Science.gov

Sample records for advanced radiation source

  1. Radiation measurements at the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    Moe, H.J.; Vacca, J.H.; Veluri, V.R.; White, M.

    1995-07-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz, S-band, electron-positron linear accelerator (linac). It produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. Radiation measurements were made during normal electron and positron operation, as well as during several beam loss scenarios. Neutron and gamma measurements made outside the shielding walls during normal operation are within DOE guidelines. Measured radiation fields are compared to predicted levels for different conditions.

  2. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  3. Preconceptual design requirements for the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.; Goldstein, S.A.; Cereghino, S.J.; MacLeod, G.

    1998-09-01

    The X-1 Advanced Radiation Source represents the next step in providing the US Department of Energy`s Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray source for the Radiation Effects Science and Simulation, Inertial Confinement Fusion, and Weapon Physics Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator provide sufficient basis for pursuing the development of X-1. The X-1 plan follows a strategy based on scaling the 2 MJ x-ray output on Z via a 3-fold increase in z-pinch load current. The large volume (>5 cm{sup 3}), high temperature (>150 eV), temporally long (>10 ns) hohlraums are unique outside of underground nuclear weapon testing. Analytical scaling arguments and hydrodynamic simulations indicate that these hohlraums at temperatures of 230--300 eV will ignite thermonuclear fuel and drive the reaction to a yield of 200 to 1,000 MJ in the laboratory. X-1 will provide the high-fidelity experimental capability to certify the survivability and performance of non-nuclear weapon components in hostile radiation environments. Non-ignition sources will provide cold x-ray environments (<15 keV), and high yield fusion burn sources will provide high fidelity warm x-ray environments (15 keV--80 keV).

  4. Novel particle and radiation sources and advanced materials

    NASA Astrophysics Data System (ADS)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  5. Systems analysis and engineering of the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.

    1998-10-01

    The X-1 Advanced Radiation Source, which will produce {approximately} 16 MJ in x-rays, represents the next step in providing US Department of Energy`s Stockpile Stewardship program with the high-energy, large volume, laboratory x-ray sources needed for the Radiation Effects Science and Simulation (RES), Inertial Confinement Fusion (ICF), and Weapon Physics (WP) Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator in 1997 provide sufficient basis for pursuing the development of X-1. This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the systems analysis and engineering approach being used, and identify critical technology areas being researched.

  6. Radiation monitoring policy at the advanced light source

    SciTech Connect

    Donahue, R.; Heinzelman, K.; Perdue, G.

    1998-02-04

    When the accelerator first began operation it was decided that, until we had the necessary dosimetry data to decide otherwise, we would badge the entire worker and experimental population. Each person was issued a dosimetry badge that contained 4 TLD elements. Badges were processed on a monthly basis. After three years of analyzing a total of 65,000 TLD elements, the decision was made to modify the radiation monitoring policy at the ALS. Only those individuals in the workforce that have any potential for exposure, no matter how small, would be badged. Subsequently, DOE conducted an independent review of the ALS radiation monitoring and dosimetry program. This review concluded that the ALS program, if expanded as proposed, would be adequate under the 10 CFR 835 Rule to establish radiation exposures to an acceptable level of confidence. The review team recommended the ALS provide more comprehensive documentation on the basis for its radiation protection and monitoring program. This document describes the technical justification for that program.

  7. RADIATION SOURCES

    DOEpatents

    Brucer, M.H.

    1958-04-15

    A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

  8. Impact of gas bremsstrahlung on synchrotron radiation beamline shielding at the Advanced Photon Source

    SciTech Connect

    Ipe, N.E.; Fasso, A.

    1994-01-01

    The Advanced Photon Source (APS) currently under construction at Argonne National Laboratory will be one of the world`s brightest synchrotron radiation facilities. The storage ring, capable of storing currents up to 300 mA at 7.0 GeV and 200 mA at 7.5 GeV, will produce very intense and energetic synchrotron radiation (E{sub c} = 24 keV for bending magnets and E{sub c} = 37.4 keV for wigglers, where E{sub c} is the critical energy). The synchrotron radiation (SR) beam lines consisting of experimental enclosures and transport lines will have to be shielded against synchrotron radiation and gas bremsstrahlung scattered from beam line components. For insertion devices placed in the straight sections (length = 15 m), the gas bremsstrahlung produced by the interaction of the primary stored beam with residual gas molecules or ions in the storage ring vacuum chamber dominates the SR beam line shielding. The impact of gas bremsstrahlung on the SR beam line shielding is discussed in this paper.

  9. Radiation transport calculations for the ANS (Advanced Neutron Source) beam tubes

    SciTech Connect

    Engle, W.W., Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs.

  10. The Advanced Photon Source

    SciTech Connect

    Galayda, John N.

    1996-01-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996.

  11. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    SciTech Connect

    Ajemian, R.C.

    1995-12-31

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  12. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  13. Guidelines for beamline and front-end radiation shielding design at the Advanced Photon Source.

    SciTech Connect

    Fernandez, P.; X-Ray Science Division

    2008-09-11

    Shielding for the APS will be such that the individual radiation worker dose will be as low as reasonably achievable (ALARA). The ALARA goals for the APS are to keep the total of the work-related radiation exposure (exposure coming from other than natural or medical sources) as far below 500 person-mrem per year, collective total effective dose equivalent, as reasonably achievable. For an individual APS radiation worker, the goal is to keep the maximum occupational total effective dose equivalent of any one employee as far below 200 mrem/yr as reasonably achievable. The ALARA goal for APS beamline scientists is to keep the total of the work-related radiation exposure (exposure coming from other than natural or medical sources) as far below 100 person-mrem per year, collective total effective dose equivalent, as reasonably achievable. For an individual APS beamline scientist, the goal is to keep the maximum occupational total effective dose equivalent of any one scientist as far below 50 mrem/yr as reasonably achievable. The dose is actively monitored by the radiation monitors on the storage ring wall in each sector and by the frequent area surveys performed by the health physics personnel. For cases in which surveys indicate elevated hourly dose rates that may impact worker exposure, additional local shielding is provided to reduce the radiation field to an acceptable level. Passive area monitors are used throughout the facility to integrate doses in various areas. The results are analyzed for trends of increased doses, and shielding in these areas is evaluated and improved, as appropriate. The APS policy for on-site nonradiation workers in the vicinity of the APS facilities requires that the average nonradiation worker dose be below 0.2 mSv/yr (20 mrem/yr). In addition, the dose at the site boundary from all pathways is required to be below 0.1 mSv/yr (10 mrem/yr). For future modifications of the facility, the doses shall be evaluated and additional shielding

  14. Radiation source

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  15. The effect of random field errors on the radiation spectra of selected APS (Advanced Photon Source) undulators

    SciTech Connect

    Alp, E.E.; Viccaro, P.J.

    1987-08-01

    The effect of random magnetic field errors are introduced into the calculations of spectral characteristics of tunable undulators for the proposed 7 GeV Advanced Photon Source (APS). Single electron calculations are made for an undulator with a first harmonic radiation tunable between 3.5 and 13 keV. Using the universal curves developed by Kincaid, the effect of randomly distributed field errors on the first and third harmonics of two proposed typical undulators are calculated. It is found that the lower limit of 0.5% in field errors is more than sufficient for the successful operation of the undulators planned for the APS.

  16. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  17. Radiation sources working group summary

    SciTech Connect

    Fazio, M.V.

    1998-12-31

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, components technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigation, and phenomena that impact source design such as fatigue in resonant structures due to RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations.

  18. Sources of pulsed radiation

    SciTech Connect

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table.

  19. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  20. ESC FY2002 Annual Report: Synchrotron-Radiation-Based Photoelectron Spectroscopy at the Advanced Light Source

    SciTech Connect

    Tobin, J G; Chung, B W; Schulze, R K; Shuh, D K

    2002-10-04

    Despite recent intensive experimental effort, the electronic structure of Pu, particularly {delta}-Pu, remains ill defined. An evaluation of our previous synchrotron-radiation-based investigation of {alpha}-Pu and {delta}-Pu has lead to a new paradigm for the interpretation of photoemission spectra of U, Np, {alpha}-Pu, {delta}-Pu and Am. This approach is founded upon a model in which spin and spin-orbit splittings are included in the picture of the 5f states and upon the observation of chiral/spin-dependent effects in non-magnetic systems. By extending a quantitative model developed for the interpretation of core level spectroscopy in magnetic systems, it is possible to predict the contributions of the individual component states within the 5-f manifold. This has lead to a remarkable agreement between the results of the model and the previously collected spectra of U, Np, Pu and Am, particularly {delta}-Pu, and to a prediction of what we might expect to see in future spin-resolving experiments.

  1. The Advanced Light Source: Technical Design

    SciTech Connect

    Authors, Various

    1984-05-01

    The Advanced Light Source (ALS) is a synchrotron radiation source consisting of a 50-MeV linear accelerator, a 1.3-GeV 'booster' synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines, as shown in Figure 1. As an introduction to a detailed description of the Advanced Light Source, this section provides brief discussions on the characteristics of synchrotron radiation and on the theory of storage rings. Appendix A contents: Introduction to Synchrotron-Radiation Sources; Storage Ring; Injection System; Control System; Insertion Devices; Photon Beam Lines; and References.

  2. Devices Materials and Processes for Nanoelectronics: Characterization with Advanced X-Ray Techniques Using Lab-Based and Synchrotron Radiation Sources

    SciTech Connect

    E Zschech; C Wyon; C Murray; G Schneider

    2011-12-31

    Future nanoelectronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nanostructures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nanoelectronics industry is reviewed. The focus of this paper is on the study of nanoscale device and on-chip interconnect materials, and materials for 3D IC integration as well.

  3. The Advanced Neutron Source

    SciTech Connect

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 9{center dot}10{sup 19} m{sup -2}{center dot}s{sup -1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs.

  4. Advanced positron sources

    NASA Astrophysics Data System (ADS)

    Variola, A.

    2014-03-01

    Positron sources are a critical system for the future lepton colliders projects. Due to the large beam emittance at the production and the limitation given by the target heating and mechanical stress, the main collider parameters fixing the luminosity are constrained by the e+ sources. In this context also the damping ring design boundary conditions and the final performance are given by the injected positron beam. At present different schemes are being taken into account in order to increase the production and the capture yield of the positron sources, to reduce the impact of the deposited energy in the converter target and to increase the injection efficiency in the damping ring. The final results have a strong impact not only on the collider performance but also on its cost optimization. After a short introduction illustrating their fundamental role, the basic positron source scheme and the performance of the existing sources will be illustrated. The main innovative designs for the future colliders advanced sources will be reviewed and the different developed technologies presented. Finally the positrons-plasma R&D experiments and the futuristic proposals for positron sources will reviewed.

  5. Radiation Source Replacement Workshop

    SciTech Connect

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  6. Radiation source search toolkit

    NASA Astrophysics Data System (ADS)

    Young, Jason S.

    The newly developed Radiation Source Search Toolkit (RSST) is a toolkit for generating gamma-ray spectroscopy data for use in the testing of source search algorithms. RSST is designed in a modular fashion to allow for ease of use while still maintaining accuracy in developing the output spectra. Users are allowed to define a real-world path for mobile radiation detectors to travel as well as radiation sources for possible detection. RSST can accept measured or simulated radiation spectrum data for generation into a source search simulation. RSST handles traversing the path, computing distance related attenuation, and generating the final output spectra. RSST also has the ability to simulate anisotropic shielding as well as traffic conditions that would impede a ground-based detection platform in a real-world scenario. RSST provides a novel fusion between spectral data and geospatial source search data generation. By utilizing the RSST, researchers can easily generate multiple datasets for testing detection algorithms without the need for actual radiation sources and mobile detector platforms.

  7. On source radiation

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1980-01-01

    The power output from given sources is usually ascertained via an energy flux integral over the normal directions to a remote (far field) surface; an alternative procedure, which utilizes an integral that specifies the direct rate of working by the source on the resultant field, is described and illustrated for both point and continuous source distribution. A comparison between the respective procedures is made in the analysis of sound radiated from a periodic dipole source whose axis performs a periodic plane angular movement about a fixed direction. Thus, adopting a conventional approach, Sretenskii (1956) characterizes the rotating dipole in terms of an infinite number of stationary ones along a pari of orthogonal directions in the plane, and through the far field representation of the latter, arrives at a series development for the instantaneous radiated power, whereas the local manner of power calculation dispenses with the equivalent infinite aggregate of sources and yields a compact analytical result.

  8. The LBL advanced light source

    SciTech Connect

    Jackson, A.; Chattopadhyay, S.; Keller, R.; Kim, C.; Nishimura, H.; Selph, F.; Zisman, M.

    1988-06-01

    The LBL Advanced Light Source (ALS) will be a third generation synchrotron radiation facility. It is based on a low emittance 1--2 GeV electron storage ring (natural radial emittance <10 nm-rad), optimized to produce extremely bright beams of electromagnetic radiation (in the energy range from a few eV to around one keV) from insertion devices known as undulators. The storage ring is fed from an injection system consisting of a 50 MeV linac and a 1.5 GeV, 1 Hz, booster synchrotron, which can fill the ring to its normal operating current (400 mA, multibunch, or 7.6 mA, single bunch) in a few minutes. As well as high brightness (which is a consequence of the very small electron beam emittance in the storage ring), the design emphasizes: picosecond timestructure, laserlike coherence properties, narrow bandwidth, and long beam lifetimes. The more familiar continuous synchrotron radiation spectrum will be available from bending magnets and from wiggler magnets. This paper gives a general description of the ALS and discusses some of the significant design issues associated with the low emittance storage ring that is required for this new facility. 7 refs., 6 figs., 2 tabs.

  9. Advanced Neutron Source equipment data base. [Advanced Neutron Source Facility

    SciTech Connect

    Coffin, D.B. )

    1990-08-01

    The Advanced Neutron Source (ANS) is a new experimental facility planned to meet the national need for an intense, steady-state source of neutrons. It will be open for use by scientists from universities, industry, and other federal laboratories. The ANS will be equipped with an initial complement of advanced instruments for neutron scattering and nuclear physics research, with facilities for isotope production and for the study of materials in high radiation fields. The central structure is a 60-m ({approximately}200-ft) diam cylindrical, domed reactor building. This building will house the reactor itself, with its lower floors dedicated to beam and irradiation experiments and with a high-bay floor dedicated to reactor operations. A reactor support building, to be adjacent to the reactor building, will house other large reactor equipment and the general support equipment not located in the reactor building. The primary heat exchanger and circulating pumps will be located in cell banks within reactor containment. The guide hall building, connected to the reactor dome outside reactor containment, is dedicated to beam experiment use. The fourth building will be an office building serving both the extensive user community and the reactor operations staff. These buildings will contain many of the systems needed for operation of the ANS and will be comprised of equipment requiring specification of performance, test, and operating parameters. The number of equipment items, the possibility for multiple application of a particular piece of equipment, and the need for a single source of information for all equipment led to a requirement to develop and equipment-related data base. 3 refs., 2 figs., 1 tab.

  10. High-pressure Experimental Studies on Geo-liquids Using Synchrotron Radiation at the Advanced Photon Source

    SciTech Connect

    Wang, Yanbin; Shen, Guoyin

    2014-12-23

    Here, we review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Moreover, we describe experimental techniques, along with scientific highlights. Future developments are also discussed.

  11. Synchrotron radiation sources and research

    SciTech Connect

    Teng, L.C.

    1995-12-31

    This is an introduction and a review of Synchrotron Radiation sources and the research performed using synchrotron radiation. I will begin with a brief discussion of the two principal uses of particle storage rings: for colliding beams (Collider) and for synchrotron radiation (Radiator). Then I will concentrate on discussions of synchrotron radiation topics, starting with a historical account, followed by descriptions of the features of the storage ring and the features of the radiation from the simplest source -- the bending magnet. I will then discuss the special insertion device sources -- wigglers and undulators -- and their radiations, and end with a brief general account of the research and other applications of synchrotron radiation.

  12. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    NASA Astrophysics Data System (ADS)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  13. Status of the advanced photon source

    SciTech Connect

    Galayda, J.

    1996-12-31

    This report presents general information on the Advanced Photon Source (APS) and then breaks down the APS project into three categories: accelerator systems, experimental facilities, and conventional facilities. The accelerator systems consist of the 7 GeV APS positron storage ring and a 7 GeV positron injector. The experimental facilities include 20 undulator radiation sources and the x-ray beamline components necessary to transport their extraordinarily intense x-ray beams outside the accelerator enclosure. Also included are x-ray beamline components for 20 bending magnet radiation sources. The conventional facilities consist of the accelerator enclosures, a 35,300 m{sup 2} experimental hall to house the x-ray beamlines, an office building for the APS staff and lab/office facilities for the research groups which will construct and operate the first 40 beamlines. APS users are described, and the properties of synchrotron radiation are discussed.

  14. Beam simulation and radiation dose calculation at the Advanced Photon Source with shower, an Interface Program to the EGS4 code system

    SciTech Connect

    Emery, L.

    1995-07-01

    The interface program shower to the FGS Monte Carlo electromagnetic cascade shower simulation code system was written to facilitate the definition of complicated target and shielding geometries and to simplify the handling of input and output of data. The geometry is defined by a series of namelist commands in an input file. The input and output beam data files follow the SPDDS (self-describing data set) protocol, which makes the files compatible with other physics codes that follow the same protocol. For instance, one can use the results of the cascade shower simulation as the input data for an accelerator tracking code. The shower code has also been used to calculate the bremsstrahlung component of radiation doses for possible beam loss scenarios at the Advanced Photon Source (APS) at Argonne National Laboratory.

  15. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-01-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science. PMID:26847921

  16. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  17. Performance of the Advanced Light Source

    SciTech Connect

    Jackson, A.

    1994-06-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is the first of the lower energy (1--2 GeV) third-generation synchrotron radiation facilities to come into operation. Designed with very small electron beam emittances to operate with long insertion devices producing very high brightness beams of synchrotron radiation in the VUV and soft x-ray regions of the spectrum, these facilities are complementary to the higher energy (6--9 GeV) facilities designed for harder x-radiation. The ALS storage ring began operation in October 1993. In this paper, we will review the operational performance of the ALS, including the effects of the 4.5 m long undulators (period 5 cm), and discuss the overall performance of the facility.

  18. Radiation source for helium magnetometers

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E. (Inventor)

    1991-01-01

    A radiation source (12) for optical magnetometers (10) which use helium isotopes as the resonance element (30) includes an electronically pumped semiconductor laser (12) which produces a single narrow line of radiation which is frequency stabilized to the center frequency of the helium resonance line to be optically pumped. The frequency stabilization is accomplished using electronic feedback (34, 40, 42, 44) to control a current sources (20) thus eliminating the need for mechanical frequency tuning.

  19. Compton Sources of Electromagnetic Radiation

    SciTech Connect

    Geoffrey Krafft,Gerd Priebe

    2011-01-01

    When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.

  20. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  1. The Advanced Photon Source list of parameters

    SciTech Connect

    Bizek, H.M.

    1996-07-01

    The Advanced Photon Source (APS) is a third-generation synchrotron radiation source that stores positrons in a storage ring. The choice of positrons as accelerating particles was motivated by the usual reason: to eliminate the degradation of the beam caused by trapping of positively charged dust particles or ions. The third-generation synchrotron radiation sources are designed to have low beam emittance and many straight sections for insertion devices. The parameter list is comprised of three basic systems: the injection system, the storage ring system, and the experimental facilities system. The components of the injection system are listed according to the causal flow of positrons. Below we briefly list the individual components of the injection system, with the names of people responsible for managing these machines in parentheses: the linac system; electron linac-target-positron linac (Marion White); low energy transport line from linac to the PAR (Michael Borland); positron accumulator ring or PAR (Michael Borland); low energy transport line from PAR to injector synchrotron (Michael Borland); injector synchrotron (Stephen Milton); high energy transport line from injector synchrotron to storage ring (Stephen Milton). The storage ring system, managed by Glenn Decker, uses the Chasman-Green lattice. The APS storage ring, 1104 m in circumference, has 40 periodic sectors. Six are used to house hardware and 34 serve as insertion devices. Another 34 beamlines emit radiation from bending magnets. The experimental facilities system`s parameters include parameters for both an undulator and a wiggler.

  2. Radiation source with shaped emission

    DOEpatents

    Kubiak, Glenn D.; Sweatt, William C.

    2003-05-13

    Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

  3. On non-radiating sources

    NASA Astrophysics Data System (ADS)

    Musafir, Ricardo E.

    2013-08-01

    Following the analysis by P.E. Doak on the radiating (active) and non-radiating (reactive) parts of a source distribution and their effect on the identification of sources, this paper discusses the possible structure of non-radiating sources, i.e., of sources which produce a null field outside the source region. It is shown that these sources can be of three types, two of them only with arbitrary time dependence. In this case, the non-radiating sources are forcibly formed by the difference of two source distributions which generate, outside the region limited by the sources in question, the same field. In the type discussed by Doak, one source distribution encircles the other and cancelation is attained as a global effect. In the other, emphasized by Ffowcs Williams, the two source distributions are superimposed and cancelation is produced locally. The latter type of non-radiating source is discussed in detail, it being shown that, while they do not represent physical sources, they provide valuable information on non-radiating effects. The third type refers to single frequency sources and involves a particular match of wavelength, geometry and source strength distribution so that the acoustic energy gets trapped inside the source region. Of these three types of non-radiating sources, only the first one—that focused by Doak—can influence the identification of the active part of a source distribution from measurements made outside the source region. Evanescent waves, associated with a purely reactive field, are also discussed. It is pointed out that evanescent waves obtained in the decomposition of the field of a vibrating body of finite extent, although useful for representing certain aspects of the field, do not exist physically. Aspects affecting the identification of sources are also briefly tackled. Can the sources be taken as essentially omnidirectional or directional features of the individual sources are important? (should the sources be represented by e

  4. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  5. Advanced Light Source elliptical wiggler

    SciTech Connect

    Hoyer, E.; Akre, J.; Humphries, D.; Marks, S.; Minamihara, Y.; Pipersky, P.

    1994-07-01

    A 3.5m long elliptical wiggler, optimized to produce elliptically polarized light in the 50 eV to 10 keV range, is currently under design and construction at the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory. Calculations of spectral performance show that the flux of circularly polarized photons exceeds 10{sup 13} photons/sec over the 50 eV to 10 keV operating range for current of 0.4 amps and 1.5 GeV electron energy. This device features vertical and horizontal magnetic structures of 14 and 14{1/2} periods respectively. The period length is 20.0 cm. The vertical structure is a hybrid permanent magnet design with tapered pole tips that produce a peak field of 2.0 T. The horizontal structure is an iron core electromagnetic design, shifted longitudinally {1/4} period, that is tucked between the upper and lower vertical magnetic structure sections. A maximum peak oscillating field of 0.095 T at a frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform. The vacuum chamber is an unconventional design that is removable from the magnetic structure, after magnetic measurements, for UHV processing. The chamber is fabricated from non-magnetic stainless steel to minimize the effects of eddy currents. Device design is presented.

  6. New results in atomic physics at the Advanced Light Source

    SciTech Connect

    Schlachter, A.S.

    1995-01-01

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  7. Advanced Light Source beam position monitor

    SciTech Connect

    Hinkson, J.

    1991-10-28

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics.

  8. Advanced capabilities for future light sources

    SciTech Connect

    Kim, K.J.

    1997-11-01

    Methods to extend the capabilities beyond those available from the current generation synchrotron radiation sources based on undulators in electron storage rings are discussed. Taking advantage of the radiation-particle interaction and/or the availability of high power, ultrashort, optical lasers, it is possible to develop sources with higher brightness, smaller temporal resolution, or higher photon energy.

  9. Superbend upgrade of the Advanced Light Source

    SciTech Connect

    Robin, D.; Krupnick, J.; Schlueter, R.; Steier, C.; Marks, S.; Wang, B.; Zbasnik, J.; Benjegerdes, R.; Biocca, A.; Bish, P.; Brown, W.; Byrne, W.; Chen, J.; Decking, W.; DeVries, J.; DeMarco, W.R.; Fahmie, M.; Geyer, A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.; Hull, D.; Jacobson, S.; McDonald, J.; Molinari, P.; Mueller, R.; Nadolski, L.; Nishimura, H.; Nishimura, K.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Richie, A.; Rossi, S.; Salvant, B.; Scarvie, T.; Schmidt,A.; Spring, J.; Taylor, C.; Thur, W.; Timossi, C.; Wandesforde, A.

    2004-05-26

    The Advanced Light Source (ALS) is a third generation synchrotron light source located at Lawrence Berkeley National Laboratory (LBNL). There was an increasing demand at the ALS for additional high brightness hard x-ray beamlines in the 7 to 40 keV range. In response to that demand, the ALS storage ring was modified in August 2001. Three 1.3 Tesla normal conducting bending magnets were removed and replaced with three 5 Tesla superconducting magnets (Superbends). The radiation produced by these Superbends is an order of magnitude higher in photon brightness and flux at 12 keV than that of the 1.3 Tesla bends, making them excellent sources of hard x-rays for protein crystallography and other hard x-ray applications. At the same time the Superbends did not compromise the performance of the facility in the VUV and soft x-ray regions of the spectrum. The Superbends will eventually feed 12 new beamlines greatly enhancing the facility's capability and capacity in the hard x-ray region. The Superbend project is the biggest upgrade to the ALS storage ring since it was commissioned in 1993. In this paper we present an overview of the Superbend project, its challenges and the resulting impact on the ALS.

  10. Sixth users meeting for the Advanced Photon Source: Proceedings

    SciTech Connect

    1994-12-01

    Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  13. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  14. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  15. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema

    Gibbson, Murray;

    2013-04-19

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  16. Advanced Photon Source Upgrade Project - Materials

    SciTech Connect

    Gibbson, Murray

    2011-01-01

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  17. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  18. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  19. Radiation treatment for breast cancer. Recent advances.

    PubMed Central

    Chow, Edward

    2002-01-01

    OBJECTIVE: To review recent advances in radiation therapy in treatment of breast cancer. QUALITY OF EVIDENCE: MEDLINE and CANCERLIT were searched using the MeSH words breast cancer, ductal carcinoma in situ, sentinel lymph node biopsy, and postmastectomy radiation. Randomized studies have shown the efficacy of radiation treatment for ductal carcinoma in situ (DCIS) and for invasive breast cancer. MAIN MESSAGE: Lumpectomy followed by radiation is effective treatment for DCIS. In early breast cancer, shorter radiation schedules are as efficacious for local control and short-term cosmetic results as traditional fractionation regimens. Sentinel lymph node biopsy is done in specialized cancer centres; regional radiation is recommended for patients with four or more positive axillary lymph nodes. Postmastectomy radiation has been shown to have survival benefits for high-risk premenopausal patients. Systemic metastases from breast cancer usually respond satisfactorily to radiation. CONCLUSION: Radiation therapy continues to have an important role in treatment of breast cancer. There have been great advances in radiation therapy in the last decade, but they have raised controversy. Further studies are needed to address the controversies. PMID:12113193

  20. The Advanced Photon Source: Performance and results from early operation

    SciTech Connect

    Moncton, D.E.

    1997-10-01

    The Advanced Photon Source at Argonne National Laboratory is now providing researchers with extreme-brilliance undulator radiation in the hard x-ray region of the spectrum. All technical facilities and components are operational and have met design specifications. Fourteen research teams, occupying 20 sectors on the APS experiment hall floor, are currently installing beamline instrumentation or actively taking data. An overview is presented for the first operational years of the Advanced Photon Source. Emphasis is on the performance of accelerators and insertion devices, as well as early scientific results and future plans.

  1. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  2. Access control and interlock system at the Advanced Photon Source

    SciTech Connect

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D.

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  3. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  4. Scientific opportunities at the proposed 6-7 GeV Advanced Photon Source

    SciTech Connect

    Shency, G.K.; Viccaro, P.J.

