Science.gov

Sample records for advanced radar systems

  1. A System Concept for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    1998-01-01

    ultimate goal. The Precipitation Radar (PR) aboard the TRMM satellite is the first ever spaceborne radar dedicated to three-dimensional, global precipitation measurements over the tropics and the subtropics, as well as the detailed synopsis of a wide range of tropical rain storm systems. In only twelve months since launch, the PR, together with other science instruments abroad the satellite have already provided unprecedented insights into the rainfall systems. It is anticipated the a lot more exciting and important rain observations would be made by TRMM throughout its mission duration. While TRMM has provided invaluable data to the user community, it is only the first step towards advancing our knowledge on rain processes and its contributions to climate variability. It is envisioned that a TRMM follow-on mission is needed in such a way to capitalize on the pioneering information provided by TRMM, and its instrument capability must be extended beyond TRMM in such a way to fully address the key science questions from microphysical to climatic time scale. In fact, a number of new and innovative mission concepts have recently put forth for this purpose. Almost all of these new concepts have suggested the utility of a more advanced, high-resolution, Doppler-enabled, vertical profiling radar that can provide multi-parameter observations of precipitation. In this paper, a system concept for a second- gene ration precipitation radar (PR-2) which addresses the above requirements will be described.

  2. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  3. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  4. Advanced system model for 1574-nm imaging, scannerless, eye-safe laser radar

    NASA Astrophysics Data System (ADS)

    Schael, Ulrich; Rothe, Hendrik

    2002-10-01

    Laser radar based on gated viewing uses narrow laser pulses to illuminate a whole scene for direct (incoherent) detection. Due to the time of flight principle and a very fast shutter with precisely controlled delay time, only light reflected in the range R (range slice ΔR) is detected by a camera. Scattered light which reaches the shutter outside a given exposure time (gate) is suppressed. Hence, it is possible to "look" along the optical axis through changing atmospheric transmissions (rain, haze, fog, snow). For each laser pulse, the grey value image ES(x,y) of the camera is captured by a framegrabber for subsequent evaluation. Image sequences from these laser radar systems are ideally suited to recognize objects, because of the automatic contrast generation of the technology. Difficult object recognition problems, detection, target tracking, or obstacle avoidance at bad weather conditions are favorite applications. In this paper we discuss improvements in the system modelling and simulation of our laser radar system. Formerly the system performance was calculated for the whole system using the signal-to-noise ratio (SNR), leading to a general estimation of the maximum range of target detection. Changing to a pixel oriented approach, we are now able to study the system response for targets with arbitrary two and even three dimensional form. We take into account different kinds of target reflectivity and the Gaussian nature of the illuminating laser spot. Hence it is possible to simulate gray value images (range slices) and calculate range images. This will lead to a modulation transfer function for the system in future. Finally, the theoretical considerations are compared with experimental results from indoor measurements.

  5. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1988-01-01

    Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

  6. Penn State Radar Systems: Implementation and Observations

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  7. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  8. Influences of weather phenomena on automotive laser radar systems

    NASA Astrophysics Data System (ADS)

    Rasshofer, R. H.; Spies, M.; Spies, H.

    2011-07-01

    Laser radar (lidar) sensors provide outstanding angular resolution along with highly accurate range measurements and thus they were proposed as a part of a high performance perception system for advanced driver assistant functions. Based on optical signal transmission and reception, laser radar systems are influenced by weather phenomena. This work provides an overview on the different physical principles responsible for laser radar signal disturbance and theoretical investigations for estimation of their influence. Finally, the transmission models are applied for signal generation in a newly developed laser radar target simulator providing - to our knowledge - worldwide first HIL test capability for automotive laser radar systems.

  9. Venus Radar Mapper (VRM): Multimode radar system design

    NASA Technical Reports Server (NTRS)

    Johnson, William T. K.; Edgerton, Alvin T.

    1986-01-01

    The surface of Venus has remained a relative mystery because of the very dense atmosphere that is opaque to visible radiation and, thus, normal photographic techniques used to explore the other terrestrial objects in the solar system are useless. The atmosphere is, however, almost transparent to radar waves and images of the surface have been produced via Earth-based and orbital radars. The technique of obtaining radar images of a surface is variously called side looking radar, imaging radar, or synthetic aperture radar (SAR). The radar requires a moving platform in which the antenna is side looking. High resolution is obtained in the cross-track or range direction by conventional radar pulse encoding. In the along-track or azimuth direction, the resolution would normally be the antenna beam width, but for the SAR case, a much longer antenna (or much sharper beam) is obtained by moving past a surface target as shown, and then combining the echoes from many pulses, by using the Doppler data, to obtain the images. The radar design of the Venus Radar Mapper (VRM) is discussed. It will acquire global radar imagery and altimetry data of the surface of Venus.

  10. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  11. Recent advances in radar applications to agriculture

    NASA Technical Reports Server (NTRS)

    Morain, S. A.

    1970-01-01

    A series of remote radar sensing studies are summarized. These efforts comprise geoscience interpretations of such complex phenomena as those manifested in agricultural patterns. Considered are basic remote sensing needs in agriculture and the design and implementation of radar keys in the active microwave region as well as fine resolution radar imagery techniques for agriculture determinations and soil mapping.

  12. Earth Penetration Radar Imaging System (EPRIS)

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Earth Penetration Radar Imaging System (EPRIS) has been developed and has the capability to detect and locate buried mines, buried ordnance delivered by precision munitions, buried drums, buried waste/contaminants, and geological structures/features. The detected objects or features are mapped in three dimensions with high resolution. This information is then available for integration into a site characterization study. The EPRIS is a significant improvement in non-intrusive sensing and imaging capability. This phase of the EPRIS development has been extremely successful. Coleman Research Corporation (CRC) has implemented significant advances in technology into the EPRIS equipment. The frequency stepped radar sensor design has a very wide dynamic signal range and improved sensitivity over currently available equipment. The two- and three-dimensional image processing algorithms allow high-resolution placement and sizing of buried objects and/or features. The discussions related to the analog-to-digital converter and the spiral antenna, define the source of the dynamic range capability realized by EPRIS. The processing for this new radar makes use of unique synthetic aperature imaging (SAI) algorithms developed by CRC for frequency stepped radar systems. The SAI algorithms are necessary to obtain excellent spatial resolution on objects buried up to seven meters. The sensor signal processing represents a significant improvement in imaging systems. The CRC test facility permitted tests on objects buried up to 2.44 meters.

  13. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar system designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  14. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  15. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  16. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  17. Mars Radar Observations with the Goldstone Solar System Radar

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Larsen, K. W.; Arvidson, R. E.; Slade, M. A.

    2002-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m Deep Space Network (DSN) antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 20 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars. The usefulness of radar data for Mars exploration has been demonstrated in the past. Radar data were critical in assessing the Viking Lander 1 site as well as, more recently, the Pathfinder landing site. In general, radar data have not been available to the Mars exploration community at large. A project funded initially by the Mars Exploration Directorate Science Office at the Jet Propulsion Laboratory (JPL), and later funded by NASA's Mars Data Analysis Program has reprocessed to a common format a decade's worth of raw GSSR Mars delay-Doppler data in aid of landing site characterization for the Mars Program. These data will soon be submitted to the Planetary Data System (PDS). The radar data used were obtained between 1988 and 1995 by the GSSR, and comprise some 63 delay-Doppler radar tracks. Of these, 15 have yet to be recovered from old 9-track tapes, and some of the data may be permanently lost.

  18. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  19. Goldstone Solar System Radar (GSSR)

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1991-01-01

    The primary objective of the Goldstone Solar System Radar is the investigation of solar system bodies by means of Earth-based radar. Targets of primary interest include the Galilean moons, Saturn's rings and moons, and Earth-approaching asteroids and comets. Planets are also of interest, particularly Mercury and the planets to which NASA has not yet planned spacecraft visits. Based on a history of solid achievement, including the definition of the Astronomical Unit, imaging and topography of Mars, Venus, and Mercury, and contributions to the general theory of relativity, the program will continue to support flight project requirements and its primary objectives. The individual target objectives are presented, and information on the following topics are presented in tabular form: Deep Space Network support, compatibility tests, telemetry, command, and tracking support responsibility.

  20. Advanced ground-penetrating, imaging radar for bridge inspection

    SciTech Connect

    Warhus, J.P.; Mast, J.E.; Johansson, E.M.; Nelson, S.E.; Lee, Hua

    1993-08-01

    Inspecting high-value structures, like bridges and buildings using Ground Penetrating Radar (GPR) is an application of the technology that is growing in importance. In a typical inspection application, inspectors use GPR to locate structural components, like reinforcing bars embedded in concrete, to avoid weakening the structure while collecting core samples for detailed inspection. Advanced GPR, integrated with imaging technologies for use as an NDE tool, can provide the capability to locate and characterize construction flaws and wear- or age-induced damage in these structures without the need for destructive techniques like coring. In the following sections, we discuss an important inspection application, namely, concrete bridge deck inspection. We describe an advanced bridge deck inspection system concept and provide an overview of a program aimed at developing such a system. Examples of modeling, image reconstruction, and experimental results are presented.

  1. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  2. Radar volcano monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Yeo, Richard F.; Sigurðsson, Geirfinnur S.; Pálmason, Bolli; von Löwis, Sibylle; Nína Petersen, Guðrún; Bjornsson, Halldór

    2013-04-01

    Weather radars are valuable instruments in monitoring explosive volcanic eruptions. Temporal variations in the eruption strength can be monitored as well as variations in plume and ash dispersal. Strength of the reflected radar signal of a volcanic plume is related to water content and droplet sizes as well as type, shape, amount and the grain size distribution of ash. The Icelandic Meteorological Office (IMO) owns and operates three radars and one more is planned for this radar volcano monitoring system. A fixed position 250 kW C-band weather radar was installed in 1991 in SW-Iceland close to Keflavík International Airport, and upgraded to a doppler radar in 2010. In cooperation with the International Civil Aviation Organization (ICAO), IMO has recently invested in two mobile X-band radars and one fixed position C-band radar. The fixed position 250 kW doppler C-band weather radar was installed in April 2012 at Fljótsdalsheiði, E-Iceland, and in June 2012 IMO received a mobile 65 kW dual-polarization doppler X-band radar. Early in 2013 IMO will acquire another mobile radar of the same type. Explosive volcanic eruptions in Iceland during the past 22 years were monitored by the Keflavík radar: Hekla 1991, Gjálp 1996, Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, Eyjafjallajökull 2010 and Grímsvötn 2011. Additionally, the Grímsvötn 2011 eruption was mointored by a mobile X-band radar on loan from the Italian Civil Protection Authorities. Detailed technical information is presented on the four radars with examples of the information acquired during previous eruptions. This expanded network of radars is expected to give valuable information on future volcanic eruptions in Iceland.

  3. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    SciTech Connect

    Raynal, Ann Marie; William H. Hensley, Jr.; Burns, Bryan L.; Doerry, Armin Walter

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.

  4. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.

  5. Numerical simulation of imaging laser radar system

    NASA Astrophysics Data System (ADS)

    Han, Shaokun; Lu, Bo; Jiang, Ming; Liu, Xunliang

    2008-03-01

    Rational and effective design of imaging laser radar systems is the key of imaging laser radar system research. Design must fully consider the interrelationship between various parameters. According to the parameters, choose suitable laser, detector and other components. To use of mathematical modeling and computer simulation is an effective imaging laser radar system design methods. This paper based on the distance equation, using the detection statistical methods, from the laser radar range coverage, detection probability, false-alarm rate, SNR to build the laser radar system mathematical models. In the process of setting up the mathematical models to fully consider the laser, atmosphere, detector and other factors on the performance that is to make the models be able to respond accurately the real situation. Based on this using C# and Matlab designed a simulation software.

  6. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  7. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  8. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  9. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  10. Knowledge Based Systems and Metacognition in Radar

    NASA Astrophysics Data System (ADS)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  11. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    1996-01-01

    We aid in a study of the solar system by means of ground-based radar. We have concentrated on (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size, shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics.

  12. Laser radar system for obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Bers, Karlheinz; Schulz, Karl R.; Armbruster, Walter

    2005-09-01

    The threat of hostile surveillance and weapon systems require military aircraft to fly under extreme conditions such as low altitude, high speed, poor visibility and incomplete terrain information. The probability of collision with natural and man-made obstacles during such contour missions is high if detection capability is restricted to conventional vision aids. Forward-looking scanning laser radars which are build by the EADS company and presently being flight tested and evaluated at German proving grounds, provide a possible solution, having a large field of view, high angular and range resolution, a high pulse repetition rate, and sufficient pulse energy to register returns from objects at distances of military relevance with a high hit-and-detect probability. The development of advanced 3d-scene analysis algorithms had increased the recognition probability and reduced the false alarm rate by using more readily recognizable objects such as terrain, poles, pylons, trees, etc. to generate a parametric description of the terrain surface as well as the class, position, orientation, size and shape of all objects in the scene. The sensor system and the implemented algorithms can be used for other applications such as terrain following, autonomous obstacle avoidance, and automatic target recognition. This paper describes different 3D-imaging ladar sensors with unique system architecture but different components matched for different military application. Emphasis is laid on an obstacle warning system with a high probability of detection of thin wires, the real time processing of the measured range image data, obstacle classification und visualization.

  13. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shaprio, Irwin I.

    1998-01-01

    We aid in study of the solar system by means of ground-based radar. We have concentrated on: (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size , shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics. We are engaged in radar observations of asteroids and comets, both as systematically planned targets and as "targets of opportunity." In the course of the program, we have prepared ephemerides for about 80 asteroids and three comets, and the radar observations have been made or attempted at the Arecibo Observatory, in most cases successfully, and in some cases on more than one apparition. The results of these observations have included echo spectra for the targets and, in some cases, delay - Doppler images and measurements of the total round-trip delay to the targets. Perhaps the most dramatic of these results are the images obtained for asteroids (4179) Toutatis and 1989PB (Castalia), which were revealed to be double-lobed objects by the radar images. Besides these direct results, the radar observations have furnished information on the sizes and shapes of the targets through analysis of the Doppler width of the echoes as a function of time, and on the surface properties (such as composition, bulk density, and roughness) through analysis of the reflectivity and of the polarization state of the echoes. We have also refined the orbits of the observed asteroids as a result of the Doppler (and in some cases delay) measurements from the radar observations. Although the orbits of main-belt asteroids accessible to ground-based radar are quite well known from the available optical data, some near-Earth objects have been seen by radar very soon after their optical discovery (for example, 199OMF, just eight days after discovery). In such

  14. Urban Flood Warning Systems using Radar Technologies

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P. B.

    2013-12-01

    There have been an increasing number of urban areas that rely on weather radars to provide accurate precipitation information for flood warning purposes. As non-structural tools, radar-based flood warning systems can provide accurate and timely warnings to the public and private entities in urban areas that are prone to flash floods. The wider spatial and temporal coverage from radar increases flood warning lead-time when compared to rain and stream gages alone. The Third Generation Rice and Texas Medical Center (TMC) Flood Alert System (FAS3) has been delivering warning information with 2 to 3 hours of lead time and a R2 value of 93% to facility personnel in a readily understood format for more than 50 events in the past 15 years. The current FAS utilizes NEXRAD Level II radar rainfall data coupled with a real-time hydrologic model (RTHEC-1) to deliver warning information. The system has a user-friendly dashboard to provide rainfall maps, Google Maps based inundation maps, hydrologic predictions, and real-time monitoring at the bayou. This paper will evaluate its reliable performance during the recent events occurring in 2012 and 2013 and the development of a similar radar-based flood warning system for the City of Sugar Land, Texas. Having a significant role in the communication of flood information, FAS marks an important step towards the establishment of an operational and reliable flood warning system for flood-prone urban areas.

  15. A prototype radar fracture mapping system

    SciTech Connect

    Chang, Hsi-Tien

    1987-01-01

    The design and fabrication of a prototype radar system for fracture detection have been completed. This system uses directional antennas for both the transmitter and the receiver in a single tool which provides both the distance and the direction of a fracture in a downhole application. Electronic circuits in the system generate 50 kW peak power impulse with -100 dbm minimum detectable sensitivity. Unique downhole sampling and uphole data reconstruction techniques are used to obtain high frequency data using standard logging cable. In a recent test conducted in a lake, radar returns from a target were clearly observed. Problems encountered in the prototype and the future test plans are discussed.

  16. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)

    PubMed Central

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-01-01

    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments.

  17. Cassini radar : system concept and simulation results

    NASA Astrophysics Data System (ADS)

    Melacci, P. T.; Orosei, R.; Picardi, G.; Seu, R.

    1998-10-01

    The Cassini mission is an international venture, involving NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI), for the investigation of the Saturn system and, in particular, Titan. The Cassini radar will be able to see through Titan's thick, optically opaque atmosphere, allowing us to better understand the composition and the morphology of its surface, but the interpretation of the results, due to the complex interplay of many different factors determining the radar echo, will not be possible without an extensive modellization of the radar system functioning and of the surface reflectivity. In this paper, a simulator of the multimode Cassini radar will be described, after a brief review of our current knowledge of Titan and a discussion of the contribution of the Cassini radar in answering to currently open questions. Finally, the results of the simulator will be discussed. The simulator has been implemented on a RISC 6000 computer by considering only the active modes of operation, that is altimeter and synthetic aperture radar. In the instrument simulation, strict reference has been made to the present planned sequence of observations and to the radar settings, including burst and single pulse duration, pulse bandwidth, pulse repetition frequency and all other parameters which may be changed, and possibly optimized, according to the operative mode. The observed surfaces are simulated by a facet model, allowing the generation of surfaces with Gaussian or non-Gaussian roughness statistic, together with the possibility of assigning to the surface an average behaviour which can represent, for instance, a flat surface or a crater. The results of the simulation will be discussed, in order to check the analytical evaluations of the models of the average received echoes and of the attainable performances. In conclusion, the simulation results should allow the validation of the theoretical evaluations of the capabilities of microwave instruments, when

  18. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  19. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  20. The instrumental principles of MST radars and incoherent scatter radars and the configuration of radar system hardware

    NASA Technical Reports Server (NTRS)

    Roettger, Juergen

    1989-01-01

    The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.

  1. System simulation of a 0.2THz imaging radar

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Deng, Chao; Zhang, Cun-lin; Zhao, Yue-jin

    2009-07-01

    Unlike traditional THz imaging system, we first report a design of 0.2THz stepped frequency radar system, and prove its feasibility by simulation. The stepped frequency radar working from 200GHz to 210GHz can provide centimeter accuracy. To demonstrate the feasibility of our design, we simulate our system by using Advanced Design System (ADS) and Simulink in Matlab. The transmitter line is simulated in ADS, while system-level simulation is carried out in Matlab. The simulation of transmitter is implemented by using parameters from actual products, which can ensure the reality of simulation. In this paper, we will present the methods and results of our simulation. From the results, we can conclude that our design is feasible.

  2. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous Energy... 29 Labor 7 2012-07-01 2012-07-01 false Vessel radar and communication systems. 1915.85...

  3. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous Energy... 29 Labor 7 2014-07-01 2014-07-01 false Vessel radar and communication systems. 1915.85...

  4. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    NASA Astrophysics Data System (ADS)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  5. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  6. Advanced multi-frequency radar: Design, preliminary measurements and particle size distribution retrieval

    NASA Astrophysics Data System (ADS)

    Majurec, Ninoslav

    In the spring of 2001 the Microwave Remote Sensing Laboratory (MIRSL) at the University of Massachusetts began the development of an advanced Multi-Frequency Radar (AMFR) system for studying clouds and precipitation. This mobile radar was designed to consist of three polarimetric Doppler subsystems operating at Ku-band (13.4 GHz), Ka-band (35.6 GHz) and W-band (94.92 GHz). This combination of frequency bands allows a measurement of a wide range of atmospheric targets ranging from weakly reflecting clouds to strong precipitation. The antenna beamwidths at each frequency were intentionally matched, ensuring consistent sampling volume. Multi-frequency radar remote sensing techniques are not widely used because few multi-frequency radars are available to the science community. One exception is the 33 GHz/95 GHz UMass Cloud Profiling Radar System (CPRS), which AMFR is intended to replace. AMFR's multi-parameter capabilities are designed for characterizing the complex microphysics of layer clouds and precipitation processes in winter storms. AMFR will also play an important role in developing algorithms and validating measurements for an upcoming generation of space-borne radars. The frequency bands selected for AMFR match those of several sensors that have been deployed or are under development. These include the Japanese Aerospace Exploration Agencies (JAXA's) Tropical Rainfall Measuring Mission (TRMM) satellite Ku-band (13 GHz) radar, the CloudSat W-band (95 GHz) radar, and the Global Precipitation Mission (GPM) satellite radars at Ku-band and Ka-band. This dissertation describes the AMFR hardware design and development. Compared to CPRS, the addition of one extra frequency band (Ku) will extend AMFR's measurement capabilities towards the larger particle sizes (precipitation). AMFR's design is based around high-power klystron amplifiers. This ensures complete coherency (CPRS uses magnetrons and coherent-on-receive technique). The partial loss in sensitivity due to

  7. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  8. Advanced application flight experiment breadboard pulse compression radar altimeter program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.

  9. Laser Docking System Radar flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Flight experiments to verify the Laser Docking System Radar are discussed. The docking requirements are summarized, and the breadboarded hardware is described, emphasizing the two major scanning concepts being utilized: a mechanical scanning technique employing galvanometer beamsteerers and an electronic scanning technique using an image dissector. The software simulations used to apply hardware solutions to the docking requirements are briefly discussed, the tracking test bed is described, and the objectives of the flight experiment are reviewed.

  10. Validation of GPM Ka-Radar Algorithm Using a Ground-based Ka-Radar System

    NASA Astrophysics Data System (ADS)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiro; Furukawa, Kinji; Suzuki, Kenji

    2016-04-01

    GPM led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration of US (NASA) aims to observe global precipitation. The core satellite is equipped with a microwave radiometer (GMI) and a dual-frequency radar (DPR) which is the first spaceborne Ku/Ka-band dual-wavelength radar dedicated for precipitation measurement. In the DPR algorithm, measured radar reflectivity is converted to effective radar reflectivity by estimating the rain attenuation. Here, the scattering/attenuation characteristics of Ka-band radiowaves are crucial, particularly for wet snow. A melting layer observation using a dual Ka-band radar system developed by JAXA was conducted along the slope of Mt. Zao in Yamagata Prefecture, Japan. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars were observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) were obtained. The experiments were conducted for two winter seasons. During the data analyses, it was found that k estimate easily fluctuates because the estimate is based on double difference calculation. With much temporal and spatial averaging, k-Ze relationship was obtained for melting layers. One of the results is that the height of the peak of k seems slightly higher than that of Ze. The results are compared with in-situ precipitation particle measurements.

  11. Radar altimetry systems cost analysis

    NASA Technical Reports Server (NTRS)

    Escoe, D.; Heuring, F. T.; Denman, W. F.

    1976-01-01

    This report discusses the application and cost of two types of altimeter systems (spaceborne (satellite and shuttle) and airborne) to twelve user requirements. The overall design of the systems defined to meet these requirements is predicated on an unconstrained altimetry technology; that is, any level of altimeter or supporting equipment performance is possible.

  12. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  13. Past-time Radar Rainfall Estimates using Radar AWS Rainrate system with Local Gauge Correction method

    NASA Astrophysics Data System (ADS)

    Choi, D.; Lee, M. H.; Suk, M. K.; Nam, K. Y.; Hwang, J.; Ko, J. S.

    2015-12-01

    The Weather Radar Center at Korea Meteorological Administration (KMA) has radar network for warnings for heavy rainfall and severe storms. We have been operating an operational real-time adjusted the Radar-Automatic Weather Station (AWS) Rainrate (RAR) system developed by KMA in 2006 for providing radar-based quantitative precipitation estimation (QPE) to meteorologists. This system has several uncertainty in estimating precipitation by radar reflectivity (Z) and rainfall intensity (R) relationship. To overcome uncertainty of the RAR system and improve the accuracy of QPE, we are applied the Local Gauge Correction (LGC) method which uses geo-statistical effective radius of errors of the QPE to RAR system in 2012. According to the results of previous study in 2014 (Lee et al., 2014), the accuracy of the RAR system with LGC method improved about 7.69% than before in the summer season of 2012 (from June to August). It has also improved the accuracy of hydrograph when we examined the accuracy of flood simulation using hydrologic model and data derived by the RAR system with LGC method. We confirmed to have its effectiveness through these results after the application of LGC method. It is required for high quality data of long term to utilize in hydrology field. To provide QPE data more precisely and collect past-time data, we produce that calculated by the RAR system with LGC method in the summer season from 2006 to 2009 and investigate whether the accuracy of past-time radar rainfall estimation enhance or not. Keywords : Radar-AWS Rainrate system, Local gauge correction, past-time Radar rainfall estimation Acknowledgements : This research is supported by "Development and application of Cross governmental dual-pol radar harmonization (WRC-2013-A-1)" project of the Weather Radar Center, Korea Meteorological Administration in 2015.

  14. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  15. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  16. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  17. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  18. Radar systems for the water resources mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.

  19. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J.

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  20. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  1. Multi-Antenna Radar Systems for Doppler Rain Measurements

    NASA Technical Reports Server (NTRS)

    Durden, Stephen; Tanelli, Simone; Siqueira, Paul

    2007-01-01

    Use of multiple-antenna radar systems aboard moving high-altitude platforms has been proposed for measuring rainfall. The basic principle of the proposed systems is a variant of that of along-track interferometric synthetic-aperture radar systems used previously to measure ocean waves and currents.

