEC’s overall Cost of Energy, reducing LCOE by 50% from baseline. The results of this work proved great potential for the adoption of Model Predictive Controls in Wave Energy Converters.

  13. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  14. Verification, Validation and Credibility Assessment of a Computational Model of the Advanced Resistive Exercise Device (ARED)

    NASA Technical Reports Server (NTRS)

    Werner, C. R.; Humphreys, B. T.; Mulugeta, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.

  15. Predicting the valley physics of silicon quantum dots directly from a device layout

    NASA Astrophysics Data System (ADS)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  16. Silicon/silicon germanium heterostructures: Materials, physics, quantum functional devices and their integration with heterostructure bipolar transistors

    NASA Astrophysics Data System (ADS)

    Chung, Sung-Yong

    With the advent of the first transistor in 1947, the integrated circuit (IC) industry has rapidly expanded with the tremendous advances in the development of IC technology. The driving force in the evolution of IC technology is the reduction of transistor sizes. Without a doubt, transistor miniaturization will face fundamental physical limitations imposed by further dimensional scaling of silicon transistors in the near future. According to the 2004 International Technology Roadmap for Semiconductors (ITRS), the width of a gate electrode for complementary metal-oxide-semiconductor (CMOS) is projected to be a mere 7 nm by the end of 2018. No further solutions have been found. Since the 2001 ITRS, tunneling devices have been evaluated as an emerging technology to augment silicon CMOS. Transistor circuitry incorporating tunneling devices realized using III-V semiconductors has exhibited superior performance over its transistor-only counterparts. However, due to fundamental differences in material properties, such technology is not readily compatible with the mainstream platforms (>95% market share of semiconductors) of CMOS and HBT technologies. Recently, we demonstrated the successful monolithic integration of Si-based resonant interband tunnel diodes (RITDs) with CMOS and SiGe HBT, which makes them more attractive than III-V based tunnel diodes for system level integration. This dissertation is concerned with the development of quantum functional tunneling devices, RITDs, and high-speed transistors, HBTs, using Si/SiGe heterostructures as well as material growth and electrical properties of Si/SiGe heterostructures. Emphasis is placed on the development of Si/SiGe-based RITDs, HBTs, and their monolithic integration for 3-terminal negative differential resistance (NDR) devices. The operating principles of Si-based RITDs and the integration of RITD with HBT are also discussed.

  17. Switching device for the superconducting phase transition measurements of thin W films using a single superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Sáfrán, G.; Loidl, M.; Meier, O.; Angloher, G.; Pröbst, F.; Seidel, W.

    1999-06-01

    A simple superconducting switch has been developed for the measurements of the low temperature superconducting phase transitions of several thin W samples connected simultaneously to a single superconducting quantum interference device. The switch, based on a Ti thin film resistor, can be set to normal or to superconducting within the cryostat by adjusting its temperature above or below the transition temperature by means of a thin film heater. The experimental setup, circuit and device properties, are discussed in detail. As an example of its application the superconducting phase transitions of two thin W samples on sapphire connected in series were measured subsequently as a function of temperature by applying two switches connected parallel to the samples. The switches exhibited a resistance of 67 Ω-1 kΩ at 4 K depending on the thickness and geometry of the Ti film and on the substrate material. The deviation from the real electrical resistance value of the samples caused by the finite resistance of the switches was found to be a maximum of 6×10-6 Ω. This, compared to the resistances to be measured (about 2×10-2 Ω), we consider negligible. The application of several switches within a cryostat can multiply the number of specimens measured in the same cooling cycle, enabling a more efficient characterization of the cryogenic properties of superconducting specimens.

  18. Co-Extrusion: Advanced Manufacturing for Energy Devices

    SciTech Connect

    Cobb, Corie Lynn

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  19. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole

    2012-04-01

    The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation.

  20. Perfectly Matched Layers versus discrete transparent boundary conditions in quantum device simulations

    SciTech Connect

    Mennemann, Jan-Frederik Jüngel, Ansgar

    2014-10-15

    Discrete transparent boundary conditions (DTBC) and the Perfectly Matched Layers (PML) method for the realization of open boundary conditions in quantum device simulations are compared, based on the stationary and time-dependent Schrödinger equation. The comparison includes scattering state, wave packet, and transient scattering state simulations in one and two space dimensions. The Schrödinger equation is discretized by a second-order Crank–Nicolson method in case of DTBC. For the discretization with PML, symmetric second-, fourth-, and sixth-order spatial approximations as well as Crank–Nicolson and classical Runge–Kutta time-integration methods are employed. In two space dimensions, a ring-shaped quantum waveguide device is simulated in the stationary and transient regime. As an application, a simulation of the Aharonov–Bohm effect in this device is performed, showing the excitation of bound states localized in the ring region. The numerical experiments show that the results obtained from PML are comparable to those obtained using DTBC, while keeping the high numerical efficiency and flexibility as well as the ease of implementation of the former method. -- Highlights: •In-depth comparison between discrete transparent boundary conditions (DTBC) and PML. •First 2-D transient scattering state simulations using DTBC. •First 2-D transient scattering state simulations of the Aharonov–Bohm effect.

  1. Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2015-10-01

    Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.

  2. Single active-layer structured dual-function devices using hybrid polymer-quantum dots.

    PubMed

    Son, Dong-Ick; Park, Dong-Hee; Ie, Sang-Yub; Choi, Won-Kook; Choi, Ji-Won; Li, Fushan; Kim, Tae-Whan

    2008-10-01

    We demonstrate hybrid polymer-quantum dot dual-function devices with a single active-layer structure consisting of CdSe/ZnS semiconductor quantum dots dispersed with poly N-vinylcarbazole (PVK) and 1,3,5-tirs-(N-phenylbenzimidazol-2-yl) benzene (TPBi) fabricated on an indium-tin-oxide (ITO)/glass substrate by using a simple spin-coating technique. The dual-function devices are composed of light-emitting diodes (LED) on the top side and nonvolatile organic bistable memory devices (OBD) on the bottom side and can show electroluminescence (EL) along with electrical bistability concurrently. Both the functionality of LEDs and OBDs can be successfully achieved by adding an electron transport layer (ETL) TPBi to the OBD to attain an LED in which the lowest unoccupied molecular orbital (LUMO) level of TPBi is positioned at the energy level between the conduction band of CdSe/ZnS and the LiF/Al electrode. Through transmission electron microscopy (TEM) study, it is revealed that CdSe/ZnS QDs distributed on the interface of the hole transport layer (HTL) and ETL significantly take part in the electroluminescence process rather than those existing at the outer surface of the ETL.

  3. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices.

    PubMed

    Shen, Jianhua; Zhu, Yihua; Yang, Xiaoling; Li, Chunzhong

    2012-04-18

    Similar to the popular older cousins, luminescent carbon dots (C-dots), graphene quantum dots or graphene quantum discs (GQDs) have generated enormous excitement because of their superiority in chemical inertness, biocompatibility and low toxicity. Besides, GQDs, consisting of a single atomic layer of nano-sized graphite, have the excellent performances of graphene, such as high surface area, large diameter and better surface grafting using π-π conjugation and surface groups. Because of the structure of graphene, GQDs have some other special physical properties. Therefore, studies on GQDs in aspects of chemistry, physical, materials, biology and interdisciplinary science have been in full flow in the past decade. In this Feature Article, recent developments in preparation of GQDs are discussed, focusing on the main two approaches (top-down and bottom-down). Emphasis is given to their future and potential development in bioimaging, electrochemical biosensors and catalysis, and specifically in photovoltaic devices that can solve increasingly serious energy problems.

  4. Large thermoelectric power and figure of merit in a ferromagnetic-quantum dot-superconducting device

    NASA Astrophysics Data System (ADS)

    Hwang, Sun-Yong; López, Rosa; Sánchez, David

    2016-08-01

    We investigate the thermoelectric properties of a quantum dot coupled to ferromagnetic and superconducting electrodes. The combination of spin polarized tunneling at the ferromagnetic-quantum dot interface and the application of an external magnetic field that Zeeman splits the dot energy level leads to large values of the thermopower (Seebeck coefficient). Importantly, the thermopower can be tuned with an external gate voltage connected to the dot. We compute the figure of merit that measures the efficiency of thermoelectric conversion and find that it attains high values. We discuss the different contributions from Andreev reflection processes and quasiparticle tunneling into and out of the superconducting contact. Furthermore, we obtain dramatic variations of both the magnetothermopower and the spin Seebeck effect, which suggest that in our device spin currents can be controlled with temperature gradients only.

  5. Multi-partite squash operation and its application to device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tsurumaru, Toyohiro; Ichikawa, Tsubasa

    2016-10-01

    The squash operation, or the squashing model, is a useful mathematical tool for proving the security of quantum key distribution systems using practical (i.e., non-ideal) detectors. At the present, however, this method can only be applied to a limited class of detectors, such as the threshold detector of the Bennett-Brassard 1984 type. In this paper we generalize this method to include multi-partite measurements, such that it can be applied to a wider class of detectors. We demonstrate the effectiveness of this generalization by applying it to the device-independent security proof of the Ekert 1991 protocol, and by improving the associated key generation rate. For proving this result we use two physical assumptions, namely, that quantum mechanics is valid, and that Alice’s and Bob’s detectors are memoryless.

  6. Quantum dots in nanomedicine: recent trends, advances and unresolved issues.

    PubMed

    Volkov, Yuri

    2015-12-18

    The review addresses the current state of progress in the use of ultra-small nanoparticles from the category of quantum dots (QDs), which presently embraces a widening range of nanomaterials of different nature, including "classical" semiconductor groups III-V and II-VI nanocrystals, along with more recently emerged carbon, silicon, gold and other types of nanoparticles falling into this class of nanomaterials due to their similar physical characteristics such as small size and associated quantum confinement effects. A diverse range of QDs applications in nanomedicine has been extensively summarised previously in numerous publications. Therefore, this review is not intended to provide an all-embracing survey of the well documented QDs uses, but is rather focused on the most recent emerging developments, concepts and outstanding unresolved problematic and sometimes controversial issues. Over 125 publications are overviewed and discussed here in the context of major nanomedicine domains, i.e. medical imaging, diagnostics, therapeutic applications and combination of them in multifunctional theranostic systems.

  7. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features (Phase IV--Summary Report).

    ERIC Educational Resources Information Center

    Polzella, Donald J.; And Others

    Modern aircrew training devices (ATDs) are equipped with sophisticated hardware and software capabilities, known as advanced instructional features (AIFs), that permit a simulator instructor to prepare briefings, manage training, vary task difficulty/fidelity, monitor performance, and provide feedback for flight simulation training missions. The…

  8. Gate-tunable superconducting quantum interference devices of PbS nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Seok; Kim, Bum-Kyu; Yang, Yiming; Peng, Xingyue; Lee, Soon-Gul; Yu, Dong; Doh, Yong-Joo

    2016-02-01

    We report on the fabrication and electrical transport properties of gate-tunable superconducting quantum interference devices (SQUIDs), made from a semiconducting PbS nanowire contacted with PbIn superconducting electrodes. With a magnetic field applied perpendicular to the plane of the nanohybrid SQUID, periodic oscillations of the critical current due to the flux quantization in SQUID are observed up to T = 4.0 K. A nonsinusoidal current-phase relationship is obtained as a function of temperature and gate voltage, which is consistent with a short and diffusive junction model.

  9. Modulation Voltage of High T c DC Superconducting Quantum Interference Device with Damping Resistance

    NASA Astrophysics Data System (ADS)

    Enpuku, Keiji; Doi, Hideki; Tokita, Go; Maruo, Taku

    1994-05-01

    The effect of damping resistance on the voltage versus flux (V -Φ) relation of the high T c dc superconducting quantum interference device (SQUID) is studied experimentally. Dc SQUID using YBaCuO step-edge junction and damping resistance in parallel with SQUID inductance is fabricated. Measured values of modulation voltage in the V -Φ relation are compared with those of the conventional SQUID without damping resistance. It is shown that modulation voltage is much improved by using damping resistance. The obtained experimental results agree reasonably with theoretical predictions reported previously.

  10. Making the decoy-state measurement-device-independent quantum key distribution practically useful

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Heng; Yu, Zong-Wen; Wang, Xiang-Bin

    2016-04-01

    The relatively low key rate seems to be the major barrier to its practical use for the decoy-state measurement-device-independent quantum key distribution (MDI-QKD). We present a four-intensity protocol for the decoy-state MDI-QKD that hugely raises the key rate, especially in the case in which the total data size is not large. Also, calculations show that our method makes it possible for secure private communication with fresh keys generated from MDI-QKD with a delay time of only a few seconds.

  11. Device-width dependence of plateau width in quantum Hall states

    NASA Astrophysics Data System (ADS)

    Kawaji, S.; Hirakawa, K.; Nagata, M.

    1993-02-01

    Hall bar type devices having a total length of 2900 μm, a source and drain electrode width of 400 μm and different widths w ranging from 10 to 120 μm in its central 600 μm long part are fabricated from a GaAs/AlGaAs wafer with electron mobility of 21 m 2V -1s -1. The current at which the quantum Hall plateau for i=2 at B=9.7T at T=1.2K disappears is proportional to w. The average critical current density is Jcr=(1.6±0.2) A m -1

  12. Disposable sample holder for high temperature measurements in MPMS superconducting quantum interference device magnetometers.

    PubMed

    Sesé, J; Bartolomé, J; Rillo, C

    2007-04-01

    A sample holder for high temperature (300 Kquantum interference device magnetometers is presented. It is fabricated using aluminum foil and it is appropriate for samples in either solid or powder form. The holder is homogeneous for the gradiometer coil, and this results in a contribution to the background signal that is below the instrument noise at any field (<10(-9) A m2 at mu(0)H=200 mT). Further it is inexpensive and simple to fabricate, and it can be considered as a disposable sample holder that avoids eventual contamination between different samples.

  13. Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.

    NASA Astrophysics Data System (ADS)

    Hong, Songcheol

    A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been

  14. Effects of interface roughness scattering on device performance of indirectly pumped terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Ghasem Razavipour, Seyed; Dupont, Emmanuel; Wasilewski, Zbig R.; Ban, Dayan

    2015-06-01

    The impacts of interface roughness (IR) scattering on device performance of indirectly-pumped (IDP) terahertz quantum cascade lasers are studied. Three different active region designs with almost the same lasing frequency at threshold and comparable oscillator strength are experimentally investigated and the measurement data are analyzed and compared with numerical simulation. The simulation results show that all structures suffer from the detrimental effect of intersubband roughness scattering in terms of threshold current density, and probably operating temperature. The intrasubband IR scattering time could also to be a limiting factor in the IDP structures due to the employed high energetic barrier.

  15. Non-CPAP therapies in obstructive sleep apnoea: mandibular advancement device therapy.

    PubMed

    Marklund, Marie; Verbraecken, Johan; Randerath, Winfried

    2012-05-01

    Mandibular advancement devices (MADs) represent the main non-continuous positive airway pressure (non-CPAP) therapy for patients with obstructive sleep apnoea (OSA). The aim of the European Respiratory Society Task Force was to review the evidence in favour of MAD therapy. Effects of tongue-retaining devices are not included in this report. Custom-made MADs reduce apnoea/hypopnoea index (AHI) and daytime sleepiness compared with placebo devices. CPAP more effectively diminishes AHI, while increasing data suggest fairly similar outcomes in relation to symptoms and cardiovascular health from these treatments. Patients often prefer MADs to CPAP. Milder cases and patients with a proven increase in upper airway size as a result of mandibular advancement are most likely to experience treatment success with MADs. A custom-made device titrated from an initial 50% of maximum mandibular advancement has been recommended. More research is needed to define the patients who will benefit from MAD treatment compared with CPAP, in terms of the effects on sleep-disordered breathing and on other diseases related to OSA. In conclusion, MADs are recommended for patients with mild to moderate OSA (Recommendation Level A) and for those who do not tolerate CPAP. The treatment must be followed up and the device adjusted or exchanged in relation to the outcome.

  16. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  17. Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei

    2017-03-01

    A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm‑2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.

  18. Series-Parallel Superconducting Quantum Interference Device Arrays Using High-TC Ion Damage Junctions

    NASA Astrophysics Data System (ADS)

    Wong, Travis; Mukhanov, Oleg

    2015-03-01

    We have fabricated several designs of three junction series-parallel DC Superconducting Quantum Interference Device (BiSQUID) arrays in YBa2Cu3O7-x using 104 ion damage Josephson Junctions on a single 1 cm2 chip. A high aspect ratio ion implantation mask (30:1 ratio) with 30 nm slits was fabricated using electron beam lithography and low pressure reactive ion etching. Samples were irradiated with 60 keV helium ions to achieve a highly uniform damaged region throughout the thickness of the YBCO thin film as confirmed with Monte Carlo ion implantation simulations. Low frequency measurements of four different BiSQUID series-parallel SQUID array devices will be presented to investigate the effect of the BiSQUID design parameters on the linearity of the SQUID array in response to magnetic fields. BiSQUID arrays could provide a promising architecture for improved linearity transimpedance amplifiers with high linearity.