    1986-10-01

    Two different types of insertion devices - undulators and wigglers - have been developed to satisfy the many present and future requirements of various investigations using synchrotron radiation. The characteristics of the radiation from the Advanced Photon Source at Argonne are summarized, including the insertion device sources, source size and brilliance, and spectral character of the wiggler and undulator sources. Possible applications of the source are also given. (LEW)

  5. Emission of gravitational radiation from ultrarelativistic sources

    NASA Astrophysics Data System (ADS)

    Segalis, Ehud B.; Ori, Amos

    2001-09-01

    Recent observations suggest that blobs of matter are ejected with ultrarelativistic speeds in various astrophysical phenomena such as supernova explosions, quasars, and microquasars. In this paper we analyze the gravitational radiation emitted when such an ultrarelativistic blob is ejected from a massive object. We express the gravitational wave by the metric perturbation in the transverse-traceless gauge, and calculate its amplitude and angular dependence. We find that in the ultrarelativistic limit the gravitational wave has a wide angular distribution, like 1+cos θ. The typical burst's frequency is Doppler shifted, with the blueshift factor being strongly beamed in the forward direction. As a consequence, the energy flux carried by the gravitational radiation is beamed. In the second part of the paper we estimate the anticipated detection rate of such bursts by a gravitational-wave detector, for blobs ejected in supernova explosions. Dar and De Rujula recently proposed that ultrarelativistic blobs ejected from the central core in supernova explosions constitute the source of gamma-ray bursts. Substituting the most likely values of the parameters as suggested by their model, we obtain an estimated detection rate of about 1 per year by the advanced LIGO-II detector.

  6. Doses from Medical Radiation Sources

    MedlinePlus

    ... radiation dosimetry. Continuing Medical Education Article, Journal of Nuclear Medicine 41(5):863–873; 2000. © 2016 Health Physics Society Site Map | Privacy Statement | Disclaimer | Webmaster

  7. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    SciTech Connect

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  8. All-fiber femtosecond Cherenkov radiation source.

    PubMed

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2012-07-01

    An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580-630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics such as bioimaging and microscopy. PMID:22743523

  9. MCNP model for the many KE-Basin radiation sources

    SciTech Connect

    Rittmann, P.D.

    1997-05-21

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with.

  10. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  11. Freeze Tolerant Radiator for an Advanced EMU

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.; Elliott, Jeannine; Weislogel, Mark

    2004-01-01

    During an Extravehicular Activity (EVA), the astronaut s metabolic heat and the heat produced by the Portable Life Support Unit (PLSS) must be rejected. This heat load is currently rejected by a sublimator, which vents up to eight pounds of water each EVA. However, for advanced space missions of the future, water venting to space needs to be minimized because resupply impacts from earth will be prohibitive. If this heat load could be radiated to space from the PLSS, which has enough surface area to radiate most of the heat, the amount of water now vented could be greatly reduced. Unfortunately, a radiator rejects heat at a relatively constant rate, but the astronauts generate a variable heat load depending on how hard they are working. Without a way to vary the heat removal rate, the astronaut would experience cold discomfort or even frostbite. A proven method allowing a radiator to be turned-down is to sequentially allow tubes that carry the heat transfer fluid to the radiator to freeze. A drawback of current freezable radiators using this method is that they are far to heavy for use on a PLSS, because they use heavy construction to prevent the tubes from bursting as they freeze and thaw. This creates the need for a large radiator to reject most of the heat but with a lightweight tube that doesn t burst as it freezes and thaws. The new freezable radiator for the Extravehicular Mobility Unit (EMU) has features to accommodate the expansion of the radiator fluid when it freezes, and still have the high tube to fin conductance needed to minimize the number and weight of the tubes. Radiator fluid candidates are water and a propylene glycol-water mixture. This design maintains all materials within their elastic limits so that large volume changes can be achieved without breaking the tube. This concept couples this elastic expansion with an extremely lightweight, extremely high conductivity carbon fiber fin that can carry the heat needed to thaw a frozen tube. By using

  12. TLD response to non-radiation sources

    SciTech Connect

    Ong, A. )

    1985-10-01

    A study was performed at the San Onofre Nuclear Generating Station (SONGS) to evaluate the response of personnel TLD badges to non-radiation sources commonly encountered at the station. The TLD normally used at SONGS is the four-element Panasonic Model UD802-AS2 shown on the next page. This paper reports that the non-radiation sources employed in the study consisted of two different cleaning agents, sunlight, and electric arc welding.

  13. Advanced Neutron Source: The users' perspective

    SciTech Connect

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper.

  14. Imaging Tumor Hypoxia to Advance Radiation Oncology

    PubMed Central

    Lee, Chen-Ting; Boss, Mary-Keara

    2014-01-01

    Abstract Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313–337. PMID:24329000

  15. An Upgrade for the Advanced Light Source

    SciTech Connect

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-09-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

  16. Injector Research at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lewellen, John

    2003-04-01

    During the past several years, various techniques for improving the operational capabilities of high-brightness electron beam sources have been explored at the Advanced Photon Source. Areas of particular emphasis include novel methods of longitudinal phase space control, reduced emittance via blunt-needle cathodes, and alternate cavity geometries for improved source reliability and fabrication. To date most of this work has been computationally based, and a sampling of the results is presented. The APS injector test stand, now undergoing commissioning, will allow the experimental exploration of these and other aspects of high-brightness beam production and preservation. The capabilities of the test stand, along with an initial experimental schedule, will also be presented.

  17. Space Radiation Effects in Advanced Flash Memories

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.

    2001-01-01

    Memory storage requirements in space systems have steadily increased, much like storage requirements in terrestrial systems. Large arrays of dynamic memories (DRAMs) have been used in solid-state recorders, relying on a combination of shielding and error-detection-and correction (EDAC) to overcome the extreme sensitivity of DRAMs to space radiation. For example, a 2-Gbit memory (with 4-Mb DRAMs) used on the Clementine mission functioned perfectly during its moon mapping mission, in spite of an average of 71 memory bit flips per day from heavy ions. Although EDAC worked well with older types of memory circuits, newer DRAMs use extremely complex internal architectures which has made it increasingly difficult to implement EDAC. Some newer DRAMs have also exhibited catastrophic latchup. Flash memories are an intriguing alternative to DRAMs because of their nonvolatile storage and extremely high storage density, particularly for applications where writing is done relatively infrequently. This paper discusses radiation effects in advanced flash memories, including general observations on scaling and architecture as well as the specific experience obtained at the Jet Propulsion Laboratory in evaluating high-density flash memories for use on the NASA mission to Europa, one of Jupiter's moons. This particular mission must pass through the Jovian radiation belts, which imposes a very demanding radiation requirement.

  18. The macromolecular crystallography facility at the advanced light source

    NASA Astrophysics Data System (ADS)

    Earnest, Thomas; Padmore, Howard; Cork, Carl; Behrsing, Rolf; Kim, Sung-Hou

    1996-10-01

    Synchrotron radiation offers several advantages over the use of rotating anode sources for biological crystallography, which allow for the collection of higher-resolution data, substantially more rapid data collection, phasing by multiwavelength anomalous diffraction (MAD) techniques, and time-resolved experiments using polychromatic radiation (Laue diffraction). The use of synchrotron radiation is often necessary to record useful data from crystals which diffract weakly or have very large unit cells. The high brightness and stability characteristics of the advanced light source (ALS) at Lawrence Berkeley National Laboratory, along with the low emittance and long straight sections to accommodate insertion devices present in third generation synchrotrons like the ALS, lead to several advantages in the field of macromolecular crystallography. We are presently constructing a macromolecular crystallography facility at the ALS which is optimized for user-friendliness and high-throughput data collection, with advanced capabilities for MAD and Laue experiments. The X-rays will be directed to three branchlines. A well-equipped support lab will be available for biochemistry, crystal mounting and sample storage, as well as computer hardware and software available, along with staff support, allowing for the complete processing of data on site.

  19. Renewal of the Advanced Photon Source.

    SciTech Connect

    Gibson, J. M.

    2008-12-31

    To ensure that state-of-the-art hard x-ray tools are available for US scientists and engineers who are solving key problems in energy, environment, technology development and human health, the nation's unique high-energy x-ray source needs a major renewal of its capabilities. The Advanced Photon Source renewal program responds to key scientific needs driven by our user community. The renewal encompasses many innovations in beamlines and accelerator capabilities, each of which will transform our tools and allow new problems to be solved. In particular the APS renewal dramatically expands two compelling avenues for research. Through x-ray imaging, we can illuminate complex hierarchical structures from the molecular level to the macroscopic level, and study how they change in time and in response to stimuli. Images will facilitate understanding how proteins fit together to make living organisms, contribute to development of lighter, higher-strength alloys for fuel-efficient transportation and advance the use of biomass for alternative fuels. Hard x-rays are also especially suited to the study of real materials, under realistic conditions and in real-time. The advances proposed in this area would help develop more efficient catalysts, enhance green manufacturing, point the way to artificial light-harvesting inspired by biology and help us develop more efficient lighting. The scope of the renewal of our {approx}$1.5B facility is estimated to be {approx}$350M over five years. It is vital that the investment begin as soon as possible. The renewed APS would complement other national investments such as the National Synchrotron Light Source-II and would keep the U.S. internationally competitive.

  20. Operator scheduling at the Advanced Light Source

    SciTech Connect

    Miller, B.

    1998-06-01

    Scheduling Operations staff at the Advanced Light Source (ALS) has evolved from 5 shifts/week for commissioning operations in 1992 to the present 24 hour/day, 21 shift coverage as the ALS went to full operation for users. A number of schedules were developed and implemented in an effort to accommodate changing ALS shift coverage requirements. The present work schedule and the lessons learned, address a number of issues that are useful to any facility that is operating 24 hours/day, 7 days/week.

  1. Magnet costs for the Advanced Light Source

    SciTech Connect

    Tanabe, J.; Krupnick, J.; Hoyer, E.; Paterson, A.

    1993-05-01

    The Advanced Light Source (ALS) accelerator is now completed. The numerous conventional magnets required for the booster ring, the storage ring and the low and high energy transfer lines were installed during the last two years. This paper summarizes the various costs associated with the quantity fabrication of selected magnet families. These costs include the costs of prototypes, tooling, coil and core fabrication, assembly and magnetic measurements. Brief descriptions of the magnets and specialized requirements for magnetic measurements are included in order to associate the costs with the relative complexities of the various magnet systems.

  2. Initial diagnostics commissioning results for the Advanced Photon Source (APS)

    SciTech Connect

    Lumpkin, A.; Patterson, D.; Wang, X.

    1995-07-01

    Principal diagnostics systems have been installed and nearly all have been commissioned on the subsystems of the Advanced Photon Source (APS) facility. Data have been obtained on beam position, beam profile, current, beam loss rate, and synchrotron radiation monitors on both injector rings and most recently the main 7-GeV storage ring. Results for the 150- to 450-MeV electron beams in the accumulator ring, up to 7 GeV in the injector synchrotron, and 4.5 to 7 GeV in the SR will be presented.

  3. High-energy diffraction microscopy at the advanced photon source

    SciTech Connect

    Lienert, U.; Li, S.; Hefferan, C.; Lind, J.; Suter, R.; Bernier, J.; Barton, N.; Brandes, M.; Mills, M.; Miller, M.; Jakobsen, B.; Pantleon, W.

    2012-02-28

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure. Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM.

  4. Recent advances in vacuum arc ion sources

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  5. Jovian S emission: Model of radiation source

    NASA Astrophysics Data System (ADS)

    Ryabov, B. P.

    1994-04-01

    A physical model of the radiation source and an excitation mechanism have been suggested for the S component in Jupiter's sporadic radio emission. The model provides a unique explanation for most of the interrelated phenomena observed, allowing a consistent interpretation of the emission cone structure, behavior of the integrated radio spectrum, occurrence probability of S bursts, location and size of the radiation source, and fine structure of the dynamic spectra. The mechanism responsible for the S bursts is also discussed in connection with the L type emission. Relations are traced between parameters of the radio emission and geometry of the Io flux tube. Fluctuations in the current amplitude through the tube are estimated, along with the refractive index value and mass density of the plasma near the radiation source.

  6. [The use of radiation sources in solariums].

    PubMed

    Steck, B

    1975-08-01

    Solaria are increasingly in favour. As radiation sources, the following ones have proved useful: high-pressure mercury-vapour lamps, compound radiation systems consisting of high-pressure mercury-vapour burner, series coiled filament and reflector bulbs made of special glass as well as halogen metal-vapour lamps. The spectral distributions of irradiances of these emitters, the spatial and local distribution of their radiant intensity or irradiance respectively are reported as well as the balance of emitted energy, i.e. the distribution of radiant power over the different wave ranges. Demands of radiation technics are pointed out, which ought to be considered for the construction of solaria. PMID:1179451

  7. Sources and measurement of ultraviolet radiation.

    PubMed

    Diffey, Brian L

    2002-09-01

    Ultraviolet (UV) radiation is part of the electromagnetic spectrum. The biological effects of UV radiation vary enormously with wavelength and for this reason the UV spectrum is further subdivided into three regions: UVA, UVB, and UVC. Quantities of UV radiation are expressed using radiometric terminology. A particularly important term in clinical photobiology is the standard erythema dose (SED), which is a measure of the erythemal effectiveness of a UV exposure. UV radiation is produced either by heating a body to an incandescent temperature, as is the case with solar UV, or by passing an electric current through a gas, usually vaporized mercury. The latter process is the mechanism whereby UV radiation is produced artificially. Both the quality (spectrum) and quantity (intensity) of terrestrial UV radiation vary with factors including the elevation of the sun above the horizon and absorption and scattering by molecules in the atmosphere, notably ozone, and by clouds. For many experimental studies in photobiology it is simply not practicable to use natural sunlight and so artificial sources of UV radiation designed to simulate the UV component of sunlight are employed; these are based on either optically filtered xenon arc lamps or fluorescent lamps. The complete way to characterize an UV source is by spectroradiometry, although for most practical purposes a detector optically filtered to respond to a limited portion of the UV spectrum normally suffices. PMID:12231182

  8. Plasma x-ray radiation source.

    PubMed

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches. PMID:21307500

  9. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  10. Status of the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Gerig, R. E.; Gibson, J. M.; Mills, D. M.; Ruzicka, W. G.; Young, L.; Zholents, A.

    2011-09-01

    In the fall of 2010, the Advanced Photon Source (APS) will enter its fifteenth year of user operations. During fiscal year 2009, the APS delivered X-ray beam to the scientific community 97.7% of scheduled hours (availability) and with a mean time between faults of 77.5 h. The APS remains the most prolific source worldwide of structure deposits in the Protein Data Bank (1433 in 2009) and a leader in the field of high-pressure research, among others. However, to maintain its position as a state-of-the-art facility for hard X-ray science, it will be necessary to refresh and improve the APS X-ray source and beamlines. We are presently on the path to do that through the APS Upgrade Project. The US Department of Energy Office of Science has formally approved the start of this project with the issuance of Critical Decision-0, Approve of Mission Need. The APS staff, in collaboration with our user community, is now in the process of developing a Conceptual Design Report that documents the proposed scope of the APS Upgrade Project. Components of the Upgrade plan will be presented as well as science highlights from the past year.

  11. The Advanced Neutron Source liquid deuterium cold source

    SciTech Connect

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy.

  12. A multimegawatt space power source radiator design

    SciTech Connect

    Jedruch, J.

    1988-01-28

    The multimegawatt space power sources (MMSPS) proposed for deployment in the late 1990s to meet mission burst power requirements, require an increase by four orders of magnitude in the power rating of equipment currently used in space. Prenger and Sullivan (1982) describe various radiator concepts proposed for such applications. They range from the innovative liquid droplet radiator (Mattick and Hertzberg 1981) to the more conventional heat pipe concept (Girrens 1982). The present paper deals with the design of the radiator for one such system, characterized by both high temperature and high pressure. It provides an estimate of the size, mass, and problems of orbiting such a radiator, based on the assumption that the next generation of heavy launch vehicle with 120-tonne carrying capacity, and 4000-m/sup 3/ cargo volume, will be available for putting hardware into orbit.

  13. Advances in Plasma-Filled Microwave Sources

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.

    1998-11-01

    Significant improvements in the performance of high power microwave tubes have been achieved in recent years by the introduction of plasma into the beam- coupling structures of the devices. Plasma has been credited with increasing the maximum electron beam current, frequency bandwidth, electrical efficiency and reducing or eliminating the need for guiding magnetic fields in microwave sources. These advances are critically important for the development of high power, frequency agile microwave systems where size and weight are important. Conversely, plasma has been blamed for causing noise, instabilities, power variations and pulse-length limitations in microwave tubes for many years. Recent experimental and theoretical studies have demonstrated that introducing the right amount of plasma in a controlled manner can be beneficial in the areas described above. Enhanced beam propagation at lower magnetic fields and higher beam current levels due to the space-charge neutralization by plasma can be realized provided that the neutralization fraction is fairly stable and maintained near a value of one for the duration of the desired pulse length. The generation of hybrid waves in plasma-filled slow-wave structures (SWS) operating near cutoff has resulted in an increased electric field on axis and improved coupling to solid beams in both helix and coupled-cavity SWS, and wider coupling-aperture pass-bands and frequency bandwidth in coupled-cavity devices. In the event of excess plasma generation in these TWTs or BWOs, the device structures rapidly approach cutoff or breakdown and the beam forms instabilities, which degrades the output power level and pulse length. Recent experimental and theoretical advances in this field including plasma implementation techniques in the gun and circuit will be presented, and the benefits and limitations of plasma filling of microwave sources will be shown and discussed.

  14. Man-machine interface builders at the Advanced Photon Source

    SciTech Connect

    Anderson, M.D.

    1991-12-31

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs.

  15. Man-machine interface builders at the Advanced Photon Source

    SciTech Connect

    Anderson, M.D.

    1991-01-01

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs.

  16. The Advanced Photon Source event system

    SciTech Connect

    Lenkszus, F.R.; Laird, R.

    1995-12-31

    The Advanced Photon Source, like many other facilities, requires a means of transmitting timing information to distributed control system 1/0 controllers. The APS event system provides the means of distributing medium resolution/accuracy timing events throughout the facility. It consists of VME event generators and event receivers which are interconnected with 10OMbit/sec fiber optic links at distances of up to 650m in either a star or a daisy chain configuration. The systems event throughput rate is 1OMevents/sec with a peak-to-peak timing jitter down to lOOns depending on the source of the event. It is integrated into the EPICS-based A.PS control system through record and device support. Event generators broadcast timing events over fiber optic links to event receivers which are programmed to decode specific events. Event generators generate events in response to external inputs, from internal programmable event sequence RAMS, and from VME bus writes. The event receivers can be programmed to generate both pulse and set/reset level outputs to synchronize hardware, and to generate interrupts to initiate EPICS record processing. In addition, each event receiver contains a time stamp counter which is used to provide synchronized time stamps to EPICS records.

  17. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  18. Spectral characteristics of insertion device sources at the Advanced Photon Source

    SciTech Connect

    Viccaro, P.J.

    1990-01-01

    The 7-GeV Advanced Photon Source (APS) synchrotron facility at Argonne National Laboratory will be a powerful source of hard x-rays with energies above 1 keV. In addition to the availability of bending magnet radiation, the storage ring will have 35 straight sections for insertion device (ID) x-ray sources. The unique spectral properties and flexibility of these devices open new possibilities for scientific research in essentially every area of science and technology. Existing and new techniques utilizing the full potential of these sources, such as the enhanced coherence, unique polarization properties, and high spectral brilliance, will permit experiments not possible with existing sources. In the following presentation, the spectral properties of ID sources are briefly reviewed. A summary of the specific properties of sources planned for the APS storage ring is then presented. Recent results for APS prototype ID sources are discussed, and finally some special x-ray sources under consideration for the APS facility are described. 9 refs.

  19. Characteristics of the 7-GeV advanced photon source: A guide for users

    SciTech Connect

    Shenoy, G.K.; Viccaro, P.J.; Mills, D.M.

    1988-02-01

    In this document we present the characteristics of the electromagnetic radiation from various types of sources on the 7-GeV Advanced Photon Source (APS) storage ring. The sources include bending magnets, undulators, and wigglers. The characteristics are compared with those of other synchrotron sources when operated at their design specifications. The influence of positron beam size on the on-axis brilliance is discussed, along with the power distribution from these sources. The goal of this document is to provide users with enough information on the characteristics of radiation from the APS storage ring so that experiments can be efficiently planned. 23 refs., 20 figs., 8 tabs.

  20. Poster session: Fifth users meeting for the Advanced Photon Source

    SciTech Connect

    Not Available

    1992-11-01

    The Advanced Photon Source (APS), which is currently under construction as a national user facility at Argonne National Laboratory is a third-generation synchrotron x-ray source, one of only three in the world. It is expected to produce x-rays that are 10,000 times brighter than any currently produced elsewhere for use in research in a wide range of scientific areas. Users from industry, national laboratories, universities, and business will be able to come to the APS to conduct research either as members of Collaborative Access Teams (CATS) or as Independent Investigators. Principal users will be members of CATS, which will be building and operating all of the beamlines present in the first phase of APS beamline development. The first set of CATs has been selected through a competitive proposal process involving peer scientific review, thorough technical evaluation, and significant management oversight by the APS. This document is a compilation of posters presented at the Fifth Users Meeting for the Advanced Photon Source, held at Argonne National Laboratory on October 14--15, 1992. All CATs whose scientific cases were approved by the APS Proposal Evaluation Board are included. In addition, this document contains a poster from the Center for Synchrotron Radiation and Research and Instrumentation at the Illinois Institute of Technology.

  1. Calculations for Tera-Hertz (THZ) Radiation Sources

    SciTech Connect

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    We explore possibilities for THz sources from 0.3-30 THz. While still inaccessible, this broad gap is even wider for advanced acceleration schemes extending from X or, at most, W band RF at the low end up to CO{sub 2} lasers. While the physical implementations of these two approaches are quite different, both are proving difficult to develop so that lower frequency, superconducting RF is currently preferred. Similarly, the validity of modeling techniques varies greatly over this range of frequencies but generally mandates coupling Maxwell's equations to the appropriate device transport physics for which there are many options. Here we study radiation from undulatory-shaped transmission lines using finite-difference, time-domain (FDTD) simulations. Also, we present Monte-Carlo techniques for pulse generation. Examples of THz sources demonstrating coherence are shown with the goal of optimizing on-chip THz radiators for applications that may lead to accelerators.

  2. Radiation Safety of Sealed Radioactive Sources

    SciTech Connect

    Pryor, Kathryn H.

    2015-01-29

    Sealed radioactive sources are used in a wide variety of occupational settings and under differing regulatory/licensing structures. The definition of a sealed radioactive source varies between US regulatory authorities and standard-setting organizations. Potential problems with sealed sources cover a range of risks and impacts. The loss of control of high activity sealed sources can result in very high or even fatal doses to members of the public who come in contact with them. Sources that are not adequately sealed, and that fail, can cause spread of contamination and potential intake of radioactive material. There is also the possibility that sealed sources may be (or threatened to be) used for terrorist purposes and disruptive opportunities. Until fairly recently, generally-licensed sealed sources and devices received little, if any, regulatory oversight, and were often forgotten, lost or unaccounted for. Nonetheless, generally licensed devices can contain fairly significant quantities of radioactive material and there is some potential for exposure if a device is treated in a way that it was never designed. Industrial radiographers use and handle high activity and/or high-dose rate sealed sources in the field with a high degree of independence and minimal regulatory oversight. Failure to follow operational procedures and properly handle radiography sources can and has resulted in serious injuries and death. Industrial radiographers have experienced a disproportionately large fraction of incidents that result in unintended exposure to radiation. Sources do not have to contain significant quantities of radioactive material to cause problems in the event of their failure. A loss of integrity can cause the spread of contamination and potential exposure to workers and members of the public. The NCRP has previously provided recommendations on select aspects of sealed source programs. Future efforts to provide recommendations for sealed source programs are discussed.

  3. A simple computerized timer for radiation sources

    SciTech Connect

    Hansen, D.; Plato, P.; Miklos, J. )

    1984-10-01

    The University of Michigan administers the testing portion of the National Voluntary Laboratory Accreditation Program (NVLAP) for personnel dosimetry processors using six different radiation sources. This paper reports that, in order to eliminate the potential for errors in the recording of dosimeter irradiation times, timing systems were set up for each source using Commodore 64 microcomputers and associated peripherals. Each timing system uses the microcomputer's analog-to-digital converter and internal clock to measure the amount of time that a source control circuit is energized. The accuracy of each microcomputer timing system is comparable to that of the electronic digital timers used to control the sources resulting in irradiation times that are known to within {plus minus}0.2%.

  4. Sources of Error in UV Radiation Measurements

    PubMed Central

    Larason, Thomas C.; Cromer, Christopher L.

    2001-01-01

    Increasing commercial, scientific, and technical applications involving ultraviolet (UV) radiation have led to the demand for improved understanding of the performance of instrumentation used to measure this radiation. There has been an effort by manufacturers of UV measuring devices (meters) to produce simple, optically filtered sensor systems to accomplish the varied measurement needs. We address common sources of measurement errors using these meters. The uncertainty in the calibration of the instrument depends on the response of the UV meter to the spectrum of the sources used and its similarity to the spectrum of the quantity to be measured. In addition, large errors can occur due to out-of-band, non-linear, and non-ideal geometric or spatial response of the UV meters. Finally, in many applications, how well the response of the UV meter approximates the presumed action spectrum needs to be understood for optimal use of the meters.

  5. Radiation therapy at compact Compton sources.

    PubMed

    Jacquet, Marie; Suortti, Pekka

    2015-09-01

    The principle of the compact Compton source is presented briefly. In collision with an ultrarelativistic electron bunch a laser pulse is back-scattered as hard X-rays. The radiation cone has an opening of a few mrad, and the energy bandwidth is a few percent. The electrons that have an energy of the order of a few tens of MeV either circulate in storage ring, or are injected to a linac at a frequency of 10-100 MHz. At the interaction point the electron bunch collides with the laser pulse that has been amplified in a Fabry-Perot resonator. There are several machines in design or construction phase, and projected fluxes are 10(12) to 10(14) photons/s. The flux available at 80 keV from the ThomX machine is compared with that used in the Stereotactic Synchrotron Radiation Therapy clinical trials. It is concluded that ThomX has the potential of serving as the radiation source in future radiation therapy programs, and that ThomX can be integrated in hospital environment. PMID:25752735

  6. Radiation Protection for Manned Interplanetary Missions - Radiation Sources, Risks, Remedies

    NASA Astrophysics Data System (ADS)

    Facius, R.; Reitz, G.

    difficulties in addition to those connected with the knowledge of the external radiation fields and the cross sections necessary for the transport calculations. The radiobiological effectiveness of the GCR heavy ions is to a large extent only nominally known with large error margins. Furthermore, the reference risk, late cancer mortality, usually only materializes many years after the mission, in contrast to the risk from early radiation sickness or the other health risks, including those from prolonged exposure to weightlessness. 1 Given these large radiobiological uncertainties of space radiation risk assessment, a first and most effective countermeasure consists of research directed at their diminishment. Furthermore, a new risk criterion is needed which allows a unified quantitative treatment of all health and technical risks arising during the mission as well as the risk of late radiogenic cancer mortality many years after the mission. Countermeasures to reduce radiation exposure comprise judicious planning of the mission with respect to solar activity, skilful utilization and optimization of shielding materials, and research into advanced propulsion systems capable to cut down transit times in free space. Finally, research into means to reduce sensitivity to radiation health effects e.g. by chemical substances and nutritional additives constitutes the third class of possible countermeasures. Arguably, the single most effective among these measures would be reduction of transit time in free space. 2

  7. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose

    PubMed Central

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186

  8. The advanced neutron source reactor: An overview

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS) will be a new user facility for all kinds of neutron research, including neutron scattering, materials testing, materials analysis, isotope production and nuclear physics experiments. The centerpiece of the facility is to be the world's highest flux beam reactor. There will be beams of hot, cold and thermal neutrons for more than 40 simultaneous scattering and nuclear physics experiments. In addition, there will be irradiation positions and rabbit tubes for in-pile experiments, testing and isotopes production (including transuranium isotopes). To reduce technical risks and to minimize safety issues, the reactor design is based on technology already employed in existing research reactors. The fuel elements are annular assemblies of aluminum clad involute fuel plates, similar to the design of the High Flux Isotope Reactor (HFIR) at Oak Ridge and the Institut Laue-Langevin (ILL) Reactor in Grenoble. As is common with many other research reactors, the core is cooled, moderated and reflected by heavy water. The preferred fuel is U{sub 3}Si{sub 2} - a high-density fuel form developed by Argonne National Laboratory and Babcock and Wilcox that has been extensively tested in reactors in the United States, Europe and Japan. 7 figs., 2 tabs.