  2. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  3. A FMCW Radar Ranging Device for the Teleoperator Maneuvering System

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1983-01-01

    A frequency-modulated continuous wave radar system is under development in the Communications Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Center. The radar unit is being designed for use on the teleoperator maneuvering system. Its function is to provide millimeter-level accuracy in range and range rate measurements out to a range of thirty meters. This will facilitate soft docking with accuracy. This report is an updating of previous developments reported on this system. An innovation in the system is the utilization of a standard reference signal generated by shunting a portion of the radar energy into a shorted coaxial delay line. The regular radar target return signal is constantly compared with the reference signal to provide internal error compensation. Within a five meter range, a limit imposed by present laboratory dimensions, the radar system exhibits reliable accuracy with range error less than 0.2%.

  4. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  5. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  6. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  7. The Goldstone Solar System Radar: 1988-2003 Earth-based Mars Radar Observations

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Slade, M. A.; Larsen, K. W.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m DSN antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay- Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 10 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars.

  8. 29. Perimeter acquisition radar building room #318, data processing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Perimeter acquisition radar building room #318, data processing system area; data processor maintenance and operations center, showing data processing consoles - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. Integrated bias removal in passive radar systems

    NASA Astrophysics Data System (ADS)

    Subramaniam, M.; Punithakumar, K.; McDonald, M.; Kirubarajan, T.

    2008-04-01

    A passive coherent location (PCL) system exploits the ambient FM radio or television signals from powerful local transmitters, which makes it ideal for covert tracking. In a passive radar system, also known as PCL system, a variety of measurements can be used to estimate target states such as direction of arrival (DOA), time difference of arrival (TDOA) or Doppler shift. Noise and the precision of DOA estimation are main issues in a PCL system and methods such as conventional beam forming (CBF) algorithm, algebraic constant modulus algorithm (ACMA) are widely analyzed in literature to address them. In practical systems, although it is necessary to reduce the directional ambiguities, the placement of receivers closed to each other results in larger bias in the estimation of DOA of signals, especially when the targets move off bore-sight. This phenomenon leads to degradation in the performance of the tracking algorithm. In this paper, we present a method for removing the bias in DOA to alleviate the aforementioned problem. The simulation results are presented to show the effectiveness of the proposed algorithm with an example of tracking airborne targets.

  10. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  11. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  12. Radome effects on coherent change detection radar systems

    NASA Astrophysics Data System (ADS)

    Raynal, Ann Marie; Dubbert, Dale F.; Burns, Bryan L.; Hensley, William H.

    2015-05-01

    A radome, or radar dome, protects a radar system from exposure to the elements. Unfortunately, radomes can affect the radiation pattern of the enclosed antenna. The co-design of a platform's radome and radar is ideal to mitigate any deleterious effects of the radome. However, maintaining structural integrity and other platform flight requirements, particularly when integrating a new radar onto an existing platform, often limits radome electrical design choices. Radars that rely heavily on phase measurements such as monopulse, interferometric, or coherent change detection (CCD) systems require particular attention be paid to components, such as the radome, that might introduce loss and phase variations as a function of the antenna scan angle. Material properties, radome wall construction, overall dimensions, and shape characteristics of a radome can impact insertion loss and phase delay, antenna beamwidth and sidelobe level, polarization, and ultimately the impulse response of the radar, among other things, over the desired radar operating parameters. The precision-guided munitions literature has analyzed radome effects on monopulse systems for well over half a century. However, to the best of our knowledge, radome-induced errors on CCD performance have not been described. The impact of radome material and wall construction, shape, dimensions, and antenna characteristics on CCD is examined herein for select radar and radome examples using electromagnetic simulations.

  13. Shuttle Imaging Radar-C mission operations - Technology test bed for Earth Observing System synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Trimble, J. P.; Collins, C. E.

    1992-01-01

    The mission operations for the Space Radar Lab (SRL), particularly in the areas of real-time replanning and science activity coordination, are presented. The two main components of SRL are the Shuttle Imaging Radar-C and the X-Band Synthetic Aperture Radar. The Earth Observing System SAR will be a multispectral, multipolarization radar satellite that will provide information over an entire decade, permitting scientists to monitor large-scale changes in the earth's environment over a long period of time.

  14. Recent advances in radar remote sensing of forest

    NASA Technical Reports Server (NTRS)

    Letoan, Thuy

    1993-01-01

    On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.

  15. Millimeter wave radar for automobile crash avoidance systems

    NASA Astrophysics Data System (ADS)

    Huguenin, G. Richard

    1994-08-01

    Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.

  16. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  17. Hardware system concept For student's space synthetic aperture radar (ESA SSETI-ESMO project)

    NASA Astrophysics Data System (ADS)

    Dawidowicz, Bartek; Filipek, Tomasz; Piotrkowski, Michał

    2006-02-01

    In this paper a concept of a cheap, lightweight, low power satellite radar for Moon's surface mapping is presented. This radar is designed to work in two modes: two-dimensional imaging (Synthetic Aperture Radar - SAR) and three-dimensional imaging (Interferometric Synthetic Aperture Radar - IfSAR). The proposed radar system performs the functions both of a radar system and a high data rate communication system. This enables costs and weight reduction which is very important in space applications.

  18. The NASA Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim, Yunjin; van Zyl, Jakob

    1996-01-01

    None given. (From introduction): ...we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the [rogress of the data processing effort, especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  19. Using the Scientific Python ecosystem to advance open radar science

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Helmus, J.

    2015-12-01

    The choice of a programming language or environment is rarely made with consideration of its benefits and disadvantages. Often it is something inherited from mentor or enforced by an institution. Python, developed as a "hobby" programming project, has seen increased migration of users from more traditional domain specific environments. This presentation charts our own journey in using the scientific python ecosystem, first as users and then as the developers of a community based toolkit for working with weather radar data, the Python ARM Radar Toolkit, Py-ART. We will highlight how a data model driven design approach can extend the usefulness and reusability of code and act as a bridge between amorphous mathematical algorithms and domain specific data. Finally we will showcase how Python and Py-ART can be used on clusters to tackle pleasantly parallel problems like deriving climatologies swiftly, painlessly and most importantly: reproducibly.

  20. Integrated mobile radar-camera system in airport perimeter security

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Dulski, R.; Kastek, M.; Trzaskawka, P.

    2011-11-01

    The paper presents the test results of a mobile system for the protection of large-area objects, which consists of a radar and thermal and visual cameras. Radar is used for early detection and localization of an intruder and the cameras with narrow field of view are used for identification and tracking of a moving object. The range evaluation of an integrated system are presented as well as the probability of human detection as a function of the distance from radar-camera unit.

  1. Integrated radar-camera security system: range test

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Karol, M.; Markowski, P.

    2012-06-01

    The paper presents the test results of a mobile system for the protection of large-area objects, which consists of a radar and thermal and visual cameras. Radar is used for early detection and localization of an intruder and the cameras with narrow field of view are used for identification and tracking of a moving object. The range evaluation of an integrated system is presented as well as the probability of human detection as a function of the distance from radar-camera unit.

  2. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  3. The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design

    NASA Astrophysics Data System (ADS)

    Wannberg, G.; Wolf, I.; Vanhainen, L.-G.; Koskenniemi, K.; RöTtger, J.; Postila, M.; Markkanen, J.; Jacobsen, R.; Stenberg, A.; Larsen, R.; Eliassen, S.; Heck, S.; Huuskonen, A.

    1997-11-01

    The EISCAT (European incoherent scatter) Svalbard radar (ESR) was officially inaugurated on August 22, 1996. This event marked the successful completion on schedule of the first phase of the EISCAT Svalbard radar project. In contrast to previous incoherent scatter radars, the ESR system design was adapted to make use of commercial off-the-shelf TV transmitter hardware, thereby reducing design risk, lead times, and cost to a minimum. Commercial hardware is also used in the digital signal processing system. Control and monitoring are performed by distributed, networked VME systems. Thanks to modern reflector antenna design methods and extreme efforts to reduce the receiver noise contribution, the system noise temperature is only 70 K, thus making the ESR about 30% faster than the much more powerful EISCAT UHF radar in F region experiments! Once the transmitter power is increased to 1 MW, it will become about 2-3 times faster than the UHF radar. State-of-the-art exciter and receiver hardware has been developed in-house to accommodate the special requirements introduced by operating the radar at the exceptionally high duty cycle of 25%. The RF waveform is generated by a system based on four switchable direct digital synthesizers. Continuous monitoring of the transmitted RF waveform by the receiver system allows removal of klystron-induced spurious Doppler effects from the data. Intermediate-frequency sampling at 7.5 MHz is employed, followed by fully digital channel separation, signal detection, and postdetection filtering in six parallel receiver channels. Radar codes for both E and F layer observation have been designed and perfected. So far, more than 40 hours of good quality ionospheric data have been collected and analyzed in terms of plasma parameters. While the tragic loss of the Cluster mission suddenly changed the plans and dispositions of a majority of the ESR user community, the radar has still been in high demand since its inauguration. It is now being

  4. Accurate Characterization of Winter Precipitation Using In-Situ Instrumentation, CSU-CHILL Radar, and Advanced Scattering Methods

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Notaros, B. M.; Bringi, V. N.; Kleinkort, C.; Huang, G. J.; Kennedy, P.; Thurai, M.

    2015-12-01

    We present a novel approach to remote sensing and characterization of winter precipitation and modeling of radar observables through a synergistic use of advanced in-situ instrumentation for microphysical and geometrical measurements of ice and snow particles, image processing methodology to reconstruct complex particle three-dimensional (3D) shapes, computational electromagnetics to analyze realistic precipitation scattering, and state-of-the-art polarimetric radar. Our in-situ measurement site at the Easton Valley View Airport, La Salle, Colorado, shown in the figure, consists of two advanced optical imaging disdrometers within a 2/3-scaled double fence intercomparison reference wind shield, and also includes PLUVIO snow measuring gauge, VAISALA weather station, and collocated NCAR GPS advanced upper-air system sounding system. Our primary radar is the CSU-CHILL radar, with a dual-offset Gregorian antenna featuring very high polarization purity and excellent side-lobe performance in any plane, and the in-situ instrumentation site being very conveniently located at a range of 12.92 km from the radar. A multi-angle snowflake camera (MASC) is used to capture multiple different high-resolution views of an ice particle in free-fall, along with its fall speed. We apply a visual hull geometrical method for reconstruction of 3D shapes of particles based on the images collected by the MASC, and convert these shapes into models for computational electromagnetic scattering analysis, using a higher order method of moments. A two-dimensional video disdrometer (2DVD), collocated with the MASC, provides 2D contours of a hydrometeor, along with the fall speed and other important parameters. We use the fall speed from the MASC and the 2DVD, along with state parameters measured at the Easton site, to estimate the particle mass (Böhm's method), and then the dielectric constant of particles, based on a Maxwell-Garnet formula. By calculation of the "particle-by-particle" scattering

  5. A 10 cm dual frequency Doppler weather radar. Part 1: The radar system

    NASA Astrophysics Data System (ADS)

    Bishop, A. W.; Armstrong, G. M.

    1982-10-01

    Design concepts and test results are summarized for a Doppler weather radar system suitable for precipitation measurements over a wide span of radial velocities and slant ranges, even in the presence of ground clutter. The radar transmits two uniform pulse trains at 2.710 and 2.760 GHz. Uniformly spaced pulses permit ground clutter cancellation of up to 50 dB to be achieved with a three-pole elliptic filter. Pulse spacing at one frequency is consistent with long-range coverage in reflectivity, while spacing of the second is consistent with a wide unambiguous velocity measurement span.

  6. Radar systems for the water resources mission, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.

  7. Effects of changing rice cultural practices on C-band synthetic aperture radar backscatter using Envisat advanced synthetic aperture radar data in the Mekong River Delta

    NASA Astrophysics Data System (ADS)

    Lam-Dao, Nguyen; Le Toan, Thuy; Apan, Armando; Bouvet, Alexandre; Young, Frank; Le-van, Trung

    2009-11-01

    Changes in rice cultivation systems have been observed in the Mekong River Delta, Vietnam. Among the changes in cultural practices, the change from transplanting to direct sowing, the use of water-saving technology, and the use of high production method could have impacts on radar remote sensing methods previously developed for rice monitoring. Using Envisat (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) data over the province of An Giang, this study showed that the radar backscattering behaviour is much different from that of the reported traditional rice. At the early stage of the season, direct sowing on fields with rough and wet soil surface provides very high backscatter values for HH (Horizontal transmit - Horizontal receive polarisation) and VV (Vertical transmit - Vertical receive polarisation) data, as a contrast compared to the very low backscatter of fields covered with water before emergence. The temporal increase of the backscatter is therefore not observed clearly over direct sowing fields. Hence, the use of the intensity temporal change as a rice classifier proposed previously may not apply. Due to the drainage that occurs during the season, HH, VV and HH/VV are not strongly related to biomass, in contrast with past results. However, HH/VV ratio could be used to derive the rice/non-rice classification algorithm for all conditions of rice fields in the test province. The mapping results using the HH/VV polarization ratio at a single date in the middle period of the rice season were assessed using statistical data at different districts in the province, where very high accuracy was found. The method can be applied to other regions, provided that the synthetic aperture radar data are acquired during the peak period of the rice season, and that few training fields provide adjusted threshold values used in the method.

  8. Micropower radar systems for law enforcement technology

    SciTech Connect

    Azevedo, S.G.; Mast, J.; Brase, J.

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  9. Advanced Precipitation Radar Antenna to Measure Rainfall From Space

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen

    2008-01-01

    To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds

  10. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  11. A system model and inversion for synthetic aperture radar imaging.

    PubMed

    Soumekh, M

    1992-01-01

    A system model and its corresponding inversion for synthetic aperture radar (SAR) imaging are presented. The system model incorporates the spherical nature of a radar's radiation pattern at far field. The inverse method based on this model performs a spatial Fourier transform (Doppler processing) on the recorded signals with respect to the available coordinates of a translational radar (SAR) or target (inverse SAR). It is shown that the transformed data provide samples of the spatial Fourier transform of the target's reflectivity function. The inverse method can be modified to incorporate deviations of the radar's motion from its prescribed straight line path. The effects of finite aperture on resolution, reconstruction, and sampling constraints for the imaging problem are discussed.

  12. A Potential Integrated Multiwavelength Radar System at the Medicina Radiotelescopes

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Salerno, E.; Pupillo, G.; Pluchino, S.

    2009-03-01

    Ground-based radars provide a powerful tool for detection, tracking and identification of the space debris fragments orbiting around Earth at different altitudes. The Medicina Radioastronomical Station is an Italian radio observation facility that is here proposed as receiving part of a bistatic radar system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits).

  13. Integration of WERA Ocean Radar into Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd

    2016-04-01

    High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message

  14. Spaceborne Doppler Precipitation Radar: System Configurations and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood

    2004-01-01

    Knowledge of the global distribution of the vertical velocity of precipitation is important in in the study of energy transportation in the atmosphere, the climate and weather. Such knowledge can only be directly acquired with the use of spaceborne Doppler precipitation radars. Although the high relative speed of the radar with respect to the rainfall particles introduces significant broadening in the Doppler spectrum, recent studies have shown that the average vertical velocity can be measured to acceptable accuracy levels by appropriate selection of radar parameters. Furthermore, methods to correct for specific errors arising from NUBF effects and pointing uncertainties have recently been developed. In this paper we will present the results of the trade studies on the performances of a spaceborne Doppler radar with different system parameters configurations.

  15. Ultrawideband radar target discrimination utilizing an advanced feature set

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam H.; Kapoor, Ravinder; Wong, David C.; Sichina, Jeffrey

    1998-09-01

    The Army Research Laboratory, as part of its mission-funded applied research program, has been evaluating the utility of a low-frequency, ultra wideband imaging radar to detect tactical vehicles concealed by foliage. Measurement programs conducted at Aberdeen Proving Grounds and elsewhere have yielded a significant and unique database of extremely wideband and (in some cases) fully polarimetric data. Prior work has concentrated on developing computationally efficient methods to quickly canvass large quantities of data to identify likely target occurrences--often called `prescreening.' This paper reviews recent findings from our phenomenology/detection efforts. Included is a reformulated prescreener that has been trained and tested against a significantly larger data set than was used in the prior work. Also discussed are initial efforts aimed at the discrimination of targets from the difficult clutter remaining after prescreening. Performance assessments are included that detail detection rates versus false alarm levels.

  16. Ultrawideband imaging radar based on OFDM: system simulation analysis

    NASA Astrophysics Data System (ADS)

    Garmatyuk, Dmitriy

    2006-05-01

    Orthogonal frequency division-multiplexing (OFDM) is rapidly emerging as a preferred method of UWB signaling in commercial applications aimed mainly at low-power, high data-rate communications. This paper explores the possibility of applying OFDM to use in imaging radar technology. Ultra-wideband nature of the signal provides for high resolution of the radar, whereas usage of multi-sub-carrier method of modulation allows for dynamic spectrum allocation. Robust multi-path performance of OFDM signals and heavy reliance of transceiver design on digital processors easily implemented in modern VLSI technology make a number of possible applications viable, e.g.: portable high-resolution indoor radar/movement monitoring system; through-the-wall/foliage synthetic aperture imaging radar with a capability of image transmission/broadcasting, etc. Our work is aimed to provide a proof-of-concept simulation scenario to explore numerous aspects of UWB-OFDM radar imaging through evaluating range and cross-range imaging performance of such a system with an eventual goal of software-defined radio (SDR) implementation. Stripmap SAR topology was chosen for modeling purposes. Range/cross-range profiles were obtained along with full 2-D images for multi-target in noise scenarios. Model set-up and results of UWB-OFDM radar imaging simulation study using Matlab/Simulink modeling are presented and discussed in this paper.

  17. Scanning lidar with a coupled radar safety system.

    PubMed

    Kent, G S; Hansen, G M

    1999-10-20

    A small scanning three-wavelength lidar system at NASA Langley Research Center in Hampton, Virginia, has been used since 1992 to make atmospheric measurements on stratospheric and upper tropospheric aerosols and on the evolution of aircraft exhaust plumes. Many of these measurements have been made away from the zenith, and, to reduce the hazard to air traffic produced by the laser beam, a radar safety device has been installed. The radar application is original in that the radar beam is made collinear with the laser beam by use of a dichroic mirror that transmits the laser radiation and reflects the microwaves. This mirror is inserted into the outgoing optical path prior to the radiation from both the radar and the laser passing through the independent scanning unit. Tests of the complete system show that the lidar and radar beams remain collocated as they are scanned and that the radar can be used to inhibit the laser prior to an aircraft passing through the beam. PMID:18324168

  18. Radar imaging of solar system ices

    NASA Astrophysics Data System (ADS)

    Harcke, Leif J.

    We map the planet Mercury and Jupiter's moons Ganymede and Callisto using Earth-based radar telescopes and find that all of these have regions exhibiting high, depolarized radar backscatter and polarization inversion (m c > 1). Both characteristics suggest significant volume scattering from water ice or similar cold-trapped volatiles. Synthetic aperture radar mapping of Mercury's north and south polar regions at fine (6 km) resolution at 3.5 cm wavelength corroborates the results of previous 13 cm investigations of enhanced backscatter and polarization inversion (0.9 <= m c <= 1.3) from areas on the floors of craters at high latitudes, where Mercury's near-zero obliquity results in permanent Sun shadows. Co-registration with Mariner 10 optical images shows that this enhanced scattering cannot be caused by simple double-bounce geometries, since the bright, reflective regions do not appear on the radar-facing wall but, instead, in shadowed regions not directly aligned with the radar look direction. Thermal models require the existence of such a layer to preserve ice deposits in craters at other than high polar latitudes. The additional attenuation (factor 1.64 +/- 15%) of the 3.5 cm wavelength data from these experiments over previous 13 cm radar observations is consistent with a range of layer thickness from 0 +/- 11 to 35 +/- 15 cm, depending on the assumed scattering law exponent n. Our 3.5 cm wavelength bistatic aperture synthesis observations of the two outermost Galilean satellites of Jupiter, Ganymede and Callisto, resolve the north-south ambiguity of previous images, and confirm the disk-integrated enhanced backscatter and polarization inversion noted in prior investigations. The direct imaging technique more clearly shows that higher backscatter are as are associated with the terrain that has undergone recent resurfacing, such as the sulci and the impact crater basins. The leading hemispheres of both moons have somewhat higher (20% +/- 5%) depolarized echoes

  19. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    NASA Technical Reports Server (NTRS)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  20. HiVision millimeter-wave radar for enhanced vision systems in civil and military transport aircraft

    NASA Astrophysics Data System (ADS)

    Pirkl, Martin; Tospann, Franz-Jose

    1997-06-01

    This paper presents a guideline to meet the requirements of forward looking sensors of an enhanced vision system for both military and civil transport aircraft. It gives an update of a previous publication with special respect to airborne application. For civil transport aircraft an imaging mm-wave radar is proposed as the vision sensor for an enhanced vision system. For military air transport an additional high-performance weather radar should be combined with the mm-wave radar to enable advanced situation awareness, e.g. spot-SAR or air to air operation. For tactical navigation the mm-wave radar is useful due to its ranging capabilities. To meet these requirements the HiVision radar was developed and tested. It uses a robust concept of electronic beam steering and will meet the strict price constraints of transport aircraft. Advanced image processing and high frequency techniques are currently developed to enhance the performance of both the radar image and integration techniques. The advantages FMCW waveform even enables a sensor with low probability of intercept and a high resistance against jammer. The 1997 highlight will be the optimizing of the sensor and flight trials with an enhanced radar demonstrator.

  1. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  2. Quantitative data quality metrics for 3D laser radar systems

    NASA Astrophysics Data System (ADS)

    Stevens, Jeffrey R.; Lopez, Norman A.; Burton, Robin R.

    2011-06-01

    Several quantitative data quality metrics for three dimensional (3D) laser radar systems are presented, namely: X-Y contrast transfer function, Z noise, Z resolution, X-Y edge & line spread functions, 3D point spread function and data voids. These metrics are calculated from both raw and/or processed point cloud data, providing different information regarding the performance of 3D imaging laser radar systems and the perceptual quality attributes of 3D datasets. The discussion is presented within the context of 3D imaging laser radar systems employing arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors, but the metrics may generally be applied to linear mode systems as well. An example for the role of these metrics in comparison of noise removal algorithms is also provided.

  3. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  4. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  5. A fully photonics-based coherent radar system

    NASA Astrophysics Data System (ADS)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-01

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  6. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  7. System-on-chip based Doppler radar occupancy sensor.

    PubMed

    Yavari, Ehsan; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    System-on-Chip (SoC) based Doppler radar occupancy sensor is developed through non contact detection of respiratory signals. The radio was developed using off the shelf low power RF CC2530 SoC chip by Texas Instruments. In order to save power, the transmitter sends signal intermittently at 2.405 GHz. Reflected pulses are demodulated, and the baseband signals are processed to recover periodic motion. The system was tested both with mechanical target and a human subject. In both cases Doppler radar detected periodic motion closely matched the actual motion, and it has been shown that an SoC based system can be used for subject detection.

  8. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal.

  9. THz impulse radar for biomedical sensing: nonlinear system behavior

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  10. Vensis: Venus Advanced Radar For Subsurface And Ionosphere Sounding

    NASA Astrophysics Data System (ADS)

    Biccari, D.; Gurnett, D.; Jordan, R.; Huff, R.; Marinangeli, L.; Nielsen, E.; Ori, G. G.; Picardi, G.; Plaut, J.; Provvedi, F.; Seu, R.; Zampolini, E.

    Due to optically opaque atmosphere of Venus radar is the best way to observe the surface of the planet from orbit. Magellan has obtained global SAR imaging, as well as altimetry and emissivity. As a subsurface sounder, working at low frequency and preferably in the night time, VENSIS would obtain fundamentally different kinds of geologic information than Magellan, mapping of interfaces of geologic units (e.g. tessera, plains, lava flows, impact debris) could in fact be extended into the third di- mension. A subsurface investigation of the first 1-2 Km will show the internal defor- mations of the Venusian surface and will depict the structural styles of old crust which are essential to define the crust dynamics, an improved understanding of the evolu- tion of complex Venusian features is a key to define the geological evolution of the planet. Furthermore in standard subsurface sounding mode VENSIS will be able to transmit four different bandwidth, so the possibility of multi frequency observations will allow the estimate of the material attenuation in the crust and will give significant indications on the dielectric properties of the detected interfaces. Thus the Primary Scientific Objectives of VENSIS are the following: 1-Characterize surface roughness, composition and electrical properties at long wavelengths (orders of magnitude longer than Magellan) 2-Probe the subsurface of Venus (to few km depth) to detect and map geologic materials and large scale structures at planetary level VENSIS sounder, using active sounding in a frequency range of 100 kHz to 7 MHz, would also allow detailed characterization of the Venus ionosphere while in passive mode it can be used to detect lightning, the presence of which remains both controversial and critical to understand the behavior of the atmosphere and the possibility of present day volcanism. Therefore a secondary objective is to Probe the ionosphere to characterize interactions between the solar wind and the Venusian

  11. Design of a Radar Based Space Situational Awareness System

    NASA Astrophysics Data System (ADS)

    Liebschwager, T.; Neff, T.; Suess, I. H.; Foerstner, I. R.