  19. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    SciTech Connect

    Vinante, A. Falferi, P.; Mezzena, R.

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  20. Superconducting-quantum-interference-device array magnetometers with directly coupled pickup loop and serial flux dams

    NASA Astrophysics Data System (ADS)

    Wu, Chiu-Hsien; Yang, Hong-Chang; Chen, Ji-Cheng; Chen, Kuen-Lin; Chen, M. J.; Jeng, J. T.; Horng, Herng-Er

    2006-09-01

    In this work, we studied the engineering of high-transition-temperature superconductor Josephson junctions and superconducting quantum interference device (SQUID) by using step-edge or the bicrystal grain-boundary technologies. Serial Josephson junctions and bare SQUID array reveal high quality device characteristics. A high-Tc SQUID magnetometer exhibiting magnetic field sensitivity of 33fT/Hz1/2 in the white regime and 80fT/Hz1/2 at 1Hz was demonstrated by incorporating the flux dams and serial SQUID into the pickup loop of magnetometer. Furthermore, we demonstrate the opening of the flux dams by applying an external magnetic field to induce a current higher than the critical current of the serial flux dams. We show that the serial flux dams effectively suppress the low frequency 1/f-like noises.

  1. Quantum simulation of a spin polarization device in an electron microscope

    NASA Astrophysics Data System (ADS)

    Grillo, Vincenzo; Marrucci, Lorenzo; Karimi, Ebrahim; Zanella, Riccardo; Santamato, Enrico

    2013-09-01

    A proposal for an electron-beam device that can act as an efficient spin-polarization filter has been recently put forward (Karimi et al 2012 Phys. Rev. Lett. 108 044801). It is based on combining the recently developed diffraction technology for imposing orbital angular momentum to the beam with a multipolar Wien filter inducing a sort of artificial non-relativistic spin-orbit coupling. Here we reconsider the proposed device with a fully quantum-mechanical simulation of the electron-beam propagation, based on the well-established multi-slice method, supplemented with a Pauli term for taking into account the spin degree of freedom. Using this upgraded numerical tool, we study the feasibility and practical limitations of the proposed method for spin polarizing a free electron beam.

  2. Loss-tolerant measurement-device-independent quantum random number generation

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhou, Hongyi; Ma, Xiongfeng

    2015-12-01

    Quantum random number generators (QRNGs) output genuine random numbers based upon the uncertainty principle. A QRNG contains two parts in general—a randomness source and a readout detector. How to remove detector imperfections has been one of the most important questions in practical randomness generation. We propose a simple solution, measurement-device-independent QRNG, which not only removes all detector side channels but is robust against losses. In contrast to previous fully device-independent QRNGs, our scheme does not require high detector efficiency or nonlocality tests. Simulations show that our protocol can be implemented efficiently with a practical coherent state laser and other standard optical components. The security analysis of our QRNG consists mainly of two parts: measurement tomography and randomness quantification, where several new techniques are developed to characterize the randomness associated with a positive-operator valued measure.

  3. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices

    SciTech Connect

    Lian, Xiaojuan Cartoixà, Xavier; Miranda, Enrique; Suñé, Jordi; Perniola, Luca; Rurali, Riccardo; Long, Shibing; Liu, Ming

    2014-06-28

    We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFs allows revealing significant structural differences in the CF of these two types of devices and RS modes.

  4. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    PubMed

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  5. Advancement of estimation fidelity in continuous quantum measurement

    NASA Astrophysics Data System (ADS)

    Diósi, Lajos

    2002-03-01

    We estimate an unknown qubit from the long sequence of n random polarization measurements of precision Δ. Using the standard Ito stochastic equations of the a posteriori state in the continuous measurement limit, we calculate the advancement of fidelity. We show that the standard optimum value 2/3 is achieved asymptotically for n ≫ Δ2/96 ≫ 1. We append a brief derivation of novel Ito equations for the estimate state.

  6. Light-Emitting Devices Based on Top-down Fabricated GaAs Quantum Nanodisks

    PubMed Central

    Higo, Akio; Kiba, Takayuki; Tamura, Yosuke; Thomas, Cedric; Takayama, Junichi; Wang, Yunpeng; Sodabanlu, Hassanet; Sugiyama, Masakazu; Nakano, Yoshiaki; Yamashita, Ichiro; Murayama, Akihiro; Samukawa, Seiji

    2015-01-01

    Quantum dots photonic devices based on the III–V compound semiconductor technology offer low power consumption, temperature stability, and high-speed modulation. We fabricated GaAs nanodisks (NDs) of sub-20-nm diameters by a top-down process using a biotemplate and neutral beam etching (NBE). The GaAs NDs were embedded in an AlGaAs barrier regrown by metalorganic vapor phase epitaxy (MOVPE). The temperature dependence of photoluminescence emission energies and the transient behavior were strongly affected by the quantum confinement effects of the embedded NDs. Therefore, the quantum levels of the NDs may be tuned by controlling their dimensions. We combined NBE and MOVPE in a high-throughput process compatible with industrial production systems to produce GaAs NDs with tunable optical characteristics. ND light emitting diode exhibited a narrow spectral width of 38 nm of high-intensity emission as a result of small deviation of ND sizes and superior crystallographic quality of the etched GaAs/AlGaAs layer. PMID:25792119

  7. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  8. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    SciTech Connect

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  9. Interaction effects in superconductor/quantum spin Hall devices: Universal transport signatures and fractional Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Aasen, David; Lee, Shu-Ping; Karzig, Torsten; Alicea, Jason

    2016-10-01

    Interfacing s -wave superconductors and quantum spin Hall edges produces time-reversal-invariant topological superconductivity of a type that can not arise in strictly one-dimensional systems. With the aim of establishing sharp fingerprints of this phase, we use renormalization-group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as leads. We determine scaling forms for the conductance through a grounded superconductor and show that the results depend sensitively on the interaction strength in the leads, the size of the superconducting region, and the presence or absence of time-reversal-breaking perturbations. We also study transport across a floating superconducting island isolated by magnetic barriers. Here, we predict e -periodic Coulomb-blockade peaks, as recently observed in nanowire devices [S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162], with the added feature that the island can support fractional charge tunable via the relative orientation of the barrier magnetizations. As an interesting corollary, when the magnetic barriers arise from strong interactions at the edge that spontaneously break time-reversal symmetry, the Coulomb-blockade periodicity changes from e to e /2 . These findings suggest several future experiments that probe unique characteristics of topological superconductivity at the quantum spin Hall edge.

  10. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Schopfer, F.; Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.

    Large-area and high-quality graphene devices synthesized by CVD on SiC are used to develop reliable electrical resistance standards, based on the quantum Hall effect (QHE), with state-of-the-art accuracy of 1x10-9 and under an extended range of experimental conditions of magnetic field (down to 3.5 T), temperature (up to 10 K) or current (up to 0.5 mA). These conditions are much relaxed as compared to what is required by GaAs/AlGaAs standards and will enable to broaden the use of the primary quantum electrical standards to the benefit of Science and Industry for electrical measurements. Furthermore, by comparison of these graphene devices with GaAs/AlGaAs standards, we demonstrate the universality of the QHE within an ultimate uncertainty of 8.2x10-11. This suggests the exact relation of the quantized Hall resistance with the Planck constant and the electron charge, which is crucial for the new SI to be based on fixing such fundamental constants. These results show that graphene realizes its promises and demonstrates its superiority over other materials for a demanding application. Nature Nanotech. 10, 965-971, 2015, Nature Commun. 6, 6806, 2015

  11. Detection of bacteria in suspension by using a superconducting quantum interference device

    PubMed Central

    Grossman, H. L.; Myers, W. R.; Vreeland, V. J.; Bruehl, R.; Alper, M. D.; Bertozzi, C. R.; Clarke, John

    2004-01-01

    We demonstrate a technique for detecting magnetically labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This sensitive assay quantifies specific bacteria in a sample without the need to immobilize them or wash away unbound magnetic particles. In the measurement, we add 50-nm-diameter superparamagnetic magnetite particles, coated with antibodies, to an aqueous sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high-transition temperature superconducting quantum interference device, an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Néel relaxation process is detected by the superconducting quantum interference device. The measurements indicate a detection limit of (5.6 ± 1.1) × 106 L. monocytogenes in our sample volume of 20 μl. If the sample volume were reduced to 1 nl, we estimate that the detection limit could be improved to 230 ± 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria. PMID:14688406

  12. Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing

    PubMed Central

    Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried

    2016-01-01

    We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0–70% for propane and 0–90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration. PMID:26887891

  13. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices

    PubMed Central

    Mukherjee, Subhrajit; Maiti, Rishi; Katiyar, Ajit K.; Das, Soumen; Ray, Samit K.

    2016-01-01

    Silicon compatible wafer scale MoS2 heterojunctions are reported for the first time using colloidal quantum dots. Size dependent direct band gap emission of MoS2 dots are presented at room temperature. The temporal stability and decay dynamics of excited charge carriers in MoS2 quantum dots have been studied using time correlated single photon counting spectroscopy technique. Fabricated n-MoS2/p-Si 0D/3D heterojunctions exhibiting excellent rectification behavior have been studied for light emission in the forward bias and photodetection in the reverse bias. The electroluminescences with white light emission spectra in the range of 450–800 nm are found to be stable in the temperature range of 10–350 K. Size dependent spectral responsivity and detectivity of the heterojunction devices have been studied. The peak responsivity and detectivity of the fabricated heterojunction detector are estimated to be ~0.85 A/W and ~8 × 1011 Jones, respectively at an applied bias of −2 V for MoS2 QDs of 2 nm mean diameter. The above values are found to be superior to the reported results on large area photodetector devices fabricated using two dimensional materials. PMID:27357596

  14. Quantum dots in biomedical applications: advances and challenges

    NASA Astrophysics Data System (ADS)

    Cinteza, Ludmila Otilia

    2010-09-01

    In the past two decades, nanotechnology has made great progress in generating novel materials with superior properties. Quantum dots (QDs) are an example of such materials. With unique optical properties, they have proven to be useful in a wide range of applications in life sciences, especially as a better alternative to overcome the shortcomings of conventional fluorophores. Current progress in the synthesis of biocompatible QDs allows for the possibility of producing a large variety of semiconductor nanocrystals in terms of size, surface functionality, bioconjugation, and targeting facilities. Strategies to enhance the water-dispersibility and biocompatibility of these nanoparticles have been developed, involving various encapsulation techniques and surface functionalization. The major obstacle in the clinical use of QDs remains their toxicity, and the systematic investigation on harmful effects of QDs both to humans and to the environment has become critical. Many examples of the experimental use of QDs prove their far-reaching potential for the study of intracellular processes at the molecular level, high resolution cellular imaging, and in vivo observation of cell trafficking. Biosensing methods based on QD bioconjugates proved to be successful in rapid detection of pathogens, and significant improvements are expected in early cancer diagnostic, non-conventional therapy of cancer and neurodegenerative diseases.

  15. Hybrid quantum nanophotonic devices for coupling to rare-earth ions

    NASA Astrophysics Data System (ADS)

    Miyazono, Evan; Hartz, Alex; Zhong, Tian; Faraon, Andrei

    2015-03-01

    With an assortment of narrow line-width transitions spanning the visible and IR spectrum and long spin coherence times, rare-earth doped crystals are the leading material system for solid-state quantum memories. Integrating these materials in an on-chip optical platform would create opportunities for highly integrated light-matter interfaces for quantum communication and quantum computing. Nano-photonic resonators with high quality factors and small mode volumes are required for efficient on-chip coupling to the small dipole moment of rare-earth ion transitions. However, direct fabrication of optical cavities in these crystals with current nanofabrication techniques is difficult and unparallelized, as either exotic etch chemistries or physical milling processes are required. We fabricated hybrid devices by mechanically transferring a nanoscale membrane of gallium arsenide (GaAs) onto a neodymium-doped yttrium silicon oxide (Y2SiO5) crystal and then using electron beam lithography and standard III-V dry etching to pattern nanobeam photonic crystal cavities and ring resonator cavities, a technique that is easily adapted to other frequency ranges for arbitrary dopants in any rare earth host system. Single crystalline GaAs was chosen for its low loss and high refractive index at the transition wavelength. We demonstrated the potential to evanescently couple between the cavity field and the 883 nm 4I9/2- 4F3/2 transition of nearby neodymium impurities in the host crystal by examining transmission spectra through a waveguide coupled to the resonator with a custom-built confocal microscope. The prospects and requirements for using this system for scalable quantum networks are discussed.

  16. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  17. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    PubMed

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  18. Device-independent quantum key distribution with generalized two-mode Schrödinger cat states

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.; Marshall, Kevin; Weedbrook, Christian; Howell, John C.

    2015-11-01

    We show how weak nonlinearities can be used in a device-independent quantum key distribution (QKD) protocol using generalized two-mode Schrödinger cat states. The QKD protocol is therefore shown to be secure against collective attacks and for some coherent attacks. We derive analytical formulas for the optimal values of the Bell parameter, the quantum bit error rate, and the device-independent secret key rate in the noiseless lossy bosonic channel. Additionally, we give the filters and measurements which achieve these optimal values. We find that, over any distance in this channel, the quantum bit error rate is identically zero, in principle, and the states in the protocol are always able to violate a Bell inequality. The protocol is found to be superior in some regimes to a device-independent QKD protocol based on polarization entangled states in a depolarizing channel. Finally, we propose an implementation for the optimal filters and measurements.

  19. Controllable switching ratio in quantum dot/metal-metal oxide nanostructure based non-volatile memory device

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Rhee, J. K.

    2012-07-01

    In this paper, we report a facile quantum dot/In-InOx(nanostructure)/quantum dot/In based non-volatile resistive memory device. The solution processed tri-layer structure exhibited bipolar resistive switching with a ratio of 100 between the high-resistance state and low-resistance state. The memory device was stable and functional even after 100,000 cycles of operation and it exhibited good retention characteristics. The ON/OFF switching ratio could be controlled by choosing appropriate metal in the structure. Memory operating mechanism is discussed based on charge trapping in quantum dots with InOx acting as barrier. A comparative study of memory devices consisting of aluminum and titanium in place of indium is presented. The possible reason for the variation in ON/OFF ratio is discussed on the size of the nano-sized grains of the middle metal layer.

  20. Development of advanced electron holographic techniques and application to industrial materials and devices.

    PubMed

    Yamamoto, Kazuo; Hirayama, Tsukasa; Tanji, Takayoshi

    2013-06-01

    The development of a transmission electron microscope equipped with a field emission gun paved the way for electron holography to be put to practical use in various fields. In this paper, we review three advanced electron holography techniques: on-line real-time electron holography, three-dimensional (3D) tomographic holography and phase-shifting electron holography, which are becoming important techniques for materials science and device engineering. We also describe some applications of electron holography to the analysis of industrial materials and devices: GaAs compound semiconductors, solid oxide fuel cells and all-solid-state lithium ion batteries.

  1. Porous graphene materials for advanced electrochemical energy storage and conversion devices.

    PubMed

    Han, Sheng; Wu, Dongqing; Li, Shuang; Zhang, Fan; Feng, Xinliang

    2014-02-12

    Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed.

  2. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  3. Computer Simulation and Measurement of Capacitance-Voltage Characteristics in Quantum Wire Devices of Trench-Oxide MOS Structure

    NASA Astrophysics Data System (ADS)

    Tsukui, Tetsuya; Oda, Shunri

    1995-02-01

    We have proposed the trench-oxide metal-oxide-semiconductor (MOS) structure as a novel quantum wire device. In this paper we present results of computer simulation based on a self-consistent system and calculated quantized electron distribution and capacitance-voltage (C-V) characteristics. We have also fabricated the quantum wire MOS structure using electron beam lithography and electron cyclotron resonance reactive ion etching method and carried out measurements of C-V characteristics at 0.55 K. Possible evidence of one-dimensional quantum effect is obtained for the first time from C-V measurements using the 28 nm-wide trench-oxide structure.

  4. Advanced InSb monolithic Charge Coupled Infrared Imaging Devices (CCIRID)

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Thom, R. D.; Parrish, W. D.