  9. Advanced Neutron Sources: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  10. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  11. Wigglers at the Advanced Light Source

    SciTech Connect

    Hoyer, E.; Akre, J.; Humphries, D.

    1995-04-01

    Two 3.4 m long wigglers are being designed and constructed at Lawrence Berkeley Laboratory`s (LBL) Advanced Light Source (ALS). A 19 period planar wiggler with 16.0 cm period length is designed to provide photons up to 12.4 keV for protein crystallography. This device features a hybrid permanent magnet structure with tapered poles and designed to achieve 2.0 T at a 1.4 cm magnetic gap. An elliptical wiggler is being designed to provide circularly polarized photons in the energy range of 50 eV to 10 keV for magnetic circular dichroism spectroscopy. This device features vertical and horizontal magnetic structures of 14 and 14 {1/2} periods respectively of 20 cm period length. The vertical magnetic structure is a 2.0 T hybrid permanent magnet configuration. The horizontal structure is an iron core electromagnetic design, shifted longitudinally {1/4} period with respect to the vertical magnetic structure. A maximum horizontal peak field of 0.1 T at an oscillating frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform.

  12. First undulators for the Advanced Light Source

    SciTech Connect

    Hoyer, E.; Akre, J.; Chin, J.

    1993-05-01

    The first three undulators, each 4.6 m in length, for the Advanced Light source (ALS) at Lawrence Berkeley Laboratory (LBL), are near completion and are undergoing qualification tests before installation into the storage ring. Two devices have 5.0-cm period lengths, 89 periods, and achieve an effective field of 0.85 T at the 14 mm minimum magnetic gap. The other device has a period length of 8.0 cm, 55 periods, and an effective field of 1.2 T at the minimum 14 mm gap. Measurements on the first 5 cm period device show the uncorrelated field errors to be 0.23%, which is less than the required 0.25%. Measurements of gap control show reproducibility of {plus_minus}5 microns or better. The first vacuum chamber, 5.0 m long, is flat to within 0.53 mm over the 4.6 m magnetic structure section and a 4 x 10{sup -11} Torr pressure was achieved during vacuum tests. Device description, fabrication, and measurements are presented.

  13. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  14. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  15. The Advanced Photon Source (APS) Linear Accelerator: design and performance

    SciTech Connect

    White, M.M.

    1996-06-01

    The Advanced Photon Source linear accelerator (linac) system consists of a 200-MeV, 2856-MHz S-band electron linac and a 2-radiation-length- thick tungsten target followed by a 450-MeV positron linac. The linac system has operated 24 hours per day for the past two years to support accelerator commissioning and beam studies, and to provide beam for the experimental program. It achieves the design goal for positron current of 8 mA, and produces electron energies up to 650 MeV without the target in place. The linac is described, and its operation and performance are discussed. 9 refs., 3 figs., 1 tab.

  16. Underdense radiation sources: Moving towards longer wavelengths

    NASA Astrophysics Data System (ADS)

    Back, C. A.; Seely, J. F.; Weaver, J. L.; Feldman, U.; Tommasini, R.; Glendinning, S. G.; Chung, H.-K.; Rosen, M.; Lee, R. W.; Scott, H. A.; Tillack, M.; Kilkenny, J. D.

    2006-06-01

    Underdense radiation sources have been developed to provide efficient laboratory multi-keV radiation sources for radiography and radiation hardening studies. In these plasmas laser absorption by inverse bremsstrahlung leads to high x-ray conversion efficiency because of efficient ionization of the low density aerogel or gas targets. Now we performing experiments in the soft x-ray energy regime where the atomic physics models are much more complicated. In recent experiments at the NIKE laser, we have irradiated a Ti-doped SiO{2} aerogel with up to 1650 J of 248 nm wavelength light. The absolute Ti L-shell emission in the 200-800 eV range is measured with a diagnostic that uses a transmission grating coupled to Si photodiodes. We will give an overview of the temporally-resolved absolutely calibrated spectra obtained over a range of conditions. Eventually we hope to extend our studies to x-ray production in the EUV range.

  17. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  18. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  19. Network Algorithms for Detection of Radiation Sources

    SciTech Connect

    Rao, Nageswara S; Brooks, Richard R; Wu, Qishi

    2014-01-01

    In support of national defense, Domestic Nuclear Detection Office s (DNDO) Intelligent Radiation Sensor Systems (IRSS) program supported the development of networks of radiation counters for detecting, localizing and identifying low-level, hazardous radiation sources. Industry teams developed the first generation of such networks with tens of counters, and demonstrated several of their capabilities in indoor and outdoor characterization tests. Subsequently, these test measurements have been used in algorithm replays using various sub-networks of counters. Test measurements combined with algorithm outputs are used to extract Key Measurements and Benchmark (KMB) datasets. We present two selective analyses of these datasets: (a) a notional border monitoring scenario that highlights the benefits of a network of counters compared to individual detectors, and (b) new insights into the Sequential Probability Ratio Test (SPRT) detection method, which lead to its adaptations for improved detection. Using KMB datasets from an outdoor test, we construct a notional border monitoring scenario, wherein twelve 2 *2 NaI detectors are deployed on the periphery of 21*21meter square region. A Cs-137 (175 uCi) source is moved across this region, starting several meters from outside and finally moving away. The measurements from individual counters and the network were processed using replays of a particle filter algorithm developed under IRSS program. The algorithm outputs from KMB datasets clearly illustrate the benefits of combining measurements from all networked counters: the source was detected before it entered the region, during its trajectory inside, and until it moved several meters away. When individual counters are used for detection, the source was detected for much shorter durations, and sometimes was missed in the interior region. The application of SPRT for detecting radiation sources requires choosing the detection threshold, which in turn requires a source strength

  20. 21 CFR 886.5100 - Ophthalmic beta radiation source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic beta radiation source. 886.5100 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5100 Ophthalmic beta radiation source. (a) Identification. An ophthalmic beta radiation source is a device intended to apply...

  1. 21 CFR 886.5100 - Ophthalmic beta radiation source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic beta radiation source. 886.5100 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5100 Ophthalmic beta radiation source. (a) Identification. An ophthalmic beta radiation source is a device intended to apply...

  2. 21 CFR 886.5100 - Ophthalmic beta radiation source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic beta radiation source. 886.5100 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5100 Ophthalmic beta radiation source. (a) Identification. An ophthalmic beta radiation source is a device intended to apply...

  3. 21 CFR 886.5100 - Ophthalmic beta radiation source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic beta radiation source. 886.5100 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5100 Ophthalmic beta radiation source. (a) Identification. An ophthalmic beta radiation source is a device intended to apply...

  4. 21 CFR 886.5100 - Ophthalmic beta radiation source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic beta radiation source. 886.5100 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5100 Ophthalmic beta radiation source. (a) Identification. An ophthalmic beta radiation source is a device intended to apply...

  5. Proceedings of the fourth users meeting for the advanced photon source

    SciTech Connect

    Not Available

    1992-02-01

    The Fourth Users Meeting for the Advanced Photon Source (APS) was held on May 7--8, 1991 at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project; critical issues for APS operation; advances in synchrotron radiation applications; users perspectives, and funding perspectives. The actions taken at the 1991 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  6. Comparison of photoexcited p-InAs THz radiation source with conventional thermal radiation sources

    SciTech Connect

    Smith, M. L.; Mendis, R.; Vickers, R. E. M.; Lewis, R. A.

    2009-03-15

    P-type InAs excited by ultrashort optical pulses has been shown to be a strong emitter of terahertz radiation. In a direct comparison between a p-InAs emitter and conventional thermal radiation sources, we demonstrate that under typical excitation conditions p-InAs produces more radiation below 1.2 THz than a globar. By treating the globar as a blackbody emitter we calibrate a silicon bolometer which is used to determine the power of the p-InAs emitter. The emitted terahertz power was found to be 98{+-}10 nW in this experiment.

  7. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  8. Magnetic design of the advanced light source elliptical wiggler

    SciTech Connect

    Marks, S.; Akre, J.; Hoyer, E.; Humphries, D.; Jackson, T.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-06-01

    An elliptical wiggler has been designed for installation in the Advanced Light Source at the Lawrence Berkeley Laboratory. The design has been optimized for the production of circularly polarized light in the 50 eV to 10 KeV energy range. The device will be 3.4 m long consisting of vertical and horizontal periodic structures. The period length for both is 20 cm. The vertical structure is a hybrid permanent magnet design which produces a peak field of 2.0 T. The horizontal magnetic structure is an iron core electromagnetic design shifted longitudinally by one-quarter period relative to the vertical structure; it has a peak field of 0.095 T. The polarity of the horizontal field can be switched at a rate of up to 1 Hz, which results in a modulation of the chirality of the circularly polarized radiation on-axis. This paper discusses the magnetic design and presents the results of radiation spectra calculations used for determining optimal field parameter settings.

  9. Numerical assessment of radiation binary targeted therapy for HER-2 positive breast cancers: advanced calculations and radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sztejnberg Gonçalves-Carralves, Manuel L.; Jevremovic, Tatjana

    2007-07-01

    In our previous publication (Mundy et al 2006 Phys. Med. Biol. 51 1377) we have described the theoretical assessment of our novel approach in radiation binary targeted therapy for HER-2 positive breast cancers and summarized the future directions in this area of research. In this paper we advanced the numerical analysis to show the detailed radiation dose distribution for various neutron sources in combination with the required boron concentration and allowed radiation skin doses. We once again proved the feasibility of the concept and will use these data and conclusions to start with the experimental verifications.

  10. An advanced negative hydrogen ion source.

    PubMed

    Goncharov, Alexey A; Dobrovolsky, Andrey N; Goretskii, Victor P

    2016-02-01

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm(2) in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation. PMID:26931996

  11. Samarium-145 and its use as a radiation source

    DOEpatents

    Fairchild, Ralph G.; Laster, Brenda H.; Packer, Samuel

    1989-09-05

    The present invention covers a new radiation source, samarium-145, with radiation energies slightly above those of I-125 and a half-life of 340 days. The samarium-145 source is produced by neutron irradiation of SM-144. This new source is useful as the implanted radiation source in photon activation therapy of malignant tumors to activate the stable I-127 contained in the IdUrd accumulated in the tumor, causing radiation sensitization and Auger cascades that irreperably damage the tumor cells. This new source is also useful as a brachytherapy source.

  12. Samarium-145 and its use as a radiation source

    DOEpatents

    Fairchild, Ralph G.; Laster, Brenda H.; Packer, Samuel

    1989-01-01

    The present invention covers a new radiation source, samarium-145, with radiation energies slightly above those of I-125 and a half-life of 340 days. The samarium-145 source is produced by neutron irradiation of SM-144. This new source is useful as the implanted radiation source in photon activation therapy of malignant tumors to activate the stable I-127 contained in the IdUrd accumulated in the tumor, causing radiation sensitization and Auger cascades that irreperably damage the tumor cells. This new source is also useful as a brachytherapy source.

  13. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  14. Advances in Therapeutic Development for Radiation Cystitis.

    PubMed

    Rajaganapathy, Bharathi Raja; Jayabalan, Nirmal; Tyagi, Pradeep; Kaufman, Jonathan; Chancellor, Michael B

    2014-01-01

    Radiation treatment for pelvic malignancies is typically associated with radiation injury to urinary bladder that can ultimately lead to radiation cystitis (RC). The late sequelae of radiation therapy may take many years to develop and include bothersome storage symptoms such as hematuria, which may be life-threatening in severe cases of hemorrhagic cystitis. Although no definitive treatment is currently available, various interventions are used for radiation and hemorrhagic cystitis including blood transfusion, bladder irrigation, intravesical instillation of substances such as alum, silver nitrate, prostaglandins or formalin, and fulguration of intravesical bleeding sites and surgery options such as supravesical urinary diversions and cystectomy. Effects of non-surgical treatments for radiation and hemorrhagic cystitis are of modest success and studies are lacking to control the effects caused by RC. When such measures have proven ineffective, use of bladder botulinum toxin injection has been reported. New therapy, such as intravesical immunosuppression with local tacrolimus formulation is being developed for the treatment of radiation hemorrhagic cystitis. PMID:26663493

  15. Environmental Research At The Advanced Photon Source

    EPA Science Inventory

    Because of the importance of probing molecular-scale chemical and physical structure of environmental samples in their natural and often hydrated state, synchrotron radiation has been a powerful tool for environmental scientists for decades. Thus, the crucial role that a highly ...

  16. Beam position feedback system for the Advanced Photon Source

    SciTech Connect

    Chung, Y.

    1993-12-31

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and X-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back the global orbit data to the local feedback systems. The effect of the vacuum chamber eddy current induced by the AC corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the X-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will be presented.

  17. Advanced Photon Source research: Volume 1, Number 1, April 1998

    SciTech Connect

    1998-04-01

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

  18. Radiation design considerations for advanced Jupiter spacecraft

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Koprowski, E. F.

    1979-01-01

    This paper considers one aspect of the complex radiation design considerations for planetary spacecraft, namely the approach used for solving the effects of radiation on materials problems. An overview of the approach developed at JPL for Voyager, and currently being used on Galileo, is treated briefly. Examples of the postulated Jovian charged particle levels are given. The types of computer analyses codes used, the mass shielding techniques that evolved and the recommended shielding techniques for future planetary spacecraft are treated.

  19. Occupational Exposure to Natural Sources of Ionising Radiation in Ireland

    NASA Astrophysics Data System (ADS)

    Organo, Catherine; Colgan, Tony; Fenton, David; Synnott, Hugh; Currivan, Lorraine

    2008-08-01

    The Radiological Protection Institute of Ireland (RPII) has recently completed a detailed evaluation of all radiation exposure pathways from sources of both natural and artificial radiation in the Irish environment. This paper presents a compilation of the occupational doses received by Irish workers exposed to natural sources of ionising radiation.

  20. Occupational Exposure to Natural Sources of Ionising Radiation in Ireland

    SciTech Connect

    Organo, Catherine; Colgan, Tony; Fenton, David; Synnott, Hugh; Currivan, Lorraine

    2008-08-07

    The Radiological Protection Institute of Ireland (RPII) has recently completed a detailed evaluation of all radiation exposure pathways from sources of both natural and artificial radiation in the Irish environment. This paper presents a compilation of the occupational doses received by Irish workers exposed to natural sources of ionising radiation.

  1. Seeding Coherent Radiation Sources with Sawtooth Modulation

    SciTech Connect

    Ratner, Daniel; Chao, Alex; /SLAC

    2012-03-28

    Seed radiation sources have the ability to increase longitudinal coherence, decrease saturation lengths, and improve performance of tapering, polarization control and other FEL features. Typically, seeding schemes start with a simple sinusoidal modulation, which is manipulated to provide bunching at a high harmonic of the original wavelength. In this paper, we consider seeding from sawtooth modulations. The sawtooth creates a clean phase space structure, providing a maximal bunching factor without the need for an FEL interaction. While a pure sawtooth modulation is a theoretical construct, it is possible to approach the waveform by combining two or more of the composite wavelengths. We give examples of sawtooth seeding for HGHG, EEHG and other schemes, and note that the sawtooth modulation may aid in suppression of the microbunching instability.

  2. Advanced radioisotope heat source for Stirling Engines

    NASA Astrophysics Data System (ADS)

    Dobry, T. J.; Walberg, G.

    2001-02-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .

  3. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2011-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). By increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate concept MLI blankets for MMOD shields. In conjunction, these MLI blankets and the subsequent MMOD shields were also evaluated for their radiation shielding effectiveness towards protecting crew. These concepts were evaluated against the ISS MLI blankets and the ISS MMOD shield, which acted as the baseline. These radiation shielding assessments were performed using the high charge and energy transport software (HZETRN). This software is based on a one-dimensional formula of the Boltzmann transport equation with a straight-ahead approximation. Each configuration was evaluated against the following environments to provide a diverse view of radiation shielding effectiveness in most space environments within the heliosphere: August 1972 solar particle event, October 1989 solar particle event, 1982 galactic cosmic ray environment (during solar maximum), 1987 galactic cosmic ray environment (during solar minimum), and a low earth orbit environment in 1970 that corresponded to an altitude of 400 km and inclination of 51.6 . Both the absorbed dose and the dose equivalent were analyzed, but the focus of the discussion was on the dose equivalent since the data is most concerned with radiation shielding of the crew. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for

  4. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  5. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  6. Science at the Speed of Light: Advanced Photon Source

    ScienceCinema

    Murray Gibson

    2010-01-08

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  7. Science at the Speed of Light: Advanced Photon Source

    SciTech Connect

    Murray Gibson

    2009-06-03

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  8. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    SciTech Connect

    Sakata, M.; Aoyagi, S.; Ogura, T.; Nishibori, E.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kind of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.

  9. Advanced RF power sources for linacs

    SciTech Connect

    Wilson, P.B.

    1996-10-01

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  10. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  11. Flux and brightness calculations for various synchrotron radiation sources

    SciTech Connect

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring.

  12. Micromachined TWTs for THz Radiation Sources

    NASA Technical Reports Server (NTRS)

    Booske, John H.; vanderWeide, Daniel W.; Kory, Carol L.; Limbach, S.; Downey, Alan (Technical Monitor)

    2001-01-01

    The Terahertz (THz) region of the electromagnetic spectrum (about 300 - 3000 GHz in frequency or about 0.1 - 1 mm free space wavelength) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. It has been characterized as the most scientifically rich, yet under-utilized, region of the electromagnetic spectrum. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.001 - 1.0 W continuous wave), efficient (> 1%), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and comparatively inexpensive. To develop vacuum electron device (VED) radiation sources satisfying these requirements, fabrication and packaging approaches must be heavily considered to minimize costs, in addition to the basic interaction physics and circuit design. To minimize size of the prime power supply, beam voltage must be minimized, preferably 10 kV. Solid state sources satisfy the low voltage requirement, but are many orders of magnitude below power, efficiency, and bandwidth requirements. On the other hand, typical fast-wave VED sources in this regime (e.g., gyrotrons, FELs) tend to be large, expensive, high voltage and very high power devices unsuitable for most of the applications cited above. VEDs based on grating or inter-digital (ID) circuits have been researched and developed. However, achieving forward-wave amplifier operation with instantaneous fractional bandwidths > 1% is problematic for these devices with low-energy (< 15 kV) electron beams. Moreover, the interaction impedance is quite low unless the beam-circuit spacing is kept particularly narrow, often leading to significant beam interception. One solution to satisfy the THz source requirements mentioned above is to develop micromachined VEDs, or "micro-VEDs". Among other benefits, micro-machining technologies

  13. Active radiation hardening technology for fiber-optic source

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Suo, Xinxin; Yang, Mingwei

    2013-09-01

    We demonstrated an active radiation hardening technology for fiber optic source developed for high performance fiber optic gyroscope. The radiation characteristic of erbium-doped fiber was studied experimentally. The radiation induced attenuation (RIA) at 980nm pump light was identified to be the main reason for the degradation and there was photo-bleaching effect in EDF too. A variable parameters control technology was proposed and taken to keep the 980nm and 1550nm light energy stable and high stability and radiation-resistance fiber source with gauss profile spectrum was realized .The source can stand against more than 50 krad (Si) total radiation dose.

  14. Advanced CMOS Radiation Effects Testing Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  15. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  16. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  17. Advanced materials for radiation-cooled rockets

    NASA Astrophysics Data System (ADS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-11-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  18. Advances in space radiation shielding codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  19. Advances in space radiation shielding codes.

    PubMed

    Wilson, John W; Tripathi, Ram K; Qualls, Garry D; Cucinotta, Francis A; Prael, Richard E; Norbury, John W; Heinbockel, John H; Tweed, John; De Angelis, Giovanni

    2002-12-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given. PMID:12793737

  20. Advanced materials for radiation-cooled rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  1. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  2. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  3. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  4. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  5. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    SciTech Connect

    Huebner, R.H. Sr.

    1989-01-01

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers.

  6. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    SciTech Connect

    Huebner, R.H. Sr.

    1989-12-31

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers.

  7. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  8. SP-100 advanced radiator designs for thermoelectric and Stirling applications

    NASA Technical Reports Server (NTRS)

    Moriarty, M. P.; Determan, W. R.

    1989-01-01

    Advanced radiator designs employing carbon-carbon liquid metal heat pipe technology, which significantly reduce the mass of the heat rejection subsystem for high temperature space technology systems such as the SP-100 are discussed. This technology is being developed to address the need for lightweight heat transfer components and structures for space applications. Heat pipe and subsystem designs were optimized for thermoelectric- and Stirling-engine-based SP-100 system designs. A multiple, deployed-petal radiator concept was selected for the heat rejection subsystem design as it provided minimum mass. Radiator stowage in the space transportation system cargo bay and deployment schemes were investigated for each of the optimized designs.

  9. New high-power source of directional electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kumakhov, M. A.

    2014-07-01

    A new source of electromagnetic radiation in a wide spectral range can be based on multiple contactless deflection of the beams of charged particles in a circular channel. The radiation with wavelengths ranging from submillimeter to radio ranges can be generated using nonrelativistic electrons. Directional radiation is obtained at relativistic energies. The IR, optical, and UV radiation can be generated. The X-ray and gamma-radiation can be obtained at relatively high energies. The new source is compared with the source of synchrotron radiation. The radiation intensity at energies of 1-2 GeV is relatively high, since strong currents are possible in the ring channel. The channeling and synchrotron emission are simultaneously obtained at relatively small (several tens of nanometers) internal diameters of the ring.

  10. Indirect detection of radiation sources through direct detection of radiolysis products

    DOEpatents

    Farmer, Joseph C.; Fischer, Larry E.; Felter, Thomas E.

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  11. Transition undulator radiation as bright infrared sources

    SciTech Connect

    Kim, K.J.

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  12. Establishing radiation therapy advanced practice in New Zealand

    SciTech Connect

    Coleman, Karen; Jasperse, Marieke; Herst, Patries; Yielder, Jill

    2014-02-15

    Introduction: Advanced practice (AP) is of increasing interest to many radiation therapists (RTs) both nationally and internationally. In New Zealand, initial research (2005–2008) showed strong support for the development of an AP role for medical radiation technologists (MRTs). Here, we report on a nationwide survey in which RTs validated and prioritised nine AP profiles for future development. Methods: All registered RTs in New Zealand (n = 260) were invited to take part in a survey in December 2011; 73 of whom returned a complete response. Results: RTs supported the implementation of AP roles in New Zealand and the requirement of a Master's degree qualification to underpin clinical knowledge. Most RTs endorsed the criteria attributed to each of the nine proposed AP profiles. The study identified that activities may qualify as either advanced practice or standard practice depending on the department. All participants agreed that an advanced practitioner should be a leader in the field, able to initiate and facilitate future developments within as well as outside this specific role. Acceptance of the AP roles by RTs and other health professionals as well as the availability of resources for successful implementation, were concerns expressed by some RTs. Conclusion: The authors recommend (1) the development of one scope of practice titled ‘advanced practitioner’ with generic and specialist criteria for each profile as the future career pathway, (2) promotion and support for the AP pathway by the New Zealand Institute of Medical Radiation Technology and the New Zealand Medical Radiation Technologists Board.

  13. Improved source of infrared radiation for spectroscopy

    NASA Technical Reports Server (NTRS)

    Burkhard, D. G.; Rao, K. N.

    1971-01-01

    Radiation from a crimped V-groove in the electrically heated metallic element of a high-resolution infrared spectrometer is more intense than that from plane areas adjacent to the element. Radiation from the vee and the flat was compared by alternately focusing on the entrance slit of a spectrograph.

  14. Large area radiation source for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  15. Advancing Techniques of Radiation Therapy for Rectal Cancer.

    PubMed

    Patel, Sagar A; Wo, Jennifer Y; Hong, Theodore S

    2016-07-01

    Since the advent of radiation therapy for rectal cancer, there has been continual investigation of advancing technologies and techniques that allow for improved dose conformality to target structures while limiting irradiation of surrounding normal tissue. For locally advanced disease, intensity modulated and proton beam radiation therapy both provide more highly conformal treatment volumes that reduce dose to organs at risk, though the clinical benefit in terms of toxicity reduction is unclear. For early stage disease, endorectal contact therapy and high-dose rate brachytherapy may be a definitive treatment option for patients who are poor operative candidates or those with low-lying tumors that desire sphincter-preservation. Finally, there has been growing evidence that supports stereotactic body radiotherapy as a safe and effective salvage treatment for the minority of patients that locally recur following trimodality therapy for locally advanced disease. This review addresses these topics that remain areas of active clinical investigation. PMID:27238474

  16. Radiation sources and diagnostics with ultrashort electron bunches

    SciTech Connect

    Catravas, P.; Esarey, E.; Leemans, W.P.

    2001-11-02

    The basic principles and design of radiation sources (transition radiation, Cerenkov radiation, radiation from periodic structures, etc.) and radiation-based diagnostics will be discussed, with emphasis on radiation from ultra-short electron bunches. Ultra-short electron bunches have the potential to produce high peak flux radiation sources that cover wavelength regimes where sources are currently not widely available (coherent THz/IR) as well as ultrashort X-ray pulses (3-100 fs). While radiation from the electron bunch contains the full signature of the electron beam and/or medium it has travelled through, the deconvolution of a single property of interest can be difficult due to a large number of contributing properties. The experimental implementation of novel solutions to this problem will be described for beams from 30 MeV to 30 GeV, including fluctuational interferometry, source imaging, phase matched cone angles and laser-based techniques, which utilize optical transition radiation, wiggler and Cerenkov radiation, and Thomson scattering. These novel diagnostic methods have the potential to resolve fs bunch durations, slice emittance on fs scales, etc. The advantages and novel features of these techniques will be discussed.

  17. Survey, alignment, and beam stability at the Advanced Light Source

    SciTech Connect

    Krebs, G.F.

    1997-10-01

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring.

  18. Source of coherent short wavelength radiation

    DOEpatents

    Villa, Francesco

    1990-01-01

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  19. Successful Completion of the Top-off Upgrade of the Advanced Light Source

    SciTech Connect

    Steier, C.; Bailey, B.; Baptiste, K.; Barry, W.; Biocca, A.; Byrne, W.; Casey, P.; Chin, M.; Donahue, R.; Duarte, R.; Fahmie, M.; Gath, B.; Jacobson, S.; Julian, J.; Jung, J. Y.; Kritscher, M.; Kwiatkowski, S.; Marks, S.; McKean, P.; Mueller, R.

    2010-06-23

    An upgrade of the Advanced Light Source (ALS) to enable top-off operation has been completed during the last four years. The final work centered around radiation safety aspects, culminating in a systematic proof that top-off operation is equally safe as decaying beam operation. Commissioning and transition to full user operations happened in late 2008 and early 2009. Top-off operation at the ALS provides a very large increase in time-averaged brightness (by about a factor of 10) as well as improvements in beam stability. The following sections provide an overview of the radiation safety rationale, commissioning results, as well as experience in user operations.

  20. Advances in Radiation Therapy in Pediatric Neuro-oncology.

    PubMed

    Bindra, Ranjit S; Wolden, Suzanne L

    2016-03-01

    Radiation therapy remains a highly effective therapy for many pediatric central nervous system tumors. With more children achieving long-term survival after treatment for brain tumors, late-effects of radiation have become an important concern. In response to this problem, treatment protocols for a variety of pediatric central nervous system tumors have evolved to reduce radiation fields and doses when possible. Recent advances in radiation technology such as image guidance and proton therapy have led to a new era of precision treatment with significantly less exposure to healthy tissues. These developments along with the promise of molecular classification of tumors and targeted therapies point to an optimistic future for pediatric neuro-oncology. PMID:26271789

  1. Analysis of insertion device magnet measurements for the Advanced Light Source

    SciTech Connect

    Marks, S.; Humphries, D.; Kincaid, B.M.; Schlueter, R.; Wang, C.