    2013-09-01

    Existing SSA-Networks in most cases consist of sensors which originally were not designed for the purpose of detecting or tracking space debris and active satellites. Furthermore there are different kinds of sensors in use which makes it even more complicated to handle all generated data. Therefore it is reasonable to create a network consisting of homogenous sensors, which means sensors of the same type (like radar or optical) and with the same output format of the data. Technologies that are available for detection and tracking of objects (e.g. optical sensors or radar) will be discussed. Focal point will be on operational availability, reliability and obtainable accuracy. It will be shown that Phased Array Radars are the most reasonable technology to be used while creating a sensor network consisting of homogenous sensors. This paper entails to present a proposal for a network of Phased Array Radars configured for this purpose. The system is intended to detect and track objects that are at least as small as objects that can currently be found in the US SSN catalogue. Furthermore potential hazards in different orbits will be evaluated and discussed to optimize the system on these areas. The system is supposed to be able to create an own object catalogue. Therefore perseverative tracking and required capacity will also be considered. On the basis of these considerations the paper shows how to lay-up such a radar-system starting from scratch. Criteria for detection and tracking of objects will be determined. This part of the work contains aspects like choosing the frequency band or tracking-frequencies for different sizes of objects. In the next step the locations for the sensors will be chosen. Based on thoughts about infrastructure it is plausible to place the radar systems on existing observation sites. By analyzing simulations with different numbers of sensors and / or locations several feasible approaches for such a Space Situational Awareness Network will be

  12. The Vaisala Radar-Based Nowcasting System: Updates and Applications

    NASA Astrophysics Data System (ADS)

    Ruzanski, Evan; Chandrasekar, Venkatachalam

    2013-04-01

    The Vaisala radar-based nowcasting system is presented and described. The system, based on the Lagrangian persistence paradigm, is designed to provide targeted quantitative forecasts over the 0-1 h time frame for applications such as aviation, roads, and renewable energy. The Lagrangian persistence paradigm, where extrapolation is performed via motion vectors estimated from past radar observations held constant over the lead time period, is a useful approach for many nowcasting applications. This method has shown effectiveness in estimating translation of a variety of precipitation patterns. Previous research has shown that nowcasting performance can be improved by spatially filtering radar observations and considering only those precipitation scales most representative of pattern motion for prediction or filtering those scales from predicted fields deemed unpredictable by remaining past their lifetimes. Thus, a modular framework capable of assimilating a variety of radar data and leveraging appropriate combinations of data processing features is adopted to provide targeted decision support to end-users. In this regard, the system combines several features previously used separately to enhance performance. A recent update to the system includes a Fourier-based least squares motion estimation method that replaced the cross correlation-based method previously used. This update has shown to provide improvements to skill and runtime for the 0-1 h nowcast horizon using WSR-88D and Vaisala WRM200 C-band radar data for a variety of precipitation events. Operation and favorable performance of the nowcasting system is shown in the context of the Vaisala AviCast product, which uses WSR-88D Level III and surface observations to provide operational nowcasts of liquid water equivalent values to support deicing decision-making at airports. Extrapolated WSR-88D Level III base reflectivity values are converted to liquid water equivalent estimates using a Z-R or Z-S relationship

  13. Multifunctional millimeter-wave radar system for helicopter safety

    NASA Astrophysics Data System (ADS)

    Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.

    2012-06-01

    A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.

  14. Advanced parametrical modelling of 24 GHz radar sensor IC packaging components

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, R.; John, W.; Wellmann, J.; Bala, U. B.; Thiede, A.

    2011-08-01

    This paper deals with the development of an advanced parametrical modelling concept for packaging components of a 24 GHz radar sensor IC used in automotive driver assistance systems. For fast and efficient design of packages for system-in-package modules (SiP), a simplified model for the description of parasitic electromagnetic effects within the package is desirable, as 3-D field computation becomes inefficient due to the high density of conductive elements of the various signal paths in the package. By using lumped element models for the characterization of the conductive components, a fast indication of the design's signal-quality can be gained, but so far does not offer enough flexibility to cover the whole range of geometric arrangements of signal paths in a contemporary package. This work pursues to meet the challenge of developing a flexible and fast package modelling concept by defining parametric lumped-element models for all basic signal path components, e.g. bond wires, vias, strip lines, bumps and balls.

  15. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  16. Gadanki Ionospheric Radar Interferometer (GIRI): System Description, Capabilities and Observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Kamaraj, Pandian; Jayaraj, Katta; Raghavendra, J.; Yasodha, Polisetti

    2016-07-01

    A 30-MHz radar has been developed at National Atmospheric Research Laboratory for dedicated probing of ionosphere and to study the low latitude ionospheric plasma irregularities. The radar has the beam steering capability to scan a larger part of the sky up to ±45o in East-West direction, which will overcome the limitation of slit camera picture obtained by the fixed beam of the Gadanki MST radar on the ionospheric plasma irregularity/structures. The system is also configured for pulse-to-pulse beam steering, employs multi-channel receiving system to carryout Interferometry/Imaging experiments. The radar system employs 20x8 phased antenna array, Direct Digital Synthesizers to generate pulse coded excitation signals, high power solid-state Transmit-Receive modules to generate a peak power of 150 kW, low loss coaxial beam forming and feeder network and multi-channel direct IF digital receiver. Round-the-clock observations are being made with uninterrupted operations and high quality E-and F-Region Range-Time-Intensity and conical maps are obtained with the system. In this paper we present, the system design philosophy, realization, initial observations and also the capability of the system to augment for Meteor observations.

  17. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  18. Development of a Low-Cost UAV Doppler Radar Data System

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph; Li, Lihua; Heymsfield, Gerry

    2005-01-01

    A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.

  19. Certification methodology applied to the NASA experimental radar system

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Switzer, George F.; Bracalente, Emedio M.

    1994-01-01

    The objective of the research is to apply selected FAA certification techniques to the NASA experimental wind shear radar system. Although there is no intent to certify the NASA system, the procedures developed may prove useful to manufacturers that plan to undergo the certification process. The certification methodology for forward-looking wind shear detection radars will require estimation of system performance in several FAA-specified microburst/clutter scenarios as well as the estimation of probabilities of missed and false hazard alerts under general operational conditions. Because of the near-impossibility of obtaining these results experimentally, analytical and simulation approaches must be used. Hazard detection algorithms were developed that derived predictive estimates of aircraft hazard from basic radar measurements of weather reflectivity and radial wind velocity. These algorithms were designed to prevent false alarms due to ground clutter while providing accurate predictions of hazard to the aircraft due to weather. A method of calculation of the probability of missed and false hazard alerts has been developed that takes into account the effect of the various algorithms used in the system and provides estimates of the probability of missed and false alerts per microburst encounter under weather conditions found at Denver, Kansas City, and Orlando. Simulation techniques have been developed that permit the proper merging of radar ground clutter data (obtained from flight tests) with simulated microburst data (obtained from microburst models) to estimate system performance using the microburst/clutter scenarios defined by the FAA.

  20. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim,Yunjin; vanZyl, Jakob

    1996-01-01

    In this paper we will briefly describe the instrument characteristics, the evolution of various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the NASA/JPL airborne synthetic aperture radar (SAR). This system operates in the fully polarimetric mode in the P, L, and C band simultaneously or in the interferometric mode in both the L and C band simultaneously. We also summarize the progress of the data processing effort, especially in the interferometry processing and we address the issue of processing and calibrating the cross-track interferometry data.

  1. Feasibility study of a microwave radar system for agricultural inspection

    SciTech Connect

    Okelo-Odongo, S.

    1994-10-03

    The feasibility of an impulse radar system for agricultural inspection is investigated. This system would be able to quickly determine the quality of foodstuffs that are passed through the system. A prototype was designed at the Lawrence Livermore National Laboratory and this report discusses it`s evaluation. A variety of apples were used to test the system and preliminary data suggests that this technology holds promise for successful application on a large scale in food processing plants.

  2. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  3. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous Energy... 1915.85 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT...

  4. Detection of landmines and UXO using advanced synthetic aperture radar technology

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Dill, Stephan; Heinzel, Andreas; Bischeltsrieder, Florian

    2016-05-01

    A main problem of effective landmine and UXO decontamination is efficient and reliable detection and localization of suspicious objects in reasonable time. This requirement demands for fast sensors investigating large areas with sufficient spatial resolution and sensitivity. Ground penetrating radar (GPR) is a suitable tool and is considered as a complementing sensor since nearly two decades. However, most GPRs operate in very close distance to ground in a rather punctual method of operation. In contrast, synthetic aperture radar (SAR) is a technique allowing fast and laminar stand-off investigation of an area. TIRAMI-SAR is imaging radar at lower microwaves for fast close-in detection of buried and unburied objects on a larger area. This allows efficient confirmation of a threat by investigating such regions of detection by other sensors. For proper object detection sufficient spatial resolution is required. Hence the SAR principle is applied. SAR for landmine/UXO detection can be applied by side-looking radar moved on safe ground along the area of interest, being typically the un-safe ground. Additionally, reliable detection of buried and unburied objects requires sufficient suppression of background clutter. For that purpose TIRAMI-SAR is using several antennas in multi-static configuration and wave polarization together with advanced SAR processing. The advantages and necessity of a multi-static antenna configuration for this kind of GPR approach is illustrated in the paper.

  5. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  6. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  7. The design and evaluation of a 5.8 ghz laptop-based radar system

    NASA Astrophysics Data System (ADS)

    Teng, Kevin Chi-Ming

    This project involves design and analysis of a 5.8 GHz laptop-based radar system. The radar system measures Doppler, ranging and forming Synthetic Aperture Radar (SAR) images utilizing Matlab software provided from MIT Open Courseware and performs data acquisition and signal processing. The main purpose of this work is to bring new perspective to the existing radar project by increasing the ISM band frequency from 2.4 GHz to 5.8 GHz and to carry out a series of experiments on the implementation of the radar kit. Demonstrating the radar at higher operating frequency is capable of providing accurate data results in Doppler, ranging and SAR images.

  8. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  9. Doppler radar sensor positioning in a fall detection system.

    PubMed

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn

    2012-01-01

    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.

  10. Doppler radar sensor positioning in a fall detection system.

    PubMed

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn

    2012-01-01

    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one. PMID:23365879

  11. CONDOR Advanced Visionics System

    NASA Astrophysics Data System (ADS)

    Kanahele, David L.; Buckanin, Robert M.

    1996-06-01

    The Covert Night/Day Operations for Rotorcraft (CONDOR) program is a collaborative research and development program between the governments of the United States and the United Kingdom of Great Britain and Northern Ireland to develop and demonstrate an advanced visionics concept coupled with an advanced flight control system to improve rotorcraft mission effectiveness during day, night, and adverse weather conditions in the Nap- of-the-Earth environment. The Advanced Visionics System for CONDOR is the flight- ruggedized head mounted display and computer graphics generator with the intended use of exploring, developing, and evaluating proposed visionic concepts for rotorcraft including; the application of color displays, wide field-of-view, enhanced imagery, virtual displays, mission symbology, stereo imagery, and other graphical interfaces.

  12. Advances in spaceborne synthetic aperture radar sensor technology

    NASA Technical Reports Server (NTRS)

    Caro, E. R.; Ruzek, M.

    1986-01-01

    The evolution of space SARs for NASA projects since Seasat (1978) is surveyed, with an emphasis on hardware development. The fundamental principles of SAR are reviewed; the SIR-A and SIR-B instruments flown as Shuttle payloads are characterized; their antennas, transmitters, receivers, and data subsystems are described; the advantages offered by the SIR-C dual-frequency (L and C band) dual-polarization distributed SAR (being developed for a future Shuttle flight and as the basis of an SAR for the Earth Observing System) are explained; and a number of technical challenges are identified (including RF elements, structural fidelity, pointing accuracy, data handling, and dc power). Drawings, diagrams, sample images, photographs, and tables are provided.

  13. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  14. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  15. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  16. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  17. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  18. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  19. Advanced Microturbine Systems

    SciTech Connect

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  20. System-on-chip based Doppler radar occupancy sensor.

    PubMed

    Yavari, Ehsan; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    System-on-Chip (SoC) based Doppler radar occupancy sensor is developed through non contact detection of respiratory signals. The radio was developed using off the shelf low power RF CC2530 SoC chip by Texas Instruments. In order to save power, the transmitter sends signal intermittently at 2.405 GHz. Reflected pulses are demodulated, and the baseband signals are processed to recover periodic motion. The system was tested both with mechanical target and a human subject. In both cases Doppler radar detected periodic motion closely matched the actual motion, and it has been shown that an SoC based system can be used for subject detection. PMID:22254705

  1. Remote sensing at the University of Kansas in radar systems

    NASA Technical Reports Server (NTRS)

    Moore, R. K.

    1970-01-01

    Demonstration that a spectral response across an octave bandwidth in the microwave region is as variable as the comparable response in the visible and infrared region is a major mile-stone and indicates the potential of polypanchromatic radar systems is analogous with that of color photography. Averaging of the returns from a target element appears necessary to obtain a grey scale adequate for many earth-science applications of radar systems. This result can be obtained either by azimuth averaging or by the use of panchromatic techniques (range averaging). Improvement with panchromatic techniques has been demonstrated both with a landbased electromagnetic system and with an ultrasonic simulator. The advantage of the averaging achieved in azimuth with the real-aperture version of the DPD-2 when compared with the synthetic aperture version confirms the concept.

  2. ERS-1 radar altimeter system performance evaluation and calibration

    NASA Astrophysics Data System (ADS)

    Braun, H. M.; Groebke, H.; Hans, P.

    1984-08-01

    The ERS-1 (ESA) radar altimeter system simulation philosophy and simulator development are described. The simulator models system geometry, echo process, uplink/downlink, platform characteristics, instrument processing, ground processing, system errors, and special target characteristics (e.g., reflections from ice surfaces). It supports pre and post launch system-calibration; refinement of the engineering specifications during the ERS-1 development phase; monitoring and controlling of instrument design and development; prelaunch verification of system performance; investigation of inflight malfunctions and compensation of errors during nominal operations; development of echo models; and demonstration of system capabilities in operational cases.

  3. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  4. Aircraft radar antennas

    NASA Astrophysics Data System (ADS)

    Schrank, Helmut E.

    1987-04-01

    Many changes have taken place in airborne radar antennas since their beginnings over forty years ago. A brief historical review of the advances in technology is presented, from mechanically scanned reflectors to modern multiple function phased arrays. However, emphasis is not on history but on the state-of-the-art technology and trends for future airborne radar systems. The status of rotating surveillance antennas is illustrated by the AN/APY-1 Airborne Warning and Control System (AWACS) slotted waveguide array, which achieved a significant breakthrough in sidelobe suppression. Gimballed flat plate arrays in nose radomes are typified by the AN/APG-66 (F-16) antenna. Multifunction phased arrays are presented by the Electronically Agile Radar (EAR) antenna, which has achieved significant advances in performance versatility and reliability. Trends toward active aperture, adaptive, and digital beamforming arrays are briefly discussed. Antennas for future aircraft radar systems must provide multiple functions in less aperture space, and must perform more reliably.

  5. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  6. Atmospheric Phenomena Observed Over The South China Sea By The Advanced Synthetic Aperture Radar Onboard the ENVISAT Satellite

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Huang, Weigen; Chan, Pak Wai; Wong, Wai Kin; Cheng, Cho Ming; Mouche, Alexis

    2010-10-01

    Atmospheric phenomena often leave fingerprints on the sea surface, which are detectable by synthetic aperture radar (SAR). Here we present some representative examples of SAR images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the Envisat satellite over the South China Sea (SCS) which show radar signatures of atmospheric gravity waves (AGWs) and of coastal wind fields. On SAR images of the SCS also often radar signatures of oceanic internal waves (OIWs) are visible which have similar spatial scales as the ones originating from AGWs. Therefore we first present criteria how to distinguish between them by analyzing the structure of the radar signatures. Then we present two examples of ASAR images which show radar signatures of AGWs over the SCS. Furthermore, we present a SAR image showing radar signatures of a northerly Winter Monsoon surge event over the coastal area south of Hong Kong and compare it with a cloud image and a weather radar image. From the ASAR image we retrieve the near-surface wind field and compare it with the wind field simulated by the AIR model of the Hong Kong Observatory. The comparison shows that the AIR model can simulate quite well the wind speed as well as the position and shape of the frontal line measured by ASAR.

  7. Interference immunity of optical radar system with phased antenna array

    NASA Astrophysics Data System (ADS)

    Alishev, Y. V.; Yamaykin, V. Y.

    1985-03-01

    A phased antenna array of an optical radar system with single-mode or phase-locked sources is analyzed for interference immunity. A major factor influencing the performance as well as the method of analysis is the relative magnitudes of coherence length and path difference, the latter characterizing the interference pattern of light beams and its effect on the antenna radiation pattern. Although a path difference much smaller than the coherence length permits assumption of a quasimonochromatic radiation, interference must be accounted for when the path difference is comparable with the coherence length. The directive gain and the probability of detection error are calculated, assuming Poisson distributions of signal photons with either vertical or horizontal polarization and of noise photons at the receiver input. Estimates indicate that reducing the error probability to below 0.00001 is feasible by phasing the antenna of an optical radar system operating under normal conditions.

  8. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  9. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  10. Considerations for integration of a physiological radar monitoring system with gold standard clinical sleep monitoring systems.

    PubMed

    Singh, Aditya; Baboli, Mehran; Gao, Xiaomeng; Yavari, Ehsan; Padasdao, Bryson; Soll, Bruce; Boric-Lubecke, Olga; Lubecke, Victor

    2013-01-01

    A design for a physiological radar monitoring system (PRMS) that can be integrated with clinical sleep monitoring systems is presented. The PRMS uses two radar systems at 2.45 GHz and 24 GHz to achieve both high sensitivity and high resolution. The system can acquire data, perform digital processing and output appropriate conventional analog outputs with a latency of 130 ms, which can be recorded and displayed by a gold standard sleep monitoring system, along with other standard sensor measurements.

  11. Considerations for integration of a physiological radar monitoring system with gold standard clinical sleep monitoring systems.

    PubMed

    Singh, Aditya; Baboli, Mehran; Gao, Xiaomeng; Yavari, Ehsan; Padasdao, Bryson; Soll, Bruce; Boric-Lubecke, Olga; Lubecke, Victor

    2013-01-01

    A design for a physiological radar monitoring system (PRMS) that can be integrated with clinical sleep monitoring systems is presented. The PRMS uses two radar systems at 2.45 GHz and 24 GHz to achieve both high sensitivity and high resolution. The system can acquire data, perform digital processing and output appropriate conventional analog outputs with a latency of 130 ms, which can be recorded and displayed by a gold standard sleep monitoring system, along with other standard sensor measurements. PMID:24110139

  12. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  13. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  14. Streamflow Measurement Using A Riversonde Uhf Radar System

    NASA Astrophysics Data System (ADS)

    Teague, C.; Barrick, D.; Lilleboe, P.; Cheng, R.

    Initial field tests have been performed to evaluate the performance of a RiverSonde streamflow measurement system. The tests were conducted at a concrete-lined canal and a natural river in central California during June, 2000. The RiverSonde is a UHF radar operating near 350 MHz and is based on a modified SeaSonde system normally used to measure ocean surface currents in salt water using lower frequencies (5­25 MHz). The RiverSonde uses energy scattered by Bragg-resonant 0.5 m water waves and does not require any sensors in the water. Water velocity is calculated by observing the Doppler shift of the scattered radar energy and comparing that with the Doppler shift expected from resonant waves in still water. The radar has sufficient resolution to allow the estimation of a velocity profile across the width of the river. The antennas consisted of a 2-element transmitting antenna and a 3-element receiving antenna. The transmitting antenna provided broad illumination of the water surface, and MUSIC direction finding was used to determine the arrival direction of the re- flected radar energy. The transmitting and receiving antennas were placed on opposite banks to reduce the signal intensity variation across the channel. A chirp frequency sweep was used to determine range. Transmitted power was under 1 W, and the max- imum range was a few hundred meters. Range resolution was on the order of 10 m, and velocity resolution was about 2.5 cm/s. Extensive in-situ surface truth measurements were performed by personnel from the United States Geological Survey. The instruments included current meters suspended at various depths from a small boat positioned at several locations across the channel, video tracking of many floaters (tennis balls) on the water surface, an optical flow meter, and anemometer wind measurements. Typical water velocities were about 40 cm/s, and RMS velocity differences between the radar and in-situ measurements were 6­18% of the mean flow, with similar

  15. Speckle reduction in CO2 heterodyne laser radar systems

    NASA Astrophysics Data System (ADS)

    Lutzmann, Peter; Ebert, Reinhard R.

    1990-10-01

    A limitation of heterodyne C02-laser radars results from the statistical properties of speckle effects. Suppression of speckle influence by adding uncorrelated speckle pattern was experimentally studied. Using a space separation technique involving a quadrant detector allows to 'look' at different parts of the laser spot on the target at the same time. By choosing the proper diameter of the receiver optics nearly uncorrelated signals are seen with the four detector elements. The signal statistics was measured for direct and heterodyne detection. The achieved improvement in the signal probability distribution and in the contrast were compared with theory. The measurements were done with both a laboratory setup and with the Ff0 Laser-Radar-System BASIS 2.

  16. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  17. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  18. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  19. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  20. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  1. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  2. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  3. Radar reflectivity

    NASA Astrophysics Data System (ADS)

    1986-07-01

    This TOP describes a method for measuring the radar reflectivity characteristics of aircraft. It uses a rotating platform and various radar systems to obtain calibrated radar Automatic Gain Control values for each degree of aspect angle for the aircraft. The purpose of this test is to provide comparable values of radar reflectivity for Army aircraft at various radar frequencies and parameter for fixed positions and aspect angles on the aircraft. Data collected on each specific aircraft can be used to evaluate radar reflectivity characteristics of aircraft skin material, paint, and structural changes such as flat versus curved surfaces.

  4. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  5. MST radar transmitter control and monitor system

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.

    1983-01-01

    A generalized transmitter control and monitor card was developed using the Intel 8031 (8051 family) microprocessor. The design was generalized so that this card can be utilized for virtually any control application with only firmware changes. The block diagram appears in Figure 2. The card provides for local control using a 16 key keypad (up to 64 keys are supported). The local display is four digits of 7 segment LEDs. The display can indicate the status of all major system parameters and provide voltage readout for the analog signal inputs. The card can be populated with only the chips required for a given application. Fully populated, the card has two RS-232 serial ports for computer communications. It has a total of 48 TTL parallel lines that can define as either inputs or outputs in groups of four. A total of 32 analog inputs with a 0-5 volt range are supported. In addition, a real-time clock/calendar is available if required. A total of 16 k bytes of ROM and 16 k bytes of RAM is available for programming. This card can be the basis of virtually any monitor or control system with appropriate software.

  6. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  7. An expert system for shuttle and satellite radar tracker scheduling

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul

    1988-01-01

    This expert system automates and optimizes radar tracker selection for shuttle missions. The expert system is written in the FORTRAN and C languages on an HP9000. It is portable to any UNIX machine having both ANSI-77 FORTRAN and C language compilers. It is a rule based expert system that selects tracking stations from the S-band and C-band radar stations and the TDRSS east and TDRSS west satellites under a variety of conditions. The expert system was prototyped on the Symbolics in the Automated Reasoning Tool (ART) and ZetaLisp. After the prototype demonstrated an acceptable automation of the process of selecting tracking stations to support the orbit determination requirements of Shuttle missions, the basic ART rules of the prototype were ported to the HP9000 computer using the CLIPS language. CLIPS is a forward-chaining rule-based expert system language written in C. Prior to the development of this expert system the selection process was a tedious manual process and expensive in terms of human resources. Manual tracking station selection required from 1 to 2 man weeks per mission; whereas the expert system can complete the selection process in about 2 hours.

  8. Experimental 0.22 THz Stepped Frequency Radar System for ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Liang, Mei Yan; Zhang, Cun Lin; Zhao, Ran; Zhao, Yue Jin

    2014-09-01

    High resolution inverse synthetic aperture radar (ISAR) imaging is demonstrated by using a 0.22 THz stepped-frequency (SF) imaging radar system. The synthesis bandwidth of the terahertz (THz) SF radar is 12 GHz, which are beneficial for high resolution imaging. The resolution of ISAR image can reach centimeter-scale with the use of Range-Doppler algorithm (RDA). Results indicate that high resolution ISAR imaging is realized by using 0.22THz SF radar coupled with turntable scanning, which can provide foundations for further research on high-resolution radar image in the THz band.

  9. Mapping tree root systems with ground-penetrating radar.

    PubMed

    Hruska, Jiri; Cermák, Jan; Sustek, Svatopluk

    1999-02-01

    A ground-penetrating radar (GPR) technique was used to study the three-dimensional distribution of root systems of large (DBH = 14 to 35 cm) oak trees (Quercus petraea (Mattusch.) Liebl.) in relatively dry, luvisoil on loamy deluvium and weathered granodiorite. We used a pulse EKKO 1000 GPR system, a profile grid of 0.25 x 0.25 meters, at 0.05 m intervals, and a signal frequency of 450 MHz, to assure resolution of about 3 cm in both directions (further increases in resolution up to 1 cm are possible with the system). Coarse root density was 6.5 m m(-2) of stand area and 3.3 m m(-3) of soil volume. Maximum rooting depth of the experimental oaks was 2 m, and the root ground plan was significantly larger (about 1.5 times) than the crown ground plan. Based on earlier studies of Quercus robur L. from floodplain forests, where the extent of the root systems was much smaller (root ground plan:crown ground plan ratio of 0.6), we conclude that the high root ground plan:crown ground plan ratio indicates less favorable conditions of water supply at the experimental site than in the floodplain forest. The ground-penetrating radar system is noninvasive and allows relatively rapid and repeated measurements of the distribution of coarse root systems of trees.

  10. Integrated radar-camera security system: experimental results

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Palka, N.; Trzcinski, T.; Dulski, R.; Kastek, M.; Trzaskawka, P.