    1981-01-01

    The continued development of monolithic InSb charge coupled infrared imaging devices (CCIRIDs) is discussed. The processing sequence and structural design of 20-element linear arrays are discussed. Also, results obtained from radiometric testing of the 20-element arrays using a clamped sample-and-hold output circuit are reported. The design and layout of a next-generation CCIRID chip are discussed. The major devices on this chip are a 20 by 16 time-delay-and-integration (TDI) area array and a 100-element linear imaging array. The development of a process for incorporating an ion implanted S(+) planar channel stop into the CCIRID structure and the development of a thin film transparent photogate are also addressed. The transparent photogates will increase quantum efficiency to greater than 70% across the 2.5 to 5.4 micrometer spectral region in future front-side illuminated CCIRIDs.

  5. Tunable strong nonlinearity of a micromechanical beam embedded in a dc-superconducting quantum interference device

    SciTech Connect

    Ella, Lior Yuvaraj, D.; Suchoi, Oren; Shtempluk, Oleg; Buks, Eyal

    2015-01-07

    We present a study of the controllable nonlinear dynamics of a micromechanical beam coupled to a dc-SQUID (superconducting quantum interference device). The coupling between these systems places the modes of the beam in a highly nonlinear potential, whose shape can be altered by varying the bias current and applied flux of the SQUID. We detect the position of the beam by placing it in an optical cavity, which sets free the SQUID to be used solely for actuation. This enables us to probe the previously unexplored full parameter space of this device. We measure the frequency response of the beam and find that it displays a Duffing oscillator behavior which is periodic in the applied magnetic flux. To account for this, we develop a model based on the standard theory for SQUID dynamics. In addition, with the aim of understanding if the device can reach nonlinearity at the single phonon level, we use this model to show that the responsivity of the current circulating in the SQUID to the position of the beam can become divergent, with its magnitude limited only by noise. This suggests a direction for the generation of macroscopically distinguishable superposition states of the beam.

  6. Increasing operational command and control security by the implementation of device independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bovino, Fabio Antonio; Messina, Angelo

    2016-10-01

    In a very simplistic way, the Command and Control functions can be summarized as the need to provide the decision makers with an exhaustive, real-time, situation picture and the capability to convey their decisions down to the operational forces. This two-ways data and information flow is vital to the execution of current operations and goes far beyond the border of military operations stretching to Police and disaster recovery as well. The availability of off-the shelf technology has enabled hostile elements to endanger the security of the communication networks by violating the traditional security protocols and devices and hacking sensitive databases. In this paper an innovative approach based to implementing Device Independent Quantum Key Distribution system is presented. The use of this technology would prevent security breaches due to a stolen crypto device placed in an end-to-end communication chain. The system, operating with attenuated laser, is practical and provides the increasing of the distance between the legitimate users.

  7. Parasitic effects in superconducting quantum interference device-based radiation comb generators

    SciTech Connect

    Bosisio, R.; Giazotto, F.; Solinas, P.

    2015-12-07

    We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.

  8. Memristive Devices with Highly Repeatable Analog States Boosted by Graphene Quantum Dots.

    PubMed

    Wang, Changhong; He, Wei; Tong, Yi; Zhang, Yishu; Huang, Kejie; Song, Li; Zhong, Shuai; Ganeshkumar, Rajasekaran; Zhao, Rong

    2017-03-15

    Memristive devices, having a huge potential as artificial synapses for low-power neural networks, have received tremendous attention recently. Despite great achievements in demonstration of plasticity and learning functions, little progress has been made in the repeatable analog resistance states of memristive devices, which is, however, crucial for achieving controllable synaptic behavior. The controllable behavior of synapse is highly desired in building neural networks as it helps reduce training epochs and diminish error probability. Fundamentally, the poor repeatability of analog resistance states is closely associated with the random formation of conductive filaments, which consists of oxygen vacancies. In this work, graphene quantum dots (GQDs) are introduced into memristive devices. By virtue of the abundant oxygen anions released from GQDs, the GQDs can serve as nano oxygen-reservoirs and enhance the localization of filament formation. As a result, analog resistance states with highly tight distribution are achieved with nearly 85% reduction in variations. In addition the insertion of GQDs can alter the energy band alignment and boost the tunneling current, which leads to significant reduction in both switching voltages and their distribution variations. This work may pave the way for achieving artificial neural networks with accurate and efficient learning capability.

  9. Effect of Mandibular Advancement Device Therapy on the Signs and Symptoms of Temporomandibular Disorders

    PubMed Central

    Raunio, Antti; Sipilä, Kirsi; Raustia, Aune

    2012-01-01

    ABSTRACT Objectives Mandibular advancement device therapy is effectively used in the treatment of obstructive sleep apnea, but also several side effects in the masticatory system have been reported. The aim of this study was to evaluate the subjective symptoms and clinical signs of temporomandibular disorders connected to mandibular advancement device therapy. Material and Methods The material consisted of 15 patients (9 men and 6 women, mean age 51.1 years, range 21 to 70 years) diagnosed with obstructive sleep apnea (OSA). Subjective symptoms and clinical temporomandibular disorders (TMD) signs were recorded at the beginning of the treatment (baseline) and at 1-month, 3-month, 6-month and 24-month follow-ups. The degree of TMD was assessed using the anamnestic (Ai) and the clinical dysfunction index (Di) of Helkimo. For assessing the effect of TMD the patients were divided in discontinuing and continuing groups. Results According to Ai and Di, the severity of TMD remained unchanged during the follow-up in most of the patients. Temporomandibular joint (TMJ) crepitation was found more frequently in discontinuing patients at all follow-ups. The difference was statistically significant (P < 0.05) at the six-month follow-up. Masticatory muscle pain during palpation was a frequent clinical sign at the baseline and during the follow-up period but the difference between discontinuing and continuing patients was not significant. Conclusions It seems that signs and symptoms of temporomandibular disorders do not necessarily increase during long-term mandibular advancement device therapy. However, it seems that patients with clinically assessed temporomandibular joint crepitation may discontinue their mandibular advancement device therapy due to temporomandibular disorders. PMID:24422023

  10. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features. Phase III. Electronic Warfare Trainers.

    DTIC Science & Technology

    1986-04-01

    Devices: Utility and Utilization of Advanced Instructional Features (Phase III- Electronic Warfare Trainers) 12 PERSONAL AUTHOR(S) Polzella . Donald J...Features, addressed a portion of this subthrust. Dr. Wayne Waag (AFHRL/OTU) was the Contract Monitor and Dr. Donald J. Polzella and Dr. David C. Hubbard...training is practicable (see Polzella , 1983, p.8). However, instructional features are expensive to implement, especially those features that require the

  11. Quantum efficiency as a device-physics interpretation tool for thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Nagle, Timothy J.

    2007-12-01

    Thin-film solar cells made from CdTe and CIGS p-type absorbers are promising candidates for generating pollution-free electricity. The challenge faced by the thin-film photovoltaics (PV) community is to improve the electrical properties of devices, without straying from low-cost, industry-friendly techniques. This dissertation will focus on the use of quantum-efficiency (QE) measurements to deduce the device physics of thin-film devices, in the hope of improving electrical properties and efficiencies of PV materials. Photons which are absorbed, but not converted into electrical energy can modify the energy bands in the solar cell. Under illumination, photoconductivity in the CdS window layer can result in bands different from those in the dark. QE data presented here was taken under a variety of light-bias conditions. These results suggest that 0.10 sun of white-light bias incident on the CdS layer is usually sufficient to achieve accurate QE results. QE results are described by models based on carrier collection by drift and diffusion, and photon absorption. These models are sensitive to parameters such as carrier mobility and lifetime. Comparing calculated QE curves with experiments, it was determined that electron lifetimes in CdTe are less than 0.1 ns. Lifetime determinations also suggest that copper serves as a recombination center in CdTe. The spatial uniformity of QE results has been investigated with the LBIC apparatus, and several experiments are described which investigate cell uniformity. Electrical variations that occur in solar cells often occur in a nonuniform fashion, and can be detected with the LBIC apparatus. Studies discussed here include investigation of patterned deposition of Cu in back-contacts, the use of high-resistivity TCO layers to mitigate nonuniformity, optical effects, and local shunts. CdTe devices with transparent back contacts were also studied with LBIC, including those that received a strong bromine/dichrol/hydrazine (BDH) etch

  12. Long distance measurement-device-independent quantum key distribution with entangled photon sources

    SciTech Connect

    Xu, Feihu; Qi, Bing; Liao, Zhongfa; Lo, Hoi-Kwong

    2013-08-05

    We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.

  13. Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication Using Coherent States

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Guo, Ying

    2017-02-01

    A continuous-variable measurement-device-independent (CV-MDI) multipartite quantum communication protocol is designed to realize multipartite communication based on the GHZ state analysis using Gaussian coherent states. It can remove detector side attack as the multi-mode measurement is blindly done in a suitable Black Box. The entanglement-based CV-MDI multipartite communication scheme and the equivalent prepare-and-measurement scheme are proposed to analyze the security and guide experiment, respectively. The general eavesdropping and coherent attack are considered for the security analysis. Subsequently, all the attacks are ascribed to coherent attack against imperfect links. The asymptotic key rate of the asymmetric configuration is also derived with the numeric simulations illustrating the performance of the proposed protocol.

  14. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  15. A tunable bistable device based on a coupled quantum dot-metallic nanoparticle nanosystem

    NASA Astrophysics Data System (ADS)

    Li, Jian-Bo; Liang, Shan; He, Meng-Dong; Chen, Li-Qun; Wang, Xin-Jun; Peng, Xiao-Fang

    2015-07-01

    We theoretically propose a scheme of a tunable bistable device based on a coupled semiconductor quantum dot-metal nanoparticle nanosystem in the simultaneous presence of a strong pump laser and a weak probe laser with different frequencies. The results show that it is easy to turn on or off the optical bistable effect in such system by switching the polarization direction of the pump field, and the bistability thresholds are highly sensitive to the intensity, frequency, polarization direction of the pump field, and the interparticle distance. In addition, the nonlinear absorption in the two stable states exhibits a ratio as high as 104 arising from the three-photon effect, which implies that our nanosystem can also be used as an optical memory cell.

  16. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    SciTech Connect

    Kim, Jin-Mok Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  17. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    SciTech Connect

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  18. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  19. Linearized superconducting quantum interference device array for high bandwidth frequency-domain readout multiplexing.

    PubMed

    Lanting, T; Dobbs, M; Spieler, H; Lee, A T; Yamamoto, Y

    2009-09-01

    We have designed and demonstrated a superconducting quantum interference device (SQUID) array linearized with cryogenic feedback. To achieve the necessary loop gain, a 300-element series array SQUID is constructed from three monolithic 100-element series arrays. A feedback resistor completes the loop from the SQUID output to the input coil. The short feedback path of this linearized SQUID array (LISA) allows for a substantially larger flux-locked loop bandwidth as compared to a SQUID flux-locked loop that includes a room temperature amplifier. The bandwidth, linearity, noise performance, and 3 Phi(0) dynamic range of the LISA are sufficient for its use in our target application: the multiplexed readout of transition-edge sensor bolometers.

  20. External driving synchronization in a superconducting quantum interference device based oscillator

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhao, Peng; Yu, Haifeng; Yu, Yang

    2016-11-01

    We propose an external driving, self-sustained oscillator based on superconducting resonators. The dynamics of the self-sustained oscillator can be described by a Duffing-van der Pol like equation. Under external driving, the self-sustained oscillator presents synchronization phenomena. We analytically and numerically investigate the synchronization regions, and the results show that the synchronization bandwidth can be quickly adjusted in situ by the external weak magnetic field in sub-nano seconds. Moreover, the system can re-stabilize in about 10 ns with a certain sudden change of driving frequency or the critical current of the superconducting quantum interference device (SQUID). These advantages allow the potential applications of self-sustained oscillators in timing reference, microwave communication and electromagnetic sensing.

  1. Experimental validation of superconducting quantum interference device sensors for electromagnetic scattering in geologic structures

    SciTech Connect

    Krauss, R.H. Jr.; Flynn, E.; Ruminer, P.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project has supported the collaborative development with Sandia National Laboratories (SNL) and the University of New Mexico (UNM) of two critical components for a hand-held low-field magnetic sensor based on superconducting quantum interference device (SQUID) sensor technology. The two components are a digital signal processing (DSP) algorithm for background noise rejection and a small hand-held dewar cooled by a cryocooler. A hand-held sensor has been designed and fabricated for detection of extremely weak magnetic fields in unshielded environments. The sensor is capable of measuring weak magnetic fields in unshielded environments and has multiple applications. We have chosen to pursue battlefield medicine as the highest probability near-term application because of stated needs of several agencies.

  2. Tomographic Approach in Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Fang, Xi; Wang, Chao; Han, Yun-Guang; Yin, Zhen-Qiang; Chen, Wei; Han, Zheng-Fu

    2016-11-01

    Recently, a novel reference-frame-independent measurement-device-independent quantum key distribution protocol was proposed, which can remove all detector side channels as well as tolerate unknown and slow variance of reference frame without active alignment. In this paper, we propose a new tomographic method to estimate the key rate in that protocol. We estimate the key rate using conventional method and tomographic method respectively and compare the two methods by numerical simulation. The numerical simulation results show that tomographic approach is equivalent to the conventional approach, which can be used as an alternative method. Supported by the National Basic Research Program of China under Grant Nos. 2011CBA00200 and 2011CB921200, the National Natural Science Foundation of China under Grant Nos. 61475148, 61575183, and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences under Grant Nos. XDB01030100, XDB01030300

  3. Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots.

    PubMed

    Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun

    2015-03-12

    Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.

  4. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  5. Novel non-local effects in three-terminal hybrid devices with quantum dot.

    PubMed

    Michałek, G; Domański, T; Bułka, B R; Wysokiński, K I

    2015-09-29

    We predict non-local effect in the three-terminal hybrid device consisting of the quantum dot (QD) tunnel coupled to two normal and one superconducting reservoirs. It manifests itself as the negative non-local resistance and results from the competition between the ballistic electron transfer (ET) and the crossed Andreev scattering (CAR). The effect is robust both in the linear and non-linear regimes. In the latter case the screening of charges and the long-range interactions play significant role. We show that sign change of the non-local conductance depends on the subgap Shiba/Andreev states, and it takes place even in absence of the Coulomb interactions. The effect is large and can be experimentally verified using the four probe setup. Since the induced non-local voltage changes sign and magnitude upon varying the gate potential and/or coupling of the quantum dot to the superconducting lead, such measurement could hence provide a controlled and precise method to determine the positions of the Shiba/Andreev states. Our predictions ought to be contrasted with non-local effects observed hitherto in the three-terminal planar junctions where the residual negative non-local conductance has been observed at large voltages, related to the Thouless energy of quasiparticles tunneling through the superconducting slab.

  6. Novel non-local effects in three-terminal hybrid devices with quantum dot

    NASA Astrophysics Data System (ADS)

    Michałek, G.; Domański, T.; Bułka, B. R.; Wysokiński, K. I.

    2015-09-01

    We predict non-local effect in the three-terminal hybrid device consisting of the quantum dot (QD) tunnel coupled to two normal and one superconducting reservoirs. It manifests itself as the negative non-local resistance and results from the competition between the ballistic electron transfer (ET) and the crossed Andreev scattering (CAR). The effect is robust both in the linear and non-linear regimes. In the latter case the screening of charges and the long-range interactions play significant role. We show that sign change of the non-local conductance depends on the subgap Shiba/Andreev states, and it takes place even in absence of the Coulomb interactions. The effect is large and can be experimentally verified using the four probe setup. Since the induced non-local voltage changes sign and magnitude upon varying the gate potential and/or coupling of the quantum dot to the superconducting lead, such measurement could hence provide a controlled and precise method to determine the positions of the Shiba/Andreev states. Our predictions ought to be contrasted with non-local effects observed hitherto in the three-terminal planar junctions where the residual negative non-local conductance has been observed at large voltages, related to the Thouless energy of quasiparticles tunneling through the superconducting slab.

  7. Tiny adiabatic-demagnetization refrigerator for a commercial superconducting quantum interference device magnetometer.

    PubMed

    Sato, Taku J; Okuyama, Daisuke; Kimura, Hideo

    2016-12-01

    A tiny adiabatic-demagnetization refrigerator (T-ADR) has been developed for a commercial superconducting quantum interference device magnetometer [Magnetic Property Measurement System (MPMS) from Quantum Design]. The whole T-ADR system is fit in a cylindrical space of diameter 8.5 mm and length 250 mm, and can be inserted into the narrow sample tube of MPMS. A sorption pump is self-contained in T-ADR, and hence no complex gas handling system is necessary. With the single crystalline Gd3Ga5O12 garnet (∼2 g) used as a magnetic refrigerant, the routinely achievable lowest temperature is ∼0.56 K. The lower detection limit for a magnetization anomaly is ∼1 × 10(-7) emu, estimated from fluctuation of the measured magnetization. The background level is ∼5 × 10(-5) emu below 2 K at H = 100 Oe, which is largely attributable to a contaminating paramagnetic signal from the magnetic refrigerant.