    1993-07-01

    The Advanced Light Source (ALS), which is currently being commissioned at Lawrence Berkeley Laboratory, is a third generation light source designed to produce XUV radiation of unprecedented brightness. To meet the high brightness goal the storage ring has been designed for very small electron beam emittance and the undulators installed in the ALS are built to a high degree of precision. The allowable magnetic field errors are driven by electron beam and radiation requirements. Detailed magnetic measurements and adjustments are performed on each undulator to qualify it for installation in the ALS. The first two ALS undulators, IDA and IDB, have been installed. This paper describes the program of measurements, data analysis, and adjustments carried out for these two devices. Calculations of the radiation spectrum, based upon magnetic measurements, are included. Final field integral distributions are also shown. Good field integral uniformity has been achieved using a novel correction scheme, which is also described.

  2. Proceedings of the Fifth Users Meeting for the Advanced Photon Source

    SciTech Connect

    Not Available

    1992-12-01

    The Fifth Users Meeting for the Advanced Photon Source (APS) was held on October 14--15, 1992, at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, funding opportunities, advances in synchrotron radiation applications, and technical developments at the APS. In addition, the 15 Collaborative Access Teams that have been approved to date participated in a poster session, and several vendors displayed their wares. The actions taken at the 1992 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  3. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  4. Status of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Berg, W.; Fuja, R.; Grelick, A.; Mavrogenes, G.; Nassiri, A.; Russell, T.; Wesolowski, W.

    1993-08-01

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper.

  5. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  6. The magnet measurement facility for the Advanced Photon Source

    SciTech Connect

    Kim, S.H.; Doose, C.; Hogrefe, R.; Kim, K.; Merl, R.

    1993-10-01

    A magnet measurement facility has been developed to measure the prototype and production magnets for the Advance Photon Source. The measurement facility is semi-automatic in measurement control and data analysis. One dipole system and three rotating coil measurement systems for quadrupole and sextupole magnets and corresponding probe coils are described.

  7. Advanced radioisotope power source options for Pluto Express

    SciTech Connect

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  8. Measurement of storage ring motion at the advanced light source

    SciTech Connect

    Krebs, G.F.

    1997-05-01

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions.

  9. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-03-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  10. Very high power THz radiation sources

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  11. The earth as a radio source. [noting auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1975-01-01

    The primary characteristics of radio emission from the earth's magnetosphere are summarized, the origins of these missions are considered and similarities to other astronomical radio sources discussed. The auroral kilometric radiation has features very similar to Io-related decametric radiation from Jupiter and from Saturn. The radiation at fp and 2 fp upstream of the bow shock appears to be generated by the same mechanism as type III solar radio bursts. The beaming of the auroral kilometric radiation into a cone shaped region over the polar cap has some similarity to the angular distribution of radiation from Io and to the beaming of radio emission from pulsars.

  12. Localization of gravitational wave sources with networks of advanced detectors

    SciTech Connect

    Klimenko, S.; Mitselmakher, G.; Pankow, C.; Vedovato, G.; Drago, M.; Prodi, G.; Mazzolo, G.; Salemi, F.; Re, V.; Yakushin, I.

    2011-05-15

    Coincident observations with gravitational wave (GW) detectors and other astronomical instruments are among the main objectives of the experiments with the network of LIGO, Virgo, and GEO detectors. They will become a necessary part of the future GW astronomy as the next generation of advanced detectors comes online. The success of such joint observations directly depends on the source localization capabilities of the GW detectors. In this paper we present studies of the sky localization of transient GW sources with the future advanced detector networks and describe their fundamental properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector noise, we study the accuracy of the source localization and its dependence on the strength of injected signals, waveforms, and network configurations.

  13. Optical radiation safety of medical light sources

    NASA Astrophysics Data System (ADS)

    Sliney, David H.

    1997-05-01

    The phototoxicity of medical ultraviolet (UV) sources used in dermatology has long been recognized. Less obvious are potential hazards to the eye and skin from many other optical sources - both to the patient and to the health-care worker. To assess potential hazards, one must consider not only the optical and radiometric parameters of the optical source in question but also the geometrical exposure factors. This knowledge is required to accurately determine the irradiances (dose rates) to exposed tissues. Both photochemically and thermally induced damage are possible from intense light sources used in medicine and surgery; however, thermal injury is rare unless the light source is pulsed or nearly in contact with tissue. Generally, photochemical interaction mechanisms are most pronounced at short wavelengths (UV) where photon energies are greatest, and also will be most readily observed for lengthy exposure durations.

  14. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  15. The Advanced Light Source: A new tool for research in atomic and molecular physics

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters. 13 figs., 4 tabs.

  16. ADVANCED RADIATION THEORY SUPPORT ANNUAL REPORT 2002, FINAL REPORT

    SciTech Connect

    J. DAVIS; J. APRUZESE; , Y. CHONG; R. CLARK; A. DASGUPTA; J. GIULIANI; P. KEPPLE; R. TERRY; J. THORNHILL; A. VELIKOVICH

    2003-05-01

    Z-PINCH PHYSICS RADIATION FROM WIRE ARRAYS. This report describes the theory support of DTRA's Plasma Radiation Source (PRS) program carried out by NRL's Radiation Hydrodynamics Branch (Code 6720) in FY 2002. Included is work called for in DTRA MIPR 02-2045M - ''Plasma Radiation Theory Support'' and in DOE's Interagency Agreement DE-AI03-02SF22562 - ''Spectroscopic and Plasma Theory Support for Sandia National Laboratories High Energy Density Physics Campaign''. Some of this year's work was presented at the Dense Z-Pinches 5th International Conference held June 23-28 in Albuquerque, New Mexico. A common theme of many of these presentations was a demonstration of the importance of correctly treating the radiation physics for simulating Plasma Radiation Source (PRS) load behavior and diagnosing load properties, e.g, stagnation temperatures and densities. These presentations are published in the AIP Conference Proceedings and, for reference, they are included in Section 1 of this report. Rather than describe each of these papers in the Executive Summary, they refer to the abstracts that accompany each paper. As a testament to the level of involvement and expertise that the Branch brings to DTRA as well as the general Z-Pinch community, eight first-authored presentations were contributed at this conference as well as a Plenary and an Invited Talk. The remaining four sections of this report discuss subjects either not presented at the conference or requiring more space than allotted in the Proceedings.

  17. PEP as a synchrotron radiation source: Status and review

    SciTech Connect

    Paterson, J.M.

    1989-03-01

    The electron-positron collider, PEP, is a 15 GeV storage ring built and operated for high energy physics. As a synchrotron radiation source, it has some unique characteristics which give it extraordinary capabilities which are now beginning to be exploited. Two insertion device beam lines are operational, each illuminated by 2-m-long, 77-mm period undulator magnets. In parasitic operation on high energy physics runs, they provide photons above 10 KeV, with a peak brightness of 10/sup 16/ photons/(s-mm/sup 2//minus/mrad/sup 2/) within a 0.1% band width. This record brightness in this spectral range has already opened up exciting new areas of research. In tests of a low emittance mode of operation at 7.1 GeV, horizontal emittances of about 5 mm-rad were measured, which is about the same as that planned for the new third generation x-ray sources. At a current of 15 mA at 7.1 GeV, the present undulators deliver photon beams from 2.7 to 14 KeV with a peak brightness of about 10/sup 17/. Higher performance can be achieved with longer insertion devices optimized for these energies. Future operation in both parasitic mode and dedicated low emittance mode is planned; this will not only provide new physics opportunities, but the ability to advance the technology of beamline components and instrumentation will be required for the high power, high brightness beams from the third generation x-ray sources. Further performance upgrades are being studied and planned. These will be discussed in this paper along with a description of the present status and a review of PEP's capabilities and limitations. 18 refs., 6 figs., 1 tab.

  18. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Brown, Craig; Christensen, Phil. A.; Condron, Cathie; Hernandez, Michael; Ingle, Mike; Johnson, William A.; Owen, Roger D.; Ross, Randy; Schonberg, Russell G.

    2011-06-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  19. Elastic Wave Radiation from a Line Source of Finite Length

    SciTech Connect

    Aldridge, D.F.

    1998-11-04

    Straightforward algebraic expressions describing the elastic wavefield produced by a line source of finite length are derived in circular cylindrical coordinates. The surrounding elastic medium is assumed to be both homogeneous and isotropic, anc[ the source stress distribution is considered axisymmetic. The time- and space-domain formulae are accurate at all distances and directions from the source; no fa-field or long-wavelength assumptions are adopted for the derivation. The mathematics yield a unified treatment of three different types of sources: an axial torque, an axial force, and a radial pressure. The torque source radiates only azirnuthally polarized shear waves, whereas force and pressure sources generate simultaneous compressional and shear radiation polarized in planes containing the line source. The formulae reduce to more familiar expressions in the two limiting cases where the length of the line source approaches zero and infinity. Far-field approximations to the exact equations indicate that waves radiated parallel to the line source axI.s are attenuated relative to those radiated normal to the axis. The attenuation is more severe for higher I?equencies and for lower wavespeeds. Hence, shear waves are affected more than compressional waves. This fi-equency- and directiondependent attenuation is characterized by an extremely simple mathematical formula, and is readily apparent in example synthetic seismograms.

  20. Transition radiation as a source of cosmic X-rays.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Bleach, R. D.

    1972-01-01

    It is shown that transition radiation generated during the passage of relativistic charged particles through interstellar grains can be an important source of cosmic X-rays. In order to account for recent X-ray observations below 300 eV by transition radiation, an energy density in interstellar space of about 10 eV per cu cm in 10 MeV electrons is required. This seems to rule out transition radiation as an important source of diffuse cosmic X-rays in any energy region.

  1. Recent advancements in sputter-type heavy negative ion sources

    SciTech Connect

    Alton, G.D.

    1989-01-01

    Significant advancement have been made in sputter-type negative ion sources which utilize direct surface ionization, or a plasma to form the positive ion beam used to effect sputtering of samples containing the material of interest. Typically, such sources can be used to generate usable beam intensities of a few ..mu..A to several mA from all chemically active elements, depending on the particular source and the electron affinity of the element in question. The presentation will include an introduction to the fundamental processes underlying negative ion formation by sputtering from a low work function surface and several sources will be described which reflect the progress made in this technology. 21 refs., 9 figs., 1 tab.

  2. Explosive Vessel for Dynamic Experiments at Advanced Light Sources

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sorensen, Christian; Armstrong, Christopher; Sanchez, Nathaniel; Jensen, Brian

    2015-06-01

    There has been significant effort in coupling dynamic loading platforms to advanced light sources such as the Advanced Photon Source (APS) to take advantage of X-ray diagnostics for examining material physics at extremes. Although the focus of these efforts has been on using gun systems for dynamic compression experiments, there are many experiments that require explosive loading capabilities including studies related to detonator dynamics, small angle X-ray scattering on explosives, and ejecta formation, for example. To this end, an explosive vessel and positioning stage was designed specifically for use at a synchrotron with requirements to confine up to 15 grams of explosives, couple the vessel to the X-ray beam line, and reliably position samples in the X-ray beam remotely with micrometer spatial accuracy. In this work, a description of the system will be provided along with explosive testing results for the robust, reusable positioning system.

  3. A millimeter wavelength radiation source using a dual grating resonator

    SciTech Connect

    Killoran, J.H.; Hacker, F.L.; Walsh, J.E. . Dept. of Physics)

    1994-10-01

    A novel means of producing coherent radiation by passing an electron through a dual-grating resonator is presented. The observed radiation is in accordance with the Smith-Purcell dispersion relation for a single grating. Feedback is provided by a second grating. Experiments carried out at beam energies from 30--55 KeV produced radiation at wavelengths from 6 to 0.75 mm. Power measurements were used to clarify the grating-beam interaction. Indications are that operation could be easily extended to shorter wavelengths to provide an inexpensive and compact radiation source in the far-infrared.

  4. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  5. Radiation properties of Turkish light source facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Zafer

    2015-09-01

    The synchrotron light source TURKAY, which is one of the sub-project of Turkish Accelerator Center (TAC), has been supported by Ministry of Development of Turkey since 2006. The facility is designed to generate synchrotron radiation (SR) in range 0.01-60 keV from a 3 GeV storage ring with a beam emittance of 0.51 nm rad. Synchrotron radiation will be produced from the bending magnets and insertion devices in the storage ring. In this paper design studies for possible devices to produce synchrotron radiation and radiation properties of these devices with TURKAY storage ring parameters are presented.

  6. Dynamic Aperture Measurements at the Advanced Light Source

    SciTech Connect

    Decking, W.; Robin, D.

    1999-03-12

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs.

  7. Status of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Arnold, N.; Berg, W.; Cours, A.; Fuja, R.; Grelick, A.; Ko, K.; Qian, Y.; Russell, T.; Sereno, N.

    1994-09-01

    A 2856-MHz S-band, electron-positron linear accelerator (linac) has been constructed at the Advanced Photon Source (APS). It is the source of particles and the injector for the other APS accelerators, and linac commissioning is well underway. The linac is operated 24 hours per day to support linac beam studies and rf conditioning, as well as positron accumulator ring and synchrotron commissioning studies. The design goal for accelerated positron current is 8-mA, and has been met. Maximum positron energy to date is 420-MeV, approaching the design goal of 450-MeV. The linac design and its performance are discussed.

  8. Production of transplutonium elements and radiation sources based on them

    SciTech Connect

    Vasil`ev, V.Ya.; Adaev, V.A.; Gordeev, Ya.N.

    1993-12-31

    The Research Institute of Atomic Reactors (RIAR) has a complex experimental base for the required amount of transplutonium elements (TPE) production in reactors, their extraction from irradiated targets, preparing of necessary condition samples in purity and producing the radiation sources. Targets irradiation and target design are described. Californium 252 is used for neutron source production.

  9. Imploding plasma radiation sources: basic concepts. Memorandum report

    SciTech Connect

    Guillory, J.; Davis, J.

    1984-07-31

    This document is prepared as a briefing aid and technical primer for persons unfamiliar and uninitiated with the theory of imploding plasma radiation sources. It is hoped that it will prove helpful in introducing the basic physics concepts of these sources and in presenting these concepts to newcomers and potential users.

  10. The Advanced Photon Source looks to the future.

    SciTech Connect

    Fenner, R. B; Gerig, R. E.; Gibson, J. M.; Gluskin, E.; Long, G. G.; Mills, D. M.; Ruzicka, W. G.

    2007-11-11

    The Advanced Photon Source (APS) at Argonne National Laboratory is in its 12th year since producing first light. With an eye on the next 10 years, facility management have developed plans that address priorities for new and/or improved beamlines over the next 5-10 years with a strong evolution toward a greater number of dedicated beamlines. In addition, options, including an energy-recovery linac, are being evaluated for a planned upgrade of the APS.

  11. Information technology security at the Advanced Photon Source.

    SciTech Connect

    Sidorowicz, K. V.; McDowell, W.; APS Engineering Support Division

    2007-01-01

    The proliferation of 'botnets,' phishing schemes, denial-of-service attacks, root kits, and other cyber attack schemes designed to capture a system or network creates a climate of concern for system administrators, especially for those managing accelerator and large experimental-physics facilities, as they are very public targets. This paper will describe the steps being taken at the Advanced Photon Source (APS) to protect the infrastructure of the overall network with emphasis on security for the APS control system.

  12. Comparison of radiation sources and filtering safety glasses for fluorescent nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Lopez, Richard Daniel

    This study was directed toward the question of whether recent advancements in radiation sources and test media offered significant improvements over the current state of the art. Included were experiments characterizing common penetrant and magnetic particle materials to determine their fluorescent excitation spectra, and a comparison between the fluorescent excitation spectra and the emission spectra of common excitation sources. The relationship between exciter and test medium directly controls the luminance of a defect indication. As indication luminance increases, the probability of it being detected by the inspector increases. Fluorescent penetrant and magnetic particle test media were originally designed around the widely available filtered medium pressure mercury vapor lamp, which remains the standard excitation radiation source. Test media properties, and the types of available excitation sources have changed with time, and it was unclear whether present-day media was still best excited by the historical standard ultraviolet radiation source. Predictions and experimental work was performed to determine the optimal excitation source for fluorescent nondestructive testing, and to determine which safety lens option would offer the highest probability of detection. Improvement in radiation sources was primarily judged by an increase in fluorophore luminance versus background, which led to an increase in signal-to-noise ratio facilitating better indication detectability. Other factors considered were improved health and safety, and ease of use.

  13. Annual meeting of the Advanced Light Source Users` Association

    SciTech Connect

    1995-02-01

    This report contains papers on the following topics: ALS Director`s Report; ALS Operations Update; Recent Results in Machine Physics; Progress in Beamline Commissioning and Overview of New Projects; The ALS Scientific Program; First Results from the SpectroMicroscopy Beamline; Soft X-ray Fluorescence Spectroscopy of Solids; Soft X-Ray Fluorescence Spectroscopy of Molecules; Microstructures and Micromachining at the ALS; High-Resolution Photoemission from Simple Atoms and Molecules; X-Ray Diffraction at the ALS; Utilizing Synchrotron Radiation in Advanced Materials Industries; Polymer Microscopy: About Balls, Rocks and Other ``Stuff``; Infrared Research and Applications; and ALS User Program.

  14. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  15. SOURCES AND RADIATIVE PROPERTIES OF ORGANOSULFATES IN THE ATMOSPHERE

    EPA Science Inventory

    It is expected that these studies will provide mechanistic insight to how SOA forms under acidic conditions and how it impacts direct and indirect radiative forcing. Understanding the chemical and physical properties of SOA will lead to future advancements in the predictive...

  16. Stereotactic Body Radiation Therapy Boost in Locally Advanced Pancreatic Cancer

    SciTech Connect

    Seo, Young Seok; Kim, Mi-Sook; Yoo, Sung Yul; Cho, Chul Koo; Yang, Kwang Mo; Yoo, Hyung Jun; Choi, Chul Won; Lee, Dong Han; Kim, Jin; Kim, Min Suk; Kang, Hye Jin; Kim, YoungHan

    2009-12-01

    Purpose: To investigate the clinical application of a stereotactic body radiation therapy (SBRT) boost in locally advanced pancreatic cancer patients with a focus on local efficacy and toxicity. Methods and Materials: We retrospectively reviewed 30 patients with locally advanced and nonmetastatic pancreatic cancer who had been treated between 2004 and 2006. Follow-up duration ranged from 4 to 41 months (median, 14.5 months). A total dose of 40 Gy was delivered in 20 fractions using a conventional three-field technique, and then a single fraction of 14, 15, 16, or 17 Gy SBRT was administered as a boost without a break. Twenty-one patients received chemotherapy. Overall and local progression-free survival were calculated and prognostic factors were evaluated. Results: One-year overall survival and local progression-free survival rates were 60.0% and 70.2%, respectively. One patient (3%) developed Grade 4 toxicity. Carbohydrate antigen 19-9 response was found to be an independent prognostic factor for survival. Conclusions: Our findings indicate that a SBRT boost provides a safe means of increasing radiation dose. Based on the results of this study, we recommend that a well controlled Phase II study be conducted on locally advanced pancreatic cancer.

  17. The effects of insertion devices on beam dynamics in the ALS (Advanced Light Source)

    SciTech Connect

    Jackson, A.; Forest, E.; Nishimura, H.; Zisman, M.S.

    1989-03-01

    Third generation synchrotron radiation sources, such as the Advanced Light Source (ALS), are specifically designed to operate with long undulators that produce very high brightness beams of synchrotron radiation. Including such devices in the storage ring magnet lattice introduced extra linear and nonlinear fields that are intrinsic to the undulator. These fields break the symmetry of the lattice and provide driving forces for nonlinear resonances, thereby perturbing the dynamics of the electron motion, particularly at large amplitudes. The main impact of these perturbations is on the beam lifetime, arising out of a reduction of both the transverse acceptance and the momentum acceptance. In this paper, we present the results of an ongoing study of these effects as they relate to the performance of the ALS. 7 refs., 7 figs., 2 tabs.

  18. Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source

    SciTech Connect

    Warwick, T.; Padmore, H.; Ade, H.; Hitchcock, A.P.; Rightor, E.G.; Tonner, B.P.

    1996-08-01

    Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

  19. Proceedings of the third users meeting for the Advanced Photon Source

    SciTech Connect

    Not Available

    1990-06-01

    The Third Users Meetings for the Advanced Photon Source, held on October 12--13, 1989, at Argonne National Laboratory, brought together scientists and engineers from industry, universities, and national laboratories to review the status of the facility and make plans for its use. The presentations documented in these proceedings include overviews of the project status and the user access policy; updates on several fundamental research efforts that make use of synchrotron radiation; reports on insertion-device R D and beam line design activities; cost and manpower estimates for beam line construction; and a panel discussion on strategies for developing and managing Collaborative Access Teams. The actions taken at the 1989 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  20. New high power coherent radiation sources. Memorandum report

    SciTech Connect

    Sprangle, P.; Coffey, T.

    1984-01-09

    In recent years, there has been considerable renewed interest in the development of novel devices for the production of high power coherent electromagnetic radiation. This interest has been motivated largely by the realization that, with existing technology, certain processes utilizing relativistic electron beams can produce coherent electromagnetic radiation at power levels far in excess of those achieved by conventional electron devices. This paper will review the current status of this rapidly developing field, with emphasis on two generic devices. The major thrust in the recent development of electron beam driven radiation sources has been directed towards achieving shorter wavelengths, greater power and higher efficiencies. Shortly after the development of such successful sources as the magnetron, kylstron and various traveling wave devices, it became clear that, in their original form, they were limited in their ability to produce high levels of radiation efficiently at short wavelengths. To circumvent the inherent limitations of these conventional coherent radiation sources, many new concepts and mechanisms, as well as variations on conventional concepts, were proposed. This paper is concerned primarily with two devices which are, relatively speaking, newcomers to the list of coherent classical radiation sources. They are the free electron laser and the cyclotron resonance maser (CRM); one well known type of CRM is the gyrotron.

  1. Advanced simulations of optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Aumeyr, T.; Billing, M. G.; Bobb, L. M.; Bolzon, B.; Bravin, E.; Karataev, P.; Kruchinin, K.; Lefevre, T.; Mazzoni, S.

    2015-04-01

    Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the "eyes" of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR) are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP) mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  2. Acoustic centering of sources with high-order radiation patterns.

    PubMed

    Shabtai, Noam R; Vorländer, Michael

    2015-04-01

    Surrounding spherical microphone arrays have recently been used in order to model the radiation pattern of acoustic sources that are assumed to be at the center of the array. Source centering algorithms are applied to the measurements in order to reduce the negative effect of acoustic source misalignment with regard to the physical center of the microphone array. Recent works aim to minimize the energy that is contained in the high-order coefficients of the radiation pattern in the spherical harmonics domain, in order to directly address the problem of increased order and spatial aliasing resulted by this misalignment. However, objective functions which directly minimize the norm of these coefficients were shown to be convex only when employed on sources with low-order radiation patterns. This work presents a source centering algorithm that operates on plane sections and aims to achieve a convex objective function on every plane section. The results of the proposed algorithm are shown to be more convex than the previous algorithms for sources with higher-order radiation pattern, usually at higher frequencies. PMID:25920846

  3. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  4. Inertial confinement fusion method producing line source radiation fluence

    DOEpatents

    Rose, Ronald P.

    1984-01-01

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  5. [Risks associated to ionizing radiation from natural sources].

    PubMed

    Laurier, Dominique; Gay, Didier

    2015-01-01

    This article presents an overview of current knowledge about natural sources of radiation exposure and potential associated health risks. Natural radioactivity constitutes the main source of exposure to ionizing radiation of the French and world population. Exposure is both external (telluric and cosmic rays) and internal (radon inhalation and ingestion of radionuclides from food and drinking water). It varies according to altitude, geology, and individual way of life (housing, food habits). Epidemiological studies demonstrated an excess risk of lung cancer associated to domestic radon exposure, ranking radon at the second place of known lung cancer risk factors after smoking. Data currently available do not allow concluding to risks associated to other natural sources of exposure to ionizing radiation. PMID:25842437

  6. Double planar wire array as a compact plasma radiation source

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Yilmaz, M. F.; Shrestha, I.; Ouart, N. D.; Osborne, G. C.; Rudakov, L. I.; Chuvatin, A. S.; Coverdale, C. A.; Deeney, C.

    2008-03-15

    Magnetically compressed plasmas initiated by a double planar wire array (DPWA) are efficient radiation sources. The two rows in a DPWA implode independently and then merge together at stagnation producing soft x-ray yields and powers of up to 11.5 kJ/cm and more than 0.4 TW/cm, higher than other planar arrays or low wire-number cylindrical arrays on the 1 MA Zebra generator. DPWA, where precursors form in two stages, produce a shaped radiation pulse and radiate more energy in the main burst than estimates of implosion kinetic energy. High radiation efficiency, compact size (as small as 3-5 mm wide), and pulse shaping show that the DPWA is a potential candidate for ICF and radiation physics research.

  7. A Device for Search of Gamma-Radiation Intensive Sources at the Radiation Accident Condition

    SciTech Connect

    Batiy, Valeriy; Klyuchnykov, A; Kochnev, N; Rudko, Vladimir; shcherbin, vladimir; Yegorov, V; Schmieman, Eric A.

    2005-08-08

    The procedure designed for measuring angular distributions of gamma radiation and for search of gamma radiation intensive sources is described. It is based on application of the original multidetector device ShD-1, for measuring an angular distribution in a complete solid angle (4 pi). The calibration results and data on the angular distributions of intensity of gamma radiation at the roof of Chornobyl NPP ''Shelter'' are presented.

  8. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  9. Astrophysical Ionizing Radiation Sources and Life on Earth

    NASA Astrophysics Data System (ADS)

    Thomas, Brian

    2013-04-01

    Astrophysical sources of ionizing radiation have been recognized as a potential threat to life on Earth, primarily through long-term depletion of stratospheric ozone, leading to greatly increased solar ultraviolet (UV) irradiance at the surface. It has been suggested that a gamma-ray burst, in particular, may have initiated the late Ordovician mass extinction - one of the ``big five'' known extinctions. I will describe the atmospheric impacts of ionizing radiation events and discuss estimates of biological damage under a severely depleted ozone layer. In particular, I will describe new and on-going work to quantify the impact of ionizing radiation events on primary producers in Earth's oceans.

  10. Smart material-based radiation sources

    NASA Astrophysics Data System (ADS)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  11. Disposal of disused sealed radiation sources in Boreholes

    SciTech Connect

    Vicente, R.

    2007-07-01

    This paper gives a description of the concept of a geological repository for disposal of disused sealed radiation sources (DSRS) under development in the Institute of Energy and Nuclear Research (IPEN), in Brazil. DSRS represent a significant fraction of total activity of radioactive wastes to be managed. Most DSRS are collected and temporarily stored at IPEN. As of 2006, the total collected activity is 800 TBq in 7,508 industrial gauge or radiotherapy sources, 7.2 TBq in about 72,000 Americium-241 sources detached from lightning rods, and about 0,5 GBq in 20,857 sources from smoke detectors. The estimated inventory of sealed sources in the country is 2.7 hundred thousand sources with 26 PBq. The proposed repository is designed to receive the total inventory of sealed sources. A description of the pre-disposal facilities at IPEN is also presented. (authors)

  12. Simulation of the radiation fields from ionizing radiation sources inside the containment in an accident

    SciTech Connect

    Kalugin, M. A.

    2010-12-15

    In the present work, a set of codes used for simulations of the radiation fields from ionizing radiation sources inside the containment in an accident is described. A method of evaluating the gamma dose rate from a space and energy distributed source is given. The dose rate is calculated by means of the design point kernel method and using buildup factors. The code MCU-REA with the ORIMCU module is used for the burnup calculations.