    2011-06-01

    The nature of the recent military conflicts and terrorist attacks along with the necessity to protect bases, convoys and patrols have made a serious impact on the development of more effective security systems. Current widely-used perimeter protection systems with zone sensors will soon be replaced with multi-sensor systems. Multi-sensor systems can utilize day/night cameras, IR uncooled thermal cameras, and millimeter-wave radars which detect radiation reflected from targets. Ranges of detection, recognition and identification for all targets depend on the parameters of the sensors used and of the observed scene itself. In this paper two essential issues connected with multispectral systems are described. We will focus on describing the autonomous method of the system regarding object detection, tracking, identification, localization and alarm notifications. We will also present the possibility of configuring the system as a stationary, mobile or portable device as in our experimental results.

  11. Multi-agent system for target-adaptive radar tracking

    NASA Astrophysics Data System (ADS)

    O'Connor, Alan C.

    2012-06-01

    Sensor systems such as distributed sensor networks and radar systems are potentially agile - they have parameters that can be adjusted in real-time to improve the quality of data obtained for state-estimation and decision-making. The integration of such sensors with cyber systems involving many users or agents permits greater flexibility in choosing measurement actions. This paper considers the problem of selecting radar waveforms to minimize uncertainty about the state of a tracked target. Past work gave a tractable method for optimizing the choice of measurements when an accurate dynamical model is available. However, prior knowledge about a system is often not precise, for example, if the target under observation is an adversary. A multiple agent system is proposed to solve the problem in the case of uncertain target dynamics. Each agent has a different target model and the agents compete to explain past data and select the parameters of future measurements. Collaboration or competition between these agents determines which obtains access to the limited physical sensing resources. This interaction produces a self-aware sensor that adapts to changing information requirements.

  12. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  13. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  14. Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) after nine years of operation: A summary

    NASA Astrophysics Data System (ADS)

    Orosei, R.; Jordan, R. L.; Morgan, D. D.; Cartacci, M.; Cicchetti, A.; Duru, F.; Gurnett, D. A.; Heggy, E.; Kirchner, D. L.; Noschese, R.; Kofman, W.; Masdea, A.; Plaut, J. J.; Seu, R.; Watters, T. R.; Picardi, G.

    2015-07-01

    Mars Express, the first European interplanetary mission, carries the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) to search for ice and water in the Martian subsurface. Developed by an Italian-US team, MARSIS transmits low-frequency, wide-band radio pulses penetrating below the surface and reflected by dielectric discontinuities linked to structural or compositional changes. MARSIS is also a topside ionosphere sounder, transmitting a burst of short, narrow-band pulses at different frequencies that are reflected by plasma with varying densities at different altitudes. The radar operates since July 2005, after the successful deployment of its 40 m antenna, acquiring data at altitudes lower than 1200 km. Subsurface sounding (SS) data are processed on board by stacking together a batch of echoes acquired at the same frequency. On ground, SS data are further processed by correlating the received echo with the transmitted waveform and compensating de-focusing caused by the dispersive ionosphere. Ground processing of active ionospheric sounding (AIS) data consists in the reconstruction of the electron density profile as a function of altitude. MARSIS observed the internal structure of Planum Boreum outlining the Basal Unit, an icy deposit lying beneath the North Polar Layered Deposits thought to have formed in an epoch in which climate was markedly different from the current one. The total volume of ice in polar layered deposits could be estimated, and parts of the Southern residual ice cap were revealed to consist of ≈ 10 m of CO2 ice. Radar properties of the Vastitas Borealis Formation point to the presence of large quantities of ice buried beneath the surface. Observations of the ionosphere revealed the complex interplay between plasma, crustal magnetic field and solar wind, contributing to space weather studies at Mars. The presence of three-dimensional plasma structures in the ionosphere was revealed for the first time. MARSIS could

  15. Analysis of chaotic FM system synchronization for bistatic radar

    NASA Astrophysics Data System (ADS)

    Pappu, Chandra S.; Verdin, Berenice; Flores, Benjamin C.; Boehm, James; Debroux, Patrick

    2015-05-01

    We propose a scheme for bistatic radar that uses a chaotic system to generate a wideband FM signal that is reconstructed at the receiver via a conventional phase lock loop. The setup for the bistatic radar includes a 3 state variable drive oscillator at the transmitter and a response oscillator at the receiver. The challenge is in synchronizing the response oscillator of the radar receiver utilizing a scaled version of the transmitted signal sr(t, x) = αst(t, x) where x is one of three driver oscillator state variables and α is the scaling factor that accounts for antenna gain, system losses, and space propagation. For FM, we also assume that the instantaneous frequency of the received signal, xs, is a scaled version of the Lorenz variable x. Since this additional scaling factor may not be known a priori, the response oscillator must be able to accept the scaled version of x as an input. Thus, to achieve synchronization we utilize a generalized projective synchronization technique that introduces a controller term -μe where μ is a control factor and e is the difference between the response state variable xs and a scaled x. Since demodulation of sr(t) is required to reconstruct the chaotic state variable x, the phase lock loop imposes a limit on the minimum error e. We verify through simulations that, once synchronization is achieved, the short-time correlation of x and xs is high and that the self-noise in the correlation is negligible over long periods of time.

  16. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  17. Development of radar cross section analysis system of naval ships

    NASA Astrophysics Data System (ADS)

    Kim, Kookhyun; Kim, Jin-Hyeong; Choi, Tae-Muk; Cho, Dae-Seung

    2012-03-01

    A software system for a complex object scattering analysis, named SYSCOS, has been developed for a systematic radar cross section (RCS) analysis and reduction design. The system is based on the high frequency analysis methods of physical optics, geometrical optics, and physical theory of diffraction, which are suitable for RCS analysis of electromagnetically large and complex targets as like naval ships. In addition, a direct scattering center analysis function has been included, which gives relatively simple and intuitive way to discriminate problem areas in design stage when comparing with conventional image-based approaches. In this paper, the theoretical background and the organization of the SYSCOS system are presented. To verify its accuracy and to demonstrate its applicability, numerical analyses for a square plate, a sphere and a cylinder, a weapon system and a virtual naval ship have been carried out, of which results have been compared with analytic solutions and those obtained by the other existing software.

  18. A radome for air traffic control SSR radar systems

    NASA Astrophysics Data System (ADS)

    A new generation of monopulse and discrete interrogation systems has evolved for air traffic control applications that presents significant challenges to total system design and performance. Reliable operation of the antenna system is essential in today's ever increasing air traffic congestion. An important component of the total system is a radome to protect the antenna from the environment and to enable consistent, reliable electromagnetic performance. The various types of radomes that have been employed over the years to protect antennas are discussed and evaluated relative to the air traffic control radar application. The sandwich radome is selected as the best option and a detailed design analysis is presented which considers the vital characteristics of transmissivity, boresight error, and sidelobe perturbations.

  19. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.

  20. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations. PMID:26737409

  1. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  2. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  3. The Goldstone solar system radar: A science instrument for planetary research

    NASA Technical Reports Server (NTRS)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  4. Mars Radar Opens a Planet's Third Dimension

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders.

    The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.

  5. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  6. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  7. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  8. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  9. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  10. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  11. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  12. A novel backpackable ice-penetrating radar system

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenichi; Saito, Ryoji; Naruse, Renji

    We have developed a novel ice-penetrating radar system that can be carried on a backpack. Including batteries for a 3 hour continuous measurement, the total weight is 13 kg. In addition, it operates reliably down to -25°C, has a low power consumption of 24 W, and is semi-waterproof. The system has a built-in-one controller with a high-brightness display for reading data quickly, a receiver with 12-bit digitizing, and a 1 kV pulse transmitter in which the pulse amplitude varies by <0.2%. Optical communications between components provides low-noise data acquisition and allows synchronizing of the pulse transmission with sampling. Measurements with the system revealed the 300 m deep bed topography of a temperate valley glacier in the late ablation season.

  13. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  14. Advanced cryo propulsion systems

    NASA Technical Reports Server (NTRS)

    Tabata, William K.

    1991-01-01

    The following topics are presented in viewgraph form: (1) advanced space engine (ASE) chronology; (2) an ASE description; (3) a single expander; (4) a dual expander; (5) split expander; (6) launch vehicle start; (7) space start; (8) chemical transfer propulsion; and (9) an advanced expander test bed.

  15. Optimal waveforms for MIMO radar systems employing the generalized detector

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2010-04-01

    We consider the problem of waveform design for multiple-input multiple-output (MIMO) radar systems employing the generalized detector that is constructed based on the generalized approach to signal processing in noise. We investigate the case of an extended target and without limiting ourselves to orthogonal waveforms. Instead, we develop a procedure to design the optimal waveform that maximizes the signal-to-interference plus-noise ratio (SINR) at the generalized detector output. The optimal waveform requires a knowledge of both target and clutter statistics. We also develop several suboptimal waveforms requiring knowledge of target statistics only, clutter statistics only, or both. Thus, the transmit waveforms are adjusted based on target and clutter statistics. A model for the radar returns that incorporates the transmit waveforms is developed. The target detection problem is formulated for that model. Optimal and suboptimal algorithms are derived for designing the transmit waveforms under different assumptions regarding the statistical information available to the generalized detector. The performance of these algorithms is illustrated by computer simulation.

  16. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  17. Survey of radar ADT

    NASA Astrophysics Data System (ADS)

    Trunk, G. V.

    1983-07-01

    The most recent advances in automatic detection and tracking are surveyed. The discussion deals with various noncoherent integrators that provide target enhancement, thresholding techniques for reducing false alarms and target suppression, and algorithms for estimating target position and resolving targets. Attention is also given to track-while-scan systems, and the entire tracking system is surveyed. This is followed by a discussion of the various components of the system, such as the tracking filter, maneuver-following logic, track initiation, and correlation logic. The survey concludes with a discussion of radar netting. It is emphasized that the automatic detector should be considered an integral part of the radar system.

  18. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  19. Investigation of Pickering Crater (Mars) by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS)

    NASA Astrophysics Data System (ADS)

    Caprarelli, G.; Cartacci, M.; Orosei, R.; Picardi, G.; Plaut, J. J.

    2008-12-01

    The Mars Express (MEX) Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) is a low- frequency (1.8, 3, 4, 5 MHz) radar capable of ground-penetration. The instrument records echoes returning to MEX from Martian interior depths as big as 5 km at nadir, well within the crust. It can thus provide fundamental information for the search and identification of geological structures and rock layering inside the Martian crust, being particularly useful on wide flat expanses such as the vast volcanic fields surrounding the Tharsis Montes. Pickering is an approximately 150 km diameter crater located about 1500 km SW of Arsia Mons, the oldest of the Tharsis volcanoes. The crater has been modified by tectonic activity and it has been infilled, with the most surficial strata consisting of volcanic rocks. To investigate structures deeper in the material filling Pickering Crater, we used data from MARSIS orbits 4192 and 4932. Their parallel tracks run along the eastern side and the central portion of the crater, respectively. After accounting for the effects of high intensity nadir surface reflections and off-nadir clutter, an apparent low angle N-dipping reflector of approximate horizontal length of 10 km was identified at depths 0.5-1 km below the surface in both orbits. Because the orbit tracks do not intersect, no unique structural reconstruction is possible. However, the presence of similar reflections in both orbits, and the geometric constraints provided by the morphology of the crater, are useful in narrowing the field of possible interpretations. Combining the MARSIS evidence with other datasets furthermore constrains plausible tectonic scenarios.

  20. Advancing pharmacovigilance through academic–legal collaboration: the case of gadolinium-based contrast agents and nephrogenic systemic fibrosis—a research on adverse drug events and reports (RADAR) report

    PubMed Central

    Edwards, B J; Laumann, A E; Nardone, B; Miller, F H; Restaino, J; Raisch, D W; McKoy, J M; Hammel, J A; Bhatt, K; Bauer, K; Samaras, A T; Fisher, M J; Bull, C; Saddleton, E; Belknap, S M; Thomsen, H S; Kanal, E; Cowper, S E; Abu Alfa, A K

    2014-01-01

    Objective: To compare and contrast three databases, that is, The International Centre for Nephrogenic Systemic Fibrosis Registry (ICNSFR), the Food and Drug Administration Adverse Event Reporting System (FAERS) and a legal data set, through pharmacovigilance and to evaluate international nephrogenic systemic fibrosis (NSF) safety efforts. Methods: The Research on Adverse Drug events And Reports methodology was used for assessment—the FAERS (through June 2009), ICNSFR and the legal data set (January 2002 to December 2010). Safety information was obtained from the European Medicines Agency, the Danish Medicine Agency and the Food and Drug Administration. Results: The FAERS encompassed the largest number (n = 1395) of NSF reports. The ICNSFR contained the most complete (n = 335, 100%) histopathological data. A total of 382 individual biopsy-proven, product-specific NSF cases were analysed from the legal data set. 76.2% (291/382) identified exposure to gadodiamide, of which 67.7% (197/291) were unconfounded. Additionally, 40.1% (153/382) of cases involved gadopentetate dimeglumine, of which 48.4% (74/153) were unconfounded, while gadoversetamide was identified in 7.3% (28/382) of which 28.6% (8/28) were unconfounded. Some cases involved gadobenate dimeglumine or gadoteridol, 5.8% (22/382), all of which were confounded. The mean number of exposures to gadolinium-based contrast agents (GBCAs) was gadodiamide (3), gadopentetate dimeglumine (5) and gadoversetamide (2). Of the 279 unconfounded cases, all involved a linear-structured GBCA. 205 (73.5%) were a non-ionic GBCA while 74 (26.5%) were an ionic GBCA. Conclusion: Clinical and legal databases exhibit unique characteristics that prove complementary in safety evaluations. Use of the legal data set allowed the identification of the most commonly implicated GBCA. Advances in knowledge: This article is the first to demonstrate explicitly the utility of a legal data set to pharmacovigilance research. PMID:25230161

  1. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  2. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  3. Small battery operated unattended radar sensor for security systems

    NASA Astrophysics Data System (ADS)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  4. Auxiliary signal processing system for a multiparameter radar

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Gray, G. R.; Caylor, I. J.

    1993-01-01

    The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card and personal computer controller. With the use of such a concept, an auxiliary processor was implemented for the NCAR CP-2 radar during a 1991 summer field campaign and allowed measurement of additional polarimetric parameters, namely, the differential phase and the copolar cross correlation. Sample data are presented from both the auxiliary and existing radar signal processors.

  5. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  6. New law enforcement applications of millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Currie, Nicholas C.; Ferris, David D., Jr.; McMillan, Robert W.; Wicks, Michael C.

    1997-06-01

    Recent advances in millimeter-wave (MMW) radar technologies provide new applications for law enforcement use over-and- above the venerable speed timing radar. These applications include the potential to detect weapons under clothing and to conduct surveillance through walls. Concealed Weapon Detection and covert surveillance are of high interest to both the Department of Defense in support of Small Unit Operations and the Justice Department for civilian law enforcement applications. MMW sensors are under development which should provide the needed capabilities including radiometric sensors at 95 GHz, active 95 GHz real aperture radars, active focal plane array (FPA) radars, and holographic radars. Radiometric sensors include 2D FPA systems, 1D FPA, scanned systems, and single element scanned sensors. Active FPA radars include illuminated radiometric systems and coherent radar systems. Real aperture MMW radar systems include raster scanned and conical scanned sensors. Holographic systems ruse mechanical scanners to collect coherent data over a significant solid angular sector.

  7. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  8. Hybrid optical/electronic signal processor for laser radar signals in fire control systems

    NASA Astrophysics Data System (ADS)

    Findley, George B., Jr.; Anderson, Christopher S.; Townley, S. K.; Pascale, Michael J.; Watson, Lee V.; Jenkinson, Howard A.

    1992-07-01

    This paper reports on the development of a hybrid optical/electronic signal processor for laser radar signals in fire control applications. The breadboard system being developed consists of three subsystems: (1) a signal generator producing target-representative signals, (2) the signal processor consisting of a radiometric channel and a Doppler channel, and (3) a data acquisition, analysis, and display subsystem. The radiometric channel provides target ladar cross section (LCS) resolved in crossrange, while the Doppler channel provides target radial velocity, also resolved in crossrange. Data from the two channels is fused and processed within the data analysis subsystem. Results are to be displayed in near real-time. The breadboard system will be used to demonstrate the capabilities of hybrid signal processor technology and to investigate processing laser radar returns for noncooperative target recognition, target orientation determination, and target trajectory estimation functions. It is anticipated that these functions will enhance the effectiveness of advanced fire control systems in future helicopters and ground vehicles.

  9. Interface and post-processing requirements to insert an acousto-optic range-Doppler processor into an advanced radar digital signal processor

    NASA Astrophysics Data System (ADS)

    Durrett, Rodney A.; Dean, R.; McCarthy, Daniel F.; Viveiros, Edward A.; Caraway, Willie

    1995-06-01

    The interfacing and post-processing requirements for the development and insertion of an acousto-optic (AO), range-Doppler processor will be described. This system has been configured to operate as an integral part of the signal processing chain of an advanced spread- spectrum radar developed by the US Army Missile Command (MICOM). This MICOM radar transmits a continuous repeated, biphase-coded waveform and processes a block of received data to detect and track targets i range and Doppler in the presence of severe ground clutter. Multiple code rates are processed to extend the range window through application of residue number techniques. Range and Doppler processing are achieved in the AO processor using an additive triple-product processor architecture that coherently detects the range-Doppler information on a high-speed, custom 3D CCD detector array developed by the Army Research Laboratory. We present the interfaces to the radar and the post-processing of the data produced by the AO range-Doppler processor into the format required by the MICOM signal processor. The interfaces comprise the extraction of digital in-phase and quadrature data, the condition of this data for the AO range-Doppler processor, and the insertion of the post- processed optical data into the radar signal processor. Timing and latency issues are critical to real-time operation (creating range-Doppler images at approximately 1600 Hz frames rates) within the MICOM radar. The post-processing section cover optical processor architecture/post-processing tradeoffs, focusing on requirements, algorithms, and hardware implementation.

  10. Advanced border monitoring sensor system

    NASA Astrophysics Data System (ADS)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  11. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  12. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Doppler Radar and Inertial Navigation... OPERATIONS Pt. 121, App. G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS): Request... Radar or Inertial Navigation System must submit a request for evaluation of the system to the...

  13. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Doppler Radar and Inertial Navigation... OPERATIONS Pt. 121, App. G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS): Request... Radar or Inertial Navigation System must submit a request for evaluation of the system to the...

  14. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Doppler Radar and Inertial Navigation... OPERATIONS Pt. 121, App. G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS): Request... Radar or Inertial Navigation System must submit a request for evaluation of the system to the...

  15. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  16. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  17. Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.

    PubMed

    Zito, D; Pepe, D; Mincica, M; Zito, F; De Rossi, D; Lanata, A; Scilingo, E P; Tognetti, A

    2008-01-01

    The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations. PMID:19163907

  18. Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.

    PubMed

    Zito, D; Pepe, D; Mincica, M; Zito, F; De Rossi, D; Lanata, A; Scilingo, E P; Tognetti, A

    2008-01-01

    The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations.

  19. TRMM and GPM: Radar Observations and Simulations with the Local Analysis and Prediction System (LAPS)

    NASA Astrophysics Data System (ADS)

    Albers, S. C.; Holub, K.; Xie, Y.

    2015-12-01

    The Local Analysis and Prediction System (LAPS), developed at NOAAs Earth System Research Laboratory is used for data assimilation, nowcasting, and model initialization/post-processing.It is a portable system and typically runs with a high resolution and rapid updateBlends a wide variety of in-situ and remotely sensed data sets (e.g. METARs, mesonets, radar, satellite)‏Here we test the assimilation of PMM radar data, using reflectivity obtained from the TRMM satellite, as a preparation for GPM. A case study for July 26 2013 with a small region of convection occurring over Florida. The 3-D LAPS domain is on a 1km grid and is producing analyses and forecasts.TRMM radar data was remapped to mimic the appearance of reflectivity in a ground-based radar over Florida.Three assimilation experiments are being performed using non-radar observations plus: TRMM radar, ground-based radar, and neither source of radar. We are comparing both analyses (initial condition) and forecasts where the WRF modelis initialized with the LAPS analysis. When evaluating the results we consider some big picture aspects in thatthe GPM Core Observatory radar coverage is limited in space and time and potentially less operational model benefit.To address this 4DVAR can help increase impact (particularly in a global model), since it spreads observations in time and space.The spreading in time also helps compensate for latency of the real-time data stream.We can also use GPM (core satellite) radar paired with microwave imager data to calibrate microwave data from other GPM constellation satellites. We thus can leverage more frequent satellite microwave passes compared with radar to assess hydrometeor climatological covariance between various species, fill in ice phase information.These relationships, leveraged from related climate research, help to provide constraints for our planned variational analysis improvements.

  20. Comparative study of tracking performance in an airborne tracking radar simulator using global positioning system versus monopulse radar techniques

    NASA Astrophysics Data System (ADS)

    Nguyen, Joseph H.; Holley, William D.; Gagnon, Garry

    1993-10-01

    This paper attempts to address the tracking accuracy between the two systems under test. A monopulse radar model was developed to theoretically calculate the would-be measured angle and angle variances. Essentially, measurements of the target's angle, angle variances, range and range rate from the monopulse radar receiver of an aircraft are assessed against the tracking performance of an airborne simulator which uses the time, space, position information (TSPI) delivered from a global positioning system (GPS) system. The accuracy of measurements from a monopulse radar primarily depends on the signal-to-noise ratio (SNR), distance from target in this case, but information received from the GPS Space Vehicle would be virtually jamfree, and independent of distance. Tracking using GPS data however requires good data link between airborne participants. The simulation fidelity becomes an issue when the target is in close range track. The monopulse random slope error and target glint become significant, while the resolution from GPS data links remains the same.

  1. Ground data system architecture for precipitation determination from space-based radar

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.

    1989-01-01

    The Tropical Rain Mapping Radar (Tramar) is proposed as an attached payload as part of the Space Station Earth Observing System Program. Tramar would measure rainfall rates, rain velocity, and rain cell areal extent in the latitude band from 30 deg S to 30 deg N for use in studies of large-scale atmospheric circulation, variations of latent heating, tropical hydrologic processes, and mesoscale precipitation systems. The Tramar science requirements, radar design, and ground data system architecture are examined, including the three-dimensional scan geometry, the radar system performance parameters, the production of earth-gridded maps, and the telemetry, sensor, radiometric, and geophysical data that would be obtained by Tramar.

  2. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  3. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  4. System aspects of the Indian MST radar facility

    NASA Technical Reports Server (NTRS)

    Viswanathan, G.

    1986-01-01

    One of the major objectives of the Indian Middle Atmosphere Program is to investigate the motions of the middle atmosphere on temporal and spatial scales and the interaction between the three height regions of the middle atmosphere. Realizing the fact that radar technique has proven to be a very powerful tool for the study of Earth atmosphere, the Indian Middle Atmosphere Program has recommended establishing a mesosphere-stratosphere-troposphere (MST) radar as a national facility for atmospheric research. The major landmarks in this attempt to setup the MST radar as a national facility are described.

  5. Comparison of lightning observations from the KSC LDAR system with radar observations from the NCAR CP-2 radar

    NASA Technical Reports Server (NTRS)

    Krehbiel, Paul; Rison, William

    1996-01-01

    This grant supported observations of thunderstorms at Kennedy Space Center during the summer of 1995. In particular, we obtained detailed observations of lightning-producing storms over KSC with the CP2 radar of the National Center for Atmospheric Research (NCAR), for the purpose of comparing these with observations from KSC's Lightning Detection and Ranging (LDAR) system. The NCAR radar was a special purpose dual-polarization system for studying the development of precipitation in storms and was at KSC for another project, the Small Cumulus Microphysics Study - SCMS. We used the radar on a non-interference basis to obtain the desired observations. In addition we recorded the electrostatic field change of the lightning discharges at two locations. Subsequent to the field observational period we compared the LDAR lightning observations with the storm structure as indicated by the radar. The results obtained to date are summarized briefly as follows: (1) The initial lightning sequence in a small developing storm was observed to occur in a region of the storm where supercooled raindrops had frozen within the previous few minutes. This is consistent with the idea that the storm electrification is produced by interactions between ice particles. (2) The lightning discharges tended to avoid regions of supercooled liquid raindrops, possibly indicating that corona from the drops reduces any electrification in the vicinity of the drops. (3) 'Bilevel' lightning discharges within storms have been confirmed to be between the level of negative charge at mid-levels in the storm and the upper storm level. This is consistent with and expands upon our understanding that storms have a basic dipolar charge structure. (4) The upward channels of the intracloud lightning discharges are often aligned with shafts of strong precipitation, and often begin just above the upper extent of 40 dBZ reflectivity in the precipitation shaft. This is consistent with a precipitation-based mechanism of

  6. A system for the real-time display of radar and video images of targets

    NASA Technical Reports Server (NTRS)

    Allen, W. W.; Burnside, W. D.

    1990-01-01

    Described here is a software and hardware system for the real-time display of radar and video images for use in a measurement range. The main purpose is to give the reader a clear idea of the software and hardware design and its functions. This system is designed around a Tektronix XD88-30 graphics workstation, used to display radar images superimposed on video images of the actual target. The system's purpose is to provide a platform for tha analysis and documentation of radar images and their associated targets in a menu-driven, user oriented environment.

  7. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  8. Development of a GPS-aided motion measurement, pointing, and stabilization system for a Synthetic Aperture Radar. [Global Positioning System (GPS)

    SciTech Connect

    Fellerhoff, J.R.; Kohler, S.M.