  8. Tiny adiabatic-demagnetization refrigerator for a commercial superconducting quantum interference device magnetometer

    NASA Astrophysics Data System (ADS)

    Sato, Taku J.; Okuyama, Daisuke; Kimura, Hideo

    2016-12-01

    A tiny adiabatic-demagnetization refrigerator (T-ADR) has been developed for a commercial superconducting quantum interference device magnetometer [Magnetic Property Measurement System (MPMS) from Quantum Design]. The whole T-ADR system is fit in a cylindrical space of diameter 8.5 mm and length 250 mm, and can be inserted into the narrow sample tube of MPMS. A sorption pump is self-contained in T-ADR, and hence no complex gas handling system is necessary. With the single crystalline Gd3Ga5O12 garnet (˜2 g) used as a magnetic refrigerant, the routinely achievable lowest temperature is ˜0.56 K. The lower detection limit for a magnetization anomaly is ˜1 × 10-7 emu, estimated from fluctuation of the measured magnetization. The background level is ˜5 × 10-5 emu below 2 K at H = 100 Oe, which is largely attributable to a contaminating paramagnetic signal from the magnetic refrigerant.

  9. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  10. Development and Evaluation of an Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System for Detection, Characterization and Mapping of Unexploded Ordnance

    DTIC Science & Technology

    2008-08-01

    FINAL REPORT Development and Evaluation of an Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System...Airborne Superconducting Quantum Interference Device-Based Magnetic Gradiometer Tensor System for Detection, Characterization and Mapping of Unexploded...Demonstration of the difference between a single component total field magnetometer and intrinsic gradiometer . (From Clarke, 1994). 4 Figure 3

  11. Reliability of Strength Testing using the Advanced Resistive Exercise Device and Free Weights

    NASA Technical Reports Server (NTRS)

    English, Kirk L.; Loehr, James A.; Laughlin, Mitzi A.; Lee, Stuart M. C.; Hagan, R. Donald

    2008-01-01

    The Advanced Resistive Exercise Device (ARED) was developed for use on the International Space Station as a countermeasure against muscle atrophy and decreased strength. This investigation examined the reliability of one-repetition maximum (1RM) strength testing using ARED and traditional free weight (FW) exercise. Methods: Six males (180.8 +/- 4.3 cm, 83.6 +/- 6.4 kg, 36 +/- 8 y, mean +/- SD) who had not engaged in resistive exercise for at least six months volunteered to participate in this project. Subjects completed four 1RM testing sessions each for FW and ARED (eight total sessions) using a balanced, randomized, crossover design. All testing using one device was completed before progressing to the other. During each session, 1RM was measured for the squat, heel raise, and deadlift exercises. Generalizability (G) and intraclass correlation coefficients (ICC) were calculated for each exercise on each device and were used to predict the number of sessions needed to obtain a reliable 1RM measurement (G . 0.90). Interclass reliability coefficients and Pearson's correlation coefficients (R) also were calculated for the highest 1RM value (1RM9sub peak)) obtained for each exercise on each device to quantify 1RM relationships between devices.

  12. Scanning gate microscopy of magnetic focusing in graphene devices: quantum vs. classical simulation.

    PubMed

    Petrović, Marko D; Milovanović, Slaviša; Peeters, Francois

    2017-03-17

    We compare classical versus quantum electron transport in recently investigated magnetic focusing devices [S. Bhandari et al., Nano Lett. 16, 1690 (2016)] exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Büttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.

  13. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  14. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE PAGES

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; ...

    2016-08-09

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  15. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    SciTech Connect

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo

    2016-08-09

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.

  16. Two methods for a first order hardware gradiometer using two high temperature superconducting quantum interference devices

    SciTech Connect

    Espy, M.A.; Kraus, R.H. Jr.; Flynn, E.R.; Matlashov, A.

    1998-01-01

    Two different systems for noise cancellation (first order gradiometers) have been developed using two similar high temperature superconducting quantum interference devices (SQUIDs). {open_quotes}Analog{close_quotes} gradiometry is accomplished in hardware by either (1) subtracting the signals from the sensor and background SQUIDs at a summing amplifier (parallel technique) or (2) converting the inverted background SQUID signal to a magnetic field at the sensor SQUID (series technique). Balance levels (ability to reject a uniform background magnetic field) achieved are 2{times}10{sup 3} and 1{times}10{sup 3} at 20 Hz for the parallel and series methods, respectively. The balance level as a function of frequency is also presented. The effects which time delays (phase differences) in the two sets of SQUID electronics have on these balance levels are presented and discussed. It is shown that these delays, along with geometrical considerations, are the limiting factor for balance level for any electronic gradiometer system using two (or more) SQUIDs, a very different situation from the case with wire-wound gradiometers. Results using a dipole field to study the performance of both the parallel and series devices functioning as gradiometers in an unshielded laboratory are presented and compared with theory. {copyright} {ital 1998 American Institute of Physics.}

  17. Development of a Cryostat to Characterize Nano-scale Superconducting Quantum Interference Devices

    NASA Astrophysics Data System (ADS)

    Longo, Mathew; Matheny, Matthew; Knudsen, Jasmine

    2016-03-01

    We have designed and constructed a low-noise vacuum cryostat to be used for the characterization of nano-scale superconducting quantum interference devices (SQUIDs). Such devices are very sensitive to magnetic fields and can measure changes in flux on the order of a single electron magnetic moment. As a part of the design process, we calculated the separation required between the cryogenic preamplifier and superconducting magnet, including a high-permeability magnetic shield, using a finite-element model of the apparatus. The cryostat comprises a vacuum cross at room temperature for filtered DC and shielded RF electrical connections, a thin-wall stainless steel support tube, a taper-sealed cryogenic vacuum can, and internal mechanical support and wiring for the nanoSQUID. The Dewar is modified with a room-temperature flange with a sliding seal for the cryostat. The flange supports the superconducting 3 Tesla magnet and thermometry wiring. Upon completion of the cryostat fabrication and Dewar modifications, operation of the nanoSQUIDs as transported from our collaborator's laboratory in Israel will be confirmed, as the lead forming the SQUID is sensitive to oxidation and the SQUIDs must be shipped in a vacuum container. After operation of the nanoSQUIDs is confirmed, the primary work of characterizing their high-speed properties will begin. This will include looking at the measurement of relaxation oscillations at high bandwidth in comparison to the theoretical predictions of the current model.

  18. Semi-device-independent randomness expansion with partially free random sources using 3 →1 quantum random access code

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Qian; Gao, Fei; Li, Dan-Dan; Li, Xin-Hui; Wen, Qiao-Yan

    2016-09-01

    We have proved that new randomness can be certified by partially free sources using 2 →1 quantum random access code (QRAC) in the framework of semi-device-independent (SDI) protocols [Y.-Q. Zhou, H.-W. Li, Y.-K. Wang, D.-D. Li, F. Gao, and Q.-Y. Wen, Phys. Rev. A 92, 022331 (2015), 10.1103/PhysRevA.92.022331]. To improve the effectiveness of the randomness generation, here we propose the SDI randomness expansion using 3 →1 QRAC and obtain the corresponding classical and quantum bounds of the two-dimensional quantum witness. Moreover, we get the condition which should be satisfied by the partially free sources to successfully certify new randomness, and the analytic relationship between the certified randomness and the two-dimensional quantum witness violation.

  19. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices.

    PubMed

    Bakulin, Artem A; Neutzner, Stefanie; Bakker, Huib J; Ottaviani, Laurent; Barakel, Damien; Chen, Zhuoying

    2013-10-22

    The efficiency of solution-processed colloidal quantum dot (QD) based solar cells is limited by poor charge transport in the active layer of the device, which originates from multiple trapping sites provided by QD surface defects. We apply a recently developed ultrafast electro-optical technique, pump-push photocurrent spectroscopy, to elucidate the charge trapping dynamics in PbS colloidal-QD photovoltaic devices at working conditions. We show that IR photoinduced absorption of QD in the 0.2-0.5 eV region is partly associated with immobile charges, which can be optically detrapped in our experiment. Using this absorption as a probe, we observe that the early trapping dynamics strongly depend on the nature of the ligands used for QD passivation, while it depends only slightly on the nature of the electron-accepting layer. We find that weakly bound states, with a photon-activation energy of 0.2 eV, are populated instantaneously upon photoexcitation. This indicates that the photogenerated states show an intrinsically bound-state character, arguably similar to charge-transfer states formation in organic photovoltaic materials. Sequential population of deeper traps (activation energy 0.3-0.5 eV) is observed on the ~0.1-10 ns time scales, indicating that most of carrier trapping occurs only after substantial charge relaxation/transport. The reported study disentangles fundamentally different contributions to charge trapping dynamics in the nanocrystal-based optoelectronic devices and can serve as a useful tool for QD solar cell development.

  20. [Research progress on the treatment of obstructive sleep apnea and hypopnea syndrome with mandibular advancement device].

    PubMed

    Li, De-hong; Yang, Xiang-hong; Guo, Tian-wen

    2010-04-01

    Obstructive sleep apnea and hypopnea syndrome (OSAHS) is characterized by obstruction of upper airway and respiratory disturbance, excessive daytime sleepiness and tiredness.The possible causes are obesity, hypertension, and upper airway malformations,etc. The location and degree of upper airway structure narrowing in patients have been investigated in many ways, such as X-ray, multi-slices spiral computed tomography, etc. With multi-planar reconstruction technique,3-dimensional construction of upper airway can be established which shows the delicate changes of the upper airway structure. Mandibular advancement device is known as an effective treatment on mild and moderate OSAHS. By advancing the mandible forward, it can increase the space of upper airway, especially the oropharyngeal space. This paper reviewed the methods of investigating on OSAHS and the change of upper airway structure in OSAHS patients treated with mandibular advancement device. Supported by Combined Research Fund of Bureau of Health, Yunan Province and Kunming Medical College(Grant No.2009CD205).

  1. Advanced boundary condition method in quantum transport and its application in nanodevices

    NASA Astrophysics Data System (ADS)

    He, Yu

    Modern semiconductor devices have reached critical dimensions in the sub-20nm range. During the last decade, quantum transport methods have become the standard approaches to model nanoscale devices. In quantum transport methods, Schrodinger equations are solved in the critical device channel with the contacts served as the open boundary conditions. Proper and efficient treatments of these boundary conditions are essential to provide accurate prediction of device performance. The open boundary conditions, which represent charge injection and extraction effects, are described by contact self-energies. All existing contact self-energy methods assume periodic and semiinfinite contacts, which are in stark contrast to realistic devices where the contacts often have complicated geometries or imperfections. On the other hand, confined structures such as quantum dots, nanowires, and ultra-thin bodies play an important role in nanodevice designs. In the tight binding models of these confined structures, the surfaces require appropriate boundary treatments to remove the dangling bonds. The existing boundary treatments fall into two categories. One is to explicitly include the passivation atoms in the device. This is limited to passivation with atoms and small molecules due to the increasing rank of the Hamiltonian. The other is to implicitly incorporate passivation by altering the orbital energies of the dangling bonds with a passivation potential. This method only works for certain crystal structures and symmetries, and fails to distinguish different passivation scenarios, such as hydrogen and oxygen passivation. In this work, an efficient self-energy method applicable for arbitrary contact structures is developed. This method is based on an iterative algorithm which considers the explicit contact segments. The method is demonstrated on a graphene nanoribbon structure with trumpet shape contacts and a Si0.5Ge0.5 nanowire transistor with alloy disorder contacts. Furthermore

  2. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOEpatents

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  3. Simulation and Experimental Study on Anti-reflection Characteristics of Nano-patterned Si Structures for Si Quantum Dot-Based Light-Emitting Devices.

    PubMed

    Shao, Wenyi; Lu, Peng; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji

    2016-12-01

    Surface-textured structure is currently an interesting topic since it can efficiently reduce the optical losses in advanced optoelectronic devices via light management. In this work, we built a model in finite-difference time-domain (FDTD) solutions by setting the simulation parameters based on the morphology of the Si nanostructures and compared with the experimental results in order to study the anti-reflection behaviors of the present nano-patterned structures. It is found that the reflectance is gradually reduced by increasing the depth of Si nanostructures which is in well agreement with the experimental observations. The reflectance can be lower than 10 % in the light range from 400 to 850 nm for Si nano-patterned structures with a depth of 150 nm despite the quite low aspect ratio, which can be understood as the formation of gradually changed index layer and the scattering effect of Si nano-patterned structures. By depositing the Si quantum dots/SiO2 multilayers on nano-patterned Si substrate, the reflectance can be further suppressed and the luminescence intensity centered at 820 nm from Si quantum dots is enhanced by 6.6-fold compared with that of flat one, which can be attributed to the improved light extraction efficiency. However, the further etch time causes the reduction of luminescence intensity from Si quantum dots which may ascribe to the serious surface recombination of carriers.

  4. Descriptions of a linear device developed for research on advanced plasma imaging and dynamics.

    PubMed

    Chung, J; Lee, K D; Seo, D C; Nam, Y U; Ko, W H; Lee, J H; Choi, M C

    2009-10-01

    The research on advanced plasma imaging and dynamics (RAPID) device is a newly developed linear electron cyclotron resonance (ECR) plasma device. It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. A 6 kW 2.45 GHz magnetron is used to produce steady-state ECR plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). The cylindrical stainless steel vacuum chamber is 300 mm in diameter and 750 mm in length and has eight radial and ten axial ports including 6-in. and 8-in. viewing windows for heating and diagnostics. Experimental observation of ECR plasma heating has been recently carried out during the initial plasma operation. The main diagnostic systems including a 94 GHz heterodyne interferometer, a high-resolution 25 channel one-dimensional array spectrometer, a single channel survey spectrometer, and an electric probe have been also prepared. The RAPID device is a flexible simulator for the understanding of tokamak edge plasma physics and new diagnostic system development. In this work, we describe the RAPID device and initial operation results.

  5. Descriptions of a linear device developed for research on advanced plasma imaging and dynamics

    SciTech Connect

    Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Ko, W. H.; Lee, J. H.; Choi, M. C.

    2009-10-15

    The research on advanced plasma imaging and dynamics (RAPID) device is a newly developed linear electron cyclotron resonance (ECR) plasma device. It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. A 6 kW 2.45 GHz magnetron is used to produce steady-state ECR plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). The cylindrical stainless steel vacuum chamber is 300 mm in diameter and 750 mm in length and has eight radial and ten axial ports including 6-in. and 8-in. viewing windows for heating and diagnostics. Experimental observation of ECR plasma heating has been recently carried out during the initial plasma operation. The main diagnostic systems including a 94 GHz heterodyne interferometer, a high-resolution 25 channel one-dimensional array spectrometer, a single channel survey spectrometer, and an electric probe have been also prepared. The RAPID device is a flexible simulator for the understanding of tokamak edge plasma physics and new diagnostic system development. In this work, we describe the RAPID device and initial operation results.

  6. Characterization of organic and inorganic optoelectronic semiconductor devices using advanced spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Schroeder, Raoul

    In this thesis, advanced spectroscopy methods are discussed and applied to gain understanding of the physical properties of organic conjugated molecules, II-VI thin film semiconductors, and vertical cavity surface emitting lasers (VCSEL). Experiments include single photon and two-photon excitation with lasers, with subsequent measurements of the absorption and photoluminescence, as well as photocurrent measurements using tungsten and xenon lamps, measuring the direct current and the alternating current of the devices. The materials are investigated in dissolved form (conjugated polymers), thin films (polymers, II-VI semiconductors), and complex layer structures (hybrid device, VCSEL). The experiments are analyzed and interpreted by newly developed or applied theories for two-photon saturation processes in semiconductors, bandgap shrinkage due to optically induced electron hole pairs, and the principle of detailed balance to describe the photoluminescence in thin film cadmium sulfide.

  7. Centre for Advanced Microstructures and Devices (CAMD) at Louisiana State University

    NASA Astrophysics Data System (ADS)

    Stockbauer, Roger L.; Poliakoff, Erwin D.; Ajmera, Pratul; Craft, Ben C.; Saile, Volker

    1990-06-01

    The Centre for Advanced Microstructures and Devices (CAMD) has been established by the Department of Energy at Louisiana State University for the expressed purpose of developing X-ray lithography based techniques for manufacturing microcircuits. The heart of the Center will be a synchrotron light source optimized for the soft X-ray region and will be the first commercially manufactured electron storage ring in the United States. The magnet lattice is based on a design developed by Chasman and Green and will be similar to the VUV ring at Brookhaven NSLS and will operate at 1.2 GeV with a critical wavelength of 9.5 Å. Straight sections will allow up to three insertion devices to be installed for higher energy and higher intensity radiation. In addition to the lithography effort, experimental programs are being established in physics, chemistry, and related areas.