  13. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  14. XUV synchrotron optical components for the Advanced Light Source: Summary of the requirements and the developmental program

    SciTech Connect

    McKinney, W.; Irick, S.; Lunt, D.

    1992-07-01

    We give a brief summary of the requirements for water cooled optical components for the Advanced Light Source (ALS), a third generation synchrotron radiation source under construction at Lawrence Berkeley Laboratory (LBL). Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from a finished water cooled copper alloy mirror will be used to demonstrate the state of the art in optical metrology with the Takacs Long Trace Profiler (LTP II).

  15. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    SciTech Connect

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation.

  16. A Renewal Plan for the Advanced Photon Source

    SciTech Connect

    Fischetti, Robert F.; Fuoss, Paul H.; Gerig, Rodney E.; Maclean, John F.; Mills, Dennis M.; Srajer, George; Keane, Denis T.; Neumann, Dan A.

    2010-06-23

    With coordination from the APS Renewal Steering Committee (the members of which are the co-authors of this paper), staff and users of the U.S. Department of Energy's Advanced Photon Source (APS) at Argonne National Laboratory are in the process of developing a renewal plan for the facility. The renewal is a coordinated upgrade of the accelerator, beamlines, and associated technical structure that will enable users of the APS to address key scientific challenges in the coming decades. The cost of the renewal is estimated to be from $300M to $400M and to take approximately six years from start to finish.

  17. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  18. Finite element analysis of advanced neutron source fuel plates

    SciTech Connect

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles.

  19. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  20. Structural thermal tests on Advanced Neutron Source reactor fuel plates

    SciTech Connect

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin aluminum-clad fuel plates proposed for the Advanced Neutron Source reactor are stressed by the high-velocity coolant flowing on each side of the plates and by the thermal gradients in the plates. The total stress, composed of the sum of the flow stress and the thermal stress at a point, could be reduced if the thermal loads tend to relax when the stress magnitude approaches the yield stress of the material. The potential of this occurring would be very significant in assessing the structural reliability of the fuel plates and has been investigated through experiment. The results of this investigation are given in this report.

  1. Results from the Advanced Photon Source SASE FEL project

    SciTech Connect

    Milton, S.

    2000-07-05

    Measurements of self-amplified spontaneous emission (SASE) at 530 nm were made at the Advanced Photon Source (APS) low-energy undulator test line facility (LEUTL). Exponential growth of the optical signal as a function of distance was measured and compared to theoretical estimates. SASE was first observed using a beam generated from a photocathode rf gun system. It was later repeated using beam from a thermonic rf gun system. Following a brief description of the LEUTL facility, they present their results and initial analysis.

  2. Status report on the Advanced Light Source control system, 1993

    SciTech Connect

    Young, J.; Brown, W. Jr.; Cork, C.

    1993-10-01

    The Advanced Light Source (ALS), under construction for the past seven years, has become operational. The accelerator has been successfully commissioned using a control system based on hundreds of controllers of our own design and high performance personal computers which are the operator interface. The first beamlines are being commissioned using a control system based on VME hardware and the Experimental Physics and Industrial Control System (EPICS) software. The two systems are being integrated, and this paper reports on the current work being done.

  3. Construction, commissioning and operational experience of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Arnold, N.; Berg, W.

    1996-10-01

    The Advanced Photon Source linear accelerator system consists of a 200 MeV, 2856 MHz S-Band electron linac and a 2-radiation-thick tungsten target followed by a 450 MeV positron linac. The linac system has operated 24 hours per day for the past year to support accelerator commissioning and beam studies and to provide beam for the user experimental program. It achieves the design goal for positron current of 8 mA and produces electron energies up to 650 MeV without the target in place. The linac is described and its operation and performance are discussed.

  4. A high intensity slow positron facility for the Advanced Neutron Source

    SciTech Connect

    Hulett, L.D. Jr.; Eberle, C.C.

    1994-07-01

    A slow positron spectroscopy facility, based on {sup 64}Cu activation, has been designed for incorporation in the Advanced Neutron Source (ANS). The ANS is a reactor-based research center planned for construction at Oak Ridge, Tennessee, USA. Multiple sources of slow positron beams will be available. One-half mm diameter, copper-coated aluminum microspheres will be activated and transported to a positron spectroscopy building, where they will be dispersed over the surfaces of horizontal pans, 0.1 m{sup 2} in area, located in source chambers. Fast positions from the pans will be intercepted by cylinders coated inside with inert gas moderators. Yields will approach 10{sup 12} positrons per second before brightness enhancement. Beams will be transported to multiple experiment stations, which will include a 50 meter diameter, 20-detector angular correlation of annihilation radiation (ACAR) spectrometer, and other equipment for materials analysis and fundamental science.

  5. A high intensity slow positron facility for the advanced neutron source

    SciTech Connect

    Hulett, L.D. Jr.; Eberle, C.C.

    1994-12-31

    A slow positron spectroscopy facility, based on {sup 64}Cu activation, has been designed for incorporation in the Advanced Neutron Source (ANS). The ANS is a reactor-based research center planned for construction at Oak Ridge, Tennessee, U.S.A. Multiple sources of slow positron beams will be available. One-half mm diameter, copper-coated aluminum microspheres will be activated and transported to a positron spectroscopy building, where they will be dispersed over the surfaces of horizontal pans, 0.1 m{sup 2} in area, located in source chambers. Fast positrons from the pans will be intercepted by cylinders coated inside with inert gas moderators. Yields will approach 10{sup 12} positrons per second before brightness enhancement. Beams will be transported to multiple experiment stations, which will include a 50 meter diameter, 20-detector angular correlation of annihilation radiation (ACAR) spectrometer, and other equipment for materials analysis and fundamental science.

  6. Broadband Electromagnetic Follow-up of Advanced LIGO Sources

    NASA Astrophysics Data System (ADS)

    Singer, Leo; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Advanced LIGO began observing in September 2015 with over 3 times the distance reach (27 times the sensitive volume) of its previous configuration. Some gravitational-wave sources, particularly neutron star binary mergers, are expected to produce broadband electromagnetic transients which may be crucial to understanding the astrophysical context of these events. We have assembled a consortium of over 60 ground- and space-based gamma-ray, x-ray, optical, infrared, and radio facilities collaborating to search for broadband electromagnetic counterparts of gravitational-wave sources. In this talk, we describe the LIGO/Virgo EM follow-up program and the astronomical facilities that participated during this first LIGO observing run. Then, we survey the multi-wavelength observing campaigns embarked upon for specific gravitational-wave events. Finally, we discuss lessons learned and the way forward for joint GW-EM observations in an era of increasingly sensitive GW detectors.

  7. Fundamental limits on beam stability at the Advanced Photon Source.

    SciTech Connect

    Decker, G. A.

    1998-06-18

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber and girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.

  8. Insertion devices for the Advanced Light Source at LBL

    SciTech Connect

    Hassenzahl, W.; Chin, J.; Halbach, K.; Hoyer, E.; Humphries, D.; Kincaid, B.; Savoy, R.

    1989-03-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab.

  9. Advanced design of positive-ion sources for neutral-beam applications

    SciTech Connect

    Marguerat, E.F.; Haselton, H.H.; Menon, M.M.; Schechter, D.E.; Stirling, W.L.; Tsai, C.C.

    1982-01-01

    The APIS ion source is being developed to meet a goal of producing ion beams of less than or equal to 200 keV, 100 A, with 10-30-s pulse lengths. In a continuing effort to advance the state of the art and to produce long pulse ion beams, APIS ion sources with grid dimensions of 10 x 25 cm, 13 x 43 cm, and 16 x 48 cm are being developed. In the past year, the 10- x 25-cm ion source has been operated to produce ion beams in excess of 100 keV for many seconds pulse length. An advanced design concept is being pursued with the primary objectives to improve radiation protection, reduce fabrication costs, and simplify maintenance. The source magnetic sheild will be designed as a vacuum enclosure to house all source components. The electrical insulation requirements of energy recovery are also considered. Because of the frequent maintenance requirements, the electron emitter assembly will be designed with a remote handling capability. A new accelerator design which incorporates the necessary neutron shielding and associated steering gimbal system is also described.

  10. Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature

    NASA Astrophysics Data System (ADS)

    Song, Tianming; Yang, Jiamin; Zhu, Tuo; Li, Zhichao; Huang, Chengwu

    2016-04-01

    An experiment was performed on the Shenguang III prototype laser facility to continue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse. A radiation source with a flattop temperature of about 130 eV that lasted about 5 ns was obtained. The previous analytical iteration method based on power balance and self-similar solution of ablation was modified taking into account the plasma movements and it was used to design the laser pulse shape for experiment. A comparison between experimental results and simulation is presented and better agreement was achieved using the modified method. Further improvements are discussed.

  11. Advances in microbeam technologies and applications to radiation biology.

    PubMed

    Barberet, P; Seznec, H

    2015-09-01

    Charged-particle microbeams (CPMs) allow the targeting of sub-cellular compartments with a counted number of energetic ions. While initially developed in the late 1990s to overcome the statistical fluctuation on the number of traversals per cell inevitably associated with broad beam irradiations, CPMs have generated a growing interest and are now used in a wide range of radiation biology studies. Besides the study of the low-dose cellular response that has prevailed in the applications of these facilities for many years, several new topics have appeared recently. By combining their ability to generate highly clustered damages in a micrometric volume with immunostaining or live-cell GFP labelling, a huge potential for monitoring radiation-induced DNA damage and repair has been introduced. This type of studies has pushed end-stations towards advanced fluorescence microscopy techniques, and several microbeam lines are currently equipped with the state-of-the-art time-lapse fluorescence imaging microscopes. In addition, CPMs are nowadays also used to irradiate multicellular models in a highly controlled way. This review presents the latest developments and applications of charged-particle microbeams to radiation biology. PMID:25911406

  12. Heat pipe radiation cooling of advanced hypersonic propulsion system components

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Keddy, M.; Merrigan, M. A.; Silverstein, C. C.

    1991-01-01

    Heat transfer, heat pipe, and system studies were performed to assess the newly proposed heat pipe radiation cooling (HPRC) concept. With an HPRC system, heat is removed from the ramburner and nozzle of a hypersonic aircraft engine by a surrounding, high-temperature, heat pipe nacelle structure, transported to nearby external surfaces, and rejected to the environment by thermal radiation. With HPRC, the Mach number range available for using hydrocarbon fuels for aircraft operation extends into the Mach 4 to Mach 6 range, up from the current limit of about Mach 4. Heat transfer studies using a newly developed HPRC computer code determine cooling system and ramburner and nozzle temperatures, heat loads, and weights for a representative combined-cycle engine cruising at Mach 5 at 80,000 ft altitude. Heat pipe heat transport calculations, using the Los Alamos code HTPIPE, reveal that adequate heat trasport capability is available using molybdenum-lithium heat pipe technology. Results show that the HPRC system radiator area is limited in size to the ramburner-nozzle region of the engine nacelle; reasonable system weights are expected; hot section temperatures are consistent with advanced structural materials development goals; and system impact on engine performance is minimal.

  13. Management of Spent and Disused Radiation Sources - The Zambian Experience

    SciTech Connect

    Chabala, F.

    2002-02-26

    Zambia like all other countries in the world is faced with environmental problems brought about by a variety of human activities. In Zambia the major environmental issues as identified by Nation Environmental Action Plan (NEAP) of 1994 are water pollution, poor sanitation, land degradation, air pollution, poor waste management, misuse of chemicals, wildlife depletion and deforestation. Zambian has been using a lot of radioactive materials in its various industries. The country has taken several projects with help of external partners. These partners however left these projects in the hands of the Zambians without developing their capacities to manage these radioactive sources. The Government recognized the need to manage these sources and passed legislation governing the management of radioactive materials. The first act of Parliament on Radiation Protection work was passed in 1975 to legislate the use of ionizing radiation. However, because of financial constraints the Country is facing, these regulations have remained unimplemented. Fortunately the international Community has been working in partnership with the Zambian Government in the Management of Radioactive Material. Therefore this paper will present the following aspects of radioactive waste management in Zambia: review Existing Legislation in Zambia regarding management of spent/radioactive sources; capacity building in the field of management of radioactive waste; management of spent and disused radiation sources; existing disposal systems in Zambia regarding spent/orphaned sources; existing stocks of radioactive sources in the Zambian industries.

  14. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  15. Mapping of auroral kilometric radiation sources to the aurora

    NASA Technical Reports Server (NTRS)

    Huff, R. L.; Calvert, W.; Craven, J. D.; Frank, L. A.; Gurnett, D. A.

    1988-01-01

    Auroral kilometric radiation (AKR) and optical auroral emissions are observed simultaneously using plasma wave instrumentation and auroral imaging photometers carried on the DE 1 spacecraft. The DE 1 plasma wave instrument measures the relative phase of signals from orthogonal electric dipole antennas, and from these measurements, apparent source directions can be determined with a high degree of precision. Wave data are analyzed for several strong AKR events, and source directions are determined for several emission frequencies. By assuming that the AKR originates at cyclotron resonant altitudes, a candidate source field line is identified. When the selected source field line is traced down to auroral altitudes on the concurrent DE 1 auroral image, a striking correspondece between the AKR source field line and localized auroral features is produced. The magnetic mapping study provides strong evidence that AKR sources occur on field lines associated with discrete auroral arcs, and it provides confirmation that AKR is generated near the electron cyclotron frequency.

  16. Polymer research at synchrotron radiation sources: symposium proceedings

    SciTech Connect

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  17. Refrigeration options for the Advanced Light Source Superbend Dipole Magnets

    SciTech Connect

    Green, M.A.; Hoyer, E.H.; Schlueter, R.D.; Taylor, C.E.; Zbasnik, J.; Wang, S.T.

    1999-07-09

    The 1.9 GeV Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) produces photons with a critical energy of about 3.1 kev at each of its thirty-six 1.3 T gradient bending magnets. It is proposed that at three locations around the ring the conventional gradient bending magnets be replaced with superconducting bending magnets with a maximum field of 5.6 T. At the point where the photons are extracted, their critical energy will be about 12 keV. In the beam lines where the SuperBend superconducting magnets are installed, the X ray brightness at 20 keV will be increased over two orders of magnitude. This report describes three different refrigeration options for cooling the three SuperBend dipoles. The cooling options include: (1) liquid helium and liquid nitrogen cryogen cooling using stored liquids, (2) a central helium refrigerator (capacity 70 to 100 W) cooling all of the SuperBend magnets, (3) a Gifford McMahon (GM) cryocooler on each of the dipoles. This paper describes the technical and economic reasons for selecting a small GM cryocooler as the method for cooling the SuperBend dipoles on the LBNL Advanced Light Source.

  18. A study of an advanced confined linear energy source

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Heidemann, W. B.

    1971-01-01

    A literature survey and a test program to develop and evaluate an advanced confined linear energy source were conducted. The advanced confined linear energy source is an explosive or pyrotechnic X-Cord (mild detonating fuse) supported inside a confining tube capable of being hermetically sealed and retaining all products of combustion. The energy released by initiation of the X-Cord is transmitted through the support material to the walls of the confining tube causing an appreciable change in cross sectional configuration and expansion of the tube. When located in an assembly that can accept and use the energy of the tube expansion, useful work is accomplished through fracture of a structure, movement of a load, reposition of a pin, release of a restraint, or similar action. The tube assembly imparts that energy without release of debris or gases from the device itself. This facet of the function is important to the protection of men or equipment located in close proximity to the system during the time of function.

  19. Plans for an Upgrade of the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Mills, Dennis; APS-U Project Team

    2011-03-01

    We are presently developing plans for an upgrade of the Advanced Photon Source facility. Science has formally issued Critical Decision 0 and approved the Mission Need Statement in April of 2010, authorizing the APS to develop a conceptual design for the APS Upgrade (APS-U) project. The proposed upgrade will include enhancements to the accelerator, beamlines, and facility infrastructure. The high brilliance x-ray beams at high photon energy (e.g. > 25 keV) provided by the APS Upgrade will have strong impact on research in energy, the environment, new or improved materials, and biological studies. High-energy x-rays can penetrate into a wide range of realistic and/or extreme environments and allow imaging of structures and processes in unprecedented detail on picosecond time scales and nanometer length scales. The presentation will include some of the essential goals of the APS-U and proposed strategies to attain those goals. The Advanced Photon Source at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  20. 76 FR 6692 - Radiation Sources on Army Land

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    .... Background In the April 14, 2010, issue of the Federal Register (75 FR 19302), the Army issued a proposed..., 2007 (72 FR 55864) that became effective on November 30, 2007. The Army received no comments on its... Department of the Army 32 CFR Part 655 RIN 0702-AA58 Radiation Sources on Army Land AGENCY: Department of...

  1. 75 FR 19302 - Radiation Sources on Army Land

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... final rule which establishes requirements for the expanded definition of byproduct material. 72 FR 55864... was made in a separate rulemaking for 10 CFR Part 110 (April 20, 2006; 71 FR 20336). The Department of... Department of the Army 32 CFR Part 655 RIN 0702-AA58 Radiation Sources on Army Land AGENCY: Department of...

  2. Proceedings of the Advanced Photon Source renewal workshop.

    SciTech Connect

    Gibson, J. M.; Mills, D. M.; Kobenhavns Univ.; Northwestern Univ.; Stony Brook Univ.; Univ. of Pennsylvania; Notre Dame Univ.; Univ. of Chicago; Univ. of Connecticut; Diamond Light Source Ltd.; Univ. of Wisconsin at Madison; North Dakota State Univ.; Washington State Univ.; ORNL; Univ. of Illinois; NIH

    2008-12-01

    Beginning in March 2008, Advanced Photon Source (APS) management engaged users, facility staff, the distinguished members of the APS Scientific Advisory Committee, and other outside experts in crafting a renewal plan for this premier synchrotron x-ray research facility. It is vital that the investment in the APS renewal begin as soon as possible in order to keep this important U.S. facility internationally competitive. The APS renewal plan encompasses innovations in the beamlines and the x-ray source that are needed for major advances in science - advances that promise to further extend the impact of x-ray science on energy research, technology development, materials innovation, economic competitiveness, health, and far-reaching fundamental knowledge. A planning milestone was the APS Renewal Workshop held on October 20-21, 2008. Organized by the APS Renewal Steering Committee, the purpose of the workshop was to provide a forum where leading researchers could present the broad outlines of forward-looking plans for science at the APS in all major disciplines serviced by x-ray techniques. Two days of scientific presentations, discussions, and dialogue involved more than 180 scientists representing 41 institutions. The scientific talks and breakout/discussion sessions provided a forum for Science Team leaders to present the outlines of forward-looking plans for experimentation in all the major scientific disciplines covered by photon science. These proceedings comprise the reports from the Science Teams that were commissioned by the APS Renewal Steering Committee, having been edited by the Science Teams after discussion at the workshop.

  3. EDITORIAL: Special Issue on advanced and emerging light sources Special Issue on advanced and emerging light sources

    NASA Astrophysics Data System (ADS)

    Haverlag, Marco; Kroesen, Gerrit; Ferguson, Ian

    2011-06-01

    -based light sources. However, the progress in the last few years in LED and OLED sources has been even greater. In the editorial for the LS-11 conference by previous guest editor David Wharmby, it was stated that most LED lighting was still mostly used for signalling and decorative sources. In the three years that have passed, things have changed considerably and we now see LED light sources entering every application, ranging from street lighting and parking lots to shop lighting and even greenhouses. Currently LED prices for traditional lighting applications are high, but they are dropping rapidly. The papers published in this special issue give some indications of things to come. The paper by Jamil et al deals with the possibility of using silicon wafers as substrate material instead of the now commonly used (but more expensive) sapphire substrates. This is attractive from a cost price point of view, but leads to an increased lattice mismatch and therefore strain-induced defects. In this paper it is shown that when using intermediate matching layers it is possible to retain the same electrical and optical properties as with structures on sapphire. Another aspect that directly relates to cost is efficiency and droop in green InGaN devices, which is addressed in the paper by Lee et al. They show that by providing a flow of trymethylindium prior to the growth of the quantum wells it is possible to significantly increase the internal quantum efficiency of green LEDs. Improvement of the optical out-coupling of InGaN LEDs is discussed by Mak et al, and it is found that localized plasmon resonance of metallic nanoparticles (and especially silver) can help to increase the optical out-coupling in the wavelength region of interest. Nanoparticles in the form of ZnO nanorods are described by Willander et al as a possibility for phosphor-free wavelength conversion on polymer (O)LEDs. More advanced functions besides light emission can be achieved with OLEDs and this is demonstrated in

  4. Coherent Cherenkov radiation as an intense THz source

    NASA Astrophysics Data System (ADS)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.

  5. Plasma lasers (a strong source of coherent radiation in astrophysics)

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1981-01-01

    The generation of electromagnetic radiation from the free energy available in electron streams is discussed. The fundamental principles involved in a particular class of coherent plasma radiation sources, i.e., plasma lasers, are reviewed, focusing on three wave coupling, nonlinear parametric instabilities, and negative energy waves. The simplest case of plasma lasers, that of an unmagnetized plasma containing a finite level of density fluctuations and electrons streaming with respect to the ions, is dealt with. A much more complicated application of plasma lasers to the case of auroral kilometric radiation is then examined. The concept of free electron lasers, including the role of relativistic scattering, is elucidated. Important problems involving the escape of the excited radiation from its generation region, effects due to plasma shielding and nonlinear limits, are brought out.

  6. [Research on ground scenery spectral radiation source with tunable spectra].

    PubMed

    Xiang, Jin-rong; Ren, Jian-wei; Li, Bao-yong; Wan, Zhi; Liu, Ze-xun; Liu, Hong-xing; Li, Xian-sheng; Sun, Jing-xu

    2015-02-01

    A spectrum-tunable ground scenery spectrum radiation source, using LEDs and bromine tungsten lamp as luminescence media, was introduced. System structure and control of the spectrum radiation source was expounded in detail. In order to simulate various ground scenery spectrum distribution with different shapes, a ground scenery spectral database was established in the control system. An improved genetic algorithm was proposed, and a large number of ground scenery spectra were produced by the simulator. Spectral similarity and the average spectral matching error of several typical ground scenery spectra were further analyzed. Spectral similarity of red bands, green bands, blue bands and near-infrared spectral band also was discussed. When the radiance of the target was 50 W x (m2 x sr)(-1), the average spectral matching error was less than 10% and spectral similarity was greater than 0.9, up to 0.983. Spectral similarity of red band, green band, blue band and near-infrared band (especially green band and near-infrared band) was less than that of full-band. Compared with blue band and red band, spectral similarity of green band and near-infrared band low-amplitude maximum can rearch 50%. Ground scenery spectrum radiation source can be used as radiometric calibration source for optical remote sensor, and calibration error, which is caused by objectives and calibration sources spectral mismatch, can be effectively reduced. PMID:25970881

  7. A 6.3 T Bend Magnet for the Advanced Light Source

    SciTech Connect

    Taylor, C.E.; Caspi, S.

    1995-06-07

    The Advanced Light Source (ALS) is a 1.5 to 1.9 GeV high-brightness electron storage ring operating at Lawrence Berkeley Laboratory (LBL) that provides synchrotron radiation for a large variety of users. It Is proposed to replace three of the thirty six 1.5T, one meter long bend magnets with very sbort high-field superconductlng (SC) dipoles. These magnets would provide bend-magnet synchrotron radiation to six bcamlines with a critical energy of at least 6 keV that is much better suited for protein crystallography and other small-sample x-ray diffraction and adsorption studies, than is currently available at the ALS. The magnet design is described, including coil, yoke, magnetic field analysis, and cyrostat. A prototype magnet is under construction at LBL.

  8. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source

    SciTech Connect

    Shen, Guoyin; Chow, Paul; Xiao, Yuming; Sinogeikin, Stanislav; Meng, Yue; Yang, Wenge; Liermann, Hans-Peter; Shebanova, Olga; Rod, Eric; Bommannavar, Arunkumar; Mao, Ho-Kwang

    2008-10-24

    The high pressure collaborative access team (HPCAT) was established to advance cutting edge, multidisciplinary, high-pressure (HP) science and technology using synchrotron radiation at sector 16 of the Advanced Photon Source of Argonne National Laboratory. The integrated HPCAT facility has established four operating beamlines in nine hutches. Two beamlines are split in energy space from the insertion device (16ID) line, whereas the other two are spatially divided into two fans from the bending magnet (16BM) line. An array of novel X-ray diffraction and spectroscopic techniques has been integrated with HP and extreme temperature instrumentation at HPCAT. With a multidisciplinary approach and multi-institution collaborations, the HP program at the HPCAT has been enabling myriad scientific breakthroughs in HP physics, chemistry, materials, and Earth and planetary sciences.

  9. X-ray Microscopy Resource Center at the Advanced Light Source

    SciTech Connect

    Meyer-Ilse, W.; Attwood, D.; Koike, M.

    1992-08-01

    The high spectral brightness of undulator radiation from the Advanced Light Source (ALS) offers a great scientific opportunity for biological x-ray microscopy. X-ray microscopy extends visible light microscopy to higher resolution and makes use of unique contrast mechanisms. It does not compete with techniques such as electron microscopy in terms of resolution, but rather offers unique advantages, including the opportunity to take images of samples in an aqueous environment. For a considerable range of resolution and sample thickness the radiation dose in x-ray microscopy is lower than in electron microscopy under the same imaging conditions. To exploit this opportunity a Biological X-ray Microscopy Resource Center will be built at the ALS. An x-ray microscope (XM) and a scanning x-ray microscope (SXM) are to be built. These two microscopes serve complementary needs. The XM gives high quality images at comparably short exposure times, while the SXM is optimized for low radiation dose. High resolution is accomplished in both microscopes with Fresnel zone plate lenses. The SXM produces a diffraction-limited focus point, which is scanned across the sample; therefore the SXM can use only the spatially coherent portion of the radiation. The SXM is best operated on an undulator source with its small phase space. An XM can use the full brightness, including the incoherent fraction of the source. It can be operated with either a bending magnet or an undulator source. The XM can be installed initially at a bending magnet, which can be available at an earlier time, and thus permits the development of diverse biological community at an earlier time. Later this XM can be moved to the undulator, or left at the bending magnet for developmental and less demanding experiments.

  10. Nuisance Source Population Modeling for Radiation Detection System Analysis

    SciTech Connect

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of

  11. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  12. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  13. A feedback model for the source of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1982-01-01

    It is noted that in order to compensate for the wave refraction inside the source, the boundary reflection surfaces must converge with altitude, and this implies that the most likely auroral kilometric radiation source would be a thin, local density enhancement, since the refractive index contours at its boundaries would be expected to slope inward. The ISEE observations of multiple spectral components, which are attributed to separate oscillations at different altitudes in the same enhancement, indicate a source thickness as small as 25 km and an internal wave growth threshold of roughly 40 dB, rather than the 70-120 dB previously believed necessary to account for auroral kilometric radiation without feedback. What is considered more significant is that the feedback model accounts for numerous aspects of the auroral kilometric radiation behavior, predicts emission at the wave growth saturation level, and leads to the conclusion that auroral kilometric radiation originates at many compact sites, each emitting a nearly monochromatic wave.

  14. Radiation thermometer size-of-source effect testing using aperture

    SciTech Connect

    Liebmann, F.; Kolat, T.

    2013-09-11

    Size-of-source effect is an important attribute of any radiation thermometer. The effects of this attribute may be quantified in a number of different ways to include field-of-view, distance ratio, or size-of-source effect. These parameters provide needed information for the user of a radiation thermometer, as they aid in determining whether the measured object is large enough for adequate radiation thermometry measurement. Just as important, these parameters provide needed information for calibration. This information helps to determine calibration geometry, and it is needed for calibration uncertainty determination. For determination of size-of-source effect, there are a limited number of test methods furnished by the standards available today. The test methods available may be cumbersome to perform due to the cost of the required equipment and the time needed to set-up and perform the test. Other methods have been proposed. This paper discusses one such method. This method uses a circular aperture such as that used in radiation thermometer calibration. It describes the method both theoretically and mechanically. It then discusses testing done to verify this method comparing the results to those obtained while performing steps in current standards. Finally, based on this testing, the basis for a new standard test method is presented.