    1991-01-01

    An advanced Synthetic Aperture Radar Motion Compensation System has been developed by Sandia National Laboratories (SNL). The system includes a miniaturized high accuracy ring laser gyro inertial measurement unit, a three axis gimbal pointing and stabilization assembly, a differential Global Positioning System (GPS) navigation aiding system, and a pilot guidance system. The system provides several improvements over previous SNL motion compensation systems and is capable of antenna stabilization to less than 0.01 degrees RMS and absolute position measurement to less than 5.0 meters RMS. These accuracies have been demonstrated in recent flight testing aboard a DHC-6-300 Twin Otter'' aircraft.

  9. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  10. A combined quality-control methodology in Ebro Delta (NE Spain) high frequency radar system

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-08-01

    Ebro River Delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three site standard-range (13.5 MHz) CODAR SeaSonde High Frequency (HF) radar was deployed in 2013. Since there is a growing demand for reliable HF radar surface current measurements, the main goal of this work is to present a combined quality control methodology. Firstly, one year-long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters is conducted in order to infer both radar site status and HF radar system performance. Signal-to-noise ratio at the monopole exhibited a consistent monthly evolution although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be a sporadic episode since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and RMSE values emerged in the ranges 0.58-0.83 and 4.02-18.31 cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely: the predominant southwestward flow, the coastal clockwise eddy confined south of Ebro Delta mouth or the Ebro River impulsive-type freshwater discharge. Future works should include the use of verified HF radar data for the rigorous skill assessment of operational ocean circulation systems currently running in Ebro estuarine region like MyOcean IBI.

  11. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  12. Radar based Ground Level Reconstruction Utilizing a Hypocycloid Antenna Positioning System

    NASA Astrophysics Data System (ADS)

    Baer, Christoph; Musch, Thomas

    2015-01-01

    In this contribution we introduce a novel radar positioning system. It makes use of a mathematical curve, called hypocycloid, for a slanting movement of the radar antenna. By means of a planetary gear, a ball, and a universal joint as well as a stepping motor, a two dimensional positioning is provided by a uniaxial drive shaft exclusively. The fundamental position calculation and different signal processing algorithms are presented. By means of an 80 GHz FMCW radar system we performed several measurements on objects with discrete heights as well as on objects with continuous surfaces. The results of these investigations are essential part of this contribution and are discussed in detail.

  13. Estimation of Microphysical and Radiative Parameters of Precipitating Cloud Systems Using mm-Wavelength Radars

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.

    2009-03-01

    A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.

  14. Measurement of lake ice thickness with a short-pulse radar system

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; Mueller, R. A.; Schertler, R. J.

    1976-01-01

    Measurements of lake ice thickness were made during March 1975 at the Straits of Mackinac by using a short-pulse radar system aboard an all-terrain vehicle. These measurements were compared with ice thicknesses determined with an auger. Over 25 sites were explored which had ice thicknesses in the range 29 to 60 cm. The maximum difference between radar and auger measurements was less than 9.8 percent. The magnitude of the error was less than + or - 3.5 cm. The NASA operating short-pulse radar system used in monitoring lake ice thickness from an aircraft is also described.

  15. Optical-network-connected multi-channel 96-GHz-band distributed radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Kawanishi, Tetsuya

    2015-05-01

    The millimeter-wave (MMW) radar is a promising candidate for high-precision imaging because of its short wavelength and broad range of available bandwidths. In particular in the frequency range of 92-100 GHz, which is regulated for radiolocation, an atmospheric attenuation coefficient less than 1 dB/km limits the imaging range. Therefore, a combination of MMW radar and distributed antenna system directly connected to optical fiber networks can realize both high-precision imaging and large-area surveillance. In this paper, we demonstrate a multi-channel MMW frequency-modulated continuous-wave distributed radar system connected to an analog radio-over-fiber network.

  16. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  17. Advanced Operating System Technologies

    NASA Astrophysics Data System (ADS)

    Cittolin, Sergio; Riccardi, Fabio; Vascotto, Sandro

    In this paper we describe an R&D effort to define an OS architecture suitable for the requirements of the Data Acquisition and Control of an LHC experiment. Large distributed computing systems are foreseen to be the core part of the DAQ and Control system of the future LHC experiments. Neworks of thousands of processors, handling dataflows of several gigaBytes per second, with very strict timing constraints (microseconds), will become a common experience in the following years. Problems like distributyed scheduling, real-time communication protocols, failure-tolerance, distributed monitoring and debugging will have to be faced. A solid software infrastructure will be required to manage this very complicared environment, and at this moment neither CERN has the necessary expertise to build it, nor any similar commercial implementation exists. Fortunately these problems are not unique to the particle and high energy physics experiments, and the current research work in the distributed systems field, especially in the distributed operating systems area, is trying to address many of the above mentioned issues. The world that we are going to face in the next ten years will be quite different and surely much more interconnected than the one we see now. Very ambitious projects exist, planning to link towns, nations and the world in a single "Data Highway". Teleconferencing, Video on Demend, Distributed Multimedia Applications are just a few examples of the very demanding tasks to which the computer industry is committing itself. This projects are triggering a great research effort in the distributed, real-time micro-kernel based operating systems field and in the software enginering areas. The purpose of our group is to collect the outcame of these different research efforts, and to establish a working environment where the different ideas and techniques can be tested, evaluated and possibly extended, to address the requirements of a DAQ and Control System suitable for LHC

  18. A Reduced Power Digital Electronics System for a Digital Beamforming Space Exploration Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Rincon, R. F.; Novak, M.

    2016-10-01

    We will discuss design of an orbital P-band (70 cm wavelength) digital beamforming radar system that is modular and can be used for imaging polarimetry of Earth and rocky planets and moons, as well as asteroids and comets.

  19. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  20. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  1. Power Systems Advanced Research

    SciTech Connect

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  2. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  3. Trilateration-based localization algorithm for ADS-B radar systems

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Shih

    Rapidly increasing growth and demand in various unmanned aerial vehicles (UAV) have pushed governmental regulation development and numerous technology research advances toward integrating unmanned and manned aircraft into the same civil airspace. Safety of other airspace users is the primary concern; thus, with the introduction of UAV into the National Airspace System (NAS), a key issue to overcome is the risk of a collision with manned aircraft. The challenge of UAV integration is global. As automatic dependent surveillance-broadcast (ADS-B) system has gained wide acceptance, additional exploitations of the radioed satellite-based information are topics of current interest. One such opportunity includes the augmentation of the communication ADS-B signal with a random bi-phase modulation for concurrent use as a radar signal for detecting other aircraft in the vicinity. This dissertation provides detailed discussion about the ADS-B radar system, as well as the formulation and analysis of a suitable non-cooperative multi-target tracking method for the ADS-B radar system using radar ranging techniques and particle filter algorithms. In order to deal with specific challenges faced by the ADS-B radar system, several estimation algorithms are studied. Trilateration-based localization algorithms are proposed due to their easy implementation and their ability to work with coherent signal sources. The centroid of three most closely spaced intersections of constant-range loci is conventionally used as trilateration estimate without rigorous justification. In this dissertation, we address the quality of trilateration intersections through range scaling factors. A number of well-known triangle centers, including centroid, incenter, Lemoine point (LP), and Fermat point (FP), are discussed in detail. To the author's best knowledge, LP was never associated with trilateration techniques. According our study, LP is proposed as the best trilateration estimator thanks to the

  4. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  5. Data management system advanced architectures

    NASA Technical Reports Server (NTRS)

    Chevers, ED

    1991-01-01

    The topics relating to the Space Station Freedom (SSF) are presented in view graph form and include: (1) the data management system (DMS) concept; (2) DMS evolution rationale; (3) the DMS advance architecture task; (4) DMS group support for Ames payloads; (5) DMS testbed development; (6) the DMS architecture task status; (7) real time multiprocessor testbed; (8) networked processor performance; (9) and the DMS advance architecture task 1992 goals.

  6. Autonomous system for initializing synthetic aperture radar seeker acquisition

    SciTech Connect

    Hamilton, P.C.

    1993-08-03

    A method is described of guiding a missile having an active seeker including a synthetic aperture radar operating in a squint mode to a target aircraft having a search radar therein the maximum range of active seeker acquisition being within said missile's maneuver capability to intercept, and the maximum range of active seeker acquisition not exceeding the capability of the active seeker, said method comprising the steps of: launching said missile in response to detection of the search radar; implementing a passive seeker mode of operation to passively guide said missile towards said target aircraft in a manner to avoid detection of said missile by said target aircraft; transferring from said passive seeker mode to an active seeker mode in response to detected shutdown of said search radar; maneuvering said missile to execute a turn angle away from said target aircraft such that the search field of said synthetic aperture radar sweeps through an entire target uncertainty volume, said turn angle being within a first preselected limit and a second preselected limit such that said target aircraft does not cross over said missile's terminal flight path; and intercepting said target aircraft within a lethal range of said missile.

  7. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  8. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  9. FMCW radar for the sense function of sense and avoid systems onboard UAVs

    NASA Astrophysics Data System (ADS)

    Itcia, Eric; Wasselin, Jean-Philippe; Mazuel, Sébastien; Otten, Matern; Huizing, Albert

    2013-10-01

    Rockwell Collins France (RCF) radar department is currently developing, in close collaboration with TNO in The Hague, The Netherlands, a Frequency Modulated Continuous Wave (FMCW) radar sensor dedicated to Obstacle Warning function and potentially to air traffic detection. The sensor combines flood light illumination and digital beam forming to accommodate demanding detection and coverage requirements. Performances have been evaluated in flight tests and results prove that such a radar sensor is a good candidate for the Sense Function of Sense and Avoid Systems onboard UAV.

  10. System characteristics design of WindRadar on FengYun-3E meteorological satellite

    NASA Astrophysics Data System (ADS)

    Yin, Honggang; Fan, Ziping; Dou, Fangli

    2014-11-01

    Spaceborne microwave scatterometers have successfully provided global ocean surface wind field for two decades. However current scatterometers still cannot satisfy the requirement of achieve ocean wind vectors in nearly all weather and all wind conditions. A new microwave scatterometer - the WindRadar with dual frequency onboard Chinese FengYun-3E meteorological satellite is being developed to attempt to overcome their shortcomings. This paper introduces the objectives of the WindRadar, then describes the design of its some key system characteristics, and the performance of the WindRadar is also analyzed at the end.

  11. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  12. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  13. Standoff concealed weapon detection using a 350 GHz radar imaging system

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick LJ

    2010-04-01

    The Pacific Northwest National Laboratory is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff concealed weapon detection. The prototype radar imaging system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. Recent improvements to the system include increased imaging speed using improved balancing techniques, wider bandwidth, and image display techniques.

  14. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  16. Advances in percutaneous electrode systems.

    PubMed

    Mooney, V; Roth, A M

    1976-01-01

    In the past eight years, developing a percutaneous electrode system has advanced to a successful, yet simple, method to transmit electrical signals, overcoming the serious problems of excessive mechanical irritation at the skin interface. Experience with over 50-74% in the clinical applications of 1) chronic pain relief; 2) contracture correction; and 3) sensory feedback.

  17. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  18. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  19. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.

  20. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method. PMID:20051345

  1. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  2. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  3. Recent Advancements in Quantitative Full-Wavefield Electromagnetic Induction and Ground Penetrating Radar Inversion for Shallow Subsurface Characterization

    NASA Astrophysics Data System (ADS)

    Van Der Kruk, J.; Yang, X.; Klotzsche, A.; von Hebel, C.; Busch, S.; Mester, A.; Huisman, J. A.; Vereecken, H.

    2014-12-01

    Ray-based or approximate forward modeling techniques have been often used to reduce the computational demands for inversion purposes. Due to increasing computational power and possible parallelization of inversion algorithms, accurate forward modeling can be included in advanced inversion approaches such that the full-wavefield content can be exploited. Here, recent developments of large-scale quantitative electromagnetic induction (EMI) inversion and full-waveform ground penetrating radar (GPR) inversions are discussed that yield higher resolution of quantitative medium properties compared to conventional approaches due to the use of accurate modeling tools that are based on Maxwell's equations. For a limited number of parameters, a combined global and local search using the simplex search algorithm or the shuffled complex evolution (SCE) can be used for inversion. Examples will be shown where calibrated large-scale multi-configuration EMI data measured with new generation multi-offset EMI systems are inverted for a layered electrical conductivity earth, and quantitative permittivity and conductivity values of a layered subsurface can be obtained using on-ground GPR full-waveform inversion that includes the estimation of the unknown source wavelet. For a large number of unknowns, gradient-based optimization methods are commonly used that need a good start model to prevent it from being trapped in a local minimum. Examples will be shown where the non-linearity invoked by the presence of high contrast media can be tamed by using a novel combined frequency-time-domain full-waveform inversion, and a low-velocity waveguide layer can be imaged by using crosshole GPR full-waveform inversion, after adapting the starting model using waveguide identification in the measured data. Synthetic data calculated using the inverted permittivity and conductivity models show similar amplitudes and phases as observed in the measured data, which indicates the reliability of the

  4. Advancing archaeological geophysics: Interpreting the archaeological landscape, ground-penetrating radar data processing, and multi-sensor fusion

    NASA Astrophysics Data System (ADS)

    Ernenwein, Eileen G.

    The human past has been the subject of scientific inquiry for centuries, and has long been approached by the study of material remains from traditional archaeological excavations. In recent decades the advancing fields of geophysics and geographic information systems have greatly improved the archaeological toolkit, and research to improve these methods is ongoing. This dissertation focuses on important aspects of geophysical survey as an approach to landscape-scale archaeology, each presented as stand-alone scientific papers that utilize a 1.2 hectare four-dimensional (ground-penetrating radar, magnetometry, magnetic susceptibility, and conductivity) dataset collected at Pueblo Escondido, a large prehistoric village of the Mogollon culture in southern New Mexico. Chapter 2 presents a case study showing the benefits of multidimensional geophysical surveys over large areas at archaeological sites. When paired with traditional archaeological excavations, it is possible to interpret the archaeological landscape on a much broader scale than is possible using excavations alone. At Pueblo Escondido, this approach led to a revised understanding of the architectural remains with broad regional significance. Chapter 3 describes new problems related to GPR surveys over large areas or extended periods of time, including issues related to correcting trace misalignments, edge discontinuities, and striping. Data processing solutions are offered. Chapter 4 presents an exploration of image classification methods for integrating multiple geophysical datasets. Unsupervised classification utilizing K-means cluster analysis and supervised classification using Mahalanobis Distance are described. The latter yielded a predictive model of archaeological features and identified some features that were not easily identified in the original datasets.

  5. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  6. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  7. Ultrawideband radar echoes of land mine targets measured at oblique incidence using a 250-kW impulse radar system

    NASA Astrophysics Data System (ADS)

    Chant, Ian J.; Staines, Geoff

    1997-07-01

    United Nations Peacekeeping forces around the world need to transport food, personnel and medical supplies through disputed regions were land mines are in active use as road blocks and terror weapons. A method of fast, effective land mine detection is needed to combat this threat to road transport. The technique must operate from a vehicle travelling at a reasonable velocity and give warning far enough ahead for the vehicle to stop in time to avoid the land mine. There is particular interest in detecting low- metallic content land mines. One possible solutionis the use of ultra-wide-band (UWB) radar. The Australian Defence Department is investigating the feasibility of using UWB radar for land mine detection from a vehicle. A 3 GHz UWB system has been used to collect target response from a series of inert land mines and mine-like objects placed on the ground and buried in the ground. The targets measured were a subset of those in the target set described in Wong et al. with the addition of inert land mines corresponding to some of the surrogate targets in this set. The results are encouraging for the detection of metallic land mines and the larger non-metallic land mines. Smaller low-metallic- content anti-personnel land mines are less likely to be detected.

  8. Ground-penetrating radar for sedimentology: methodological advances and examples from the Usumacinta-Grijalva delta plain, Tabasco, México

    NASA Astrophysics Data System (ADS)

    Van Dam, Remke; Nooren, Kees; Dogan, Mine; Hoek, Wim

    2014-05-01

    Ground-penetrating radar (GPR) is widely used as a tool for imaging sedimentary structures and reconstructing depositional history in a range of settings. Most GPR systems use a pair of dipole antennas to transmit and receive electromagnetic energy, typically in the frequency range of 0.025-1 GHz. Radar reflections result from contrasts in dielectric properties, which can be induced by small textural variations between layers. To generate cross sections of the subsurface, the common-offset antenna pair is moved along surface transects. The GPR method benefits from its relative ease of use and relatively limited basic processing that is required for interpretation of field data. Drawbacks include the high signal attenuation in electrically conductive material such as clay and the trade-off between penetration depth and resolution for different antenna frequencies. In recent years, various equipment advances and novel field practices and processing strategies have improved the ability of GPR to provide high-resolution data in a wider range of settings and scenarios. Advances include multi-channel systems for more efficient data collection, multi-offset data collection and processing for improved signal-to-noise ratios, full-resolution and multi-component imaging, and full-waveform inversion. In this presentation, we will discuss some of these methodological advances and present full-resolution field data from a highly heterogeneous fluvial site in Mississippi, USA. We will also present GPR data from a project focused on reconstructing depositional history of the Usumacinta-Grijalva delta in Tabasco, México, which is the world's largest beach ridge plain. Here we used common-offset GPR antenna pairs at two frequencies to assess the varying thickness of the eolian cover of individual beach ridges. We also characterized systematic changes in the dip of beach face and foreshore deposits to study its possible relation with temporal changes in coastal processes.

  9. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  10. Impulse radar imaging system for concealed object detection

    NASA Astrophysics Data System (ADS)

    Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.

    2013-10-01

    Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal

  11. Breast surface estimation for radar-based breast imaging systems.

    PubMed

    Williams, Trevor C; Sill, Jeff M; Fear, Elise C

    2008-06-01

    Radar-based microwave breast-imaging techniques typically require the antennas to be placed at a certain distance from or on the breast surface. This requires prior knowledge of the breast location, shape, and size. The method proposed in this paper for obtaining this information is based on a modified tissue sensing adaptive radar algorithm. First, a breast surface detection scan is performed. Data from this scan are used to localize the breast by creating an estimate of the breast surface. If required, the antennas may then be placed at specified distances from the breast surface for a second tumor-sensing scan. This paper introduces the breast surface estimation and antenna placement algorithms. Surface estimation and antenna placement results are demonstrated on three-dimensional breast models derived from magnetic resonance images.

  12. Gas fired Advanced Turbine System

    SciTech Connect

    LeCren, R.T.; White, D.J.

    1993-01-01

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  13. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  14. Integration of differential global positioning system with ultrawideband synthetic aperture radar for forward imaging

    NASA Astrophysics Data System (ADS)

    Wong, David C.; Bui, Khang; Nguyen, Lam H.; Smith, Gregory; Ton, Tuan T.

    2003-09-01

    The U.S. Army Research Laboratory (ARL), as part of a customer and mission-funded exploratory development program, has been evaluating low-frequency, ultra-wideband (UWB) imaging radar for forward imaging to support the Army's vision for increased mobility and survivability of unmanned ground vehicle missions. As part of the program to improve the radar system and imaging capability, ARL has incorporated a differential global positioning system (DGPS) for motion compensation into the radar system. The use of DGPS can greatly increase positional accuracy, thereby allowing us to improve our ability to focus better images for the detection of small targets such as plastic mines and other concealed objects buried underground. The ability of UWB radar technology to detect concealed objects could provide an important obstacle avoidance capability for robotic vehicles, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U.S. forces. This paper details the integration and discusses the significance of integrating a DGPS into the radar system for forward imaging. It also compares the difference between DGPS and the motion compensation data collected by the use of the original theodolite-based system.

  15. Space shuttle Ku-band integrated rendezvous radar/communications system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results are presented of work performed on the Space Shuttle Ku-Band Integrated Rendezvous Radar/Communications System Study. The recommendations and conclusions are included as well as the details explaining the results. The requirements upon which the study was based are presented along with the predicted performance of the recommended system configuration. In addition, shuttle orbiter vehicle constraints (e.g., size, weight, power, stowage space) are discussed. The tradeoffs considered and the operation of the recommended configuration are described for an optimized, integrated Ku-band radar/communications system. Basic system tradeoffs, communication design, radar design, antenna tradeoffs, antenna gimbal and drive design, antenna servo design, and deployed assembly packaging design are discussed. The communications and radar performance analyses necessary to support the system design effort are presented. Detailed derivations of the communications thermal noise error, the radar range, range rate, and angle tracking errors, and the communications transmitter distortion parameter effect on crosstalk between the unbalanced quadriphase signals are included.

  16. Radar seeker based autonomous navigation update system using topography feature matching techniques

    NASA Astrophysics Data System (ADS)

    Lerche, H. D.; Tumbreagel, F.

    1992-11-01

    The discussed navigation update system was designed for an unmanned platform with fire and forget capability. It meets the requirement due to fully autonomous operation. The system concept will be characterized by complementary use of the radar seeker for target identification as well as for navigation function. The system works in the navigation mode during preprogrammable phases where the primary target identification function is not active or in parallel processing. The dual function radar seeker system navigates the drone during the midcourse and terminal phases of the mission. Its high resolution due to range measurement and doppler beam sharpening in context with its radar reflectivity sensing capability are the basis for topography referenced navigation computation. The detected height jumps (coming from terrain elevation and cultural objects) and radar reflectivity features will be matched together with topography referenced features. The database comprises elevation data and selected radar reflectivity features that are robust against seasonal influences. The operational benefits of the discussed system are as follows: (1) the improved navigation performance with high probability of position fixing, even over flat terrain; (2) the operation within higher altitudes; and (3) bad weather capability. The developed software modules were verified with captive flight test data running in a hardware-in-the-loop simulation.

  17. Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.

  18. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  19. Optimum Co-Design for Spectrum Sharing between Matrix Completion Based MIMO Radars and a MIMO Communication System

    NASA Astrophysics Data System (ADS)

    Li, Bo; Petropulu, Athina P.; Trappe, Wade

    2016-09-01

    Recently proposed multiple input multiple output radars based on matrix completion (MIMO-MC) employ sparse sampling to reduce the amount of data that need to be forwarded to the radar fusion center, and as such enable savings in communication power and bandwidth. This paper proposes designs that optimize the sharing of spectrum between a MIMO-MC radar and a communication system, so that the latter interferes minimally with the former. First, the communication system transmit covariance matrix is designed to minimize the effective interference power (EIP) to the radar receiver, while maintaining certain average capacity and transmit power for the communication system. Two approaches are proposed, namely a noncooperative and a cooperative approach, with the latter being applicable when the radar sampling scheme is known at the communication system. Second, a joint design of the communication transmit covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves even further EIP reduction.

  20. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  1. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  2. A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars.

    PubMed

    Suzuki, Satoshi; Matsui, Takemi; Kawahara, Hiroshi; Ichiki, Hiroto; Shimizu, Jun; Kondo, Yoko; Gotoh, Shinji; Yura, Hirofumi; Takase, Bonpei; Ishihara, Masayuki

    2009-01-01

    We developed a novel non-contact monitoring system to measure the vital signs of casualties inside a moving ambulance. This system was designed to prevent exposure of patients to infectious organisms under biochemical hazard conditions. The system consists of two microwave radars: a 10-GHz respiratory-monitoring radar is positioned 20 cm away from the surface of the isolator. The 24-GHz cardiac-monitoring radar is positioned below the stretcher underneath the isolator. The subject (22.13 +/- 0.99 years) was placed inside the isolator on a stretcher in the simulated ambulance. While the ambulance was in motion at a speed of approximately 10 km/h, the heart rates determined by the cardiac-monitoring radar correlated significantly with those measured by ECG (r = 0.69, p < 0.01), and the respiratory rates derived from the respiratory-monitoring radar correlated with those measured by the respiration curves (r = 0.97, p < 0.0001). The proposed system appears promising for future on-ambulance monitoring of the vital sign of casualties exposed to toxins. PMID:18946695

  3. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  4. The absolute amplitude calibration of the SEASAT synthetic aperture radar - An intercomparison with other L-band radar systems

    NASA Technical Reports Server (NTRS)

    Held, D.; Werner, C.; Wall, S.

    1983-01-01

    The absolute amplitude calibration of the spaceborne Seasat SAR data set is presented based on previous relative calibration studies. A scale factor making it possible to express the perceived radar brightness of a scene in units of sigma-zero is established. The system components are analyzed for error contribution, and the calibration techniques are introduced for each stage. These include: A/D converter saturation tests; prevention of clipping in the processing step; and converting the digital image into the units of received power. Experimental verification was performed by screening and processing the data of the lava flow surrounding the Pisgah Crater in Southern California, for which previous C-130 airborne scatterometer data were available. The average backscatter difference between the two data sets is estimated to be 2 dB in the brighter, and 4 dB in the dimmer regions. For the SAR a calculated uncertainty of 3 dB is expected.

  5. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  6. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario. PMID:26811804

  7. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.

  8. On the use of low-cost radar networks for collision warning systems aboard dumpers.

    PubMed

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-02-26

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.

  9. On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers

    PubMed Central

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-01-01

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521

  10. Radar-Derived Shape Model of Near-Earth Binary Asteroid System (285263) 1998 QE2

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Taylor, Patrick A.; Nolan, Michael C.; Howell, Ellen S.; Brozovi?, Marina; Benner, Lance A.; Giorgini, Jon D.; Busch, Michael W.; Margot, Jean-Luc; Lee, Clement; Jao, Joseph S.; Lauretta, Dante S.