  8. A new synchrotron light source at Louisiana State University's Center for Advanced Microstructures and Devices

    NASA Astrophysics Data System (ADS)

    Stockbauer, Roger L.; Ajmera, Pratul; Poliakoff, Erwin D.; Craft, Ben C.; Saile, Volker

    1990-05-01

    A 1.2-GeV synchrotron light source is being constructed at the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University. The expressed purpose of the center, which has been funded by a grant from the US Department of Energy, is to develop X-ray lithography techniques for manufacturing microcircuits, although basic science programs are also being established. The storage ring will be optimized for the soft-X-ray region and will be the first commercially manufactured electron storage ring in the United States. The magnetic lattice is based on a design developed by Chasman and Green and will allow up to three insertion devices to be installed for higher-energy and higher-intensity radiation. In addition to the lithography effort, experimental programs are being established in physics, chemistry, and related areas.

  9. Sharp-switching band-modulation back-gated devices in advanced FDSOI technology

    NASA Astrophysics Data System (ADS)

    El Dirani, Hassan; Fonteneau, Pascal; Solaro, Yohann; Legrand, Charles-Alex; Marin-Cudraz, David; Ferrari, Philippe; Cristoloveanu, Sorin

    2017-02-01

    A band-modulation device with a free top surface, named Z3-FET (Zero front-gate, Zero swing slope and Zero impact ionization) and fabricated in the most advanced Fully Depleted Silicon-On-Insulator technology, is demonstrated experimentally. Since the device has no front gate, the operation mechanism is controlled by two adjacent heavily doped buried ground planes acting as back-gates. Characteristics such as sharp quasi-vertical switching, low leakage, and tunable trigger voltage are measured and discussed. We explore several variants (thin and thick silicon or SiGe body) and show promising results in terms of high current, switching performance and ESD capability with relatively low back-gate and drain bias operation.

  10. Left ventricular assist device driveline infections: recent advances and future goals

    PubMed Central

    2015-01-01

    Left ventricular assist devices (LVADs) have revolutionized the treatment of advanced heart failure, but infection remains a substantial risk. LVAD driveline infections (DLIs) are the most common type of LVAD-associated infection (LVADI). In the past several years we have expanded our understanding of DLI epidemiology, standardized the definition of LVADIs, improved infection rates through changes in implantation techniques, and investigated potential new modalities for DLI diagnosis. However, significant challenges remain for optimizing DLI prevention and treatment. These challenges include standardizing and improving both empiric and targeted antimicrobial therapy, expanding our understanding of effective driveline exit site dressings and topical therapies, and defining the patient population that benefits from device exchange and transplant. Additionally, in an era of expanding antibiotic resistance we need to continue investigating novel, non-antibiotic therapies for prevention and treatment of DLIs. PMID:26793335

  11. Management of severe obstructive sleep apnea using mandibular advancement devices with auto continuous positive airway pressures

    PubMed Central

    Upadhyay, Rashmi; Dubey, Abhishek; Kant, Surya; Singh, Balendra Pratap

    2015-01-01

    The use of continuous positive airway pressures (CPAP) is considered standard treatment of moderate to severe obstructive sleep apnea (OSA). Treatment of the disease poses a great challenge not only for its diagnostic purpose but also for its treatment part. In about 29-83% of the patients, treatment is difficult because of non-compliance resulting due to high pressures, air leaks and other related issues. In such situations, alternative methods of treatment need to be looked for so as to ascertain better management. Mandibular advancement devices along with CPAP may show better treatment outcome in specific situations. PMID:25814802

  12. Development of the Vibration Isolation System for the Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Niebuhr, Jason H.; Hagen, Richard A.

    2011-01-01

    This paper describes the development of the Vibration Isolation System for the Advanced Resistive Exercise Device from conceptual design to lessons learned. Maintaining a micro-g environment on the International Space Station requires that experiment racks and major vibration sources be isolated. The challenge in characterizing exercise loads and testing the system in the presence of gravity led to a decision to qualify the system by analysis. Available data suggests that the system is successful in attenuating loads, yet there has been a major component failure and several procedural issues during its 3 years of operational use.

  13. Computational Models of Exercise on the Advanced Resistance Exercise Device (ARED)

    NASA Technical Reports Server (NTRS)

    Newby, Nate; Caldwell, Erin; Scott-Pandorf, Melissa; Peters,Brian; Fincke, Renita; DeWitt, John; Poutz-Snyder, Lori

    2011-01-01

    Muscle and bone loss remain a concern for crew returning from space flight. The advanced resistance exercise device (ARED) is used for on-orbit resistance exercise to help mitigate these losses. However, characterization of how the ARED loads the body in microgravity has yet to be determined. Computational models allow us to analyze ARED exercise in both 1G and 0G environments. To this end, biomechanical models of the squat, single-leg squat, and deadlift exercise on the ARED have been developed to further investigate bone and muscle forces resulting from the exercises.

  14. [Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].

    PubMed

    Suhánszki, Norbert; Haidegger, Tamás

    2014-12-01

    Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education.

  15. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    SciTech Connect

    Bera, Susnata; Singh, Shashi B.; Ray, S.K.

    2012-05-15

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage ({approx}2.2 V) .The EL peak intensity was found to increase by increasing the operating current. - Graphical abstract: Light emitting diode was fabricated using CdSe quantum dots using olive oil as the capping agent, instead of toxic phosphine. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting device shows strong electroluminescence in the range 630-661 nm. Highlights: Black-Right-Pointing-Pointer CdSe Quantum dots were synthesized using olive oil as the capping agent. Black-Right-Pointing-Pointer Light emitting device was fabricated using CdSe QDs/P3HT polymer heterojunction. Black-Right-Pointing-Pointer The I-V characteristics study showed low turn on voltage at {approx}2.2 V. Black-Right-Pointing-Pointer The EL peak intensity increases with increasing the operating current.

  16. Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices

    NASA Astrophysics Data System (ADS)

    Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J.

    2012-06-01

    In this experiment a technique of mist deposition was explored as a way to form patterned ultra-thin-films of CdSe/ZnS core/shell nanocrystalline quantum dots using colloidal solutions. The objective of this study was to investigate the feasibility of mist deposition as a patterning method for creating multicolour quantum dot light emitting diodes. Mist deposition was used to create three rows of quantum dot light emitting diodes on a single device with each row having a separate colour. The colours chosen were red, green and yellow with corresponding peak wavelengths of 620 nm, 558 nm, and 587 nm. The results obtained from this experiment show that it is possible to create multicolour devices on a single substrate. The peak brightnesses obtained in this experiment for the red, green, and yellow were 508 cd/m, 507 cd/m, and 665 cd/m, respectively. The similar LED brightness is important in display technologies using colloidal quantum dots in a precursor solution to ensure one colour does not dominate the emitted spectrum. Results obtained in-terms of brightness were superior to those achieved with inkjet deposition. This study has shown that mist deposition is a viable method for patterned deposition applied to quantum dot light emitting diode display technologies.

  17. An approach to optimization of the superconducting quantum interference device bootstrap circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Zhang, Yi; Dong, Hui; Krause, Hans-Joachim; Xie, Xiaoming; Braginski, Alex I.; Offenhäusser, Andreas; Jiang, Mianheng

    2011-06-01

    Recently, we demonstrated and analysed the superconducting quantum interference device (SQUID) bootstrap circuit (SBC). It is a direct readout scheme for dc SQUID in the voltage bias mode, permitting one to suppress the preamplifier noise. The SBC enables us to control the two key parameters of a voltage-biased SQUID: the flux-to-current transfer coefficient and the dynamic resistance. The flux-to-current, I-Φ, characteristics of SBC are made asymmetric by introducing the additional current feedback. Depending upon the choice of the working point, this feedback can be positive (working point W2 on the steeper I-Φ slope) or negative (W1 on the less steep slope). The dynamic resistance is controlled by the additional voltage feedback. In our publications to date we presented only the SBC operation at W2, while in this paper we demonstrate operation at W1 and show that also in this regime the preamplifier noise suppression is possible. We used a liquid-helium-cooled Nb SQUID with a loop inductance of 350 pH and attained white flux noise of 2.5 µΦ0 Hz - 1/2 both at W2 and at W1. In the latter case, the linear flux range exceeded one half-flux quantum Φ0. This large linear range should lead to a significantly improved stability and slew rate of the system and also make the tolerable spread in circuit parameters much wider than in all SQUID direct readout schemes known to date. Consequently, operation in this regime opens a new path to possible SBC optimization.

  18. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  19. Measurement of the Radiation Incident on NbFeB Insertion Devices at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Krebs, Gary; Holmes, Michael

    1997-05-01

    The Lawrence Berkeley National Laboratories Advanced Light Source is a third generation light source containing NdFeB permanent magnet insertion devices.The lifetime of the permanent magnets in a radiation environment is of paramount importance. Measurements of the radiation incident on the insertion device magnets under various operating conditions are presented.

  20. First-principles quantum transport method for disordered nanoelectronics: Disorder-averaged transmission, shot noise, and device-to-device variability

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2017-03-01

    Because disorders are inevitable in realistic nanodevices, the capability to quantitatively simulate the disorder effects on electron transport is indispensable for quantum transport theory. Here, we report a unified and effective first-principles quantum transport method for analyzing effects of chemical or substitutional disorder on transport properties of nanoelectronics, including averaged transmission coefficient, shot noise, and disorder-induced device-to-device variability. All our theoretical formulations and numerical implementations are worked out within the framework of the tight-binding linear muffin tin orbital method. In this method, we carry out the electronic structure calculation with the density functional theory, treat the nonequilibrium statistics by the nonequilbrium Green's function method, and include the effects of multiple impurity scattering with the generalized nonequilibrium vertex correction (NVC) method in coherent potential approximation (CPA). The generalized NVC equations are solved from first principles to obtain various disorder-averaged two-Green's-function correlators. This method provides a unified way to obtain different disorder-averaged transport properties of disordered nanoelectronics from first principles. To test our implementation, we apply the method to investigate the shot noise in the disordered copper conductor, and find all our results for different disorder concentrations approach a universal Fano factor 1 /3 . As the second test, we calculate the device-to-device variability in the spin-dependent transport through the disordered Cu/Co interface and find the conductance fluctuation is very large in the minority spin channel and negligible in the majority spin channel. Our results agree well with experimental measurements and other theories. In both applications, we show the generalized nonequilibrium vertex corrections play a determinant role in electron transport simulation. Our results demonstrate the

  1. Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

    NASA Astrophysics Data System (ADS)

    Sukharev, V.; Kteyan, A.; Choy, J.-H.; Hovsepyan, H.; Markosian, A.; Zschech, E.; Huebner, R.

    2011-11-01

    Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict "good die" requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.

  2. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.

    PubMed

    Schwarz, Tobias; Nagel, Joachim; Wölbing, Roman; Kemmler, Matthias; Kleiner, Reinhold; Koelle, Dieter

    2013-01-22

    Superconductivity in the cuprate YBa(2)Cu(3)O(7) (YBCO) persists up to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct current (dc) superconducting quantum interference devices (SQUIDs) can be realized in epitaxially grown YBCO films by using grain boundary Josephson junctions (GBJs). Here we present the realization of high-quality YBCO nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-noise performance of such a SQUID up to B = 1 T applied parallel to the plane of the SQUID loop at the temperature T = 4.2 K. The GBJs are shunted by a thin Au layer to provide nonhysteretic current voltage characteristics, and the SQUID incorporates a 90 nm wide constriction which is used for on-chip modulation of the magnetic flux through the SQUID loop. The white flux noise of the device increases only slightly from 1.3 μΦ(0)/(Hz)(1/2) at B = 0 to 2.3 μΦ(0)/(Hz))(1/2) at 1 T. Assuming that a point-like magnetic particle with magnetization in the plane of the SQUID loop is placed directly on top of the constriction and taking into account the geometry of the SQUID, we calculate a spin sensitivity S(μ)(1/2) = 62 μ(B)/(Hz))(1/2) at B = 0 and 110 μ(B)/(Hz))(1/2) at 1 T. The demonstration of low noise of such a SQUID in Tesla fields is a decisive step toward utilizing the full potential of ultrasensitive nanoSQUIDs for direct measurements of magnetic hysteresis curves of magnetic nanoparticles and molecular magnets.

  3. Semiconductor quantum well lasers and related optoelectronic devices on silicon, III-V

    NASA Astrophysics Data System (ADS)

    Holonyak, N., Jr.; Hsieh, K. C.; Stillman, G. E.

    1989-06-01

    Although an ultimate goal of this work is to achieve long term reliable laser operation of Al(x)Ga(1-x)As-GaAs quantum well heterostructures (QWH's), or similar III-V QWH's, grown on Si, this has proven to be a formidable enough problem that to the best of our knowledge no one has exceeded the results we reported in 1987 and 1988. This problem is of such dimensions that it may not be solved for as much as 10 years, or even more. All we know so far is that continuous (CW) 300 K Al(x)Ga(1-x)As-GaAs QWH lasers can be grown on Si, and that, indeed, the heat sinking of an Al(x)Ga(1-x)As-GaAs QWH laser on Si is better than a similar laser on a GaAs substrate. Nevertheless, the problem of growing better versions of these devices (i.e., long-lived high performance CW 300 K lasers on Si) has run into the fundamental issue of the large GaAs-Si lattice and thermal expansion mismatch, and hence the built-in difficulty in reducing the defects guaranteed by mismatch. Accordingly, and as much as we have worked further on the problem of Al(x)Ga(1-x)As-GaAs QWH lasers on Si, we have worked as hard on other QWH laser problems, as well as a impurity-induced layer disordering (or layer intermixing, IILD) and its application in laser devices. We briefly describe this work below and append the titles and abstracts of the papers we have published on laser studies and IILD.

  4. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    PubMed

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  5. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    NASA Astrophysics Data System (ADS)

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-10-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  6. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    PubMed Central

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280

  7. Advances in methods and algorithms in a modern quantum chemistry program package.

    PubMed

    Shao, Yihan; Molnar, Laszlo Fusti; Jung, Yousung; Kussmann, Jörg; Ochsenfeld, Christian; Brown, Shawn T; Gilbert, Andrew T B; Slipchenko, Lyudmila V; Levchenko, Sergey V; O'Neill, Darragh P; DiStasio, Robert A; Lochan, Rohini C; Wang, Tao; Beran, Gregory J O; Besley, Nicholas A; Herbert, John M; Lin, Ching Yeh; Van Voorhis, Troy; Chien, Siu Hung; Sodt, Alex; Steele, Ryan P; Rassolov, Vitaly A; Maslen, Paul E; Korambath, Prakashan P; Adamson, Ross D; Austin, Brian; Baker, Jon; Byrd, Edward F C; Dachsel, Holger; Doerksen, Robert J; Dreuw, Andreas; Dunietz, Barry D; Dutoi, Anthony D; Furlani, Thomas R; Gwaltney, Steven R; Heyden, Andreas; Hirata, So; Hsu, Chao-Ping; Kedziora, Gary; Khalliulin, Rustam Z; Klunzinger, Phil; Lee, Aaron M; Lee, Michael S; Liang, Wanzhen; Lotan, Itay; Nair, Nikhil; Peters, Baron; Proynov, Emil I; Pieniazek, Piotr A; Rhee, Young Min; Ritchie, Jim; Rosta, Edina; Sherrill, C David; Simmonett, Andrew C; Subotnik, Joseph E; Woodcock, H Lee; Zhang, Weimin; Bell, Alexis T; Chakraborty, Arup K; Chipman, Daniel M; Keil, Frerich J; Warshel, Arieh; Hehre, Warren J; Schaefer, Henry F; Kong, Jing; Krylov, Anna I; Gill, Peter M W; Head-Gordon, Martin

    2006-07-21

    Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.

  8. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices

    NASA Astrophysics Data System (ADS)

    Baoping, He; Zujun, Wang; Jiangkun, Sheng; Shaoyan, Huang

    2016-12-01

    In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are examined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation structure is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is established. The I - V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I - V characteristics of 180 nm commercial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device. Project supported by the National Natural Science Foundation of China (No. 11305126).