  15. Light-emitting diodes as a radiation source for plants.

    PubMed

    Bula, R J; Morrow, R C; Tibbitts, T W; Barta, D J; Ignatius, R W; Martin, T S

    1991-02-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems. PMID:11537727

  16. Light-emitting diodes as a radiation source for plants

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Barta, D. J.; Ignatius, R. W.; Martin, T. S.

    1991-01-01

    Development of a more effective radiation source for use in plant-growing facilities would be of significant benefit for both research and commercial crop production applications. An array of light-emitting diodes (LEDs) that produce red radiation, supplemented with a photosynthetic photon flux (PPF) of 30 micromoles s-1 m-2 in the 400- to 500-nm spectral range from blue fluorescent lamps, was used effectively as a radiation source for growing plants. Growth of lettuce (Lactuca sativa L. Grand Rapids') plants maintained under the LED irradiation system at a total PPF of 325 micromoles s-1 m-2 for 21 days was equivalent to that reported in the literature for plants grown for the same time under cool-white fluorescent and incandescent radiation sources. Characteristics of the plants, such as leaf shape, color, and texture, were not different from those found with plants grown under cool-white fluorescent lamps. Estimations of the electrical energy conversion efficiency of a LED system for plant irradiation suggest that it may be as much as twice that published for fluorescent systems.

  17. Method and system for imaging a radiation source

    DOEpatents

    Myjak, Mitchell J [Richland, WA; Seifert, Carolyn E [Kennewick, WA; Morris, Scott J [Kennewick, WA

    2011-04-19

    A method for imaging a radiation source, and a device that utilizes these methods that in one embodiment include the steps of: calculating at least one Compton cone of a first parameter of a radiation emission from information received from a sensor occurrence; and tracing this Compton cone on to a unit sphere having preselected characteristics using an estimated angular uncertainty to limit at least a portion of said tracing. In another embodiment of the invention at least two Compton cones are calculated and then intersected upon a predefined surface such as a sphere. These intersection points can then be iterated over a preselected series of prior events.

  18. Radiation efficiency of earthquake sources at different hierarchical levels

    SciTech Connect

    Kocharyan, G. G.

    2015-10-27

    Such factors as earthquake size and its mechanism define common trends in alteration of radiation efficiency. The macroscopic parameter that controls the efficiency of a seismic source is stiffness of fault or fracture. The regularities of this parameter alteration with scale define several hierarchical levels, within which earthquake characteristics obey different laws. Small variations of physical and mechanical properties of the fault principal slip zone can lead to dramatic differences both in the amplitude of released stress and in the amount of radiated energy.

  19. Some results of the advanced photon source beam lifetime studies

    SciTech Connect

    Bizek, H.M.

    1997-06-01

    Total beam lifetime consists of two components: the residual-gas-scattering lifetime and Touschek lifetime. The residual-gas lifetime is comprised of the elastic and inelastic scattering on electrons and elastic and inelastic scattering on nuclei. Touschek scattering involves scattering of particles within the bunch. One usually calculates only the elastic scattering on nuclei (single Coulomb scattering) and inelastic scattering on nuclei (bremsstrahlung) of the residual-gas-scattering lifetime component. Experience gained from computing the beam lifetime in the Advanced Photon Source (APS) storage ring shows that the electron scattering should not be neglected, particularly the inelastic contribution. Given the measured quantities from the APS storage ring, one can compare theoretical predictions with experimental results. Uncertainties in calculating the various contributions to lifetime will be discussed.

  20. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-06-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  1. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-01-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  2. (Overview of RF systems for the advanced photon source)

    SciTech Connect

    Bridges, J.F.

    1990-01-01

    The Advanced Photon Source (APS) is being built by Argonne National Laboratory (ANL) near Chicago. The APS is a 7-GeV positron storage ring from which x-ray beams of energies from a few keV to hundreds of keV are emitted as the positrons pass through ring bending magnets and also through special magnets called wigglers and undulators. The present schedule is to be operational in 1995. The energy emitted from the positron beam as x-rays is replaced through a radio-frequency accelerating system operating at 352 MHz at a maximum power level of 3 MW. The RF system will be described as well as several lower-power systems at frequencies of 0.8 MHz, 117 MHz and 2.8 GHz. The associated control electronics (phase shifters amplitude control, automatic tuning control, etc.) as well as the computer control architecture will also be described.

  3. Photon energy tunability of advanced photon source undulators

    SciTech Connect

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices.

  4. Handling radiation generated during an ion source commissioning

    SciTech Connect

    Ren, H. T.; Zhao, J. Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Xu, Y.; Chen, J.; Zhang, T.; Zhang, A. L.; Guo, Z. Y.; Chen, J. E.

    2014-02-15

    Radiation is an important issue, which should be carefully treated during the design and commissioning of an ion source. Measurements show that X-rays are generated around the ceramics column of an extraction system when the source is powered up to 30 kV. The X-ray dose increases greatly when a beam is extracted. Inserting the ceramic column into a metal vacuum box is a good way to block X-ray emission for those cases. Moreover, this makes the online test of an intense H{sup +} ion beam with energy up to 100 keV possible. However, for deuteron ion source commissioning, neutron and gamma-ray radiation become a serious topic. In this paper, we will describe the design of the extraction system and the radiation doses of neutrons and gamma-rays measured at different D{sup +} beam energy during our 2.45 GHz deuteron electron cyclotron resonance ion source commissioning for PKUNIFTY (PeKing University Neutron Imaging FaciliTY) project at Peking University.

  5. 7-GeV advanced photon source beamline initiative: Conceptual design report

    SciTech Connect

    Not Available

    1993-05-01

    The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

  6. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect

    Campbell, J.H.; King-Jones, K.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  7. Analytical studies of top-up safety at the Advanced Photon Source.

    SciTech Connect

    Emery, L.

    1999-03-31

    The Advanced Photon source (APS) is a 7 GeV, third-generation synchrotron radiation source. To provide more stable beam for users, they are pursuing a new operating mode called top-up. In this mode, the beam current is not allowed to decay as it normally would, but instead is maintained at a high level through frequent injection. A safety question with top-up mode is, during injection with photon shutters open, can injected beam ever exit a photon beamline? This might happen, for example, due to a full or partial short of a dipole coil. The authors discuss a number of analytical calculations that can be used to quickly assess top-up safety for a general ring. They also apply these results to the specific case of the APS. A companion paper in this conference discusses detailed tracking procedures for assessing safety.

  8. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    SciTech Connect

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  9. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  10. Source term calculations for assessing radiation dose to equipment

    SciTech Connect

    Denning, R.S.; Freeman-Kelly, R.; Cybulskis, P.; Curtis, L.A.

    1989-07-01

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs.

  11. Broadband Electromagnetic Follow-up of Advanced LIGO Sources

    NASA Astrophysics Data System (ADS)

    Pound Singer, Leo

    2016-04-01

    Advanced LIGO began observing in September 2015 with over 3 times the distance reach (27 times the sensitive volume) of its previous configuration. Some gravitational-wave sources, particularly neutron star binary mergers, are expected to produce broadband electromagnetic transients which may be crucial to understanding the astrophysical context of these events. We have assembled a consortium of over 60 ground- and space-based gamma-ray, x-ray, optical, infrared, and radio facilities collaborating to search for broadband electromagnetic counterparts of gravitational-wave sources. In this talk, we describe the LIGO/Virgo EM follow-up program and the astronomical facilities that participated during this first LIGO observing run. Then, we survey the multi-wavelength observing campaigns embarked upon for specific gravitational-wave events. Finally, we discuss lessons learned and the way forward for joint GW-EM observations in an era of increasingly sensitive GW detectors.Submitted with The LIGO Scientific Collaboration and The Virgo Collaboration.

  12. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    PubMed

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies. PMID:26946023

  13. Modelling and Simulation of the Advanced Plasma Source

    SciTech Connect

    Schroeder, Benjamin; Peter, Ralf; Harhausen, Jens; Ohl, Andreas

    2011-08-15

    Plasma ion assisted-deposition (PIAD) is a combination of conventional thermal evaporation deposition and plasma-beam surface modification; it serves as a well-established technology for the creation of high quality coatings on mirrors, lenses, and other optical devices. It is closely related to ion-assisted deposition to the extent that electrons preserve quasineutrality of the ion beam. This paper investigates the Advanced Plasma Source (APS), a plasma beam source employed for PIAD. A field enhanced glow discharge generates a radially expanding plasma flow with an ion energy of about 80-120 eV. Charge exchange collisions with the neutral background gas (pressure 0.1 Pa and below) produce a cold secondary plasma, which expands as well. A model is developed which describes the primary ions by a simplified Boltzmann equation, the secondary ions by the equations of continuity and momentum balance, and the electrons by the condition of Boltzmann equilibrium. Additionally, quasineutrality is assumed. The model can be reduced to a single nonlinear differential equation for the velocity of the secondary ions, which has several removable singularities and one essential singularity, identified as the Bohm singularity. Solving the model yields macroscopic plasma features, such as fluxes, densities, and the electrical field. An add-on Monte-Carlo simulation is employed to calculate the ion energy distribution function at the substrate. All results compare well to experiments conducted at a commercial APS system.

  14. The cryogenic cooling program at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80{degrees}. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 {mu}rad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ``thin`` crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K.

  15. Isis 1 observations at the source of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Benson, R. F.; Calvert, W.

    1979-01-01

    Observations of auroral kilometric radiation (AKR) were made by Isis 1 in the source region. The radiation is found to be generated in the extraordinary mode just above the local cut-off frequency and to emanate nearly perpendicular to the magnetic field. It occurs within local depletions of electron density, where the ratio of plasma frequency to cyclotron frequency is less than 0.2. The density depletion is restricted to altitudes above about 2000 km, and the upper AKR frequency limit corresponds to the extraordinary cut-off frequency at this altitude. AKR is observed from Isis 1 above the nighttime auroral zone over a wider extent in longitude than in latitude with an intense source region observed most often near 2200 LMT and 70 deg invariant latitude. It is directly related to inverted V electron precipitation events with an electron-to-wave energy conversion efficiency of the order of 0.1 to 1%.

  16. Cosmic Radiation Fields: Sources in the early Universe

    NASA Astrophysics Data System (ADS)

    Raue, Martin; Kneiske, Tanja; Horns, Dieter; Elsaesser, Dominik; Hauschildt, Peter

    The workshop "Cosmic Radiation Fields - Sources in the Early Universe" (CRF 2010) focuses on the connection between the extragalactic infrared background and sources in the early universe, in particular stars powered by dark matter burning (Dark Stars; DS). The workshop covers the following topics: the cosmic infrared background, formation of early stars, dark stars, effect of dark matter in the early universe, dark matter halos, primordial star formation rate, and reionization. Further information can be found on the conference webpage: http://www.desy.de/crf2010/. Organizing committee: Tanja Kneiske, Martin Raue, Dominik Elsaesser, Alexander Gewering-Peine, Peter Hausschildt, Dieter Horns, and Andreas Maurer.

  17. Blackbody radiation sources for the IR spectral range

    NASA Astrophysics Data System (ADS)

    Ogarev, S. A.; Morozova, S. P.; Katysheva, A. A.; Lisiansky, B. E.; Samoylov, M. L.

    2013-09-01

    Metrological radiometric facilities for optoelectronic instruments calibration utilize in terms of standards as radiation detectors in a form of cryogenic radiometers (CR), so as radiation sources. However in practice, there are no CR working within IR spectral range. An alternative way of radiometric calibration in middle and far IR ranges is to develop a parametric series of standard radiation sources - blackbody (BB) models. The paper describes some of BBs developed at VNIIOFI for the last time [1] from cryogenic (80 K to 200 K), to low (about 200 K to 400 K) and medium (400 K to 700 K) temperature regions for calibration of the IR instruments under cryogenic-vacuum conditions. These BBs are presented by models of both types: variable-temperature and based on fixed points of Ga or In. BBs are characterized with high temperature uniformity and stability. Copper and aluminum alloys are used as the radiation cavity materials. The required value of emissivity ɛλ is achieved by using different black coatings. Low-temperature and cryogenic BBs are based on the principles of indirect multi-zone electric heating (with heat isolation from LN2 cooling loop, or by using an external liquid thermostat with circulating heat-transfer agent. The principles of operation, design and test results of BBs are described.

  18. Blackbody radiation sources for the IR spectral range

    SciTech Connect

    Ogarev, S. A.; Morozova, S. P.; Katysheva, A. A.; Lisiansky, B. E.; Samoylov, M. L.

    2013-09-11

    Metrological radiometric facilities for optoelectronic instruments calibration utilize in terms of standards as radiation detectors in a form of cryogenic radiometers (CR), so as radiation sources. However in practice, there are no CR working within IR spectral range. An alternative way of radiometric calibration in middle and far IR ranges is to develop a parametric series of standard radiation sources - blackbody (BB) models. The paper describes some of BBs developed at VNIIOFI for the last time [1] from cryogenic (80 K to 200 K), to low (about 200 K to 400 K) and medium (400 K to 700 K) temperature regions for calibration of the IR instruments under cryogenic-vacuum conditions. These BBs are presented by models of both types: variable-temperature and based on fixed points of Ga or In. BBs are characterized with high temperature uniformity and stability. Copper and aluminum alloys are used as the radiation cavity materials. The required value of emissivity ε{sub λ} is achieved by using different black coatings. Low-temperature and cryogenic BBs are based on the principles of indirect multi-zone electric heating (with heat isolation from LN2 cooling loop, or by using an external liquid thermostat with circulating heat-transfer agent. The principles of operation, design and test results of BBs are described.

  19. Transition radiation very soft X-ray source

    NASA Astrophysics Data System (ADS)

    Umiastowski, K.; Nguyen, A.

    1994-05-01

    There is a growing interest in the transition radiation (TR), as a soft X-ray source, in the last few years. Many papers have been published on calculations or experiments in the 1-10 keV X-ray energy range using 50-200 MeV electron accelerators. We investigate the possibility to generate very soft X-rays (λ = 12 nm) with low-energy electron accelerator (5-20 MeV). Very little information is available on TR in this range of photon wavelength and electron energy. A stack of 20 foils of beryllium placed in vacuum was used in our computer simulation. Calculation shows that for 1 mA electron beam current, radiation with few mW intensity can be produced. Emitted photons are quasi-monoenergetic (FWHM less than 5%), and well collimated. The aim of our study is to investigate the possibility of fabricate a soft X-ray source, much more compact than synchrotron source and producing an intense and quasi-coherent radiation, for industrial applications.

  20. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  1. The advanced neutron source research and development plan

    SciTech Connect

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  2. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    SciTech Connect

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  3. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source.

    PubMed

    Kunz, Martin; MacDowell, Alastair A; Caldwell, Wendel A; Cambie, Daniella; Celestre, Richard S; Domning, Edward E; Duarte, Robert M; Gleason, Arianna E; Glossinger, James M; Kelez, Nicholas; Plate, David W; Yu, Tony; Zaug, Joeseph M; Padmore, Howard A; Jeanloz, Raymond; Alivisatos, A Paul; Clark, Simon M

    2005-09-01

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques. PMID:16120990

  4. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    NASA Astrophysics Data System (ADS)

    La Plante, Paul; Trac, Hy

    2016-09-01

    We introduce a new project to understand helium reionization using fully coupled N-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium as a result of reionization and make predictions about the Lyα forest and baryon temperature–density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models includes two different light curves, a lightbulb (simple on/off) and symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces an input quasar luminosity function given a halo catalog from an N-body simulation, and propagates quasars through the merger history of halo hosts. After calibrating quasar clustering using measurements from the Baryon Oscillation Spectroscopic Survey, we find that the characteristic mass of quasar hosts is {M}h∼ 2.5× {10}12 {h}-1 {M}ȯ for the lightbulb model, and {M}h∼ 2.3× {10}12 {h}-1 {M}ȯ for the exponential model. In the latter model, the peak quasar luminosity for a given halo mass is larger than that in the former, typically by a factor of 1.5–2. The effective lifetime for quasars in the lightbulb model is 59 Myr, and in the exponential case, the effective time constant is about 15 Myr. We include semi-analytic calculations of helium reionization, and discuss how to include these quasars as sources of ionizing radiation for full hydrodynamics with radiative transfer simulations in order to study helium reionization.

  5. Betatron Radiation from a Beam Driven Plasma Source

    SciTech Connect

    Litos, M.; Corde, S.; /SLAC

    2012-08-13

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 x 10{sup 10} electrons, 20 x 20 {micro}m{sup 2} spot, 20-100 {micro}m length, 20 GeV energy) when sent into a plasma source with a nominal density of {approx} 1 x 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 x 35 cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  6. Betatron radiation from a beam driven plasma source

    SciTech Connect

    Litos, M.; Corde, S.

    2012-12-21

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 Multiplication-Sign 10{sup 10} electrons, 20 Multiplication-Sign 20{mu}m{sup 2} spot, 20 - 100{mu}m length, 20GeV energy) when sent into a plasma source with a nominal density of {approx} 1 Multiplication-Sign 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 Multiplication-Sign 35cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  7. Auroral kilometric radiation source characteristics using ray tracing techniques

    NASA Astrophysics Data System (ADS)

    Schreiber, R.; Santolik, O.; Parrot, M.; Lefeuvre, F.; Hanasz, J.; Brittnacher, M.; Parks, G.

    2002-11-01

    3-D ray tracing to the presumed auroral kilometric radiation (AKR) source region has been performed using the input data from wave distribution function (WDF) based on the AKR waveforms recorded on board the Interball 2 satellite by the French wave experiment MEMO. Both the direction of the WDF maximum and the WDF form and angular size have been taken into account. Two instances of AKR emissions were observed on 28 January 1997 at 2037 and 2107 UT. Rays traced in R-X mode out of the s/c point toward two different active regions on the auroral oval (as seen with Polar UV imager after projection of the source region along the magnetic field lines down to the ionosphere level). Source region apparent angular sizes based on WDF are compatible with sizes estimated from signal modulation produced by electric antenna system rotation.

  8. Potential GTCC LLW sealed radiation source recycle initiatives

    SciTech Connect

    Fischer, D

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

  9. The U5. 0 Undulator for the Advanced Light Source

    SciTech Connect

    Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.V.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D. )

    1992-01-01

    The U5.0 Undulator, an 89 period, 5 cm period length, 4.6 m long insertion device has been designed, is being fabricated, and is scheduled for completion in early 1992. This undulator will be the first high brightness source, in the 50 to 1,500 eV range, for the Advanced Light Source at the Lawrence Berkeley Laboratory. A hybrid magnetic configuration using Nd--Fe--B permanent magnet material and vanadium permendur poles has been selected to achieve the field quality needed to meet performance requirements. The magnetic structure is modular with each half consisting of five assembly sections, which provide the periodic structure, and end structures, for entrance and exit correction, mounted on a steel backing beam. Each assembly section consists of 35 half-period pole assemblies bolted to a mount. The required 0.837 T effective peak field at a 1.4 cm gap has been verified with model measurements. Vertical field integral correction is accomplished with the end structures, each having an arrangement of permanent magnet rotors which will be adjusted to minimize electron beam missteering over the undulator operating field range. To reduce the effect of environmental fields, the steel backing beams are connected through parallel, low-reluctance, Ni--Fe hinges. The magnetic structure is connected through four rollernuts to the drive system that provides gap adjustment with an arrangement of roller screws, chain drives, a gear reduction unit, and a stepper motor driven by a closed loop control system. Magnetic structure and drive system support are from a 2.4 m high structure which includes a support base with four vertical supports. The vacuum chamber design is a two-piece machined and welded 5083-H321 aluminum construction of 5.1 m length. Pumping is with a combination of ion, titanium sublimation pump and nonevaporable getter pumps. Magnetic design, subsystem design, and fabrication progress are presented.

  10. Bunch cleaning strategies and experiments at the Advanced Photon Source.

    SciTech Connect

    Sereno, N. S.

    1999-04-15

    The Advanced Photon Source (APS) design incorporated a positron accumulator ring (PAR) as part of the injector chain. In order to increase reliability and accommodate other uses of the injector, APS will run with electrons, eliminating the need for the PAR, provided another method of eliminating rf bucket pollution in the APS is found. Satellite bunches captured from an up to 30-ns-long beam from the linac need to be removed in the injector synchrotron and storage ring. The bunch cleaning method considered here relies on driving a stripline kicker with an amplitude modulated (AM) carrier signal where the carrier is at a revolution harmonic sideband corresponding to the vertical tune. The envelope waveform is phased so that all bunches except a single target bunch (eventually to be injected into the storage ring) are resonated vertically into a scraper. The kicker is designed with a large enough shunt impedance to remove satellite bunches from the injection energy of 0.4 GeV up to 1 GeV. Satellite bunch removal in the storage ring relies on the single bunch current tune shift resulting from the machine impedance. Small bunches remaining after initial preparation in the synchrotron may be removed by driving the beam vertically into a scraper using a stripline kicker operating at a sideband corresponding to the vertical tune for small current bunches. In this paper both design specifications and bunch purity measurements are reported for both the injector synchrotron and storage ring.

  11. Fuel qualification plan for the Advanced Neutron Source Reactor

    SciTech Connect

    Copeland, G.L.

    1995-07-01

    This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

  12. Control system for insertion devices at the advanced photon source

    SciTech Connect

    Makarov, Oleg A.; Den Hartog, Patric; Moog, Elizabeth R.; Smith, Martin L.

    1997-07-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like 'open all IDs' are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  13. Control system for insertion devices at the Advanced Photon Source

    SciTech Connect

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L.

    1997-09-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like ``open all IDs`` are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  14. Control system for insertion devices at the advanced photon source

    SciTech Connect

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L.

    1997-07-01

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like {open_quotes}open all IDs{close_quotes} are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed. {copyright} {ital 1997 American Institute of Physics.}

  15. Assessment of the roles of the Advanced Neutron Source Operators

    SciTech Connect

    Hill, W.E.; Houser, M.M.; Knee, H.E.; Spelt, P.F.

    1995-03-01

    The Advanced Neutron Source (ANS) is unique in the extent to which human factors engineering (HFE) principles are being applied at the conceptual design stage. initial HFE accomplishments include the development of an ANS HFE program plan, operating philosophy, and functional analysis. In FY 1994, HFE activities focused on the role of the ANS control room reactor operator (RO). An operator-centered control room model was used in conjunction with information gathered from existing ANS system design descriptions and other literature to define a list of RO responsibilities. From this list, a survey instrument was developed and administered to ANS design engineers, operations management personnel at Oak Ridge National Laboratory`s High Flux Isotope Reactor (HFIR), and HFIR ROs to detail the nature of the RO position. Initial results indicated that the RO will function as a high-level system supervisor with considerable monitoring, verification, and communication responsibilities. The relatively high level of control automation has resulted in a reshaping of the RO`s traditional safety and investment protection roles.

  16. Cryogenically cooled monochromators for the Advanced Photon Source

    SciTech Connect

    Mills, D.M.

    1996-09-01

    The use of cryogenically cooled monochromators looks to be a very promising possibility for the Advanced Photon Source. This position has recently been bolstered by several experiments performed on beamlines at the ESRF and CHESS. At the ESRF, several crystal geometries have been tested that were designed for high power densities ({approx_gt}150 W/mm{sup 2}) and moderate total absorbed powers ({lt}200 W). These geometries have proven to be very successful at handling these power parameters with measured strains on the arc-second level. The experiments performed at CHESS were focused on high total power ({approx_gt}1000 W) but moderate power densities. As with the previously mentioned experiments, the crystals designed for this application performed superbly with no measurable broadening of the rocking curves on the arc-second level. These experiments will be summarized and, based on these results, the performance of cryogenic monochromators for the APS will be assessed. {copyright} {ital 1996 American Institute of Physics.}

  17. Front end support systems for the Advanced Photon Source

    SciTech Connect

    Barraza, J.; Shu, D.; Kuzay, T.M.

    1993-10-01

    The support system designs for the Advanced Photon Source (APS) front ends are complete and will be installed in 1994. These designs satisfy the positioning and alignment requirements of the front end components installed inside the storage ring tunnel, including the photon beam position monitors, fixed masks, photon and safety shutters, filters, windows, and differential pumps. Other components include beam transport pipes and ion pumps. The designs comprise 3-point kinematic mounts and single axis supports to satisfy various multi-direction positioning requirements from course to ultra-precise. The confined space inside the storage ring tunnel has posed engineering challenges in the design of these devices, considering some components weigh as much as 500 kg. These challenges include designing for mobility during commissioning and initial alignment, mechanical and thermal stability, and precise low profile vertical and horizontal positioning. As a result, novel stages and kinematic mounts have emerged with modular and standard designs. This paper will discuss the diverse group of support systems, including specifications and performance data of the prototypes.

  18. Advanced Neutron Source: Plant Design Requirements. Revision 4

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  19. Fabrication development for the Advanced Neutron Source Reactor

    SciTech Connect

    Pace, B.W.; Copeland, G.L.

    1995-08-01

    This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U{sub 3}Si{sub 2} rather than U{sub 3}O{sub 8}, and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m{sup 3}). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to {approx}3.5 Mg U/m{sup 3}; however, much less evaluation was done for the higher loadings.

  20. Advanced neutron source reactor probabilistic flow blockage assessment

    SciTech Connect

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

  1. Flow excursion time scales in the advanced neutron source reactor

    SciTech Connect

    Sulfredge, C.D.

    1995-04-01

    Flow excursion transients give rise to a key thermal limit for the proposed Advanced Neutron Source (ANS) reactor because its core involves many parallel flow channels with a common pressure drop. Since one can envision certain accident scenarios in which the thermal limits set by flow excursion correlations might be exceeded for brief intervals, a key objective is to determine how long a flow excursion would take to bring about a system failure that could lead to fuel damage. The anticipated time scale for flow excursions has been examined by subdividing the process into its component phenomena: bubble nucleation and growth, deceleration of the resulting two-phase flow, and finally overcoming thermal inertia to heat up the reactor fuel plates. Models were developed to estimate the time required for each individual stage. Accident scenarios involving sudden reduction in core flow or core exit pressure have been examined, and the models compared with RELAP5 output for the ANS geometry. For a high-performance reactor like the ANS, flow excursion time scales were predicted to be in the millisecond range, so that even very brief transients might lead to fuel damage. These results should prove useful whenever one must determine the time involved in any portion of a flow excursion transient.

  2. Laser sources in dentistry and radiation safety regulations

    NASA Astrophysics Data System (ADS)

    De Luca, D.; Gaeta, G. M.; Lepore, M.

    2007-02-01

    Nowadays laser sources are largely adopted in dentistry due to their unique properties making them good candidates to substitute traditional scalpel and conventional diamond bur in the surgery of the soft and hard oral tissue, respectively. The large use of laser sources outside the research laboratories without the need of highly specialized personnel can ask for a widespread knowledge of safety issues related to this kind of equipment. The main hazard of accidental exposures regards eyes injury but increasing the power of the laser beam also skin can be involved. Safety legislations in Europe and U.S.A. take into account non ionizing radiations and laser radiation for the hazards for the health deriving from physical agents. Laser safety standards introduce 3 useful parameters for hazard characterization: "Accessible Emission Limit" (AEL), "Maximum Permissible Exposure" (MPE) and "Nominal Ocular Hazard Distance" (NOHD). We measured the MPE and NOHD for Er:YAG and other laser sources currently adopted in dentistry and we compared our results with data elaborated from standards in order to single out safe and comfortable working conditions. In fact an experimental assessment of the hazard parameters and the comparison with those of reference from safety standards turns out to be useful in order to estimate the residual hazard that can be still present after applying all the engineering protection and administrative rules.

  3. Economics of induction linac drivers for radiation sources

    SciTech Connect

    Barletta, W.A.

    1987-06-15

    Recent developments in high reliability components for linear induction accelerators (LIA) make possible the use of LIAs as large-scale, economical sources of radio-frequency (rf) power for many applications. One particularly attractive example of interest to high energy physicists is a ''two-beam accelerator'' version of a linear e/sup +/-e/sup -/ collider at TeV energies in which the LIA is configured as a monolithic relativistic klystron operating at 10 to 12 GHz. Another example of keen interest to the fusion community is the use of the LIA to drive a free-electron laser operating at 200 to 500 GHz for use in heating fusion plasma via electron resonance cyclotron heating. This paper briefly describes several potential uses of LIA radiation sources. It discusses the physical basis for scaling our present experience with LIAs to the operating characteristics applicable to large-scale sources of rf power and synchrotron radiation. 14 refs., 6 figs., 1 tab.