    2014-11-01

    We report on shape modeling of binary asteroid 1998 QE2, a 3.2-km asteroid with a 800-m moon. We observed this asteroid with both Arecibo Observatory planetary radar (2380 MHz, 12.6 cm) and Goldstone Solar System Radar (8560 MHz, 3.5 cm) between May 31-Jun 9, 2013. The close approach on May 31, 2013 (0.039 au) presented an outstanding opportunity for radar delay-Doppler imaging with resolutions as fine as 7.5 m of both objects. The extensive radar dataset was used for shape modeling of both components. Our SHAPE 3D modeling software (Hudson, 1993 and Magri et al., 2007) uses a constrained, weighted least-squares minimization procedure to invert radar delay-Doppler images.The rotation rate of the primary, 4.749 ± 0.002 h, was well constrained from optical lightcurves (P. Pravec, pers. comm.) and rotates prograde as determined from radar data. The primary is roughly spheroidal, showing prominent concavities and surface features, with effective diameter 3.2 ± 0.3 km.The secondary is irregularly shaped, with an effective diameter of 800 ± 80 m and significant elongation. The radar data suggest it is tidally locked, with an orbital period of 31.31 ± 0.01 h hours and a semi-major orbital axis of 6.2 ± 0.1 km. The orbit is approximately circular (e < 0.01), which is typical of most near-Earth asteroid binary system orbits. We estimate a preliminary density for the primary of 0.7 ± 0.2 g/cm^3. The low density is consistent with a "rubble pile" structure.

  11. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  12. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  13. Capability of patch antennas in a portable harmonic radar system to track insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring technologies are needed to track insects and gain a better understanding of their behavior, population, migration and movement. A portable microwave harmonic-radar tracking system that utilizes antenna miniaturization techniques was investigated to achieve this goal. The system mainly con...

  14. Support of imaging radar for the shuttle system and subsystem definition study, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An orbital microwave imaging radar system suggested for use in conjunction with the space shuttle is presented. Several applications of the system are described, including agriculture, meteorology, terrain analysis, various types of mapping, petroleum and mineral exploration, oil spill detection and sea and lake ice monitoring. The design criteria, which are based on the requirements of the above applications, are discussed.

  15. Optical system of an imaging CO{sub 2} laser radar

    SciTech Connect

    He Yi; Wu Jian

    1996-12-31

    In this paper, an optical system is described that is an optical head of a coherent imaging CO{sub 2} laser radar. Discrimination and field of regard limit decided by the optical head itself are discussed. In the experimental laser radar only one continuous wave, single mode CO{sub 2} laser is used, and the signals from buildings of 7km away are obtained with acceptable SNR while the laser output is about 5w. Furthermore, the comparison between two optical systems based on individually linear frequency modulation (or chirp) pulse compression and frequency modulated continuous wave technique is also introduced in this paper.

  16. Primary propulsion of electrothermal, ion and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using electrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  17. Primary propulsion of electrothermal, ion, and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using eiectrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  18. Multi radar tracking and multi sensor tracking in air defence systems

    NASA Astrophysics Data System (ADS)

    Berle, F. J.

    1983-10-01

    The netting of radars and the integration of other complementary sensors provide advantages with respect to system survivability and achieve a better quality air picture because of the resulting higher data rate. The paper describes an MST concept resulting from an extension of an operational MRT system and presents the results of a computer evaluation of the concept, emphasizing the processing of data from passive sensors and radars operating in passive mode. Three examples of different target density and number indicate the difficulties of processing sensor data in a jamming situation. Several possibilities of improvements are indicated.

  19. SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described.

  20. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  1. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  2. Network connectivity paradigm for the large data produced by weather radar systems

    NASA Astrophysics Data System (ADS)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  3. Robust Sparse Sensing Using Weather Radar

    NASA Astrophysics Data System (ADS)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  4. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  5. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  6. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  7. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5-micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  8. MARSIS: Latest Phobos Flyby. Data Processing Results and Advanced Radar Configuration Design

    NASA Astrophysics Data System (ADS)

    Cicchetti, A.; Cartacci, M.; Gim, Y.; Giuppi, S.; Heggy, E.; Hegler, S.; Ivanov, A. B.; Nenna, C.; Noschese, R.; Orosei, R.; Plaut, J. J.; Plettemeier, D.; Seu, R.

    2011-10-01

    The multi-frequency sounding radar MARSIS has successfully observed Phobos during the latest MEX science campaign on 9 January 2011. A new data acquisition technique has been developed and implemented during this fly-by, allowing to obtain an improvement of about 10 dB in Signal to Noise Ratio (SNR) and providing high quality data. MARSIS has collected two segments of data containing 6000 individual echoes, acquired in 50 sec of operation. The detection range was 180 ÷ 230 km between MEX and the Phobos surface, while the employed frequency was 4 MHz. The ground track covered new areas not explored by previous fly-bys.

  9. Advancing migratory bird conservation and management by using radar: An interagency collaboration

    USGS Publications Warehouse

    Ruth, Janet M.; Barrow, Wylie C.; Sojda, Richard S.; Dawson, Deanna K.; Diehl, Robert H.; Manville, Albert; Green, Michael T.; Krueper, David J.; Johnston, Scott

    2005-01-01

    Many technical issues make this work difficult, including complex data structures, massive data sets, digital recognition of birds, large areas not covered by weather radar, and model validation; however, progress will only be furthered by tackling the challenge. The new coalition will meets its goals by: (1) facilitating a productive collaboration with NOAA, Department of the Interior bureaus, state wildlife agencies, universities, power companies, and other potential partners; (2) building and strengthening scientific capabilities within USGS; (3) addressing key migratory bird management issues; and (4) ensuring full funding for the collaborative effort.

  10. Space-based radar representation in the advanced warfighting simulation (AWARS)

    NASA Astrophysics Data System (ADS)

    Phend, Andrew E.; Buckley, Kathryn; Elliott, Steven R.; Stanley, Page B.; Shea, Peter M.; Rutland, Jimmie A.

    2004-09-01

    Space and orbiting systems impact multiple battlefield operating systems (BOS). Space support to current operations is a perfect example of how the United States fights. Satellite-aided munitions, communications, navigation and weather systems combine to achieve military objectives in a relatively short amount of time. Through representation of space capabilities within models and simulations, the military will have the ability to train and educate officers and soldiers to fight from the high ground of space or to conduct analysis and determine the requirements or utility of transformed forces empowered with advanced space-based capabilities. The Army Vice Chief of Staff acknowledged deficiencies in space modeling and simulation during the September 2001 Space Force Management Analsyis Review (FORMAL) and directed that a multi-disciplinary team be established to recommend a service-wide roadmap to address shortcomings. A Focus Area Collaborative Team (FACT), led by the U.S. Army Space & Missile Defense Command with participation across the Army, confirmed the weaknesses in scope, consistency, correctness, completeness, availability, and usability of space model and simulation (M&S) for Army applications. The FACT addressed the need to develop a roadmap to remedy Space M&S deficiencies using a highly parallelized process and schedule designed to support a recommendation during the Sep 02 meeting of the Army Model and Simulation Executive Council (AMSEC).

  11. Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System

    PubMed Central

    Gu, Changzhan; Li, Changzhi

    2015-01-01

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310

  12. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    PubMed

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  13. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    PubMed

    Gu, Changzhan; Li, Changzhi

    2015-01-01

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310

  14. Design of integrated ship monitoring system using SAR, RADAR, and AIS

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho; Hong, Danbee; Ahn, Hyung-Wook

    2013-06-01

    When we talk about for the ship detection, identification and its classification, we need to go for the wide area of monitoring and it may be possible only through satellite based monitoring approach which monitors and covers coastal as well as the oceanic zone. Synthetic aperture radar (SAR) has been widely used to detect targets of interest with the advantage of the operating capability in all weather and luminance free condition (Margarit and Tabasco, 2011). In EU waters, EMSA(European Maritime Safety Agency) is operating the SafeSeaNet and CleanSeaNet systems which provide the current positions of all ships and oil spill monitoring information in and around EU waters in a single picture to Member States using AIS, LRIT and SAR images. In many countries, a similar system has been developed and the key of the matter is to integrate all available data. This abstract describes the preliminary design concept for an integration system of RADAR, AIS and SAR data for vessel traffic monitoring. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should be also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Land-based RADAR can provide ships positions detected and tracked in near real time. In general, SAR are used to acquire image data over large coverage area, AIS reports are obtained from ship based transmitter, and RADAR can monitor continuously ships for a limited area. In this study, we developed individual ship monitoring algorithms using RADAR(FMCW and Pulse X-band), AIS and SAR(RADARSAT-2 Full-pol Mode). We conducted field experiments two times for displaying the RADAR, AIS and SAR integration over the Pyeongtaek Port, South Korea.

  15. Space-based radar array system simulation and validation

    NASA Astrophysics Data System (ADS)

    Schuman, H. K.; Pflug, D. R.; Thompson, L. D.

    1981-08-01

    The present status of the space-based radar phased array lens simulator is discussed. Huge arrays of thin wire radiating elements on either side of a ground screen are modeled by the simulator. Also modeled are amplitude and phase adjust modules connecting radiating elements between arrays, feedline to radiator mismatch, and lens warping. A successive approximation method is employed. The first approximation is based on a plane wave expansion (infinite array) moment method especially suited to large array analysis. the first approximation results then facilitate higher approximation computations that account for effects of nonuniform periodicities (lens edge, lens section interfaces, failed modules, etc.). The programming to date is discussed via flow diagrams. An improved theory is presented in a consolidated development. The use of the simulator is illustrated by computing active impedances and radiating element current distributions for infinite planar arrays of straight and 'swept back' dipoles (arms inclined with respect to the array plane) with feedline scattering taken into account.

  16. Chaotic signal reconstruction with application to noise radar system

    NASA Astrophysics Data System (ADS)

    Liu, Lidong; Hu, Jinfeng; He, Zishu; Han, Chunlin; Li, Huiyong; Li, Jun

    2011-12-01

    Chaotic signals are potentially attractive in engineering applications, most of which require an accurate estimation of the actual chaotic signal from a noisy background. In this article, we present an improved symbolic dynamics-based method (ISDM) for accurate estimating the initial condition of chaotic signal corrupted by noise. Then, a new method, called piecewise estimation method (PEM), for chaotic signal reconstruction based on ISDM is proposed. The reconstruction performance using PEM is much better than that using the existing initial condition estimation methods. Next, PEM is applied in a noncoherent reception noise radar scheme and an improved noncoherent reception scheme is given. The simulation results show that the improved noncoherent scheme has better correlation performance and range resolution especially at low signal-to-noise ratios (SNRs).

  17. Feature discrimination and detection probability in synthetic aperture radar imaging system

    NASA Technical Reports Server (NTRS)

    Lipes, R. G.; Butman, S. A.

    1977-01-01

    Images obtained using synthetic aperture radar (SAR) systems can only represent the intensities of resolution cells in the scene of interest probabilistically since radar receiver noise and Rayleigh scattering of the transmitted radiation are always present. Consequently, when features to be identified differ only by their contribution to the mean power of the radar return, discrimination can be treated by detection theory. In this paper, we develop a 'sufficient statistic' for discriminating between competing features and compare it with some suboptimal methods frequently used. Discrimination is measured by probability of detection error and depends on number of samples or 'looks', signal-to-noise ratio (SNR), and ratio of mean power returns from the competing features. Our results show discrimination and image quality rapidly saturate with SNR (very small improvement for SNR not less than 10 dB) but continue to improve with increasing number of looks.

  18. Measurement data preprocessing in a radar-based system for monitoring of human movements

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.; Miȩkina, Andrzej; Bajurko, Paweł R.

    2015-02-01

    The importance of research on new technologies that could be employed in care services for elderly people is highlighted. The need to examine the applicability of various sensor systems for non-invasive monitoring of the movements and vital bodily functions, such as heart beat or breathing rhythm, of elderly persons in their home environment is justified. An extensive overview of the literature concerning existing monitoring techniques is provided. A technological potential behind radar sensors is indicated. A new class of algorithms for preprocessing of measurement data from impulse radar sensors, when applied for elderly people monitoring, is proposed. Preliminary results of numerical experiments performed on those algorithms are demonstrated.

  19. Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode

    NASA Astrophysics Data System (ADS)

    Stopa, Justin E.; Ardhuin, Fabrice; Husson, Romain; Jiang, Haoyu; Chapron, Bertrand; Collard, Fabrice

    2016-04-01

    Swells are found in all oceans and strongly influence the wave climate and air-sea processes. The poorly known swell dissipation is the largest source of error in wave forecasts and hindcasts. We use synthetic aperture radar data to identify swell sources and trajectories, allowing a statistically significant estimation of swell dissipation. We mined the entire Envisat mission 2003-2012 to find suitable storms with swells (13 < T < 18 s) that are observed several times along their propagation. This database of swell events provides a comprehensive view of swell extending previous efforts. The analysis reveals that swell dissipation weakly correlates with the wave steepness, wind speed, orbital wave velocity, and the relative direction of wind and waves. Although several negative dissipation rates are found, there are uncertainties in the synthetic aperture radar-derived swell heights and dissipation rates. An acceptable range of the swell dissipation rate is -0.1 to 6 × 10-7 m-1 with a median of 1 × 10-7 m-1.

  20. Advanced Docking Berthing System Update

    NASA Technical Reports Server (NTRS)

    Lewis, James

    2006-01-01

    In FY05 the Exploration Systems Technology Maturation Program selected the JSC advanced mating systems development to continue as an in-house project. In FY06, as a result of ESAS Study (60 Day Study) the CEV Project (within the Constellation Program) has chosen to continue the project as a GFE Flight Hardware development effort. New requirement for CEV to travel and dock with the ISS in 2011/12 in support of retiring the Shuttle and reducing the gap of time where US does not have any US based crew launch capability. As before, long-duration compatible seal-on-seal technology (seal-on-seal to support androgynous interface) has been identified as a risk mitigation item.

  1. Forth system for coherent-scatter radar data acquisition and processing

    NASA Technical Reports Server (NTRS)

    Rennier, A. D.; Bowhill, S. A.

    1985-01-01

    A real time collection system was developed for the Urbana coherent scatter radar system. The new system, designed for use with a microcomputer, has several advantages over the old system implemented with a minicomputer. The software used to collect the data is described as well as the processing software used to analyze the data. In addition a magnetic tape format for coherent scatter data exchange is given.

  2. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  3. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  4. Earth Observing System (EOS) advanced altimetry

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  5. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  6. Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation

    NASA Technical Reports Server (NTRS)

    Leachman, Jonathan

    2010-01-01

    A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.

  7. Shuttle orbiter KU-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An expanded introduction is presented which addresses the in-depth nature of the tasks and indicates continuity of the reported effort and results with previous work and related contracts, and the two major modes of operation which exist in the Ku-band system, namely, the radar mode and the communication mode, are described. The Ku-band radar system is designed to search for a target in a designated or undesignated mode, then track the detected target, which might be cooperative (active) or passive, providing accurate, estimates of the target range, range rate, angle and angle rate to enable the orbiter to rendezvous with this target. The radar mode is described along with a summary of its predicted performance. The principal sub-unit that implements the radar function is the electronics assembly 2(EA-2). The relationship of EA-2 to the remainder of the Ku-band system is shown. A block diagram of EA-2 is presented including the main command and status signals between EA-2 and the other Ku-band units.

  8. Advanced models of targets and disturbances and related radar signal processors

    NASA Astrophysics Data System (ADS)

    Farina, A.; Russo, A.; Studer, F. A.

    The first part of the paper provides flexible and reliable stochastic models for the radar signals scattered by target and clutter sources. The models make it possible to consider any shape of autocorrelation function between consecutive pulse echoes and any probability density function for their in-phase and quadrature components. The second part of the paper revises the theory of detecting targets, with any type of probability density and autocorrelation function, embedded in a disturbance having any type of probability density and autocorrelation function. In the third part of the paper, the theory is applied to the cases in which target and/or disturbance may have a log-normal probability density for the amplitudes. Several processing schemes are suggested and corresponding detection performances evaluated. Finally, adaptive implementation schematics are suggested for some of the processors presented.

  9. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  10. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  11. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  12. The Advanced Launch System (ALS)

    NASA Astrophysics Data System (ADS)

    Eldred, Charles H.

    The Advanced Launch System (ALS) is an unmanned vehicle that will achieve low hardware cost by using a reusable booster stage which flies back to the launch site, and a core stage in which the rocket engines and redundant avionics are in a module that is returned to earth and recovered for reuse. The booster's utilization of liquid propellant instead of solid propellant will help lower the consumable costs. The ALS also includes launch processing and flight control facilities, necessary support equipment, and ground- and flight-operations infrastructure. The ALS program studies show that, through the ALS, the United States can launch a major Mars initiative economically and with confidence. It is estimated that the objective ALS can be operational in the late 1990s.

  13. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  14. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) mosaic for the Kahiltna terrane, Alaska, 2007-2010

    USGS Publications Warehouse

    Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.

    2015-01-01

    The USGS has compiled a continuous, cloud-free 12.5-meter resolution radar mosaic of SAR data of approximately 212,000 square kilometers to examine the suitability of this technology for geologic mapping. This mosaic was created from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data collected from 2007 to 2010 spanning the Kahiltna terrane and the surrounding area. Interpretation of these data may help geologists understand past geologic processes and identify areas with potential for near-surface mineral resources for further ground-based geological and geochemical investigations.

  15. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-08-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  16. THE SOUTHERN ARGENTINA AGILE METEOR RADAR ORBITAL SYSTEM (SAAMER-OS): AN INITIAL SPORADIC METEOROID ORBITAL SURVEY IN THE SOUTHERN SKY

    SciTech Connect

    Janches, D.; Swarnalingam, N.; Close, S.; Hormaechea, J. L.; Murphy, A.; O’Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C. E-mail: nimalan.swarnalingam@nasa.gov E-mail: jlhormaechea@untdf.edu.ar E-mail: doconnor@gsoft.com.au E-mail: bfuller@gsoft.com.au E-mail: claudiobrunini@yahoo.com

    2015-08-10

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  17. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  18. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  19. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  20. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed

    2003-01-01

    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  1. Design and deployment of a stationary ice-penetrating radar system

    NASA Astrophysics Data System (ADS)

    Flowers, G. E.; Mingo, L.; Saint-Jacques, D.

    2015-12-01

    Ice-penetrating radar (IPR) is a popular tool in glaciology, used most commonly for mapping ice depth. Dielectric contrasts between englacial materials, including ice, water, and impurities, allow the detection of internal stratigraphy and some characterization of englacial properties. Here we describe the design and the 2014-2015 deployments of an autonomous stationary ice-penetrating radar system that was tested on a large outlet glacier of the Icefield Ranges of southwest Yukon, Canada. The radar system was deployed within a kilometer of an ice-marginal lake that is dammed by the Kaskawulsh Glacier and drains annually in a subglacial jökulhlaup. It was programmed to perform a series of soundings every few hours and was left unattended over the course of 6 weeks in 2014 and 7 weeks in 2015, while the lake level was monitored with a pressure transducer and time-lapse imagery. The 2014 dataset is characterized by a marked decrease in englacial reflector strength and coherence during the drainage of the ice-dammed lake. We interpret these data as a significant change in englacial saturation associated with the flood. The 2015 dataset post-dates the flood and provides an opportunity to examine more subtle changes in englacial and subglacial properties. Radar mapping in the vicinity of the deployment locations provides context for the time-dependent measurements, also showing significant differences before and after lake drainage.

  2. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  3. MIDAS-W: a workstation-based incoherent scatter radar data acquisition system

    NASA Astrophysics Data System (ADS)

    Holt, J. M.; Erickson, P. J.; Gorczyca, A. M.; Grydeland, T.

    2000-09-01

    The Millstone Hill Incoherent Scatter Data Acquisition System (MIDAS) is based on an abstract model of an incoherent scatter radar. This model is implemented in a hierarchical software system, which serves to isolate hardware and low-level software implementation details from higher levels of the system. Inherent in this is the idea that implementation details can easily be changed in response to technological advances. MIDAS is an evolutionary system, and the MIDAS hardware has, in fact, evolved while the basic software model has remained unchanged. From the earliest days of MIDAS, it was realized that some functions implemented in specialized hardware might eventually be implemented by software in a general-purpose computer. MIDAS-W is the realization of this concept. The core component of MIDAS-W is a Sun Microsystems UltraSparc 10 workstation equipped with an Ultrarad 1280 PCI bus analog to digital (A/D) converter board. In the current implementation, a 2.25 MHz intermediate frequency (IF) is bandpass sampled at 1 µs intervals and these samples are multicast over a high-speed Ethernet which serves as a raw data bus. A second workstation receives the samples, converts them to filtered, decimated, complex baseband samples and computes the lag-profile matrix of the decimated samples. Overall performance is approximately ten times better than the previous MIDAS system, which utilizes a custom digital filtering module and array processor based correlator. A major advantage of MIDAS-W is its flexibility. A portable, single-workstation data acquisition system can be implemented by moving the software receiver and correlator programs to the workstation with the A/D converter. When the data samples are multicast, additional data processing systems, for example for raw data recording, can be implemented simply by adding another workstation with suitable software to the high-speed network. Testing of new data processing software is also greatly simplified, because a

  4. Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  5. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Cross, Jack; Schneider, John; Cariani, Pete

    2013-05-01

    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  6. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  7. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    NASA Astrophysics Data System (ADS)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  8. Advancing Understanding of the Role of Belowground Processes in Terrestrial Carbon Sinks trhrough Ground-Penetrating Radar. Final Report

    SciTech Connect

    Day, Frank P.

    2015-02-06

    Coarse roots play a significant role in belowground carbon cycling and will likely play an increasingly crucial role in belowground carbon sequestration as atmospheric CO2 levels continue to rise, yet they are one of the most difficult ecosystem parameters to quantify. Despite promising results with ground-penetrating radar (GPR) as a nondestructive method of quantifying biomass of coarse roots, this application of GPR is in its infancy and neither the complete potential nor limitations of the technology have been fully evaluated. The primary goals and questions of this study fell into four groups: (1) GPR methods: Can GPR detect change in root biomass over time, differentiate live roots from dead roots, differentiate between coarse roots, fine roots bundled together, and a fine root mat, remain effective with varied soil moisture, and detect shadowed roots (roots hidden below larger roots); (2) CO2 enrichment study at Kennedy Space Center in Brevard County, Florida: Are there post-fire legacy effects of CO2 fertilization on plant carbon pools following the end of CO2application ? (3) Disney Wilderness Study: What is the overall coarse root biomass and potential for belowground carbon storage in a restored longleaf pine flatwoods system? Can GPR effectively quantify coarse roots in soils that are wetter than the previous sites and that have a high percentage of saw palmetto rhizomes present? (4) Can GPR accurately represent root architecture in a three-dimensional model? When the user is familiar with the equipment and software in a setting that minimizes unsuitable conditions, GPR is a relatively precise, non-destructive, useful tool for estimating coarse root biomass. However, there are a number of cautions and guidelines that should be followed to minimize inaccuracies or situations that are untenable for GPR use. GPR appears to be precise as it routinely predicts highly similar values for a given area across multiple

  9. A Self-Calibrating Radar Sensor System for Measuring Vital Signs.

    PubMed

    Huang, Ming-Chun; Liu, Jason J; Xu, Wenyao; Gu, Changzhan; Li, Changzhi; Sarrafzadeh, Majid

    2016-04-01

    Vital signs (i.e., heartbeat and respiration) are crucial physiological signals that are useful in numerous medical applications. The process of measuring these signals should be simple, reliable, and comfortable for patients. In this paper, a noncontact self-calibrating vital signs monitoring system based on the Doppler radar is presented. The system hardware and software were designed with a four-tiered layer structure. To enable accurate vital signs measurement, baseband signals in the radar sensor were modeled and a framework for signal demodulation was proposed. Specifically, a signal model identification method was formulated into a quadratically constrained l1 minimization problem and solved using the upper bound and linear matrix inequality (LMI) relaxations. The performance of the proposed system was comprehensively evaluated using three experimental sets, and the results indicated that this system can be used to effectively measure human vital signs.

  10. A Self-Calibrating Radar Sensor System for Measuring Vital Signs.

    PubMed

    Huang, Ming-Chun; Liu, Jason J; Xu, Wenyao; Gu, Changzhan; Li, Changzhi; Sarrafzadeh, Majid

    2016-04-01

    Vital signs (i.e., heartbeat and respiration) are crucial physiological signals that are useful in numerous medical applications. The process of measuring these signals should be simple, reliable, and comfortable for patients. In this paper, a noncontact self-calibrating vital signs monitoring system based on the Doppler radar is presented. The system hardware and software were designed with a four-tiered layer structure. To enable accurate vital signs measurement, baseband signals in the radar sensor were modeled and a framework for signal demodulation was proposed. Specifically, a signal model identification method was formulated into a quadratically constrained l1 minimization problem and solved using the upper bound and linear matrix inequality (LMI) relaxations. The performance of the proposed system was comprehensively evaluated using three experimental sets, and the results indicated that this system can be used to effectively measure human vital signs. PMID:26011865

  11. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  12. Radar measurement instruments

    NASA Astrophysics Data System (ADS)

    Hartl, P.

    1983-02-01

    The radar techniques used for Earth observation are reviewed. Range, direction and speed measuring techniques, and the principles of scatterometers, side-looking radar, altimeters and SAR are discussed. The ERS-1 radar package including the active microwave instrumentation and the radar altimeter are described. The analysis of the calibration problems leads to the conclusion that only the test of the system loop as a whole, besides the individual part tests, can provide a calibration in the absolute sense.

  13. Rain-Mapping Radar

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Li, F. K.; Wilson, W. J.; Rosing, D.

    1988-01-01

    Orbiting radar system measures rates of rainfall from 0.5 to 60 mm/h. Radar waves scattered and absorbed by rainfall to extents depending on wavelength, polarization, rate of rainfall, and distribution of sizes and shapes of raindrops. Backscattered radar signal as function of length of path through rain used to infer detailed information about rain. Accumulated radar return signals processed into global maps of monthly average rainfall for use in climatological studies.