  9. Advances in Resistive Pulse Sensors: Devices bridging the void between molecular and microscopic detection

    PubMed Central

    Kozak, Darby; Anderson, Will; Vogel, Robert; Trau, Matt

    2011-01-01

    Since the first reported use of a biological ion channel to detect differences in single stranded genomic base pairs in 1996, a renaissance in nanoscale resistive pulse sensors has ensued. This resurgence of a technique originally outlined and commercialized over fifty years ago has largely been driven by advances in nanoscaled fabrication, and ultimately, the prospect of a rapid and inexpensive means for genomic sequencing as well as other macromolecular characterization. In this pursuit, the potential application of these devices to characterize additional properties such as the size, shape, charge, and concentration of nanoscaled materials (10 – 900 nm) has been largely overlooked. Advances in nanotechnology and biotechnology are driving the need for simple yet sensitive individual object readout devices such as resistive pulse sensors. This review will examine the recent progress in pore-based sensing in the nanoscale range. A detailed analysis of three new types of pore sensors – in-series, parallel, and size-tunable pores – has been included. These pores offer improved measurement sensitivity over a wider particle size range. The fundamental physical chemistry of these techniques, which is still evolving, will be reviewed. PMID:22034585

  10. Evaluation of ExPress glaucoma filtration device in Indian patients with advanced glaucoma.

    PubMed

    Angmo, Dewang; Sharma, Reetika; Temkar, Shreyas; Dada, Tanuj

    2015-05-01

    ExPress glaucoma filtration device (GFD) has recently become available in India as a surgical option for glaucoma patients. We retrospectively evaluated the outcome of ExPress GFD in 12 eyes with advanced glaucoma with intraocular pressures (IOPs) not controlled on maximal tolerable medical therapy. The mean preoperative IOP of 29.58 ± 7.13 mmHg decreased to 17.0 ± 2.67 and 17.40 ± 0.89 mmHg at 6 and 12 months after surgery. Absolute success (IOP ≤ 18 mmHg, with no additional glaucoma medications) was achieved in eight cases (66.7%) and qualified success (IOP ≤ 18 mmHg, with additional glaucoma medications) in two cases (16.7%) at 1-year after surgery. Early intervention was needed in 4 patients; two underwent anterior chamber reformation while the other two required needling. Two patients required resurgery. There was no significant change in the best corrected visual acuity postoperatively (P = 0.37). ExPress GFD does not seem to offer a benefit over standard trabeculectomy in patients with advanced glaucomatous disease in terms of IOP control or complication rate. However, due to the small sample size with a heterogeneous mixture of primary and secondary glaucoma's, we await further studies with a larger sample size and long-term follow-up, to see how the device performs.

  11. Fabrication of a white electroluminescent device based on bilayered yellow and blue quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hoon; Lee, Ki-Heon; Kang, Hee-Don; Park, Byoungnam; Hwang, Jun Yeon; Jang, Ho Seong; Do, Young Rag; Yang, Heesun

    2015-03-01

    Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu-In-S (CIS)/ZnS is used for the formation of the emitting layer (EML) of a multilayered QLED. First, the QLED consisting of a single EML randomly mixed with two QDs is fabricated, however, its EL is dominated by blue emission with the contribution of yellow emission substantially weaker. Thus, another EML configuration is devised in the form of a QD bilayer with two stacking sequences of CdZnS/ZnS//CIS/ZnS QD and vice versa. The QLED with the former stacking sequence shows an overwhelming contribution of blue EL, similar to the mixed QD EML-based device. Upon applying the oppositely stacked QD bilayer of CIS/ZnS//CdZnS/ZnS, however, a bicolored white EL can be successfully achieved by means of the effective extension of the radiative excitonic recombination zone throughout both QD EML regions. Such QD EML configuration-dependent EL results, which are discussed primarily using the proposed device energy level diagram, strongly suggest that the positional design of individual QD emitters is a critical factor for the realization of multicolored, white emissive devices.Until now most work on colloidal quantum dot-light-emitting diodes (QLEDs) has been focused on the improvement of the electroluminescent (EL) performance of monochromatic devices, and multi-colored white QLEDs comprising more than one type of QD emitter have been rarely investigated. To demonstrate a white EL as a result of color mixing between blue and yellow, herein a unique combination of two dissimilar QDs of blue- CdZnS/ZnS plus a yellow-emitting Cu

  12. Rotational population patterns and searches for the nuclear SQUID (Superconducting Quantum Interference Device)

    SciTech Connect

    Canto, L.F.; Donangelo, R.J.; Farhan, A.R.; Guidry, M.W.; Rasmussen, J.O.; Ring, P.; Stoyer, M.A. . Inst. de Fisica; Kuwait Univ. . Dept. of Physics; Tennessee Univ., Knoxville, TN . Dept. of Physics; Lawrence Berkeley Lab., CA; Technische Univ. Muenchen, Garching . Physikdepartment; Lawrence Berkeley Lab., CA )

    1989-11-01

    This paper presents new theoretical results for rotational population patterns in the nuclear SQUID effect. (The term nuclear SQUID is in analogy to the solid-state Superconducting Quantum Interference Devices.) The SQUID effect is an interesting new twist to an old quest to understand Coriolis anti-pairing (CAP) effects in nuclear rotational bands. Two-neutron transfer reaction cross sections among high-spin states have long been touted as more specific CAP probes than other nuclear properties. Heavy projectiles like Sn or Pb generally are recommended to pump the deformed nucleus to as high spin as possible for transfer. The interference and sign reversal of 2n transfer amplitudes at high spin, as predicted in the early SQUID work imposes the difficult requirement of Coulomb pumping to near back-bending spins at closest approach. For Pb on rare earths we find a dramatic departure from sudden-approximation, so that the population depression occurs as low as final spin 10h. 14 refs., 8 figs.

  13. Measurement-device-independent quantum key distribution: from idea towards application

    NASA Astrophysics Data System (ADS)

    Valivarthi, Raju; Lucio-Martinez, Itzel; Chan, Philip; Rubenok, Allison; John, Caleb; Korchinski, Daniel; Duffin, Cooper; Marsili, Francesco; Verma, Varun; Shaw, Mathew D.; Stern, Jeffrey A.; Nam, Sae Woo; Oblak, Daniel; Zhou, Qiang; Slater, Joshua A.; Tittel, Wolfgang

    2015-08-01

    We assess the overall performance of our quantum key distribution (QKD) system implementing the measurement-device-independent (MDI) protocol using components with varying capabilities such as different single-photon detectors and qubit preparation hardware. We experimentally show that superconducting nanowire single-photon detectors allow QKD over a channel featuring 60 dB loss, and QKD with more than 600 bits of secret key per second (not considering finite key effects) over a 16 dB loss channel. This corresponds to 300 and 80 km of standard telecommunication fiber, respectively. We also demonstrate that the integration of our QKD system into FPGA-based hardware (instead of state-of-the-art arbitrary waveform generators) does not impact on its performance. Our investigation allows us to acquire an improved understanding of the trade-offs between complexity, cost and system performance, which is required for future customization of MDI-QKD. Given that our system can be operated outside the laboratory over deployed fiber, we conclude that MDI-QKD is a promising approach to information-theoretic secure key distribution.

  14. Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Lott, J. A.; Shchukin, V. A.; Quast, H.; Hopfer, F.; Fiol, G.; Mutig, A.; Moser, P.; Germann, T.; Strittmatter, A.; Karachinsky, L. Y.; Blokhin, S. A.; Novikov, I. I.; Nadtochi, A. M.; Zakharov, N. D.; Werner, P.; Bimberg, D.

    2009-02-01

    Presently VCSELs covering a significant spectral range (840-1300 nm) can be produced based on quantum dot (QD) active elements. Herein we report progress on selected QD based vertical-cavity surface-emitting lasers (VCSELs) suitable for high-speed operation. An open eye diagram at 20 Gb/s with error-free transmission (a bit-error-rate < 10-15) is achieved at 850 nm. The 850 nm QD VCSELs also achieve error-free 20 Gb/s single mode transmission operation through multimode fiber without the use of optical isolation. Our 980 nm-range QD VCSELs achieve error free transmission at 25 Gb/s at up to 150°C. These 980 nm devices operate in a temperature range of 25-85°C without current or modulation voltage adjustment. We anticipate that the primary application areas of QD VCSELs are those that require degradation-robust operation under extremely high current densities. Temperature stability at ultrahigh current densities, a forte of QDs, is needed for ultrahigh-speed (> 40 Gb/s) current-modulated VCSELs for a new generation of local and storage area networks. Finally we discuss aspects of QD vertical extended-cavity surface emitting lasers with ultra high power density per emitting surface for high power (material processing) and frequency conversion (display) applications.

  15. Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices

    NASA Astrophysics Data System (ADS)

    Yi, H. R.; Zhang, Y.; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N.

    2000-11-01

    This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz1/2 in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz1/2 at 10 Hz) was present. Computer simulation showed that the loss in this trilayer system was dominated by the high loss tangent of the dielectric film used for the separation of the upper and lower superconducting films. The rf coupling coefficient krf between the resonator and the flip-chip-coupled SQUID was also estimated. The values krf2≈14×10-3 obtained for the layout with two input coils, and krf2≈45×10-3 for the layout with the labyrinth resonator were considerably higher than the typical value of krf2≈7×10-3 for the single-layer coplanar resonator. These high coupling coefficients have compensated the somewhat degraded unloaded quality factor of the resonator, thus securing the optimum operation of the rf SQUID.

  16. Development of a Compact Moving-Sample Magnetometer Using High-Tc Superconducting Quantum Interference Device

    NASA Astrophysics Data System (ADS)

    Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Kandori, Akihiko; Tsukada, Keiji

    2012-04-01

    We developed a compact moving-sample magnetometer that uses a high-temperature superconductor-superconducting quantum interference device (high-Tc SQUID) to directly measure the flux coupled to a normal detection coil from a sample's magnetic moment in the presence of an external DC magnetic field. The moving-sample method is employed by inserting the sample between the poles of a DC electromagnet and vibrating the sample along the axis perpendicular to the external field axis using an actuator at a frequency of 2.693 Hz. First, the magnetic field of the sample is transferred by a first-order differential normal Cu coil to a SQUID for detection. Then, the SQUID output is fed to a lock-in amplifier for detection. The critical feature of the system design is the use of high-Tc SQUID, which enables the realization of a compact system. The basic characteristics of the developed system are presented, and the current system exhibited a detection limit of 1×10-7 emu.

  17. Eddy-Current-Based Nondestructive Inspection System Using Superconducting Quantum Interference Device for Thin Copper Tubes

    NASA Astrophysics Data System (ADS)

    Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo

    2004-11-01

    An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.

  18. Development of a Compact Moving-Sample Magnetometer Using High-Tc Superconducting Quantum Interference Device

    NASA Astrophysics Data System (ADS)

    Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Kandori, Akihiko; Tsukada, Keiji

    2012-04-01

    We developed a compact moving-sample magnetometer that uses a high-temperature superconductor--superconducting quantum interference device (high-Tc SQUID) to directly measure the flux coupled to a normal detection coil from a sample's magnetic moment in the presence of an external DC magnetic field. The moving-sample method is employed by inserting the sample between the poles of a DC electromagnet and vibrating the sample along the axis perpendicular to the external field axis using an actuator at a frequency of 2.693 Hz. First, the magnetic field of the sample is transferred by a first-order differential normal Cu coil to a SQUID for detection. Then, the SQUID output is fed to a lock-in amplifier for detection. The critical feature of the system design is the use of high-Tc SQUID, which enables the realization of a compact system. The basic characteristics of the developed system are presented, and the current system exhibited a detection limit of 1× 10-7 emu.

  19. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol

    PubMed Central

    Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2014-01-01

    The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431

  20. Detection of bacteria in suspension using a superconducting Quantum interference device

    SciTech Connect

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.

    2003-06-09

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.

  1. Self-heterodyne detection of the in situ phase of an atomic superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Mathew, R.; Kumar, A.; Eckel, S.; Jendrzejewski, F.; Campbell, G. K.; Edwards, Mark; Tiesinga, E.

    2015-09-01

    We present theoretical and experimental analysis of an interferometric measurement of the in situ phase drop across and current flow through a rotating barrier in a toroidal Bose-Einstein condensate (BEC). This experiment is the atomic analog of the rf-superconducting quantum interference device (SQUID). The phase drop is extracted from a spiral-shaped density profile created by the spatial interference of the expanding toroidal BEC and a reference BEC after release from all trapping potentials. We characterize the interferometer when it contains a single particle, which is initially in a coherent superposition of a torus and reference state, as well as when it contains a many-body state in the mean-field approximation. The single-particle picture is sufficient to explain the origin of the spirals, to relate the phase-drop across the barrier to the geometry of a spiral, and to bound the expansion times for which the in situ phase can be accurately determined. Mean-field estimates and numerical simulations show that the interatomic interactions shorten the expansion time scales compared to the single-particle case. Finally, we compare the mean-field simulations with our experimental data and confirm that the interferometer indeed accurately measures the in situ phase drop.

  2. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  3. Interface traps and quantum size effects on the retention time in nanoscale memory devices.

    PubMed

    Mao, Ling-Feng

    2013-08-29

    Based on the analysis of Poisson equation, an analytical surface potential model including interface charge density for nanocrystalline (NC) germanium (Ge) memory devices with p-type silicon substrate has been proposed. Thus, the effects of Pb defects at Si(110)/SiO2, Si(111)/SiO2, and Si(100)/SiO2 interfaces on the retention time have been calculated after quantum size effects have been considered. The results show that the interface trap density has a large effect on the electric field across the tunneling oxide layer and leakage current. This letter demonstrates that the retention time firstly increases with the decrease in diameter of NC Ge and then rapidly decreases with the diameter when it is a few nanometers. This implies that the interface defects, its energy distribution, and the NC size should be seriously considered in the aim to improve the retention time from different technological processes. The experimental data reported in the literature support the theoretical expectation.

  4. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot

    PubMed Central

    Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-01-01

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation. PMID:25774962

  5. Graphene quantum dots interfaced with single bacterial spore for bio-electromechanical devices: a graphene cytobot.

    PubMed

    Sreeprasad, T S; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-03-16

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation.

  6. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot

    NASA Astrophysics Data System (ADS)

    Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-03-01

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation.

  7. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  8. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  9. Biased decoy-state measurement-device-independent quantum key distribution with finite resources

    NASA Astrophysics Data System (ADS)

    Zhou, Chun; Bao, Wan-Su; Zhang, Hai-long; Li, Hong-Wei; Wang, Yang; Li, Yuan; Wang, Xiang

    2015-02-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can remove all the side-channel attacks from imperfections in the detection side. However, finite-size resources undoubtedly influence its performance and the achievable finite secret key rates of MDI-QKD are typically lower than that of standard decoy-state QKD. In this paper, we introduce the efficient decoy-state method with biased basis choice into the finite-key analysis and propose a decoy-state protocol for MDI-QKD. By applying vacuum + weak decoy-state method, we analytically derive concise formulas for estimating the lower bound of single-photon yield and the upper bound of phase error rate in the case of finite resources. The simulations show that proper basis choice combined with deliberate intensity choice can substantially enhance the performance of decoy-state MDI-QKD and, without a full optimization program, our protocol can bring a long-distance implementation (168 km on standard optical fiber) of MDI-QKD with a reasonable data size of total transmitting signals (N =1015 ).

  10. Individual Mammalian Cell Magnetic Measurements with a Superconducting Quantum Interference Device

    NASA Astrophysics Data System (ADS)

    Palmstrom, Johanna C.; Brewer, Kimberly; Tee, Sui Seng; Theis, Eric; Rutt, Brian; Moler, Kathryn A.

    2015-03-01

    Magnetism can be introduced into otherwise nonmagnetic cells by the uptake of superparamagnetic iron oxide (SPIO) nanoparticles. SPIO nanoparticles are used in numerous biomedical applications including cellular therapies and targeted drug delivery. Currently there are few tools capable of characterizing individual magnetic nanoparticles and the magnetic properties of individual mammalian cells loaded with SPIO. Our scanning superconducting quantum interference devices (SQUIDs) are good candidates for these measurements due to their high sensitivity to magnetic dipole moments (approx. 200 μb/ √Hz) In this study, we use a scanning SQUID to image the magnetic flux from SPIO loaded H1299 lung cancer cells. We find that the magnetic moment spatially varies inside the cell with each cell having a unique distribution of moments. We also correlate these magnetic images with optical and scanning electron microscope images. These results show that the SQUID is a useful tool for imaging biological magnetism. The visualization of single cell magnetism and the quantification of magnetic dipole moments in magnetically labeled cells can be used to optimize conventional biological magnetic imaging techniques, such as MRI.