  4. Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

    SciTech Connect

    Pisharody, M.; Job, P.K.; Magill, S.

    1997-03-01

    High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m{sub 0}c{sub 2}/E) radian with respect to the electron beam path, where m{sub 0}c{sup 2} is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10{sup -9} Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air.

  5. 76 FR 76327 - Installation of Radiation Alarms for Rooms Housing Neutron Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... COMMISSION 10 CFR Part 73 Installation of Radiation Alarms for Rooms Housing Neutron Sources AGENCY: Nuclear... radiation alarms in rooms housing neutron sources. DATES: Submit comments by February 21, 2012. Comments..., Radiation Safety for Research. Mr. Hamawy is concerned about the security of neutron sources. III....

  6. The Short-Pulse X-ray Facility at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Young, Linda; Evans, Paul

    2013-05-01

    The Short-Pulse X-ray (SPX) Facility will extend time-resolved x-ray scattering and spectroscopy to the picosecond time scale while retaining the powerful characteristics of synchrotron radiation, i.e., user-controlled continuous tunability of energy, polarization, and bandwidth combined with exquisite x-ray energy and pulse-length stability over a wide energy range. Experiments at the SPX facility will produce 1-ps stroboscopic snapshots of molecular rotations, molecular excited-state transient structures, stress/strain wave propagation, magnetic domain wall dynamics, phase transitions, and the coupling between electronic, vibrational, and magnetic degrees of freedom in condensed matter systems. Time-resolved studies of transient dynamics will be possible with simultaneous picosecond time resolution and picometer structural precision for a variety of atomic, molecular, supramolecular, nanoscale, and bulk material systems. Pump-probe experiments using high-average-power, sub-picosecond, high-repetition-rate laser systems will make efficient use of the MHz x-ray rates of the SPX. Five end stations for x-ray scattering, diffraction, spectroscopy, imaging, and microscopy can be developed as part of the Advanced Photon Source Upgrade project. The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Dept of Energy Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.

  7. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    SciTech Connect

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

  8. Preliminary probabilistic design accident evaluation of the cold source facilities of the advanced neutron source

    SciTech Connect

    Harrington, R.M.; Ramsey, C.T.

    1995-08-01

    Consistent with established Advanced Neutron Source (ANS) project policy for the use of probabilistic risk assessment (PRA) in design, a task has been established to use PRA techniques to help guide the design and safety analysis of the ANS cold sources. The work discussed in this report is the first formal output of the cold source PRA task. The major output at this stage is a list of design basis accidents, categorized into approximate frequency categories. This output is expected to focus attention on continued design work to define and optimize the design such that design basis accidents are better defined and have acceptable outcomes. Categorizing the design basis events (DBEs) into frequency categories should prove helpful because it will allow appropriate acceptance criteria to be applied. Because the design of the cold source is still proceeding, it is beyond the scope of this task to produce detailed event probability calculations or even, in some cases, detailed event sequence definitions. That work would take place as a logically planned follow-on task, to be completed as the design matures. Figure 1.1 illustrates the steps that would typically be followed in selecting design basis accidents with the help of PRA. Only those steps located above the dashed line on Fig. 1.1 are included in the scope of the present task. (Only an informal top-level failure modes and effects analysis was done.) With ANS project closeout expected in the near future, the scope of this task has been abbreviated somewhat beyond the state of available design information on the ANS cold sources, or what could be achieved in a reasonable time. This change was necessary to ensure completion before the closeout and because the in-depth analytical support necessary to define fully some of the accidents has already been curtailed.

  9. Magnetic mirror cavities as terahertz radiation sources and a means of quantifying radiation friction

    SciTech Connect

    Holkundkar, Amol R. E-mail: amol.holkundkar@gmail.com; Harvey, Chris

    2014-10-15

    We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's γ-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

  10. Chemical plating method of preparing radiation source material

    DOEpatents

    Smith, P.K.; Huntoon, R.T.; Mosley, W.C. Jr.

    1973-12-11

    A uniform dispersion of a radioisotope within a noble metal matrix is provided by chemically plating a noble metal coating onto particles including a dissociable compound of the mdioisotope. A suspension of the dissociable compound in a chemically reductive solution is prepared and noble metal cations added to produce the noble metal coatings. The coated particles are filtered, dried and heated to calcine the dissociable compound to a refractory powder. The powder can be encapsulated in measured portions or consolidated and shaped into an elongated form for easy apportionnnent as radiation source material. (Official Gazette)

  11. Measurement of parameters in Indus-2 synchrotron radiation source

    SciTech Connect

    Ghodke, A. D.; Husain, Riyasat; Kumar, Pradeep; Yadav, Surendra; Puntambekar, T. A.

    2012-10-15

    The paper presents the measurement of optics parameters in Indus-2 synchrotron radiation source, which include betatron tune, beta function, dispersion function, natural chromaticity, corrected chromaticity, central RF frequency, momentum compaction factor, and linear betatron coupling. Two methods were used for beta function measurement; a conventional quadrupole scan method and a method using the fitting of the orbit response matrix. A robust Levenberg-Marquardt algorithm was used for nonlinear least square fitting of the orbit response matrix. In this paper, detailed methods for the parameter measurements are described. The measured results are discussed and compared with the theoretical values obtained using accelerator simulation code Accelerator Toolbox in MATLAB.

  12. Metrology laboratory requirements for third-generation synchrotron radiation sources

    SciTech Connect

    Takacs, P.Z.; Quian, Shinan

    1997-11-01

    New third-generation synchrotron radiation sources that are now, or will soon, come on line will need to decide how to handle the testing of optical components delivered for use in their beam lines. In many cases it is desirable to establish an in-house metrology laboratory to do the work. We review the history behind the formation of the Optical Metrology Laboratory at Brookhaven National Laboratory and the rationale for its continued existence. We offer suggestions to those who may be contemplating setting up similar facilities, based on our experiences over the past two decades.

  13. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    SciTech Connect

    Shu, D.; Benson, C.; Chang, J.

    1997-09-01

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

  14. Magnetic properties of the ALS (Advanced Light Source) booster synchrotron engineering model magnets

    SciTech Connect

    Keller, R.; Green, M.I.; Hoyer, E.; Koo, Y.M.; Luchini, K.; Marks, S.; Milburn, J.; Nelson, D.H.

    1989-03-01

    The Advanced Light Source (ALS) at Lawrence Berkeley Laboratory is designed to be a third-generation electron storage ring producing high-brightness VUV and X-ray radiation from wiggler and undulator insertion devices. Engineering models of all lattice magnets that are to be installed in the storage ring and its booster synchrotron have been built and are being tested to verify their performance. This paper is concerned with the magnets that form the booster lattice: dipoles, quadrupoles, sextupoles, and corrector dipoles (steerers). After a brief outline of measurement techniques and equipment, the major design parameters of these magnets are listed. Measured effective lengths and multipole field errors are then given for each type. All engineering models meet the specifications, and tracking studies including the measured systematic field errors show acceptable performance of the booster synchrotron; hence the designs are qualified for production. 3 refs., 7 figs., 4 tabs.

  15. Design of a miniature hydraulic compression load frame for microdiffraction tests at the Advanced Photon Source.

    SciTech Connect

    Shu, D.; Varma, R.; Krasnicki, S.; Sinha, S.

    1999-10-11

    In support of the x-ray synchrotrons radiation multidiffraction project of Los Alamos National Laboratory at the Advanced Photon Source (APS), we have designed and fabricated a miniature hydraulic compression load frame with 20000 N load capacity for metal specimen tests at the APS. The compact design allows the load frame to sit on the center of a 6-circle goniometer with six degrees of freedom and maximum solid angle accessibility for the incoming x-ray beam and diffraction beam detectors. A set of compact precision stages with submicron resolution has been designed for the load frame positioning to compensate the sample internal elastic and/or plastic deformation during the loading process. The system design, specifications, and test results are presented.

  16. Proceedings of the first users meeting for the Advanced Photon Source

    SciTech Connect

    Not Available

    1988-02-01

    The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development.

  17. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source.

    PubMed

    Bakeman, M S; van Tilborg, J; Sokollik, T; Baum, D; Ybarrolaza, N; Duarte, R; Toth, C; Leemans, W P

    2010-10-01

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placement of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range. PMID:21034012

  18. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    NASA Astrophysics Data System (ADS)

    Shu, D.; Benson, C.; Chang, J.; Barraza, J.; Kuzay, T. M.; Alp, E. E.; Sturhahn, W.; Lai, B.; McNulty, I.; Randall, K.; Srajer, G.; Xu, Z.; Yun, W.

    1997-07-01

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National Laboratory, has many advantages. [Yun et al., Rev. Sci. Instrum. 67(9)(1996)CD-ROM] A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows us to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

  19. Advanced Light Source activity report 1996/97

    SciTech Connect

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  20. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  1. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  2. Intense terahertz pulses from SPARC_LAB coherent radiation source

    NASA Astrophysics Data System (ADS)

    Giorgianni, F.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Daniele, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Lupi, S.; Mostacci, A.; Petrarca, M.; Pompili, R.; Shpakov, V.; Villa, F.

    2015-05-01

    The linac-based Terahertz source at the SPARC_LAB test facility is able to generate highly intense Terahertz broadband pulses via coherent transition radiation (CTR) from high brightness electron beams. The THz pulse duration is typically down to 100 fs RMS and can be tuned through the electron bunch duration and shaping. The measured stored energy in a single THz pulse has reached 40 μJ, which corresponds to a peak electric field of 1.6 MV/cm at the THz focus. Here we present the main features, in particular spatial and spectral distributions and energy characterizations of the SPARC_LAB THz source, which is very competitive for investigations in Condensed Matter, as well as a valid tool for electron beam longitudinal diagnostics.

  3. Rf system for the NSLS coherent infrared radiation source

    SciTech Connect

    Broome, W.; Biscardi, R.; Keane, J.; Mortazavi, P.; Thomas, M.; Wang, J.M.

    1995-05-01

    The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity, power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.

  4. Design of an electron gun for terahertz radiation source

    NASA Astrophysics Data System (ADS)

    Li, Ji; Pei, Yuan-Ji; Hu, Tong-Ning; Chen, Qu-Shan; Feng, Guang-Yao; Shang, Lei; Li, Cheng-Long

    2014-04-01

    An EC-ITC (External-Cathode Independently Tunable Cells) RF gun was employed with the aim of obtaining short-pulse bunches with high peak current for a terahertz radiation source. A gridded DC gun plays a key role as the external injecting electron source of the ITC RF gun, the performance of which determines the beam quality in the injector and transport line. In order to make the beam well compressed in the ITC RF gun, the energy of the electrons acquired from the gridded DC gun should be 15 keV at most. A proper structure of the gridded gun with double-anode is shown to overcome the strong space- charge force on the cathode, which is able to generate 6 μs beam with 4.5 A current successfully.

  5. Explosive pulsed power system for new radiation sources.

    SciTech Connect

    Oona, H.; Goforth, J. H.; Idzorek, G. C.; Herrera, D. H.; King, J. C.; Lopez, E. A.; Tasker, D. G.; Torres, D. T.

    2004-01-01

    High explosive pulsed power (HEPP) systems are capable of accessing very high energy densities and can reach conditions that are not possible with capacitor bank systems. The Procyon system was developed and used for experiments over a period of six years, and is exemplary of the capabilities of HEPP systems for state-of-the-art research. In this paper we will summarize some of the more interesting aspects of the work done in the past but will suggest ideas toward applications for future research. One of the main, unique features of HEPP systems is that they integrate easily to a particular physics experiment and the power flow can be optimized for a specific test. Magnetic flux compression generators have been an ideal power source for both high current plasma physics and hydrodynamic experimental loads. These experiments have contributed greatly to the understanding of high temperature and density plasmas and more recently to the understanding of instability growth in thick ({approx}1 mm) imploding metal cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load. The resulting Lorenz force compresses the load to produce hydrodynamic motion and/or high temperature, high density plasma. In the plasma physics experiments, plasma thermalizes on axis and a black body distribution of x-rays is produced. To get better access to the radiation pulse, the load electrode geometry was modified. For example, by shaping the plasma implosion glide planes, a mass depletion region was formed along one electrode at pinch time which generated a very large voltage drop across a 1-2 mm segment of the pinch, and also produced a high energy ion beam on axis. These results were predicted by magneto-hydro-dynamic (MHD) codes and verified with framing camera and x-ray, pinhole, camera pictures. We have not previously published these features but will take another look and propose possible scenarios for studying and generating

  6. Modeling and magnetic measurements of TNK synchrotron radiation source magnets

    NASA Astrophysics Data System (ADS)

    Belokrinitsky, S.; Churkin, I.; Oleynik, A.; Pekshev, D.; Philipchenko, A.; Rouvinsky, I.; Steshov, A.; Ushakov, V.

    2009-05-01

    The TNK synchrotron radiation source is being built by Budker Institute of Nuclear Physics on the base of Lukin State Research Institute of Physical Problems. Magnetic system for the storage ring of TNK synchrotron radiation source was produced at the BINP. It consists of 6 superperiods and includes 24 dipole magnets, 72 quadrupole lenses, 36 sextupole lenses and 12 octupole lenses.The storage ring will operate in a wide range of energies—from 450 to 2200 MeV—which corresponds to 0.3-1.5 T magnetic field in dipole magnets. Dipole magnets have H-shape solid yokes from Armco iron with a curved form. Dipole gap is 42 mm and yoke straight length is 1447 mm. The results of 3D magnetic field modeling executed by means of Mermaid 3D are presented. All dipole magnets were magnetically measured by special Hall probe measurement system developed in BINP. The results of magnetic measurements and modeling are compared and analyzed.

  7. Radiation sources based on laser-plasma interactions.

    PubMed

    Jaroszynski, D A; Bingham, R; Brunetti, E; Ersfeld, B; Gallacher, J; van der Geer, B; Issac, R; Jamison, S P; Jones, D; de Loos, M; Lyachev, A; Pavlov, V; Reitsma, A; Saveliev, Y; Vieux, G; Wiggins, S M

    2006-03-15

    Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range. PMID:16483958

  8. Modeling of Jovian Hectometric Radiation Source Locations: Ulysses Observations

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Reiner, M. J.

    1996-01-01

    The Unified Radio and Plasma Wave (URAP) experiment on Ulysses has provided unique high latitude measurements of Jovian hectometric radiation (HOM) during its encounter with Jupiter in February 1992. URAP was the first radio instrument in the Jovian environment with radio direction-finding capability, which was previously used to determine the HOM source locations in the Jovian magnetosphere. These initial source location determinations were based on several assumptions, including the neglect of refractive effects, which may be tested. We have, for the first time, combined the measured incident ray-direction at the spacecraft with a model magnetosphere to directly trace the rays back to the HOM source. We concentrate on the observations of HOM from high northern latitudes when Ulysses was at distances less than 15 R(sub j). The three- dimensional ray-tracing calculations presented here indicate that the HOM sources probably lie on L shells in the range 3 less than or approximately equal to L less than 7 (tilted dipole magnetic field model) consistent with previous determinations that ignored the effects of refraction. The ray-tracing results, however, indicate that wave refraction due to the Io torus and the magnetic field can significantly influence the precise source location. We show that constraints on the locations imposed by the gyroemission mechanism suggest that the lo torus density may have experienced temporal and/or spatial fluctuations during the Ulysses observations of HOM. Finally, in the cold plasma approximation we demonstrate that even if the emission were nearly linearly polarized near the source region, almost circular polarization will be observed at Ulysses, in agreement with observations.

  9. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    SciTech Connect

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

  10. Performance of a high-resolution x-ray microprobe at the Advanced Photon Source.

    SciTech Connect

    Cai, Z.; Lai, B.; Yun, W.; McNulty, I.; Khounsary, A.; Maser, J.; Ilinski, P.; Legnini, D.; Trakhtenberg, E.; Xu, S.; Tieman, B.; Wiemerslage, G.; Gluskin, E.

    1999-12-20

    The authors have developed a x-ray microprobe in the energy region from 6 to 20 keV using undulator radiation and zone-plate optics for microfocusing-based techniques and applications at a beamline at the Advanced Photon Source (APS). The performance of the beamline was shown to meet the design objectives, including preservation of the source brilliance and coherence, selectable transverse coherence length and energy bandwidth, high angular stability, and harmonic suppression of the beam. These objectives were achieved by careful thermal management and use of a novel mirror and crystal monochromator cooling geometry. All beamline optical components are water cooled, and the x-ray beam in the experiment station is stable in beam intensity, energy, and position over many days with no active feedback. Using a double-crystal Si(111) monochromator, they have obtained a focal spot size (FWHM) of 0.15 {micro}m (v) x 1.0 {micro}m (h), and a photon flux of 4 x 10{sup 9} photons/sec at the focal spot, and thus a photon flux density gain of 15,000. A circular beam spot of 0.15 {micro}m in diameter can be achieved by reducing the horizontal source size using a white beam slit located 43.5 meters upstream of the zone plate, with an order of magnitude less flux in the focal spot.

  11. Lepton accelerators and radiation sources: R and D investment at BNL

    SciTech Connect

    Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Hart, M.; Hastings, J.; Johnson, E.; Krinsky, S.; Palmer, R.; Yu, L.H.

    1997-03-01

    Brookhaven National Laboratory (BNL) has shown its determination to remain at the forefront of accelerator based science through its continued investment in long range accelerator R and D. The laboratory has a broad program in accelerator technology development including projects such as high {Tc} magnets at RHIC, Siberian Snakes at the AGS, brightness upgrades on the NSLS storage ring, and spallation source R and D in several departments. This report focuses on a segment of the overall program: the lepton accelerator and coherent radiation source R and D at the laboratory. These efforts are aimed at (1) development of high brightness electron beams, (2) novel acceleration techniques, (3) seeded Free Electron Laser (FEL) development, and (4) R and D for a muon collider. To pursue these objectives, BNL ha over the past decade introduced new organizational arrangements. The BNL Center for Accelerator Physics (CAP) is an interdepartmental unit dedicated to promoting R and D which, cannot be readily conducted within the programs of operating facilities. The Accelerator Test Facility (ATF) is managed by CAP and NSLS as a user facility dedicated to accelerator and beam physics problems of interest to both the High Energy Physics and Basic Energy Sciences programs of the DOE. Capitalizing on these efforts, the Source Development Laboratory (SDL) was established by the NSLS to facilitate coordinated development of sources and experiments to produce and utilize coherent sub-picosecond synchrotron radiation. This White Paper describes the programs being pursued at CAP, ATF and SDL aimed at advancing basic knowledge of lepton accelerators and picosecond radiation sources.

  12. Advanced radioisotope power sources for future deep space missions

    NASA Astrophysics Data System (ADS)

    Nilsen, Erik N.

    2001-02-01

    The use of Radioisotope Thermoelectric Generators (RTGs) has been well established for deep space mission applications. The success of the Voyager, Galileo, Cassini and numerous other missions proved the efficacy of these technologies in deep space. Future deep space missions may also require Advanced Radioisotope Power System (ARPS) technologies to accomplish their goals. In the Exploration of the Solar System (ESS) theme, several missions are in the planning stages or under study that would be enabled by ARPS technology. Two ESS missions in the planning stage may employ ARPS. Currently planned for launch in 2006, the Europa Orbiter mission (EO) will perform a detailed orbital exploration of Jupiter's moon Europa to determine the presence of liquid water under the icy surface. An ARPS based upon Stirling engine technology is currently baselined for this mission. The Pluto Kuiper Express mission (PKE), planned for launch in 2004 to study Pluto, its moon Charon, and the Kuiper belt, is baselined to use a new RTG (F-8) assembled from parts remaining from the Cassini spare RTG. However, if this unit is unavailable, the Cassini spare RTG (F-5) or ARPS technologies would be required. Future missions under study may also require ARPS technologies. Mission studies are now underway for a detailed exploration program for Europa, with multiple mission concepts for landers and future surface and subsurface explorers. For the orbital phase of these missions, ARPS technologies may provide the necessary power for the spacecraft and orbital telecommunications relay capability for landed assets. For extended surface and subsurface operations, ARPS may provide the power for lander operations and for drilling. Saturn Ring Observer (SRO) will perform a detailed study of Saturn's rings and ring dynamics. The Neptune Orbiter (NO) mission will perform a detailed multi disciplinary study of Neptune. Titan Explorer (TE) will perform in-situ exploration of Saturn's moon Titan, with both

  13. SU-C-16A-06: Optimum Radiation Source for Radiation Therapy of Skin Cancer

    SciTech Connect

    Safigholi, Habib; Meigooni, A S.

    2014-06-15

    Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed using MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.

  14. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated

  15. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  16. Advanced p-MOSFET Ionizing-Radiation Dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.

    1994-01-01

    Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.

  17. Advanced Electronics Technologies: Challenges for Radiation Effects Testing, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    Emerging Electronics Technologies include: 1) Changes in the commercial semiconductor world; 2) Radiation Effects Sources (A sample test constraint); and 3) Challenges to Radiation Testing and Modeling: a) IC Attributes-Radiation Effects Implication b) Fault Isolation c) Scaled Geometry d) Speed e) Modeling Shortfall f) Knowledge Status

  18. Squeezed-state source using radiation-pressure-induced rigidity

    SciTech Connect

    Corbitt, Thomas; Ottaway, David; Mavalvala, Nergis; Chen Yanbei; Khalili, Farid; Vyatchanin, Sergey; Whitcomb, Stan

    2006-02-15

    We propose an experiment to extract ponderomotive squeezing from an interferometer with high circulating power and low mass mirrors. In this interferometer, optical resonances of the arm cavities are detuned from the laser frequency, creating a mechanical rigidity that dramatically suppresses displacement noises. After taking into account imperfection of optical elements, laser noise, and other technical noise consistent with existing laser and optical technologies and typical laboratory environments, we expect the output light from the interferometer to have measurable squeezing of 5 dB, with a frequency-independent squeeze angle for frequencies below 1 kHz. This squeeze source is well suited for injection into a gravitational-wave interferometer, leading to improved sensitivity from reduction in the quantum noise. Furthermore, this design provides an experimental test of quantum-limited radiation pressure effects, which have not previously been tested.

  19. Tabulation of Fundamental Assembly Heat and Radiation Source Files

    SciTech Connect

    T. deBues; J.C. Ryman

    2006-10-25

    The purpose of this calculation is to tabulate a set of computer files for use as input to the WPLOAD thermal loading software. These files contain details regarding heat and radiation from pressurized water reactor (PWR) assemblies and boiling water reactor (BWR) assemblies. The scope of this calculation is limited to rearranging and reducing the existing file information into a more streamlined set of tables for use as input to WPLOAD. The electronic source term files used as input to this calculation were generated from the output files of the SAS2H/ORIGIN-S sequence of the SCALE Version 4.3 modular code system, as documented in References 2.1.1 and 2.1.2, and are included in Attachment II.

  20. Advanced X-Ray Sources Ensure Safe Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.

  1. What views and uses of radiation sources in the 21st century?

    PubMed

    Blix, H

    2001-04-01

    Considering that in 1899 neither biotechnology nor the electronic revolution were foreseen, some humility might be advisable when one looks into the crystal ball for the future role of radiation sources. In the past 50 years, nuclear medicine, nuclear weapons, and nuclear power have had a huge impact in the world. In the next 50 years, nuclear weapons may be phased out, nuclear power revived, and nuclear medicine may continue, especially for diagnostic purposes. Conflicts between great powers and blocks will no longer be about territorial or ideological domination but about trade, finance, information, and the environment and the weapons used will not be bombs but investments, credits, and control of information. Nuclear power-still based on fission-will be relaunched and get more uses, e.g., to propel ships, to produce heat for industry and for space heating, and perhaps to desalinate water. The public will be more at ease with radiation as it is better educated, as nuclear safety continuously improves and new types of nuclear power plants emerge, as waste sites fail to cause any problems, and as no other energy source is found to deliver so much energy at reasonable cost with negligible impact on climate and environment. One kilogram of oil corresponds to 4 kWh of electricity. One kilogram of uranium fuel corresponds to 50,000 kWh, and 1 kg of plutonium 6,000,000 kWh! In nuclear medicine, radiation may give way to other treatments as the understanding of cancer advances. On the other hand, the extreme ease with which sources of radiation can be identified is unmatched and likely to make them useful tools as tracers and markers in medicine-and other fields-for a long time. For certain uses--perhaps food irradiation--radiation sources, such as cobalt, may be replaced by accelerators which may be switched on and off at will. As more sources are used, registration and control of them must be made very effective around the whole world. Very high natural emissions of

  2. Investigation of Advanced Resonant-Mass Gravitational Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiqing

    1994-01-01

    The sensitivity of resonant-mass gravitational radiation detectors depends on both the antenna cross-section and the detector noise. The cross-section is determined by the sound velocity VS and density rho of the antenna material, as well as the antenna geometry. The principal detector noise sources are thermal Nyquist noise and noise due to the readout electromechanical amplifier. The cross-section is proportional to rho V_sp{S}{5} for a given frequency and antenna geometry while the thermal noise is inversely proportional to the antenna's mechanical quality factor Q for a given temperature. Materials with high VS could, in principle, provide about a hundred-fold increase in the antenna cross -section as compared to current generation detectors. In this dissertation we report the results of measurements of the temperature-dependent mechanical losses in several suitable high sound velocity materials. The results show that the signal-to-noise ratios of detectors made of these materials could be improved by a factor of 15 to 100 at 4 K as compared to current detectors with aluminum antennas. A spherical gravitational wave antenna is very promising for gravitational wave astronomy because of its large cross-section, isotropic sky coverage, and the capability it can provide for determining the wave direction. In this dissertation several aspects of spherical detectors, including the eigenfunctions and eigenfrequencies of the normal-modes of an elastic sphere, the energy cross-section, and the response functions that are used to obtain the noise-free solution to the inverse problem are discussed. Using the maximum likelihood estimation method the inverse problem in the presence of noise is solved. We also determine the false-alarm probability and the detection probability for a network of spherical detectors and estimate the detectable event rates for supernovae core collapses and binary coalescences. Six identical cylindrical detectors, with a suitable arrangement of

  3. Advances in radiation oncology for the management of oropharyngeal tumors.

    PubMed

    Gunn, G Brandon; Frank, Steven J

    2013-08-01

    The major benefits of modern radiation therapy (eg, intensity-modulated [x-ray] radiation therapy [IMRT]) for oropharyngeal cancer are reduced xerostomia and better quality of life. Intensity-modulated proton therapy may provide additional advantages over IMRT by reducing radiation beam-path toxicities. Several acute and late treatment-related toxicities and symptom constellations must be kept in mind when designing and comparing future treatment strategies, particularly because currently most patients with oropharyngeal carcinoma present with human papillomavirus-positive disease and are expected to have a high probability of long-term survival after treatment. PMID:23910474

  4. LIGHT SOURCE: Design of a new compact THz source based on Smith-Purcell radiation

    NASA Astrophysics Data System (ADS)

    Dai, Dong-Dong; Bei, Hua; Dai, Zhi-Min

    2009-06-01

    In recent years, people are dedicated to the research work of finding compact THz sources with high emission power. Smith-Purcell radiation is qualified for the possibility of coherent enhancement due to the effect of FEL mechanism. The compact experiment device is expected to produce hundreds mW level THz ray. The electron beam with good quality is provided under the optimized design of the electron gun. Besides, the grating is designed as an oscillator without any external feedbacks. While the beam passes through the grating surface, the beam bunching will be strong and the second harmonics enhancement will be evident, as is seen from the simulation results.

  5. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  6. Advances in the biological effects of terahertz wave radiation.

    PubMed

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed. PMID:25722878

  7. GCR as a source for Inner radiation belt of Saturn.

    NASA Astrophysics Data System (ADS)

    Kotova, A.; Roussos, E.; Krupp, N.; Dandouras, I. S.