  14. Parallel processing in a host plus multiple array processor system for radar

    NASA Technical Reports Server (NTRS)

    Barkan, B. Z.

    1983-01-01

    Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.

  15. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  16. Radar systems for a polar mission, volume 3, appendices A-D, S, T

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed.

  17. System Performance Evaluation and Improvement by Using KSGC Radar Data of Space Debris Observations

    NASA Astrophysics Data System (ADS)

    Nakamura, Shinichi; Tajima, Toru; Kudoh, Noduo; Abe, Jyunya; Someya, Kazunori; Ono, Katsuhiro; Kameyama, Masaya; Adachi, Gaku; Aoki, Sadao

    2013-08-01

    Since 2003, an active phased array radar at Kamisaibara Space Guard Centre (KSGC) has been used for LEO debris observation in Japan. JAXA evaluated the performance of the KSGC radar at its 10-year anniversary of debris observation. This paper presents the evaluation of detection ability, measurement accuracy and tracking ability, and the improvement of tracking ability of the KSGC radar by tuning parameters. It is well known that the evaluation of the abilities and accuracy are comparatively simple. However, improvement of tracking ability requires know-how that can only be attained through accumulation of observation facts and their analytical results. For example, there are some non-negligible differences between debris tracking and usual flying objects (i.e. airplanes) tracking. Namely, debris tracking can be characterized by the fact that its detective distance is extremely long, velocity is extremely high, fluctuation of relative attitude is unstable, etc. This paper describes the above points, and more specifically, the evaluation method and logic for improving system performance of the KSGC radar by using debris observation data.

  18. Auroral ion acoustic wave enhancement observed with a radar interferometer system

    NASA Astrophysics Data System (ADS)

    Schlatter, N. M.; Belyey, V.; Gustavsson, B.; Ivchenko, N.; Whiter, D.; Dahlgren, H.; Tuttle, S.; Grydeland, T.

    2015-07-01

    Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EISCAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 × 500 m, and at times less than 160 m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.

  19. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  20. Characterization of Leonid meteor head echo data collected using the VHF-UHF Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR)

    NASA Astrophysics Data System (ADS)

    Close, S.; Hunt, S. M.; McKeen, F. M.; Minardi, M. J.

    2002-02-01

    The Leonid meteor shower, which was predicted to hit storm-like activity on 17 November 1998, was observed using radar and optical sensors at the Kwajalein Missile Range in order to study potential threats to orbiting spacecraft. Meteor head echo data were collected during the predicted peak of the ``storm'' primarily using the Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR). ALTAIR is a dual-frequency radar at VHF (160 MHz) and UHF (422 MHz) that is uniquely suited for detecting meteor head echoes due to high sensitivity, precise calibration, and the ability to record radar data at a high rate (Gb/min). ALTAIR transmits right-circular (RC) polarized energy and records left-circular (LC) sum, RC sum, LC azimuth angle difference, and LC elevation angle difference channels; these four measurements facilitate the determination of three-dimensional target position and velocity as a function of radar cross section and time. During the predicted peak of the storm, ALTAIR detected 734 VHF head echoes in 29 min of data and 472 UHF head echoes in 17 min of data, as well as numerous specular and nonspecular ionization trails. This paper contains analysis on the head echo data, including dual-frequency statistics and the variability of head echo decelerations. We also include results from the analysis of the radius-density parameter, which shows a strong correlation with deceleration.

  1. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  2. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  3. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  4. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  5. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  6. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  7. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  8. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    PubMed

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.

  9. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  10. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    PubMed

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas. PMID:25291803

  11. A W-Band MMIC Radar System for Remote Detection of Vital Signs

    NASA Astrophysics Data System (ADS)

    Diebold, Sebastian; Ayhan, Serdal; Scherr, Steffen; Massler, Hermann; Tessmann, Axel; Leuther, Arnulf; Ambacher, Oliver; Zwick, Thomas; Kallfass, Ingmar

    2012-12-01

    In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75-110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.

  12. Real-time FPGA-based radar imaging for smart mobility systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2016-04-01

    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.

  13. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  14. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  15. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  16. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  17. Multidimensional radar picture

    NASA Astrophysics Data System (ADS)

    Waz, Mariusz

    2010-05-01

    In marine navigation systems, the three-dimensional (3D) visualization is often and often used. Echosonders and sonars working in hydroacustic systems can present pictures in three dimensions. Currently, vector maps also offer 3D presentation. This presentation is used in aviation and underwater navigation. In the nearest future three-dimensional presentation may be obligatory presentation in displays of navigation systems. A part of these systems work with radar and communicates with it transmitting data in a digital form. 3D presentation of radar picture require a new technology to develop. In the first step it is necessary to compile digital form of radar signal. The modern navigation radar do not present data in three-dimensional form. Progress in technology of digital signal processing make it possible to create multidimensional radar pictures. For instance, the RSC (Radar Scan Converter) - digital radar picture recording and transforming tool can be used to create new picture online. Using RSC and techniques of modern computer graphics multidimensional radar pictures can be generated. The radar pictures mentioned should be readable for ECDIS. The paper presents a method for generating multidimensional radar picture from original signal coming from radar receiver.

  18. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  19. Noncontact screening system with two microwave radars for the diagnosis of sleep apnea-hypopnea syndrome.

    PubMed

    Kagawa, Masayuki; Ueki, Katsuhiko; Tojima, Hirokazu; Matsui, Takemi

    2013-01-01

    There were two key problems in applying Doppler radar to a diagnosis system for sleep apnea-hypopnea syndrome. The first is noise associated with body movements and the second is the body positions in bed and the changes of the sleeping posture. We focused on the changes of the amplitude of the radar output signal corresponding to the changes in the tidal volume, and proposed a method of detecting the change of the respiratory amplitude value without the influence of body position in bed. In addition, we challenged the detection of the apnea-hypopnea event confirmed by accompanied rise of heart rates. To increase the accuracy of heart rate measurement, we propose a new automatic gain control and a real-time radar-output channel selection method based on a spectrum shape analysis. A prototype of the system was set up at a sleep disorder center in a hospital and field tests were carried out with eight subjects. Despite the subjects engaging in frequent body movements while sleeping, the system was quite effective in the diagnosis of sleep apnea-hypopnea syndrome (the correlation coefficient r = 0.98). PMID:24110122

  20. Noncontact screening system with two microwave radars for the diagnosis of sleep apnea-hypopnea syndrome.

    PubMed

    Kagawa, Masayuki; Ueki, Katsuhiko; Tojima, Hirokazu; Matsui, Takemi

    2013-01-01

    There were two key problems in applying Doppler radar to a diagnosis system for sleep apnea-hypopnea syndrome. The first is noise associated with body movements and the second is the body positions in bed and the changes of the sleeping posture. We focused on the changes of the amplitude of the radar output signal corresponding to the changes in the tidal volume, and proposed a method of detecting the change of the respiratory amplitude value without the influence of body position in bed. In addition, we challenged the detection of the apnea-hypopnea event confirmed by accompanied rise of heart rates. To increase the accuracy of heart rate measurement, we propose a new automatic gain control and a real-time radar-output channel selection method based on a spectrum shape analysis. A prototype of the system was set up at a sleep disorder center in a hospital and field tests were carried out with eight subjects. Despite the subjects engaging in frequent body movements while sleeping, the system was quite effective in the diagnosis of sleep apnea-hypopnea syndrome (the correlation coefficient r = 0.98).

  1. The EDOP radar system on the high-altitude NASA ER-2 aircraft

    USGS Publications Warehouse

    Heymsfield, G.M.; Bidwell, S.W.; Caylor, I.J.; Ameen, S.; Nicholson, S.; Boncyk, W.; Miller, L.; Vandemark, D.; Racette, P.E.; Dod, L.R.

    1996-01-01

    The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-2 Doppler radar (EDOP) has been developed and flown on the ER-2 aircraft. EDOP is a fully coherent Doppler weather radar with fixed nadir and forward pointing (33?? off nadir) beams that map out Doppler winds and reflectivities in the vertical plane along the aircraft motion vector. Doppler winds from the two beams can be used to derive vertical and along-track air motions. In addition, the forward beam provides linear depolarization measurements that are useful in discriminating microphysical characteristics of the precipitation. This paper deals with a general description of the EDOP instrument including the measurement concept, the system configuration and hardware, and recently obtained data examples from the instrument. The combined remote sensing package on the ER-2, along with EDOP, provides a unique platform for simulating spaceborne remote sensing of precipitation.

  2. A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

  3. Data reduction programs for a laser radar system

    NASA Astrophysics Data System (ADS)

    Badavi, F. F.; Copeland, G. E.

    1984-01-01

    The listing and description of software routines which were used to analyze the analog data obtained from LIDAR - system are given. All routines are written in FORTRAN - IV on a HP - 1000/F minicomputer which serves as the heart of the data acquisition system for the LIDAR program. This particular system has 128 kilobytes of highspeed memory and is equipped with a Vector Instruction Set (VIS) firmware package, which is used in all the routines, to handle quick execution of different long loops. The system handles floating point arithmetic in hardware in order to enhance the speed of execution. This computer is a 2177 C/F series version of HP - 1000 RTE-IVB data acquisition computer system which is designed for real time data capture/analysis and disk/tape mass storage environment.

  4. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  5. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  6. Multiple solutions to dense systems in radar scattering using a preconditioned block GMRES solver

    SciTech Connect

    Boyse, W.E.

    1996-12-31

    Multiple right-hand sides occur in radar scattering calculations in the computation of the simulated radar return from a body at a large number of angles. Each desired angle requires a right-hand side vector to be computed and the solution generated. These right-hand sides are naturally smooth functions of the angle parameters and this property is utilized in a novel way to compute solutions an order of magnitude faster than LINPACK The modeling technique addressed is the Method of Moments (MOM), i.e. a boundary element method for time harmonic Maxwell`s equations. Discretization by this method produces general complex dense systems of rank 100`s to 100,000`s. The usual way to produce the required multiple solutions is via LU factorization and solution routines such as found in LINPACK. Our method uses the block GMRES iterative method to directly iterate a subset of the desired solutions to convergence.

  7. Operational and technical evaluation of the full digital Automated Radar Terminal Systems (ARTS) display (FDAD)

    NASA Astrophysics Data System (ADS)

    Clark, R.; Roditi, S.

    1982-10-01

    This report discusses the operational and technical evaluation of the Full Digital Automated Radar Terminal Systems (ARTS) Display (FDAD). The FDAD was capable of providing data entry, data display, data refresh, and input/output functions of either ARTS II, ARTS III or ARTS IIIA computer. Three different cathode ray tube phosphors, including color, were evaluated. Data were displayed either in a full digital mode or a time share mode. During the time share mode, the display of digital data was time shared with analog radar/beacon target reports. Modifications to software, hardware, and display firmware would be required to make the FDAD's operationally suitable. The technical evaluation conditionally accepts the displays, as tested, and it recommends their use as field displays, provided certain modifications are made.

  8. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    PubMed Central

    Ludeno, Giovanni; Reale, Ferdinando; Dentale, Fabio; Carratelli, Eugenio Pugliese; Natale, Antonio; Soldovieri, Francesco; Serafino, Francesco

    2015-01-01

    Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP), which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system. PMID:25594601

  9. An X-band radar system for bathymetry and wave field analysis in a harbour area.

    PubMed

    Ludeno, Giovanni; Reale, Ferdinando; Dentale, Fabio; Carratelli, Eugenio Pugliese; Natale, Antonio; Soldovieri, Francesco; Serafino, Francesco

    2015-01-01

    Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP), which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system. PMID:25594601

  10. An X-band radar system for bathymetry and wave field analysis in a harbour area.

    PubMed

    Ludeno, Giovanni; Reale, Ferdinando; Dentale, Fabio; Carratelli, Eugenio Pugliese; Natale, Antonio; Soldovieri, Francesco; Serafino, Francesco

    2015-01-01

    Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP), which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system.

  11. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    NASA Astrophysics Data System (ADS)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  12. Retrievals of Ice Cloud Microphysical Properties of Deep Convective Systems using Radar Measurements

    NASA Astrophysics Data System (ADS)

    Tian, J.; Dong, X.; Xi, B.; Wang, J.; Homeyer, C. R.

    2015-12-01

    This study presents innovative algorithms for retrieving ice cloud microphysical properties of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and newly derived empirical relationships from aircraft in situ measurements in Wang et al. (2015) during the Midlatitude Continental Convective Clouds Experiment (MC3E). With composite gridded NEXRAD radar reflectivity, four-dimensional (space-time) ice cloud microphysical properties of DCSs are retrieved, which is not possible from either in situ sampling at a single altitude or from vertical pointing radar measurements. For this study, aircraft in situ measurements provide the best-estimated ice cloud microphysical properties for validating the radar retrievals. Two statistical comparisons between retrieved and aircraft in situ measured ice microphysical properties are conducted from six selected cases during MC3E. For the temporal-averaged method, the averaged ice water content (IWC) and median mass diameter (Dm) from aircraft in situ measurements are 0.50 g m-3 and 1.51 mm, while the retrievals from radar reflectivity have negative biases of 0.12 g m-3 (24%) and 0.02 mm (1.3%) with correlations of 0.71 and 0.48, respectively. For the spatial-averaged method, the IWC retrievals are closer to the aircraft results (0.51 vs. 0.47 g m-3) with a positive bias of 8.5%, whereas the Dm retrievals are larger than the aircraft results (1.65 mm vs. 1.51 mm) with a positive bias of 9.3%. The retrieved IWCs decrease from ~0.6 g m-3 at 5 km to ~0.15 g m-3 at 13 km, and Dm values decrease from ~2 mm to ~0.7 mm at the same levels. In general, the aircraft in situ measured IWC and Dm values at each level are within one standard derivation of retrieved properties. Good agreements between microphysical properties measured from aircraft and retrieved from radar reflectivity measurements indicate the reasonable accuracy of our retrievals.

  13. Shuttle orbiter Ku-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    Dodds, J.; Holmes, J.; Huth, G. K.; Iwasaki, R.; Maronde, R.; Polydoros, A.; Weber, C.; Broad, P.

    1980-01-01

    Tasks performed in an examination and critique of a Ku-band radar communications system for the shuttle orbiter are reported. Topics cover: (1) Ku-band high gain antenna/widebeam horn design evaluation; (2) evaluation of the Ku-band SPA and EA-1 LRU software; (3) system test evaluation; (4) critical design review and development test evaluation; (5) Ku-band bent pipe channel performance evaluation; (6) Ku-band LRU interchangeability analysis; and (7) deliverable test equipment evaluation. Where discrepancies were found, modifications and improvements to the Ku-band system and the associated test procedures are suggested.

  14. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  15. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  16. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  17. Recent scientific advances in the use of radar in scientific hydrology

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1993-01-01

    The data needs in scientific hydrology involve measurements of system states and fluxes. The microwave region is particularly well suited for measuring the system states of soil moisture and snow and the major flux into the earth as rainfall. This paper discusses the unique data needs of hydrology and presents some recent examples from AIRSAR experiments.

  18. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  19. Planetary radar astronomy

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1987-01-01

    The scientific aims, theoretical principles, techniques and instrumentation, and future potential of radar observations of solar-system objects are discussed in a general overview. Topics examined include the history of radar technology, echo detectability, the Arecibo and Goldstone radar observatories, echo time delay and Doppler shift, radar waveforms, albedo and polarization ratio, measurement of dynamical properties, and the dispersion of echo power. Consideration is given to angular scattering laws; the radar signatures of the moon and inner planets, Mars, and asteroids; topographic relief; delay-Doppler radar maps and their physical interpretation; and radar observations of the icy Galilean satellites of Jupiter, comets, and the rings of Saturn. Diagrams, drawings, photographs, and sample maps and images are provided.

  20. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  1. A millimetre-wave MIMO radar system for threat detection in urban environments

    NASA Astrophysics Data System (ADS)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  2. Radar system components to detect small and fast objects

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Zech, Christian; Klenner, Mathias; Tessmann, Axel; Leuther, Arnulf; Lopez-Diaz, Daniel; Schlechtweg, Michael; Ambacher, Oliver

    2015-05-01

    Small and fast objects, for example bullets of caliber 5 to 10 mm, fired from guns like AK-47, can cause serious problems to aircrafts in asymmetric warfare. Especially slow and big aircrafts, like heavy transport helicopters are an easy mark of small caliber hand fire weapons. These aircrafts produce so much noise, that the crew is not able to recognize an attack unless serious problems occur and important systems of the aircraft fail. This is just one of many scenarios, where the detection of fast and small objects is desirable. Another scenario is the collision of space debris particles with satellites.

  3. Phase correction system for automatic focusing of synthetic aperture radar

    DOEpatents

    Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  4. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  5. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  6. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa

  7. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  8. Ocean wave parameters and spectrum estimated from single and dual high-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Hisaki, Yukiharu

    2016-09-01

    The high-frequency (HF) radar inversion algorithm for spectrum estimation (HIAS) can estimate ocean wave directional spectra from both dual and single radar. Wave data from a dual radar and two single radars are compared with in situ observations. The agreement of the wave parameters estimated from the dual radar with those from in situ observations is the best of the three. In contrast, the agreement of the wave parameters estimated from the single radar in which no Doppler spectra are observed in the cell closest to the in situ observation point is the worst among the three. Wave data from the dual radar and the two single radars are compared. The comparison of the wave heights estimated from the single and dual radars shows that the area sampled by the Doppler spectra for the single radar is more critical than the number of Doppler spectra in terms of agreement with the dual-radar-estimated wave heights. In contrast, the comparison of the wave periods demonstrates that the number of Doppler spectra observed by the single radar is more critical for agreement of the wave periods than the area of the Doppler spectra. There is a bias directed to the radar position in the single radar estimated wave direction.

  9. In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies

    NASA Technical Reports Server (NTRS)

    Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim

    2007-01-01

    From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.

  10. Dynamics of Satellites in Binary Near-Earth Asteroid Systems: A Study Based on Radar Observations

    NASA Astrophysics Data System (ADS)

    Naidu, Shantanu

    In the past 15 years, three previously unrecognized sub-populations of near-Earth asteroids (NEAs) have been discovered. About 15% of NEAs are binaries, at least 10% of NEAs are contact binaries, and dozens of asteroid pairs have been identified. Numerous science questions have arisen about the formation and evolution processes of these systems and about the inter-relationships between these groups. Addressing these questions informs us about a wide range of important solar system processes that shape small bodies and planetesimals. Here I have chosen to focus on providing one of the most complete characterizations of a binary system among all known asteroid binaries, and on studying the spin-orbit interactions in this and 8 additional binary systems. One hypothesis that has not been fully explored is the possibility of chaotic rotation of asteroid satellites and the impact that such a state has on the evolution of the binary systems. I examine this problem as well as the possibility of detecting librational motions in synchronous satellites. Because the Arecibo and Goldstone radar systems enable superb characterizations of binaries and NEAs in general, this dissertation makes abundant use of radar data. Radar observations provide images of asteroids at decameter resolution, and these images can be inverted to determine the 3D shapes of the components, which are essential to properly model the system dynamics. Radar data also enable precise determination of the mutual orbit, which is another crucial ingredient. In the first two chapters of the dissertation, I describe the observations and physical characterizations of asteroid 2000~ET70 and binary asteroid 2000 DP107. The characterization of 2000 DP107 includes size, shape, spin, mass, and density of each component, making this binary one of the best-characterized asteroid binary to date. In the last chapter of the dissertation, I describe a computationally efficient fourth-order numerical integrator that I used to

  11. A digital system to produce imagery from SAR data. [Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1976-01-01

    This paper describes a digital processing algorithm and its associated system design for producing images from Synthetic Aperture Radar (SAR) data. The proposed system uses the Fast Fourier Transform (FFT) approach to perform the two-dimensional correlation process. The range migration problem, which is often a major obstacle to efficient processing, can be alleviated by approximating the locus of echoes from a point target by several linear segments. SAR data corresponding to each segment is correlated separately, and the results are coherently summed to produce full-resolution images. This processing approach exhibits greatly improved computation efficiency relative to conventional digital processing methods.

  12. Predictability of heavy sub-hourly precipitation amounts for a weather radar based nowcasting system

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Berenguer, Marc

    2015-04-01

    Heavy precipitation events and subsequent flash floods are one of the most dramatic hazards in many regions such as the Mediterranean basin as recently stressed in the HyMeX (HYdrological cycle in the Mediterranean EXperiment) international programme. The focus of this study is to assess the quality of very short range (below 3 hour lead times) precipitation forecasts based on weather radar nowcasting system. Specific nowcasting amounts of 10 and 30 minutes generated with a nowcasting technique (Berenguer et al 2005, 2011) are compared against raingauge observations and also weather radar precipitation estimates observed over Catalonia (NE Spain) using data from the Meteorological Service of Catalonia and the Water Catalan Agency. Results allow to discuss the feasibility of issuing warnings for different precipitation amounts and lead times for a number of case studies, including very intense convective events with 30minute precipitation amounts exceeding 40 mm (Bech et al 2005, 2011). As indicated by a number of verification scores single based radar precipitation nowcasts decrease their skill quickly with increasing lead times and rainfall thresholds. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa0nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radar based nowcasting technique. Journal of

  13. Buried threat detection using a handheld ground penetrating radar system

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Torrione, Peter; Collins, Leslie; Morton, Kenneth

    2015-05-01

    In this work, we explore the efficacy of two buried threat detectors on handheld data. The first algorithm is an energy-based algorithm, which computes how anomalous a given A-scan measurement after it is normalized according to its local statistics. It is based on a commonly used prescreener for the Husky Mounted Detection System (HMDS). In the HMDS setting measurements are sampled on a crosstrack-downtrack grid, and sequential measurements are at neighboring downtrack locations. In contrast, in the handheld setting sequential scans are often taken at neighboring crosstrack locations, and neighboring downtrack locations can be hundreds of scans away. In order to include both downtrack and crosstrack information, we compute local statistics over a much larger area than in the HMDS setting. The second algorithm is a shape-based algorithm. Shape Invariant Feature Transform (SIFT) features, which capture the gradient distributions of local patches, are extracted and used to train a non-linear Support Vector Machine (SVM). We found that in terms of AUC, the SIFT-SVM algorithm results in a 2.2% absolute improvement over the energy-based algorithm, with the greatest gains seen at lower false alarm rates.

  14. Anisotropic mechanical behaviour of sedimentary basins inferred by advanced radar interferometry above gas storage fields

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Gambolati, G.; Ferretti, A.

    2010-12-01

    Natural gas is commonly stored underground in depleted oil and gas fields to provide safe storage capacity and deliverability to market areas where production is limited, or to take advantage of seasonal price swings. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts with the overlying land that moves accordingly. Depending on the field burial depth, a few kilometres of the upper lithosphere are subject to local three-dimensional deformations with the related cyclic motion of the ground surface being both vertical and horizontal. Advanced Persistent Scatterer Interferometry (PSI) data, obtained by combining ascending and descending RADARSAT-1 images acquired from 2003 to 2008 above gas storage fields located in the sedimentary basin of the Po river plain, Italy, provide reliable measurement of these seasonal vertical ups and downs as well as horizontal displacements to and from the injection/withdrawal wells. Combination of the land surface movements together with an accurate reconstruction of the subsurface geology made available by three-dimensional seismic surveys and long-time records of fluid pore pressure within the 1000-1500 m deep reservoirs has allowed for the development of an accurate 3D poro-mechanical finite-element model of the gas injection/removal occurrence. Model calibration based on the observed cyclic motions, which are on the range of 10-15 mm and 5-10 mm in the vertical and horizontal west-east directions, respectively, helps characterize the nonlinear hysteretic geomechanical properties of the basin. First, using a basin-scale relationship between the oedometric rock compressibility cM in virgin loading conditions versus the effective intergranular stress derived from previous experimental studies, the modeling results show that the ratio s between loading and unloading-reloading cM is about 4, consistent with in-situ expansions measured by the radioactive marker technique in similar reservoirs

  15. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview

    NASA Technical Reports Server (NTRS)

    Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.

    2000-01-01

    This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.

  16. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  17. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  18. Optimizing Advanced Power System Designs Under Uncertainty

    SciTech Connect

    Rubin, E.S.; Diwekar; Frey, H.C.

    1996-12-31

    This paper describes recent developments in ongoing research to develop and demonstrate advanced computer-based methods for dealing with uncertainties that are critical to the design of advanced coal-based power systems. Recent developments include new deterministic and stochastic methods for simulation, optimization, and synthesis of advanced process designs. Results are presented illustrating the use of these new modeling tools for the design and analysis of several advanced systems of current interest to the U.S. Department of Energy, including the technologies of integrated gasification combined cycle (IGCC), advanced pressurized fluid combustion (PFBC), and the externally fired combined cycle (EFCC) process. The new methods developed in this research can be applied generally to any chemical or energy conversion process to reduce the technological risks associated with uncertainties in process performance and cost.

  19. Power centroid radar and its rise from the universal cybernetics duality

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  20. Micromachining technology for advanced weapon systems

    SciTech Connect

    Sniegowski, J.J.

    1996-12-31

    An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

  1. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  2. Planetary Geology with Imaging Radar: Insights from Earth-based Lunar Studies, 2001-2015

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.

    2016-06-01

    Radar exploration of the Solar System changed dramatically during and beyond the period of the Magellan mission to Venus. These changes included an expansion of the community familiar with microwave data, and the forging of a strong connection with polarimetric scattering models developed through terrestrial field measurements and airborne radar studies. During the period, advances in computing power and imaging techniques also allowed Earth-based radar experiments to acquire data at the highest spatial resolutions permitted by their transmitter systems. This paper traces these developments through a case study of lunar observations over the past 15 years, and their implications for ongoing and future Solar System radar studies.