  11. Recent advances in computational methodology for simulation of mechanical circulatory assist devices

    PubMed Central

    Marsden, Alison L.; Bazilevs, Yuri; Long, Christopher C.; Behr, Marek

    2014-01-01

    Ventricular assist devices (VADs) provide mechanical circulatory support to offload the work of one or both ventricles during heart failure. They are used in the clinical setting as destination therapy, as bridge to transplant, or more recently as bridge to recovery to allow for myocardial remodeling. Recent developments in computational simulation allow for detailed assessment of VAD hemodynamics for device design and optimization for both children and adults. Here, we provide a focused review of the recent literature on finite element methods and optimization for VAD simulations. As VAD designs typically fall into two categories, pulsatile and continuous flow devices, we separately address computational challenges of both types of designs, and the interaction with the circulatory system with three representative case studies. In particular, we focus on recent advancements in finite element methodology that has increased the fidelity of VAD simulations. We outline key challenges, which extend to the incorporation of biological response such as thrombosis and hemolysis, as well as shape optimization methods and challenges in computational methodology. PMID:24449607

  12. Mechanism Development, Testing, and Lessons Learned for the Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Lamoreaux, Christopher D.; Landeck, Mark E.

    2006-01-01

    The Advanced Resistive Exercise Device (ARED) has been developed at NASA Johnson Space Center, for the International Space Station (ISS) program. ARED is a multi-exercise, high-load resistive exercise device, designed for long duration, human space missions. ARED will enable astronauts to effectively maintain their muscle strength and bone mass in the micro-gravity environment more effectively than any other existing devices. ARED's resistance is provided via two, 20.3 cm (8 in) diameter vacuum cylinders, which provide a nearly constant resistance source. ARED also has a means to simulate the inertia that is felt during a 1-G exercise routine via the flywheel subassembly, which is directly tied to the motion of the ARED cylinders. ARED is scheduled to fly on flight ULF 2 to the ISS and will be located in Node 1. Presently, ARED is in the middle of its qualification and acceptance test program. An extensive testing program and engineering evaluation has increased the reliability of ARED by bringing potential design issues to light before flight production. Some of those design issues, resolutions, and design details will be discussed in this paper.

  13. WE-DE-207A-03: Recent Advances in Devices Used in Neuro--Interventions.

    PubMed

    Gounis, M

    2016-06-01

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introduction of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT.

  14. Cu−In−Ga−S quantum dot composition-dependent device performance of electrically driven light-emitting diodes

    SciTech Connect

    Kim, Jong-Hoon; Lee, Ki-Heon; Jo, Dae-Yeon; Yang, Heesun; Lee, Yangjin; Hwang, Jun Yeon

    2014-09-29

    Colloidal synthesis of ternary and quaternary quantum dots (QDs) of In/Ga ratio-varied Cu−In{sub 1−x}−Ga{sub x}−S (CIGS) with nominal x = 0, 0.5, 0.7, and 1 and their application for the fabrication of quantum dot-light-emitting diodes (QLEDs) are reported. Four QLEDs having CIGS QDs with different compositions are all solution-processed in the framework of multilayered structure, where QD emitting layer is sandwiched by hybrid charge transport layers of poly(9-vinlycarbazole) and ZnO nanoparticles. The device performance such as luminance and efficiency is found to be strongly dependent on the composition of CIGS QDs, and well interpreted by the device energy level diagram proposed through the determination of QD valence band minima by photoelectron emission spectroscopic measurement.

  15. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.

    PubMed

    Bromberg, Joan Lisa

    2006-06-01

    Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.

  16. Development of a High Fidelity Dynamic Module of the Advanced Resistive Exercise Device (ARED) Using Adams

    NASA Technical Reports Server (NTRS)

    Humphreys, B. T.; Thompson, W. K.; Lewandowski, B. E.; Cadwell, E. E.; Newby, N. J.; Fincke, R. S.; Sheehan, C.; Mulugeta, L.

    2012-01-01

    NASA's Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development. DAP provides expertise and computation tools to its research customers for model development, integration, or analysis. DAP is currently supporting the NASA Exercise Physiology and Countermeasures (ExPC) project by integrating their biomechanical models of specific exercise movements with dynamic models of the devices on which the exercises were performed. This presentation focuses on the development of a high fidelity dynamic module of the Advanced Resistive Exercise Device (ARED) on board the ISS. The ARED module, illustrated in the figure below, was developed using the Adams (MSC Santa Ana, California) simulation package. The Adams package provides the capabilities to perform multi rigid body, flexible body, and mixed dynamic analyses of complex mechanisms. These capabilities were applied to accurately simulate: Inertial and mass properties of the device such as the vibration isolation system (VIS) effects and other ARED components, Non-linear joint friction effects, The gas law dynamics of the vacuum cylinders and VIS components using custom written differential state equations, The ARED flywheel dynamics, including torque limiting clutch. Design data from the JSC ARED Engineering team was utilized in developing the model. This included solid modeling geometry files, component/system specifications, engineering reports and available data sets. The Adams ARED module is importable into LifeMOD (Life Modeler, Inc., San Clemente, CA) for biomechanical analyses of different resistive exercises such as squat and dead-lift. Using motion capture data from ground test subjects, the ExPC developed biomechanical exercise models in LifeMOD. The Adams ARED device module was then integrated with the exercise subject model into one integrated dynamic model. This presentation will describe the

  17. Note: simultaneous measurements of magnetization and electrical transport signal by a reconstructed superconducting quantum interference device magnetometer.

    PubMed

    Wang, H L; Yu, X Z; Wang, S L; Chen, L; Zhao, J H

    2013-08-01

    We have developed a sample rod which makes the conventional superconducting quantum interference device magnetometer capable of performing magnetization and electrical transport measurements simultaneously. The sample holder attached to the end of a 140 cm long sample rod is a nonmagnetic drinking straw or a 1.5 mm wide silicon strip with small magnetic background signal. Ferromagnetic semiconductor (Ga,Mn)As films are used to test the new sample rod, and the results are in good agreement with previous report.

  18. Note: Simultaneous measurements of magnetization and electrical transport signal by a reconstructed superconducting quantum interference device magnetometer

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Yu, X. Z.; Wang, S. L.; Chen, L.; Zhao, J. H.

    2013-08-01

    We have developed a sample rod which makes the conventional superconducting quantum interference device magnetometer capable of performing magnetization and electrical transport measurements simultaneously. The sample holder attached to the end of a 140 cm long sample rod is a nonmagnetic drinking straw or a 1.5 mm wide silicon strip with small magnetic background signal. Ferromagnetic semiconductor (Ga,Mn)As films are used to test the new sample rod, and the results are in good agreement with previous report.

  19. Analysis of nonadherent apoptotic cells by a quantum dots probe in a microfluidic device for drug screening.

    PubMed

    Zhao, Liang; Cheng, Peng; Li, Jianxin; Zhang, Yue; Gu, Miaomiao; Liu, Jun; Zhang, Jianrong; Zhu, Jun-Jie

    2009-08-15

    This technical note describes a facile technique to screen some anticancer drugs and evaluate their effects on nonadhesive leukemic cells in an easily fabricated microfluidic device by utilizing the Annexin V conjugated quantum dots as apoptosis detection probes. The cell immobilizing structures and gradient-generating channels were integrated within the device which was fabricated in one-single step. The nonadhesive leukemic HL-60 cells can be felicitously immobilized and cultured on the dam structures at a proper lateral pressure. We then delivered Annexin V functionalized quantum dots which can readily bind to the outer membrane of apoptotic cells and distinguish the apoptosis from unaffected cells with single cell level resolution. The diffusion time of quantum dots reduced to 5 min before imaging. The capabilities of evaluating drug effect on HL-60 cell line have been shown in both population way and individual cell level. The technique presented herein can bridge the gap between the quantum dots based in vitro cell imaging and the analysis of individual apoptotic cell in a microfluidic system, allows an easy operating protocol to screen some clinically available anticancer drugs.

  20. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  1. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    PubMed Central

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-01-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085

  2. Visible cathodoluminescence of quantum dot films by direct irradiation of electron beam and its materialization as a field emission device.

    PubMed

    Woo, Ju Yeon; Lee, Jongsoo; Lee, Hansung; Lee, Naesung; Oh, Ji Hye; Do, Young Rag; Han, Chang-Soo

    2013-05-20

    The field emission (FE) device based on quantum dot (QD) films as a cathodoluminescent (CL) material has not emerged yet due to the relatively low quantum efficiency and weak photostability of nanocrystals (NCs). Here we improve film stability and luminescence yields by preparing neat films of well-packed core-multishell QDs using spray coating method and then using low-temperature atomic layer deposition (ALD) to infill the pores of these films with metal oxides to produce inorganic nanocomposites. The ALD coatings to protect oxidation and degradation by electrons prevent internal atomic and molecular diffusion and decrease surface trap densities of QD films. Furthermore, the CL of the core-multishell QD films is 2.4 times higher than before ALD infilling. We fabricate the FE device by combining cathode structure with carbon nanotube (CNT) emitters and anode plates with QD thin film and successfully can get brilliant images of the light-emitting FE device. Our research opens a way for developing new quantum optoelectronics with high-performance.

  3. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can

    2016-10-01

    In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance.

  4. Radio frequency superconducting quantum interference device meta-atoms and metamaterials: Experiment, theory and analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Daimeng

    Metamaterials are 1D, 2D or 3D arrays of artificial atoms. The artificial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via

  5. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    PubMed

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  6. Modeling of Quantum Transport in Semiconductor Devices (The Physics and Operation of Ultra-Submicron Length Semiconductor Devices).

    DTIC Science & Technology

    1994-05-01

    folded into Landau orbits, in which the essentially one-dimensional transport along the orbit hinders the scattering process." Only those trajectories...tunneling, which can also occur in semiconductors under very high electric fields (where it is often referred to as Zener tunneling) has been worked out over...quantum mechanical effect is the dynamic change of the den- sity of states, such as in Landau quantization, and this can be incorporated within (1) by

  7. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.

    PubMed

    Aqoma, Havid; Al Mubarok, Muhibullah; Hadmojo, Wisnu Tantyo; Lee, Eun-Hye; Kim, Tae-Wook; Ahn, Tae Kyu; Oh, Seung-Hwan; Jang, Sung-Yeon

    2017-03-07

    Colloidal-quantum-dot (CQD) photovoltaic devices are promising candidates for low-cost power sources owing to their low-temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple-step CQD-layer-deposition process. Herein, high-efficiency photovoltaic devices prepared with CQD-ink using a phase-transfer-exchange (PTE) method are reported. Using CQD-ink, the fabrication of active layers by single-step coating and the suppression of surface trap states are achieved simultaneously. The CQD-ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD-ink devices show much lower energy loss than other reported high-efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs.

  8. Analysis of insertion device magnet measurements for the Advanced Light Source

    SciTech Connect

    Marks, S.; Humphries, D.; Kincaid, B.M.; Schlueter, R.; Wang, C.

    1993-07-01

    The Advanced Light Source (ALS), which is currently being commissioned at Lawrence Berkeley Laboratory, is a third generation light source designed to produce XUV radiation of unprecedented brightness. To meet the high brightness goal the storage ring has been designed for very small electron beam emittance and the undulators installed in the ALS are built to a high degree of precision. The allowable magnetic field errors are driven by electron beam and radiation requirements. Detailed magnetic measurements and adjustments are performed on each undulator to qualify it for installation in the ALS. The first two ALS undulators, IDA and IDB, have been installed. This paper describes the program of measurements, data analysis, and adjustments carried out for these two devices. Calculations of the radiation spectrum, based upon magnetic measurements, are included. Final field integral distributions are also shown. Good field integral uniformity has been achieved using a novel correction scheme, which is also described.

  9. Analysis of insertion device magnet measurements for the advanced light source

    NASA Astrophysics Data System (ADS)

    Marks, Steve; Humphries, David E.; Kincaid, Brian M.; Schlueter, Ross D.; Wang, Chunxi

    1993-11-01

    The Advanced Light Source (ALS), which is currently being commissioned at Lawrence Berkeley Laboratory, is a third generation light source designed to produce XUV radiation of unprecedented brightness. To meet the high brightness goal the storage ring has been designed for very small electron beam emittance and the undulators installed in the ALS are built to a high degree of precision. The allowable magnetic field errors are driven by electron beam and radiation requirements. Detailed magnetic measurements and adjustments are performed on each undulator to qualify it for installation in the ALS. The first two ALS undulators, IDA and IDB, have been installed. This paper describes the program of measurements, data analysis, and adjustments carried out for these two devices. Calculations of the radiation spectrum, based upon magnetic measurements, are included. Final field integral distributions are also shown. Good field integral uniformity has been achieved using a novel correction scheme, which is also described.

  10. Advance ultra sensitive multi-layered nano plasmonic devices for label free biosensing targeting immunodiagnostics

    NASA Astrophysics Data System (ADS)

    Sharma, Divya; Dwivedi, R. P.

    2016-09-01

    The rapid advancement in technology has envisaged and drafted the use of optical bio-sensing units into label free and multiplexed bio-sensing, exploring the surface plasmon polaritons, which has turned into a gold standard on the commercial basis, but they are bulky and find difficulty in scaling up for the throughput detection. The integration of plasmonic crystals with microfluidics on the bio-sensing frontier offers a multi-level validation of results with the ease of real-time detection and imaging and holds a great promise to develop ultra-sensitive, fast, portable device for the point-of-care diagnostics. The paper describes the fast, low cost approach of designing and simulating label free biosensor using open source MEEP and other software tools targeting Immunodiagnostics.

  11. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed

  12. Low-noise dc superconducting quantum interference devices for gravity wave detection

    NASA Astrophysics Data System (ADS)

    Jin, Insik

    I have designed, built and tested a low noise dc Superconducting QUantum Interference Device (SQUID) system which is intended primarily for use in a 50 mK omnidirectional gravity wave antenna. The SQUID system has three SQUIDs on a single chip: one SQUID is the sensor, another SQUID is the main readout, and the last is a spare readout. For good impedance matching between the sensor SQUID and the input circuit, I use a thin-film transformer. This thin-film transformer gives an input inductance of about 1 muH, which is good for many applications. A SQUID system in a gravity wave antenna must operate continuously for at least 6 months with high reliability. To meet these requirements, I fabricated dc SQUID chips from Nb-Al/AlOsbx-Nb trilayers. I tested the SQUID chips in a liquid helium bath and a dilution refrigerator in the temperature range of 4.2 K to 90 mK. I have designed and tested an eddy-current damping filter as a distributed microwave filter to damp out microwave resonances in strip-line input coils coupled to SQUIDs. The filter chip consists of a Au/Cu-dot array. The filter chip was coupled to the SQUID using a flip-chip arrangement on the SQUID chip. I found that the filter reduced noise bumps and removed distortion from the current-voltage curves. To flux-lock the SQUID system, I developed 2-stage SQUID feedback loops. I investigated two cascade SQUID systems in which I feed the feedback signal into the sensor SQUID and couple the ac modulation signal to the readout SQUID. I found that the noise spectrum with 2-SQUID feedback operation recovers the noise spectrum of the sensor SQUID with about 9% higher noise.

  13. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.

    PubMed

    Granata, C; Vettoliere, A; Russo, M

    2011-01-01

    An integrated ultrahigh sensitive current amplifier based on a niobium dc superconducting quantum interference device (SQUID) has been developed. The sensor design is based on a multiturn signal coil coupled to a suitable SQUID magnetometer. The signal coil consists of 60 square niobium turns tightly coupled to a superconducting flux transformer of a SQUID magnetometer. The primary coil (pick-up coil) of the flux transformer has been suitably designed in order to accommodate the multiturn input coil. It has a side length of 10 mm and a width of 2.4 mm. In such a way we have obtained a signal current to magnetic flux transfer coefficient (current sensitivity) as low as 62 nA∕Φ(0). The sensor has been characterized in liquid helium by using a direct coupling low noise readout electronic and a standard modulated electronic in flux locked loop configuration for the noise measurements. Beside the circuit complexity, the sensor has exhibited a smooth and free resonance voltage-flux characteristic guaranteeing a reliable and a stable working operation. Considering a SQUID magnetic flux noise of S(Φ)(1∕2) = 1.8 μΦ(0)∕Hz(1∕2) at T = 4.2 K, a current noise as low as 110 fA∕Hz(1∕2) is obtained. Such a value is about a factor two less than the noise of other SQUIDs of the same category. As an application, Nyquist noise measurements of integrated test resistors using the current sensing noise thermometer technique are reported. Due to its high performance such a sensor can be employed in all applications requiring an extremely current sensitivity like the readout of the gravitational wave detectors and the current sensing noise thermometry.