  3. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  4. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  5. A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies

    NASA Astrophysics Data System (ADS)

    Ciarletti, Valérie

    2016-11-01

    Since the very first observations of the Moon from the Earth with radar in 1946, radars are more and more frequently selected to be part of the payload of exploration missions in the Solar System. They are, in fact, able to collect information on the surface structure of bodies or planets hidden by opaque atmospheres, to probe the planet subsurface or even to reveal the internal structure of a small body comet nucleus. A brief review of radars designed for the Solar System planets and bodies' exploration is presented in the paper. This review does not aim at being exhaustive but will focus on the major results obtained. The variety of radars that have been or are currently designed in terms of frequency or operational modes will be highlighted. xml:lang="fr" Une revue non exhaustive des radars scientifiques développés pour l'exploration des planètes et autres corps du système solaire est présentée dans cet article. Quelques résultats majeurs sont présentés. L'accent est mis sur la variété des radars qui ont été et sont actuellement conçus en terme de fréquence ou de mode opératoire en fonction des contraintes de la mission et des objectifs visés.

  6. Optimal design of reflectometer density profile measurements using a radar systems approach (invited)

    SciTech Connect

    Doyle, E.J.; Kim, K.W.; Peebles, W.A.; Rhodes, T.L.

    1997-01-01

    Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.{copyright} {ital 1997 American Institute of Physics.}

  7. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  8. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  9. Plastic mine detecting radar system using complex-valued self-organizing map that deals with multiple-frequency interferometric images.

    PubMed

    Hara, Takahiro; Hirose, Akira

    2004-01-01

    Ground penetrating radars (GPR's) have been often applied to underground object imaging. However, conventional radar systems do not work sufficiently to detect anti-personnel plastic landmines. We propose a novel radar imaging system, which processes adaptively interferometric front-end data obtained at multiple-frequency points. The system deals with interferometric images using complex-valued self-organizing map (C-SOM). We demonstrate a successful visualization of a plastic mine buried near the ground surface. PMID:15555861

  10. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  11. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  12. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  13. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  14. Radar-based alert system to operate a sewerage network: relevance and operational effectiveness after several years of use.

    PubMed

    Faure, D; Payrastre, O; Auchet, P

    2005-01-01

    Since January 2000, the sewerage network of a very urbanised catchment area in the Greater Nancy Urban Community has been operated according to the alarms generated in real time by a storm alert system using weather radar data. This alert system is based on an automatic identification of intense rain cells in the radar images. This paper presents the characteristics of this alert system and synthesises the main results of two complementary studies realised in 2002 in order to estimate the relevance and the operational effectiveness of the alert system. The first study consisted in an off-line analysis of almost 50,000 intense rain cells detected in four years of historical radar data. The second study was an analysis of the experience feedback after two years of operational use of this alert system. The results of these studies are discussed in function of the initial operational objectives.

  15. Digital Terrestrial Video Broadcast Interference Suppression in Forward-Looking Ground Penetrating Radar Systems

    NASA Astrophysics Data System (ADS)

    Rial, F. I.; Mendez-Rial, Roi; Lawadka, Lukasz; Gonzalez-Huici, Maria A.

    2014-11-01

    In this paper we show how radio frequency interference (RFI) generated by digital video broadcasting terrestrial and digital audio broadcasting transmitters can be an important noise source for forward-looking ground penetrating radar (FLGPR) systems. Even in remote locations the average interference power sometimes exceeds ultra-wideband signals by many dB, becoming the limiting factor in the system sensitivity. The overall problem of RFI and its impact in GPR systems is briefly described and several signal processing approaches to removal of RFI are discussed. These include spectral estimation and coherent subtraction algorithms and various filter approaches which have been developed and applied by the research community in similar contexts. We evaluate the performance of these methods by simulating two different scenarios submitted to real RFI acquired with a FLGPR system developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), (GER). The effectiveness of these algorithms in removing RFI is presented using some performance indices after suppression.

  16. Semianalytic pulsed coherent laser radar equation for coaxial and apertured systems using nearest Gaussian approximation.

    PubMed

    Kameyama, Shumpei; Ando, Toshiyuki; Asaka, Kimio; Hirano, Yoshihito

    2010-09-20

    We present a semianalytic pulsed coherent laser radar (CLR) equation for coaxial and apertured systems. It combines the conventional CLR equation, numerical Fresnel integration (NFI), and nearest Gaussian approximation, using correction factors that correspond to beam truncation. The range dependence of the signal-to-noise ratio obtained by this semianalytic equation was found to agree well with the precise NFI solution for not only the focal range, but also the near-field range. Furthermore, the optimum beam truncation condition depending on the atmospheric refractive index structure constant is shown. The derived equation is useful for precisely predicting the CLR performance simply by its semianalytic expression.

  17. Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    NASA Technical Reports Server (NTRS)

    Hess, G. C.; Geller, M. A.

    1976-01-01

    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.

  18. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  19. Advances in rotorcraft system identification

    NASA Astrophysics Data System (ADS)

    Hamel, Peter G.; Kaletka, Jürgen

    1997-03-01

    System identification can best be described as the extraction of system characteristics from measured flight test data. Therefore it provides an excellent tool for determining and improving mathematical models for a wide range of applications. The increasing need for accurate models for the design of high bandwidth control systems for rotorcraft has initiated a high interest in and a more intensive use of system identification. This development was supported by the AGARD FVP Working Group 18 on ‘Rotorcraft System Identification’, which brought together specialists from research organisations and industry, tasked with exploring the potential of this tool. In the Group, the full range of identification approaches was applied to dedicated helicopter flight-test-data including data quality checking and the determination and verification of flight mechanical models. It was mainly concentrated on the identification of six degrees of freedom rigid body models, which provide a realistic description of the rotorcraft dynamics for the lower and medium frequency range. The accomplishment of the Working Group has increased the demand for applying these techniques more routinely and, in addition, for extending the model order by including explicit rotor degrees of freedom. Such models also accurately characterize the higher frequency range needed for high bandwidth control system designs. In the specific case of the DLR In-Flight Simulator BO 105 ATTHeS, the application of the identified higher order models for the model-following control system was a major prerequisite for the obtained high simulation quality.

  20. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  1. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  2. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  3. HERMES: a high-speed radar imaging system for inspection of bridge decks

    SciTech Connect

    Azevedo, S.G.

    1996-10-26

    Corrosion of rebar in concrete bridges causes subsurface cracks and is a major cause of structural degradation that necessitates repair or replacement. Early detection of corrosion effects can limit the location and extent of necessary repairs, while providing long-term information about the infrastructure status. Most current detection methods, however, are destructive of the road surface and require closing or restricting traffic while the tests are performed. A ground-penetrating radar imaging system has been designed and developed that will perform the nondestructive evaluation of road-bed cracking at traffic speeds; i.e., without the need to restrict traffic flow. The first-generation system (called the HERMES bridge inspector), consists of an offset-linear array of 64 impulse radar transceivers and associated electronics housed in a trailer. Computers in the trailer and in the towing vehicle control the data acquisition, processing, and display. Cross-road resolution is three centimeters at up to 30 cm in depth, while down-road resolution depends on speed; 3 cm below 20 mph up to 8 cm at 50 mph. A two-meter- wide path is inspected on each pass over the roadway. This paper, describes the design of this system, shows preliminary results, and lays out its deployment schedule.

  4. Advanced Sensor Systems for Biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  5. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  6. Advanced sensor systems for biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  7. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. PMID:19864331

  8. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.

    1995-12-31

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  9. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1994-10-01

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper updates the assessment of the Westinghouse hot gas filter design based on ongoing testing and analysis. Results are summarized from recent computational fluid dynamics modeling of the plenum flow during back pulse, analysis of candle stressing under cleaning and process transient conditions and testing and analysis to evaluate potential flow induced candle vibration.

  10. On the combined use of radar systems for multi-scale imaging of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Catapano, I.; Bavusi, M.; Loperte, A.; Crocco, L.; Soldovieri, F.

    2012-04-01

    Ground Penetrating Radar (GPR) systems are worth to be considered as in situ non invasive diagnostic tools capable of assessing stability and integrity of transport infrastructures. As a matter of fact, by exploiting the interactions among probing electromagnetic waves and hidden objects, they provide images of the inner status of the spatial region under test from which infer risk factors, such as deformations and oxidization of the reinforcement bars as well as water infiltrations, crack and air gaps. With respect to the assessment of concrete infrastructures integrity, the reconstruction capabilities of GPR systems have been widely investigated [1,2]. However, the demand for diagnostic tools capable of providing detailed and real time information motivates the design and the performance evaluation of novel technologies and data processing methodologies aimed not only to effectively detect hidden anomalies but also to estimate their geometrical features. In this framework, this communication aims at investigating the advantages offered by the joint use of two GPR systems both of them equipped with a specific tomographic imaging approach. The first considered system is a time domain GPR equipped with a 1.5GHz shielded antenna, which is suitable for quick and good resolution surveys of the shallower layers of the structure. As second system, the holographic radar Rascan-4/4000 [3,4] is taken into account, due to its capability of providing holograms of hidden targets from the amplitude of the interference signal arising between the backscattered field and a reference signal. The imaging capabilities of both the GPR tools are enhanced by means of model based data processing approaches, which afford the imaging as a linear inverse scattering problem. Mathematical details on the inversion strategies will be provided at the conference. The combined use of the above GPR systems allows to perform multi-resolution surveys of the region under test, whose aim is, first of

  11. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  12. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  13. Shuttle synthetic aperture radar implementation study, volume 1. [flight instrument and ground data processor system for collecting raw imaged radar data

    NASA Technical Reports Server (NTRS)

    Mehlis, J. G.

    1976-01-01

    Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies.

  14. A MATLAB-based planar array design assistant package with applications to meteor radar systems

    NASA Astrophysics Data System (ADS)

    Kang, C.; Palo, S.

    Interferometric techniques are commonly used in all-sky meteor radar systems for meteor location determination Essentially interferometric techniques use the phase information recorded from different receiving antennas to estimate the elevation and azimuth of the meteors Prior efforts have been made to determine an antenna geometry that improves the performance of meteor radar systems For example Hocking and Thayaparan 1997 used four antennas typically spaced by 1 5 to 3 wavelengths to locate the meteors Jones 1992 and Hocking 1997 presented an antenna geometry using a 5 element array with minimum antenna spacing of 2 wavelengths to estimate the direction of arrival DOA of the meteors By spacing the antennas more than 2 wavelength apart these array geometries were successful in reducing the electromagnetic coupling effect between the antennas which can introduce errors in the estimation of meteor locations Without a clear metric for performance it is difficult to compare geometries In this work a MATLAB planar antenna array package mainly designed for visualization of the direction of arrival DOA estimation performance of arbitrary user designed antenna array is presented Performance comparisons of nominal array geometries are also provided Several metrics are available in this package in an effort to provide the user with a comprehensive examination of an array s performance The metrics are the Cramer-Rao bound CRB which is the minimum variance that can be obtained for any unbiased estimator the co-array the

  15. REVS: a radar-based enhanced vision system for degraded visual environments

    NASA Astrophysics Data System (ADS)

    Brailovsky, Alexander; Bode, Justin; Cariani, Pete; Cross, Jack; Gleason, Josh; Khodos, Victor; Macias, Gary; Merrill, Rahn; Randall, Chuck; Rudy, Dean

    2014-06-01

    Sierra Nevada Corporation (SNC) has developed an enhanced vision system utilizing fast-scanning 94 GHz radar technology to provide three-dimensional measurements of an aircraft's forward external scene topography. This threedimensional data is rendered as terrain imagery, from the pilot's perspective, on a Head-Up Display (HUD). The image provides the requisite "enhanced vision" to continue a safe approach along the flight path below the Decision Height (DH) in Instrument Meteorological Conditions (IMC) that would otherwise be cause for a missed approach. Terrain imagery is optionally fused with digital elevation model (DEM) data of terrain outside the radar field of view, giving the pilot additional situational awareness. Flight tests conducted in 2013 show that REVS™ has sufficient resolution and sensitivity performance to allow identification of requisite visual references well above decision height in dense fog. This paper provides an overview of the Enhanced Flight Vision System (EFVS) concept, of the technology underlying REVS, and a detailed discussion of the flight test results.

  16. Analysis of Surface and Radar Rainfall Observations during Two Tropical Systems in South Louisiana

    NASA Astrophysics Data System (ADS)

    Habib, E.; Tokay, A.; Meselhe, E.; Malakpet, C.

    2006-05-01

    This study presents comparative analyses on rainfall observations made during two tropical systems that affected south Louisiana: tropical storm Matthew in October 2004, and Hurricane Rita in September 2005. Storm Matthew formed from a tropical wave in the southwestern Gulf of Mexico on October 6th and made landfall on south Louisiana on October 10th causing as much as 10 inches of rain. Hurricane Rita developed on September 18th from a tropical depression and tracked westward into the Gulf of Mexico to reach category 5-strength on September 21st. Rita made landfall at the Texas/Louisiana border on 24th causing as much as 8-9 inches of rain. The current study focuses on analysis of rainfall observations during these two storms using a combination of surface-based and weather radar measurements. The results are based on analyses of small-scale variability of rainfall collected using a dense network of rain gauges in south Louisiana which includes a total of 13 dual rain gauge sites. In addition, an impact-type disdrometer is used to examine the raindrop size spectra characteristics during the two storms. The study will also compare data from the Lake Charles WSR-88D Level II volume scan reflectivity observations to gauge and disdrometer estimates. Implications for the ability of the WSR-88D radar to accurately measure rainfall during these two tropical systems will be investigated and discussed.

  17. Radar systems for the water resources mission. Volume 4: Appendices E-I

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.

  18. Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Su, Yi

    2010-05-01

    This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.

  19. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  20. Development of advanced gas turbine systems

    SciTech Connect

    Bannister, R.L.; Little, D.A.; Wiant, B.C.

    1993-11-01

    The objective of the Advanced Turbine Systems study is to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% efficiency within a 8-year time frame. The potential system was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. Progress is described.

  1. A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Rommel, Scott D.; Gann, Derek; Luey, Ben; Gamble, Joseph D.; Ziemkiewicz, Michael; Anderson, Mike

    2016-05-01

    There is currently a good deal of interest in developing laser radar (ladar) for autonomous navigation and collision avoidance in a wide variety of vehicles. In many of these applications, minimizing size, weight and power (SWaP) is of critical importance, particularly onboard aircraft and spacecraft where advanced imaging systems are also needed for location, alignment, and docking. In this paper, we describe the miniaturization of a powerful ladar system based on an electro-optic (EO) beamsteering device in which liquid crystal birefringence is exploited to achieve a 20° x 5° field of view (FOV) with no moving parts. This FOV will be significantly increased in future versions. In addition to scanning, the device is capable of operating in a "point and hold" mode where it locks onto a single moving object. The nonmechanical design leads to exceptionally favorable size and weight values: 1 L and < 1 kg respectively. Furthermore, these EO scanners operate without mechanical resonances or inertial effects. A demonstration was performed with a 50 kHz, 1 microjoule laser with a 2 mm beam diameter to image at a range of 100 m yielding a 2 fps frame rate limited by the pulse laser repetition rate. The fine control provided by the EO steerer results in an angle precision of 6x10-4 degrees. This FOV can be increased with discreet, non-mechanical polarization grating beamsteerers. In this paper, we will present the design, preliminary results, and planned next generation improvements.

  2. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  3. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  4. Interseismic deformation of the Shahroud fault system (NE Iran) from space-borne radar interferometry measurements

    NASA Astrophysics Data System (ADS)

    Mousavi, Z.; Pathier, E.; Walker, R. T.; Walpersdorf, A.; Tavakoli, F.; Nankali, H.; Sedighi, M.; Doin, M.-P.

    2015-07-01

    The Shahroud fault system is a major active structure in the Alborz range of NE Iran whose slip rate is not well constrained despite its potential high seismic hazard. In order to constrain the slip rate of the eastern Shahroud fault zone, we use space-borne synthetic aperture radar interferometry with both ascending and descending Envisat data to determine the rate of interseismic strain accumulation across the system. We invert the slip rate from surface velocity measurements using a half-space elastic dislocation model. The modeling results are consistent with a left-lateral slip rate of 4.75 ± 0.8 mm/yr on the Abr and Jajarm, strands of the Shahroud fault, with a 10 ± 4 km locking depth. This is in good agreement with the 4-6 mm/yr of left-lateral displacement rate accumulated across the total Shahroud fault system obtained from GPS measurements.

  5. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  6. Doppler radar sensing of fish physiological motion

    NASA Astrophysics Data System (ADS)

    Hafner, Noah

    The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.

  7. Radar Sensing for Intelligent Vehicles in Urban Environments

    PubMed Central

    Reina, Giulio; Johnson, David; Underwood, James

    2015-01-01

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations. PMID:26102493

  8. Operation of a Radar Altimeter over the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  9. Radar Sensing for Intelligent Vehicles in Urban Environments.

    PubMed

    Reina, Giulio; Johnson, David; Underwood, James

    2015-01-01

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations. PMID:26102493

  10. Radar Sensing for Intelligent Vehicles in Urban Environments.

    PubMed

    Reina, Giulio; Johnson, David; Underwood, James

    2015-06-19

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations.

  11. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  12. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... System (INS): Request for Evaluation; Equipment and Equipment Installation; Training Program; Equipment... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... OPERATIONS Pt. 121, App. G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS):...

  13. Tomographic data developed using the ABEM RAMAC borehole radar system at the Mixed Waste Landfill Integrated Demonstration

    SciTech Connect

    MacLeod, G.A.; Barker, D.L.; Molnar, S.

    1994-02-18

    The ABEM RAMAC borehole radar system was run as part of the Mixed Waste Landfill Integrated Demonstration for Sandia National Laboratories at Kirtland AFB. Tomograms were created between three test boreholes-UCAP No. 1, UCAP No. 2, and UCAP No. 3. These tomograms clearly delineate areas of amplitude attenuation and residual time of arrival or slowness differences. Plots for slowness were made using both the maximum and minimum of the first arrival pulse. The data demonstrates that the ABEM RAMAC 60-MHz pulse sampling radar system can be used to collect usable data in a highly conductive environment.

  14. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  15. Plan for an Advanced Turbine Systems Program

    SciTech Connect

    Bajura, R.A.; Webb, H.A.; Parks, W.P.

    1993-03-01

    A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy`s (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE`s Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research & Development (R&D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R&D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

  16. Plan for an Advanced Turbine Systems Program

    SciTech Connect

    Bajura, R.A.; Webb, H.A. ); Parks, W.P. )

    1993-01-01

    A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy's (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE's Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research Development (R D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

  17. Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-05-01

    Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.

  18. Design considerations for high-power VHF radar transceivers: The Poker Flat MST radar phase control system

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Johnson, P. E.

    1983-01-01

    Sixty-four separate 50-kW peak-power transmitters are distributed throughout the 200 x 200 meter Poker Flat MST radar antenna array. The relative phase of each transmitter is automatically controlled by a 64-channel unit located in the main building at the edge of the antenna. The phase control unit is described. In operation the RF pulse from a transmitter coupler is power divided and compared with the phase reference in a mixer. The mixer output is low-pass filtered and sampled near the center of the resulting video pulse by an amplifying sample-and-hold integrated circuit. Phase control is effected by maintaining the mixer output pulse near zero volts by amplifying the sample-and-hold output which then drives the voltage-controlled phase shifter in the direction to null the mixer output. The voltage-controlled shifter achieves over 360 deg phase shift in the range from 0.7 to 24 volts. When the voltage into the shifter tracks to either voltage limit the wrap-around control resets the voltage so that the shifter is always operating within its control range.

  19. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  20. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

  1. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  2. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  3. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  4. Surfaces with adaptive radar reflection coefficients

    NASA Astrophysics Data System (ADS)

    Chambers, Barry

    1997-10-01

    Conventional (passive) radar-absorbing materials (RAM) have been in use now for over half a century, but it is only with recent advances in conducting polymer composite materials that large-area surfaces having controllable reflection coefficients at radar frequencies have become practicable. Techniques for utilizing these new materials in re-configurable electromagnetic, or `smart', surfaces are reviewed, with due emphasis given to the problem of system integration. The discussion is complemented by modelled and measured performance data on several smart surface configurations.

  5. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  6. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  7. Design of hybrid optical delay line for automotive radar test system

    NASA Astrophysics Data System (ADS)

    Son, Byung-Hee; Kim, Kwang-Jin; Li, Ye; Park, Chang-In; Choi, Young-Wan

    2015-03-01

    In this paper, hybrid optical delay line (HODL) which is demanded on automotive radar test system (RTS) is proposed and demonstrated. HODL is composed with coaxial cable in short delay time (< 32 nsec) and optical fiber in long delay time (>= 32 nsec) which are considering the volume, loss and frequency characteristics. Also, the optical transceiver that has the bandwidth of 1 GHz is designed for frequency modulated continuous wave (FMCW). Experimental results show that the S21 is +/- 0.5 dB in the optical transceiver and +/- 1.7 dB in the whole system at 3.7 GHz ~ 4.7 GHz. The resolution of delay time is 1 ns and the delay flatness is +/- 0.23 ns.

  8. Non-invasive respiration rate estimation using ultra-wideband distributed cognitive radar system.

    PubMed

    Chen, Yifan; Gunawan, Erry; Low, Kay Soon; Kim, Yongmin; Soh, Cheong Boon; Leyman, A Rahim; Thi, Lin Lin

    2006-01-01

    It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare, rescue, and security applications. In this paper, a geometry-based statistical channel model is developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs.

  9. Interpreting Segmented Laser Radar Images Using a Knowledge-Based System

    NASA Astrophysics Data System (ADS)

    Chu, Chen-Chau; Nandhakumar, Nagaraj; Aggarwal, Jake K.

    1990-03-01

    This paper presents a knowledge-based system (KBS) for man-made object recognition and image interpretation using laser radar (ladar) images. The objective is to recognize military vehicles in rural scenes. The knowledge-based system is constructed using KEE rules and Lisp functions, and uses results from pre-processing modules for image segmentation and integration of segmentation maps. Low-level attributes of segments are computed and converted to KEE format as part of the data bases. The interpretation modules detect man-made objects from the background using low-level attributes. Segments are grouped into objects and then man-made objects and background segments are classified into pre-defined categories (tanks, ground, etc.) A concurrent server program is used to enhance the performance of the KBS by serving numerical and graphics-oriented tasks for the interpretation modules. Experimental results using real ladar data are presented.

  10. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  11. Decoders for MST radars

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.

    1983-01-01

    Decoding techniques and equipment used by MST radars are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic radars is examined.

  12. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  13. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  14. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  15. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  16. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  17. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  18. Characterization of Adolescent Prescription Drug Abuse and Misuse Using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R]) System

    ERIC Educational Resources Information Center

    Zosel, Amy; Bartelson, Becki Bucher; Bailey, Elise; Lowenstein, Steven; Dart, Rick

    2013-01-01

    Objective: To describe the characteristics and health effects of adolescent (age 13-19 years) prescription drug abuse and misuse using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R])) System. Method: Secondary analysis of data collected from RADARS System participating poison centers was performed. Data for all…

  19. Advanced rotorcraft helmet display sighting system optics

    NASA Astrophysics Data System (ADS)

    Raynal, Francois; Chen, Muh-Fa

    2002-08-01

    Kaiser Electronics' Advanced Rotorcraft Helmet Display Sighting System is a Biocular Helmet Mounted Display (HMD) for Rotary Wing Aviators. Advanced Rotorcraft HMDs requires low head supported weight, low center of mass offsets, low peripheral obstructions of the visual field, large exit pupils, large eye relief, wide field of view (FOV), high resolution, low luning, sun light readability with high contrast and low prismatic deviations. Compliance with these safety, user acceptance and optical performance requirements is challenging. The optical design presented in this paper provides an excellent balance of these different and conflicting requirements. The Advanced Rotorcraft HMD optical design is a pupil forming off axis catadioptric system that incorporates a transmissive SXGA Active Matrix liquid Crystal Display (AMLCD), an LED array backlight and a diopter adjustment mechanism.

  20. Road safety alerting system with radar and GPS cooperation in a VANET environment

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Sottile, Cesare; De Rango, Floriano; Voznak, Miroslav

    2014-05-01

    New applications in wireless environments are increasing and keeping even more interests from the developer companies and researchers. In particular, in these last few years the government and institutional organization for road safety spent a lot of resources and money to promote Vehicular Ad-Hoc Network (VANET) technology, also car manufactures are giving a lot of contributions on this field as well. In our paper, we propose an innovative system to increase road safety, matching the requests of the market allowing a cooperation between on-board devices. The vehicles are equipped with On Board Unit (OBU) and On Board Radar Unit (OBRU), which can spread alerting messages around the network regarding warning and dangerous situations exploiting IEEE802.llp standard. Vehicles move along roads observing the environment, traffic and road conditions, and vehicles parameters as well. These information can be elaborated and shared between neighbors, Road Side Unit (RSU)s and, of course, with Internet, allowing inter-system communications exploiting an Road Traffic Manager (RTM). Radar systems task it the detection of the environment in order to increase the knowledge of current conditions of the roads, for example it is important to identify obstacles, road accidents, dangerous situations and so on. Once detected exploiting onboard devices, such as Global Position System (GPS) receiver it is possible to know the exact location of the caught event and after a data elaboration the information is spread along the network. Once the drivers are advised, they can make some precautionary actions such as reduction of traveling speed or modification of current road path. In this work the routing algorithms, which have the main goal to rapidly disseminate information, are also been investigated.