  14. Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations

    NASA Astrophysics Data System (ADS)

    Granata, Carmine; Vettoliere, Antonio

    2016-02-01

    The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In

  15. Density-Gradient Theory: A Macroscopic Approach to Quantum Confinement and Tunneling in Semiconductor Devices

    DTIC Science & Technology

    2011-01-01

    flow of electrons and holes in Germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950) 4. Maxwell, J.C.: On stresses in rarefied gases...especially by the phenomena of quantum confinement and quantum tunneling. The various mathematical descriptions of electron flow in biased semiconductors...patently inappropriate. 1.2 Quantum transport The three main “quantum” behaviors of an electron gas in a semiconductor—all of course well known—that

  16. Tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication

    NASA Astrophysics Data System (ADS)

    Liu, L.; Shams, M. I. B.; Jiang, Z.; Rahman, S.; Hesler, J. L.; Cheng, L.-J.; Fay, P.

    2016-09-01

    In this paper, we report on two different approaches that have been explored to realize tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication. The first approach makes use of electronically tunable varactor diodes. Frequency tunable THz antennas based on this approach have been successfully demonstrated for the first time in G-band, enabling the development of spectroscopic THz detectors and focal-plane imaging arrays. The second approach takes advantages of optical THz spatial modulation based on photo-induced free carriers in semiconductors. Using this approach, high-performance tunable THz modulators/attenuators, reconfigurable masks for THz coded aperture imaging, and photo-induced Fresnel-zone-plate antennas for dynamic THz beam steering and forming have been successfully demonstrated. Our recent study also shows that by employing the so-called mesa array technique, sub-wavelength spatial resolution and higher than 100 dB modulation depth can be achieved, making it possible to develop tunable THz devices (e.g., tunable filters) with performance and versatility far beyond those realized by conventional approaches. On the basis of the above investigation, the prospects of high-speed near-field THz imaging, real-time ultra-sensitive heterodyne imaging and prototype adaptive THz wireless communication links will be discussed.

  17. Advances in Ch-LCD devices using plastic substrates with conducting polymer

    NASA Astrophysics Data System (ADS)

    Fritz, William J.; Wonderly, H.; Smith, Steven W.; Kim, Yoan; Chonko, Jason; Doane, J. William; Shashidhar, Ranganathan; O'Ferrall, Catherine E.; Cuttino, David S.

    1999-03-01

    Cholesteric liquid crystal display (Ch-LCD) are lightweight, low power, sunlight readable displays. In addition, they can serve a dual function as pen-input device switch no additional hardware. Because of the unique properties of this technology, Ch-LCDs can be made with plastic substrates thus making the displayed extremely lightweight, compact and unbreakable. We discuss in this paper cent advances in merging Ch-LCD technology with conducting polymer electrodes. Conducting polymer provides potential benefits over the use of the standard display electrode materials, indium tin oxide, by improving the reliability of the display. Furthermore, the potential to print the conducting polymer electrodes could significantly increase manufacturing volume and decrease display cost. We report on scaling display size and resolution by demonstrating a 1/8 VGA Ch-LCD using polypyrrole as the conducting polymer. We fabricated these displays using either a vacuum fill or polymer wall/lamination approach and we discus subsequent failure analysis to determine the cause for the line-outs observed on these displays. We present initial results in determining the suitability for using Ch-LCD technology as a pen-input device. Finally, we discuss initial work towards printing the conducting polymer electrodes to determine the feasibility of printing electrodes on plastic substrates in a roll-to-roll, high volume, low cost process.

  18. Silicon high speed modulator for advanced modulation: device structures and exemplary modulator performance

    NASA Astrophysics Data System (ADS)

    Milivojevic, Biljana; Wiese, Stefan; Whiteaway, James; Raabe, Christian; Shastri, Anujit; Webster, Mark; Metz, Peter; Sunder, Sanjay; Chattin, Bill; Anderson, Sean P.; Dama, Bipin; Shastri, Kal

    2014-03-01

    Fiber optics is well established today due to the high capacity and speed, unrivaled flexibility and quality of service. However, state of the art optical elements and components are hardly scalable in terms of cost and size required to achieve competitive port density and cost per bit. Next-generation high-speed coherent optical communication systems targeting a data rate of 100-Gb/s and beyond goes along with innovations in component and subsystem areas. Consequently, by leveraging the advanced silicon micro and nano-fabrication technologies, significant progress in developing CMOS platform-based silicon photonic devices has been made all over the world. These achievements include the demonstration of high-speed IQ modulators, which are important building blocks in coherent optical communication systems. In this paper, we demonstrate silicon photonic QPSK modulator based on a metal-oxide-semiconductor (MOS) capacitor structure, address different modulator configuration structures and report our progress and research associated with highspeed advanced optical modulation in silicon photonics

  19. Facile Synthesis of Co9Se8 Quantum Dots as Charge Traps for Flexible Organic Resistive Switching Memory Device.

    PubMed

    Zhang, Peng; Xu, Benhua; Gao, Cunxu; Chen, Guilin; Gao, Meizhen

    2016-11-09

    Uniform Co9Se8 quantum dots (CSQDs) were successfully synthesized through a facile solvothermal method. The obtained CSQDs with average size of 3.2 ± 0.1 nm and thickness of 1.8 ± 0.2 nm were demonstrated good stability and strong fluorescence under UV light after being easily dispersed in both of N,N-dimethylformamide (DMF) and deionized water. We demonstrated the flexible resistive switching memory device based on the hybridization of CSQDs and polyvinylpyrrolidone (PVP) (CSQDs-PVP). The device with the Al/CSQDs-PVP/Pt/poly(ethylene terephthalate) (PET) structure represented excellent switching parameters such as high ON/OFF current ratio, low operating voltages, good stability, and flexibility. The flexible resistive switching memory device based on hybridization of CSQDs and PVP has a great potential to be used in flexible and high-performance memory applications.

  20. Influence of etching processes on electronic transport in mesoscopic InAs/GaSb quantum well devices

    SciTech Connect

    Pal, Atindra Nath; Müller, Susanne; Ihn, Thomas; Ensslin, Klaus; Tschirky, Thomas; Charpentier, Christophe; Wegscheider, Werner

    2015-07-15

    We report the electronic characterization of mesoscopic Hall bar devices fabricated from coupled InAs/GaSb quantum wells sandwiched between AlSb barriers, an emerging candidate for two-dimensional topological insulators. The electronic width of the etched structures was determined from the low field magneto-resistance peak, a characteristic signature of partially diffusive boundary scattering in the ballistic limit. In case of dry-etching the electronic width was found to decrease with electron density. In contrast, for wet etched devices it stayed constant with density. Moreover, the boundary scattering was found to be more specular for wet-etched devices, which may be relevant for studying topological edge states.

  1. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    SciTech Connect

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.

    2016-09-14

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.

  2. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Allen, S. L.; Stangeby, P. C.; Thomas, D.; Unterberg, E. A.; Abrams, T.; Boedo, J.; Briesemeister, A. R.; Buchenauer, D.; Bykov, I.; Canik, J. M.; Chrobak, C.; Covele, B.; Ding, R.; Doerner, R.; Donovan, D.; Du, H.; Elder, D.; Eldon, D.; Lasa, A.; Groth, M.; Guterl, J.; Jarvinen, A.; Hinson, E.; Kolemen, E.; Lasnier, C. J.; Lore, J.; Makowski, M. A.; McLean, A.; Meyer, B.; Moser, A. L.; Nygren, R.; Owen, L.; Petrie, T. W.; Porter, G. D.; Rognlien, T. D.; Rudakov, D.; Sang, C. F.; Samuell, C.; Si, H.; Schmitz, O.; Sontag, A.; Soukhanovskii, V.; Wampler, W.; Wang, H.; Watkins, J. G.

    2016-12-01

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.

  3. Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices

    DOE PAGES

    Guo, H. Y.; Hill, D. N.; Leonard, A. W.; ...

    2016-09-14

    A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, whichmore » we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (n e/n GW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). In conclusion, this paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D.« less

  4. Core-shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays.

    PubMed

    Song, Tao; Zhang, Fute; Lei, Xiaofei; Xu, Yonglan; Lee, Shuittong; Sun, Baoquan

    2012-02-21

    We fabricated three-dimensional silicon nanopillar array (SiNP)-based photovoltaic (PV) devices using PbS quantum dots (QDs) as the hole-transporting layers. The core-shell structured device, which is based on high aspect ratio SiNPs standing on roughed silicon substrates, displays a higher PV performance with a power conversion efficiency (PCE) of 6.53% compared with that of the planar device (2.11%). The enhanced PCE is ascribed to the increased light absorption and the improved charge carrier collections in SiNP-modified silicon surfaces. We also show that, for the core-shell structured device, the thickness of the shell layer plays a critical role in enhancing the PV performance and around five monolayers of QDs are preferred for efficient hole-transporting. Wafer-scale PV devices with a radial PbS/SiNP heterojunction can be fabricated by solution phase techniques at low temperatures, suggesting a facile route to fabricate unique three-dimensional nanostructured devices.

  5. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    PubMed

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  6. Summary of the NASA/JPL workshop on advanced quantum/relativity theory propulsion

    SciTech Connect

    Bennett, G.L.; Frisbee, R.H.

    1997-01-01

    NASA and the Jet Propulsion Laboratory (JPL) sponsored a workshop on advanced quantum/relativity theory propulsion in May 1994 to consider the possibilities of faster-than-light (FTL) travel and/or communication. The workshop specifically focused on three {open_quotes}scientific windows{close_quotes} that might permit FTL travel: (1) tunnels through spacetime; (2) a hypothetical physics where the speed of light is a lower bound; and (3) the physics of additional space dimensions. A number of open issues in physics were noted that may leave open the possibility of FTL travel or communication although no obvious method to achieve such travel or communication was found. Several experiments were identified that would help clarify the possible existence of FTL phenomena. {copyright} {ital 1997 American Institute of Physics.}

  7. Connecting the (quantum) dots: Towards hybrid photovoltaic devices based on chalcogenide gels

    PubMed Central

    De Freitas, Jilian N.; Korala, Lasantha; Reynolds, Luke X.; Haque, Saif A.

    2014-01-01

    CdSe(ZnS) core(shell) aerogels were prepared from the assembly of quantum dots into mesoporous colloidal networks. The sol-gel method produces inorganic particle interfaces with low resistance to electrical transport while maintaining quantum-confinement. The photoelectrochemical properties of aerogels and their composites with poly(3-hexylthiophene) are reported for the first time. PMID:23034484

  8. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOEpatents

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  9. Polyethylenimine Ethoxylated-Mediated All-Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device.

    PubMed

    Kim, Daekyoung; Fu, Yan; Kim, Sunho; Lee, Woosuk; Lee, Ki-Heon; Chung, Ho Kyoon; Lee, Hoo-Jeong; Yang, Heesun; Chae, Heeyeop

    2017-02-28

    We report on an all-solution-processed fabrication of highly efficient green quantum dot-light-emitting diodes (QLEDs) with an inverted architecture, where an interfacial polymeric surface modifier of polyethylenimine ethoxylated (PEIE) is inserted between a quantum dot (QD) emitting layer (EML) and a hole transport layer (HTL), and a MoOx hole injection layer is solution deposited on top of the HTL. Among the inverted QLEDs with varied PEIE thicknesses, the device with an optimal PEIE thickness of 15.5 nm shows record maximum efficiency values of 65.3 cd/A in current efficiency and 15.6% in external quantum efficiency (EQE). All-solution-processed fabrication of inverted QLED is further implemented on a flexible platform by developing a high-performing transparent conducting composite film of ZnO nanoparticles-overcoated on Ag nanowires. The resulting flexible inverted device possesses 35.1 cd/A in current efficiency and 8.4% in EQE, which are also the highest efficiency values ever reported in flexible QLEDs.

  10. Do we live in a quantum world? Advances in multidimensional coherent spectroscopies refine our understanding of quantum coherences and structural dynamics of biological systems.

    PubMed

    Nagy, Andrea; Prokhorenko, Valentyn; Miller, R J Dwayne

    2006-10-01

    The issue of quantum effects in biological functions reduces to determining the relevant length and/or time scales over which phase relationships (coherence) in the wave properties of matter are conserved and lead to observable interference effects. Recent advances in femtosecond laser-based two-dimensional spectroscopy and coherent control have made it possible to directly determine the relevant timescales of quantum coherence in biological systems and even manipulate such effects, respectively, and also provide direct information on the interactions between the different degrees of freedom (electronic and nuclear) with sufficient time resolution to catch the very chemical processes driving biological functions in action. The picture that is emerging is that there are primary events in biological processes that occur on timescales commensurate with quantum coherence effects.

  11. Low-brightness quantum radar

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2015-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramatically increase the performance of a wide variety of classical information processing devices. These advances in quantum information science have had a considerable impact on the development of standoff sensors such as quantum radar. In this paper we analyze the theoretical performance of low-brightness quantum radar that uses entangled photon states. We use the detection error probability as a measure of sensing performance and the interception error probability as a measure of stealthiness. We compare the performance of quantum radar against a coherent light sensor (such as lidar) and classical radar. In particular, we restrict our analysis to the performance of low-brightness standoff sensors operating in a noisy environment. We show that, compared to the two classical standoff sensing devices, quantum radar is stealthier, more resilient to jamming, and more accurate for the detection of low reflectivity targets.

  12. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Microbiology/ Medical Countermeasure Devices; Public Meeting; Reopening of Comment Period AGENCY: Food and Drug... Regulatory Science for Highly Multiplexed Microbiology/ Medical Countermeasure Devices'' that published in... highly multiplexed microbiology/medical countermeasure (MCM) devices, their clinical application...

  13. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.

    PubMed

    Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S

    2007-06-01

    We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.

  14. Chemical compass model for avian magnetoreception as a quantum coherent device.

    PubMed

    Cai, Jianming; Plenio, Martin B

    2013-12-06

    It is known that more than 50 species use the Earth's magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass.

  15. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device

    SciTech Connect

    Myers, Whittier Ryan

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 μT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz-1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The

  16. Nuclear magnetic resonance with dc SQUID (Super-conducting QUantum Interference Device) preamplifiers

    SciTech Connect

    Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.

    1988-08-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by /sup 35/Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10/sup 16/ nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing /sup 35/Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in /sup 119/Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10/sup 18/ nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in /sup 195/Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs.

  17. Robust preparation of four-qubit decoherence-free states for superconducting quantum interference devices against collective amplitude damping

    NASA Astrophysics Data System (ADS)

    Shao, Xiao-Qiang; Zheng, Tai-Yu; Zhang, Shou

    2013-11-01

    Based on the quantum Zeno dynamics, we present an approach for deterministic preparation of arbitrary four-qubit decoherence-free state of superconducting quantum interference devices with respective to collective amplitude damping in a decoherence-free way, namely, not only the form of the target state is free of decoherence, but also the whole process for preparation. The operation is fast and convenient since we only need to manipulate three weak laser pulses sequentially. Other decoherence effects such as cavity decay and the spontaneous emission of qubits are also taken into account in virtue of master equation, and the strictly numerical simulation signifies the final fidelity is high corresponding to the current experimental technology.

  18. Top-emitting quantum dots light-emitting devices employing microcontact printing with electricfield-independent emission

    PubMed Central

    Liu, Shihao; Liu, Wenbo; Ji, Wenyu; Yu, Jing; Zhang, Wei; Zhang, Letian; Xie, Wenfa

    2016-01-01

    Recent breakthroughs in quantum dot light-emitting devices (QD-LEDs) show their promise in the development of next-generation displays. However, the QD-LED with conventional ITO-based bottom emission structure is difficult to realize the high aperture ratio, electricfield-independent emission and flexible full-color displays. Hence, we demonstrate top-emitting QD-LEDs with dry microcontact printing quantum dot films. The top-emitting structure is proved to be able to accelerate the excitons radiative transition rate, then contributing to stable electroluminescent efficiency with a very low roll-off, and preventing spectra from shifting and broadening with the electric field increases. The results suggest potential routes towards creating high aperture ratio, wide color gamut, color-stable and flexible QD-LED displays. PMID:26932521

  19. Strain and Quantum Dots Manipulation in Nitride Compounds for Opto-electronic Devices

    DTIC Science & Technology

    2008-02-15

    long wavelength (573–601 nm) InGaN /GaN multiple quantum well light emitting diodes ( LEDs ) grown by metal organic chemical vapor deposition. These...avoid the disintegration of the InGaN quantum wells with high InN content. A redshift is observed for both the green and yellow LEDs upon decreasing...Development of Yellow and White LED’s Using InGaN -based Multi- Quantum Well Structures” P. T. Barlettaa, E. A. Berkmana, A. M. Emarab, M. J

  20. Device Processing of II-VI Semiconductor Films and Quantum Well Structures

    DTIC Science & Technology

    1991-03-07

    The objectives of this program is to develop a device processing technology necessary for proper utilization of Hg-based heterostructures and...superlattices in device applications. The specific focus or long term goal guiding the direction of the program is to develop the devices and processing ... technology required for an IR focal plane integrated with on-board signal processing electronics.