    2014-12-01

    During the insertion orbit of Cassini in 2004 the Ion and Neutron Camera measured significant fluxes of the energetic neutral atoms (ENA) coming from the area between the D-ring and the Saturn's atmosphere, what brought up the idea of the possible existence of the innermost radiation belt in this narrow gap (1). There are two main sources of energetic charged particles for such inner radiation belt: the interaction of the Galactic Cosmic Rays (GCR) with the Saturn's atmosphere and rings, which due to CRAND process can produce the keV-MeV ions or electrons in the region, and the double charge exchange of the ENAs, coming from the middle magnetosphere, what can bring the keV ions to the region of our interest. Using the particles tracer, which was developed in our group, and GEANT4 software, we study in details those two processes. With a particle tracer we evaluate the GCR access to the Saturn atmosphere and rings. Simulation of the GCR trajectories allows to calculate the energy spectra of the arriving energetic particles, which is much more accurate, compare to the analytically predicted spectra using the Stoermer theory, since simulation includes effects of the ring shadow and non-dipolar processes in the magnetosphere. Using the GEANT4 software the penetration of the GCR through the matter of rings was simulated, and the production of secondaries particles was estimated. Finally, the motion of secondaries was simulated using the particles tracer, and evaluation of the energy spectrum of neutrons the decay of which leads to the production of final CRAND elements in the inner Saturnian radiation belts was done. We show that for inner radiation belt most energetic ions comes from GCR interaction with rings, it's penetration and from interaction of secondaries with Saturn's atmosphere. This simulation allows us to predict the fluxes of energetic ions and electrons, which particle detector MIMI/LEMMS onboard the Cassini can measure during the so-called "proximal

  8. Advanced Interventional Therapy for Radiation-Induced Cardiovascular Disease

    PubMed Central

    2016-01-01

    This report describes the case of a 61-year-old woman who presented with dyspnea, aortic stenosis, and coronary artery disease—typical side effects of radiation therapy for Hodgkin lymphoma. A poor candidate for surgery, she underwent successful high-risk percutaneous coronary intervention and subsequent transcatheter aortic valve replacement. This report highlights some of the cardiovascular-specific sequelae of radiation therapy for cancer treatment; in addition, possible directions for future investigations are discussed. PMID:27547140

  9. Radiation of complex and noisy sources within enclosures

    NASA Astrophysics Data System (ADS)

    Gradoni, Gabriele; Creagh, Stephen; Tanner, Gregor

    Predicting the radiation of complex electromagnetic sources inside semi-open cavities and resonators with arbitrary geometry is a challenging topic both for physics and for engineering. We have exploited a Perron-Frobenius operator to propagate field-field correlation functions of complex and extended sources in free-space. The formula is based on a phase-space picture of the electromagnetic field, using the Wigner distribution function, and naturally captures evanescent as well as diffracted waves. This approach can be extended to study the propagation of correlation functions within cavities, with the ray-dynamical map given by the geometry of the cord connecting a point of the boundary to another. While ray methods provide an efficient way to predict average values of the correlation matrix elements, the use of random matrix theory approaches allows efficient characterisation of statistical fluctuations around these averages. Universal relations are derived and tested in the presence of dissipation for quantum maps and billiard systems. The use of this formalism is discussed in the contexts of open systems with surface roughness. The theory and achieved results are of interest in the simulation of next-generation of wireless communications. Work supported by the UK Engineering and Physical Sciences Research Council.

  10. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy.

    PubMed

    Detappe, Alexandre; Kunjachan, Sijumon; Sancey, Lucie; Motto-Ros, Vincent; Biancur, Douglas; Drane, Pascal; Guieze, Romain; Makrigiorgos, G Mike; Tillement, Olivier; Langer, Robert; Berbeco, Ross

    2016-09-28

    Radiation therapy is a major treatment regimen for more than 50% of cancer patients. The collateral damage induced on healthy tissues during radiation and the minimal therapeutic effect on the organ-of-interest (target) is a major clinical concern. Ultra-small, renal clearable, silica based gadolinium chelated nanoparticles (SiGdNP) provide simultaneous MR contrast and radiation dose enhancement. The high atomic number of gadolinium provides a large photoelectric cross-section for increased photon interaction, even for high-energy clinical radiation beams. Imaging and therapy functionality of SiGdNP were tested in cynomolgus monkeys and pancreatic tumor-bearing mice models, respectively. A significant improvement in tumor cell damage (double strand DNA breaks), growth suppression, and overall survival under clinical radiation therapy conditions were observed in a human pancreatic xenograft model. For the first time, safe systemic administration and systematic renal clearance was demonstrated in both tested species. These findings strongly support the translational potential of SiGdNP for MR-guided radiation therapy in cancer treatment. PMID:27423325

  11. Nile tilapia Oreochromis niloticus as a food source in advanced life support systems: Initial considerations

    NASA Astrophysics Data System (ADS)

    Gonzales, John M.; Brown, Paul B.

    2006-01-01

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Tilapia are currently under evaluation as a source of food and their contribution to reducing waste in advanced life support systems (ALSS). The nutritional composition of tilapia whole bodies, fillet, and carcass residues were quantitatively determined. Carbon and nitrogen free-extract percentages were similar among whole body (53.76% and 6.96%, respectively), fillets (47.06% and 6.75%, respectively), and carcass (56.36% and 7.04%, respectively) whereas percentages of N, S, and protein were highest in fillet (13.34, 1.34, and 83.37%, respectively) than whole body (9.27, 0.62, and 57.97%, respectively) and carcass (7.70, 0.39, and 48.15%, respectively). Whole body and fillet meet and/or exceeded current nutritional recommendations for protein, vitamin D, ascorbic acid, and selenium for international space station missions. Whole body appears to be a better source of lipids and n-3 fatty acids, calcium, and phosphorous than fillet. Consuming whole fish appears to optimize equivalent system mass compared to consumption of fillets. Additional research is needed to determine nutritional composition of tilapia whole body, fillet, and carcass when fed waste residues possibly encountered in an ALSS.

  12. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    SciTech Connect

    Not Available

    1990-02-01

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  13. Application of advanced millimeter/far-infrared sources to collective Thomson scattering plasma diagnostics

    SciTech Connect

    Woskoboinikow, P.; Cohn, D.R.; Temkin, R.J.

    1983-01-01

    The application of advanced millimeter/far infrared sources to substantially improve the effectiveness of collective Thomson scattering plasma diagnostics is discussed. Gyrotrons, CO/sub 2/ lasers and far infrared lasers which are optically pumped with CO/sub 2/ laser radiation can now provide important new capabilities in terms of combined high peak power and high average power, fine frequency tunability and a wide range of operating frequencies. Their capabilities can improve the signal to noise ratio and make possible time dependent scattering measurements. Both thermal level scattering used for determination of ion temperature and low level non-thermal measurements used for the investigation of plasma turbulence and wave phenomena are considered. Rapidly pulsed gyrotrons, CO/sub 2/, and optically pumped lasers can provide a range of combinations of high peak power and high energy during a given time interval. The use of this high peak power - high energy trade off capability to maximize signal to noise ratios is discussed. Dramatic reduction in stray light, using fine frequency source tunability and gas absorption cell technology, is also discussed.

  14. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    SciTech Connect

    Chong, Henry Herng Wei

    2004-04-16

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates {approx}100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a {Delta}S=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  15. A tunable terahertz radiation source based on a surface wave transformed into Cherenkov radiation in a subwavelength array

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Hu, Min; Zhong, Renbin; Cheng, Xiaoxing; Gong, Sen; Zhao, Tao; Liu, Shenggang

    2016-04-01

    A tunable THz radiation source based on the Cherenkov radiation mechanism is proposed. In the structure of a dielectric medium rod covered by subwavelength metal ring array, the surface wave is excited by electron bunch on the subwavelength metal ring array, and then transformed into Cherenkov radiation in the dielectric medium rod. The working frequency is determined by the intersection of the surface wave dispersion curve and electron beam line, and could be tuned by adjusting the beam energy. The source, which is compact and operable at room temperature, generates radiation with peak power from microwatts up to milliwatts.

  16. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    SciTech Connect

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-08-15

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering.

  17. Advanced remote handling developments for high radiation applications

    SciTech Connect

    Herndon, J.N.; Kring, C.T.; Feldman, M.J.; Kuban, D.P.; Martin, H.L.; Rowe, J.C.; Hamel, W.R.

    1985-01-01

    The Remote Control Engineering Task of the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, and installation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System.

  18. Determination of Jet Noise Radiation Source Locations using a Dual Sideline Cross-Correlation/Spectrum Technique

    NASA Technical Reports Server (NTRS)

    Allen, C. S.; Jaeger, S. M.

    1999-01-01

    The goal of our efforts is to extrapolate nearfield jet noise measurements to the geometric far field where the jet noise sources appear to radiate from a single point. To accomplish this, information about the location of noise sources in the jet plume, the radiation patterns of the noise sources and the sound pressure level distribution of the radiated field must be obtained. Since source locations and radiation patterns can not be found with simple single microphone measurements, a more complicated method must be used.

  19. Addition Laws for Intensities of Radiation Emerging from Scattering Atmospheres Containing Energy Sources

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.; Kapanadze, N. G.

    2016-03-01

    A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.

  20. HELIOS: A new open-source radiative transfer code

    NASA Astrophysics Data System (ADS)

    Malik, Matej; Grosheintz, Luc; Lukas Grimm, Simon; Mendonça, João; Kitzmann, Daniel; Heng, Kevin

    2015-12-01

    I present the new open-source code HELIOS, developed to accurately describe radiative transfer in a wide variety of irradiated atmospheres. We employ a one-dimensional multi-wavelength two-stream approach with scattering. Written in Cuda C++, HELIOS uses the GPU’s potential of massive parallelization and is able to compute the TP-profile of an atmosphere in radiative equilibrium and the subsequent emission spectrum in a few minutes on a single computer (for 60 layers and 1000 wavelength bins).The required molecular opacities are obtained with the recently published code HELIOS-K [1], which calculates the line shapes from an input line list and resamples the numerous line-by-line data into a manageable k-distribution format. Based on simple equilibrium chemistry theory [2] we combine the k-distribution functions of the molecules H2O, CO2, CO & CH4 to generate a k-table, which we then employ in HELIOS.I present our results of the following: (i) Various numerical tests, e.g. isothermal vs. non-isothermal treatment of layers. (ii) Comparison of iteratively determined TP-profiles with their analytical parametric prescriptions [3] and of the corresponding spectra. (iii) Benchmarks of TP-profiles & spectra for various elemental abundances. (iv) Benchmarks of averaged TP-profiles & spectra for the exoplanets GJ1214b, HD189733b & HD209458b. (v) Comparison with secondary eclipse data for HD189733b, XO-1b & Corot-2b.HELIOS is being developed, together with the dynamical core THOR and the chemistry solver VULCAN, in the group of Kevin Heng at the University of Bern as part of the Exoclimes Simulation Platform (ESP) [4], which is an open-source project aimed to provide community tools to model exoplanetary atmospheres.-----------------------------[1] Grimm & Heng 2015, ArXiv, 1503.03806[2] Heng, Lyons & Tsai, Arxiv, 1506.05501Heng & Lyons, ArXiv, 1507.01944[3] e.g. Heng, Mendonca & Lee, 2014, ApJS, 215, 4H[4] exoclime.net

  1. Monte Carlo calculation of skyshine'' neutron dose from ALS (Advanced Light Source)

    SciTech Connect

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations.

  2. Chemical release and radiation effects experiment advanced planning and coordination

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Alzmann, Melanie

    1991-01-01

    The efforts conducted to provide assessments and planning support for the Chemical Release and Radiation Effects Satellite (CRRES) Experiments are summarized. Included are activities regarding scientific working group and workshop development including the preparation of descriptive information on the CRRES Project.

  3. Chemical release and radiation effects experiment advanced planned

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Alzmann, Melanie

    1990-01-01

    A summary of the efforts conducted to provide assessments and planning support for the Chemical Release and Radiation Experiment Satellite (CRRES) is reported. Included are activities regarding scientific working group and workshop development including the preparation of descriptive information on the CRRES project.

  4. Ring energy selection and extra long straight sections for the Advanced Photon Source

    SciTech Connect

    Not Available

    1987-04-01

    Recommended criteria are given for the performance of Advanced Photon Source (APS), taking into consideration undulator tunability criteria and their relationship to the storage ring energy and undulator gap, length of straight sections.

  5. ADVANCED TOOLS FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS AND SOURCE WATERS

    EPA Science Inventory

    The purpose of this poster is to present the application and assessment of advanced technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs (azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, and methylenedioxy...

  6. Advanced tunable laser source for DoD applications

    SciTech Connect

    Cockroft, N.; Early, J.; Johnson, C.; Lester, C.; Quick, C.; Shimada, T.; Tiee, J.

    1996-06-01

    This is a final report of a two year project at the Los Alamos National Laboratory (LANL). The project sought to develop a new solid- state laser transmitter that can be tuned over an exceptionally broad spectral range and integrated with LIDAR remote sensing systems for applications in species specific chemical sensing. Activities have included non-linear frequency conversion of tunable chromium doped LiSAF laser radiation to the ultraviolet and infrared spectral regions. This system is capable of the detection of chemical species previously unapproachable, as well as an improvement in detection sensitivity of 1-2 orders of magnitude for species currently studied.

  7. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  8. Advanced ceramic fabric body mounted radiator for Space Station Freedom Phase O design

    SciTech Connect

    Webb, B.J.; Antoniak, Z.I.; Pauley, K.A.

    1990-06-01

    A body mounted radiator concept constructed of advanced ceramic fabric materials for use with the Phase 0 design of Space Station Freedom is described. The radiator is expected to weigh between 1.4 and 3.5 kg/m{sup 2} of single sided radiating surface, use ammonia working fluid, be highly deployable, and exhibit good reliability characteristics. This compares well with the 11.8 kg/m{sup 2} for two sided radiators proposed for the current space station design.

  9. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    SciTech Connect

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  10. The γ-ray radiation of the Galaxy and extragalactic sources.

    NASA Astrophysics Data System (ADS)

    Zhong, Jianxia

    1992-06-01

    This paper gives a systematic review on the developing history and present study of γ-ray astronomy, and presents γ-ray sources, as well as the diffuse γ-ray radiation of the Galaxy and extragalactic sources.

  11. The GIMLI: A Compact High-Power UWB Radiation Source

    NASA Astrophysics Data System (ADS)

    Delmote, P.; Martin, B.

    This chapter presents the design and performances of a compact, general-purpose, high-power ultra-wideband (UWB) source named GIMLI. The system was designed for dual use, homeland security and military applications. It is powered by a compact, coaxial 12-stage Marx generator with a rise time lower than 25 ns and an operating voltage up to 360 kV. A fast monocycle pulse is sharpened using a pulse former (MPF). The shaper stage comprises a switching module including a peaking and a grounding multi-channel spark gap under a N2 pressure of 6 MPa. The module is followed by a monopulse-to-monocycle converter based on a coaxial Blumlein pulse forming line. The bipolar signal measured at the output of the MPF has a duration shorter than 2 ns with a rise time of 250 ps. The peak-to-peak output voltage is 250 kV on a 50 Ω resistive load. Repetitive operation of the MPF has been experienced with a 200 Hz Tesla transformer developed by the CEA (Commissariat à l'Energie Atomique). Electromagnetic energy is focused by a dedicated antenna. The designed antenna is a TEM half-horn with two ridges which improve the low-frequency focusing. High-power radiation tests show that the field measured at a distance of 9 m from the TEM Horn-antenna is higher than 120 kV/m.

  12. Advances in Radiation Mutagenesis through Studies on Drosophila

    DOE R&D Accomplishments Database

    Muller, H. J.

    1958-06-01

    The approximately linear relation between radiation dose and induced lethals known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confined for minute structural changes in sperm as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of varies with lethals induced in late oocytes follow the same frequency pattern and there fore are multi-hit events. Yet han spermatozoan irradiation that two broken ends derived from nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of genesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females, to sperion is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagen, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most

  13. Inverter for interfacing advanced energy sources to a utility grid

    DOEpatents

    Steigerwald, Robert L.

    1984-01-01

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  14. Advances in Radiation-Tolerant Solar Arrays for SEP Missions

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Eskenazi, Michael I.; Ferguson, Dale C.

    2007-01-01

    As the power levels of commercial communications satellites reach the 20 kWe and higher, new options begin to emerge for transferring the satellite from LEO to GEO. In the past electric propulsion has been demonstrated successfully for this mission - albeit under unfortunate circumstances when the kick motor failed. The unexpected use of propellant for the electric propulsion (EP) system compromised the life of that vehicle, but did demonstrate the viability of such an approach. Replacing the kick motor on a satellite and replacing that mass by additional propellant for the EP system as well as mass for additional revenue-producing transponders should lead to major benefits for the provider. Of course this approach requires that the loss in solar array power during transit of the Van Allen radiation belts is not excessive and still enables the 15 to 20 year mission life. In addition, SEP missions to Jupiter, with its exceptional radiation belts, would mandate a radiation-resistant solar array to compete with a radioisotope alternative. Several critical issues emerge as potential barriers to this approach: reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels from LEO to GEO (or at Jupiter), producing an array that is light weight to preserve payload mass fraction - and to do this at a cost that is lower than today's arrays. This paper will describe progress made to date on achieving an array that meets all these requirements and is also useful for deep space electric propulsion missions.

  15. Advances in radiation biology: Radiosensitization in DNA and living cells

    NASA Astrophysics Data System (ADS)

    Lacombe, S.; Sech, C. Le

    2009-06-01

    One fundamental goal of radiation biology is the evolution of concepts and methods for the elaboration of new approaches and protocols for the treatment of cancers. In this context, the use of fast ions as ionizing particles offers the advantage of optimizing cell killing inside the tumor whilst preserving the surrounding healthy tissues. One extremely promising strategy investigated recently is the addition of radiosensitizers in the targeted tissue. The optimization of radiotherapy with fast ions implies a multidisciplinary approach to ionizing radiation effects on complex living systems, ranging from studies on single molecules to investigations of entire organisms. In this article we review recent studies on ion induced damages in simple and complex biological systems, from DNA to living cells. The specific aspect of radiosensitization induced by metallic atoms is described. As a fundamental result, the addition of sensitizing compounds with ion irradiation may improve therapeutic index in cancer therapy. In conclusion, new perspectives are proposed based on the experience and contribution of different communities including Surface Sciences, to improve the development of radiation biology.

  16. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  17. Locally advanced pancreatic cancer. Looking beyond traditional chemotherapy and radiation.

    PubMed

    Savir, Guy; Huber, Kathryn E; Saif, Muhammad Wasif

    2013-07-01

    About a third of all pancreatic cancer is found to be locally advanced at the time of diagnosis, where the tumor is inoperable but remains localized to the pancreas and regional lymphatics. Sadly, this remains a universally deadly disease with progression to distant disease being the predominant mode of failure and average survival under one year. Optimal treatment of these patients continues to be an area of controversy, with chemotherapy alone being the treatment preference in Europe, and chemotherapy followed by chemoradiation in selected patients, preferred in the USA. The aim of this paper is to summarize the key abstracts presented at the 2013 ASCO Annual Meeting that address evolving approaches to the management of locally advanced pancreatic cancer. The late breaking abstract (#LBA4003) provided additional European data showing non-superiority of chemoradiation compared to chemotherapy in locally advanced pancreatic cancer patients without distant progression following 4 months of chemotherapy. Another late breaking abstract, (#LBA4004), unfortunately showed a promising new complement to gemcitabine and capecitabine using immunotherapy in the form of a T-helper vaccine did not translate to improved survival in the phase III setting. PMID:23846922

  18. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  19. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  20. Performance of the VUV high resolution and high flux beamline for chemical dynamics studies at the Advanced Light Source

    SciTech Connect

    Heimann, P.A.; Koike, M. Hsu, C.W.

    1996-07-01

    At the Advanced Light Source an undulator beamline, with an energy range from 6 to 30 eV, has been constructed for chemical dynamics experiments. The higher harmonics of the undulator are suppressed by a novel, windowless gas filter. In one branchline high flux, 2 % bandwidth radiation is directed toward an end station for photodissociation and crossed molecular beam experiments. A photon flux of photon/sec has been measured at this end station. In a second branchline a 6.65 m off- plane Eagle monochromator delivers narrow bandwidth radiation to an end station for photoionization studies. At this second end station a peak flux of 3 x 10{sup 11} was observed for 25,000 resolving power. This monochromator has achieved a resolving power of 70,000 using a 4800 grooves/mm grating, one of the highest resolving powers obtained by a VUV monochromator.

  1. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  2. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Limits on external radiation levels from storage... INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.21 Limits on external radiation levels from storage containers and source changers. The...

  3. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Limits on external radiation levels from storage containers and source changers. 34.21 Section 34.21 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.21 Limits on external radiation levels...

  4. Cryogenic high-heat-load optics at the advanced photon source

    SciTech Connect

    Rogers, C.S.

    1997-06-01

    Cryogenically cooled silicon monochromators have found wide application at the Advanced Photon Source (APS) and other third-generation synchrotron radiation facilities. Currently, 17 insertion device beamlines at the APS are implementing cryogenic, silicon double-crystal monochromators (DCM) at the first optical element. Recently, several silicon crystal monochromators internally cooled with liquid nitrogen have been tested on the sector 1-ID undulator beamline at the APS. Rocking curves at various energies were measured simultaneously in first and third order from a Si(111) DCM in the Bragg reflection geometry at a fixed undulator gap of 11.1 mm. The crystal exhibited a sub-arc second thermal broadening of the rocking curve over a first order energy range from 6.0 to 17.0 keV up to a maximum incident power of 561 W in a 2.5 V x 2.0 H mm{sup 2} beam. It has been demonstrated that cryogenic silicon monochromators can handle the highest power beams from hard x-ray undulators at the APS without significant thermo-mechanical distortion.

  5. A beamline for macromolecular crystallography at the Advanced Light Source

    SciTech Connect

    Padmore, H.A.; Earnest, T.; Kim, S.H.; Thompson, A.C.; Robinson, A.L.

    1994-08-01

    A beamline for macromolecular crystallography has been designed for the ALS. The source will be a 37-pole wiggler with a, 2-T on-axis peak field. The wiggler will illuminate three beamlines, each accepting 3 mrad of horizontal aperture. The central beamline will primarily be used for multiple-wavelength anomalous dispersion measurements in the wavelength range from 4 to 0.9 {angstrom}. The beamline optics will comprise a double-crystal monochromator with a collimating pre-mirror and a double-focusing mirror after the monochromator. The two side stations will be used for fixed-wavelength experiments within the wavelength range from 1.5 to 0.95 {angstrom}. The optics will consist of a conventional vertically focusing cylindrical mirror followed by an asymmetrically cut curved-crystal monochromator. This paper presents details of the optimization of the wiggler source for crystallography, gives a description of the beamline configuration, and discusses the reasons for the choices made.

  6. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  7. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Limits on external radiation levels from storage containers and source changers. 34.21 Section 34.21 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR... § 34.21 Limits on external radiation levels from storage containers and source changers. The...

  8. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Limits on external radiation levels from storage containers and source changers. 34.21 Section 34.21 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR... § 34.21 Limits on external radiation levels from storage containers and source changers. The...

  9. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Limits on external radiation levels from storage containers and source changers. 34.21 Section 34.21 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR... § 34.21 Limits on external radiation levels from storage containers and source changers. The...

  10. X-ray micro-Tomography at the Advanced Light Source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  11. Concurrent Cisplatin and Radiation Versus Cetuximab and Radiation for Locally Advanced Head-and-Neck Cancer

    SciTech Connect

    Koutcher, Lawrence; Sherman, Eric; Fury, Matthew; Wolden, Suzanne; Zhang Zhigang; Mo Qianxing; Stewart, Laschelle; Schupak, Karen; Gelblum, Daphna; Wong, Richard; Kraus, Dennis; Shah, Jatin; Zelefsky, Michael; Pfister, David; Lee, Nancy

    2011-11-15

    Purpose: To compare concurrent cisplatin (CDDP) and radiation (RT) with cetuximab (C225) and RT for locally advanced head-and-neck cancer (LAHNC). Methods and Materials: This study retrospectively compared 174 consecutive, newly diagnosed LAHNC patients definitively treated from March 1, 2006, to April 1, 2008, with single-agent CDDP/RT (n = 125) or C225/RT (n = 49). We excluded patients who received additional concurrent, induction, or adjuvant systemic therapy; weekly cisplatin; prior head-and-neck radiotherapy; or primary surgical resection. Outcomes were analyzed by the Kaplan-Meier method, Cox model, and competing-risks analysis tools. Results: The C225/RT patients were older and had decreased creatinine clearance. At a median follow-up of 22.5 months for living patients, the 2-year locoregional failure rate was 5.7% for CDDP/RT and 39.9% for C225/RT (p < 0.0001). The 2-year failure-free survival (FFS) and overall survival (OS) rates were 87.4% vs. 44.5% (p < 0.0001) and 92.8% vs. 66.6% (p = 0.0003), respectively, in favor of CDDP/RT. When the Cox proportional hazards model was used for multivariate analysis, treatment with CDDP/RT predicted for improved locoregional control (p < 0.0001), FFS (p < 0.0001), and OS (p = 0.01). Late Grade 3 or 4 toxicity or feeding tube dependence 9 months after completion of RT was observed in 21% of patients in the CDDP/RT cohort and 24% in the C225/RT cohort (p = 0.66). Conclusions: In this study of LAHNC patients, CDDP/RT achieved better locoregional control, FFS, and OS than C225/RT. Although the results were upheld on multivariate analysis, they must be interpreted cautiously because of the retrospective nature of the study and significant differences in patient selection. There was no statistically significant difference in late Grade 3 or 4 effects or feeding tube dependence.

  12. Development of Advanced Multi-Modality Radiation Treatment Planning Software

    SciTech Connect

    Nigg, D W; Hartmann Siantar, C

    2002-02-19

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software product system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. SERA is at a mature level in its life cycle, it has been licensed for research use worldwide, and it has become well established as a computational tool for research. However, along with its strengths, SERA also has some limitations in its structure and computational methodologies. More specifically, it is optimized only for neutron-based applications. Although photon transport can be computed with SERA, the simplified model that is used is designed primarily for photons produced in the neutron transport process. Thus SERA is not appropriate for applications to, for example, standard external-beam photon radiotherapy, which is by far more commonly used in the clinic than neutron based therapy.

  13. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  14. Sources of confusion in establishment of radiation exposure guidelines

    SciTech Connect

    Thomas, R.G.

    1996-12-31

    There are several factors that induce the many fallacies underlying current radiation protection guidelines, and there is little hope on the horizon that common sense will prevail to override these fallacies. Radiation is looked upon by influential committee members as an absolute hazard to human health. In other words, they believe that all radiation is harmful at any level of exposure! There is no evidence for such a statement. This paper is separated into several major topics, each showing the reasons this philosophy concerning all radiation to be harmful is so misguided.

  15. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  16. Depleted uranium hexafluoride: The source material for advanced shielding systems

    SciTech Connect

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  17. Conceptualisation of the characteristics of advanced practitioners in the medical radiation professions.

    PubMed

    Smith, Tony; Harris, Jillian; Woznitza, Nick; Maresse, Sharon; Sale, Charlotte

    2015-09-01

    Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as 'a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care'. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiences in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities. PMID:26451243

  18. Conceptualisation of the characteristics of advanced practitioners in the medical radiation professions

    SciTech Connect

    Smith, Tony; Harris, Jillian; Woznitza, Nick; Maresse, Sharon; Sale, Charlotte

    2015-09-15

    Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as ‘a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care’. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiences in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities.

  19. 21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke; Clowdsley, Martha; Wilson, John; Nealy, John; Luetke, Nathan

    2006-01-01

    On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.

  20. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  1. Role of radiation therapy in locally advanced thymoma.

    PubMed

    Urgesi, A; Monetti, U; Rossi, G; Ricardi, U; Casadio, C

    1990-11-01

    The records of all patients treated for thymoma in the Department of Radiotherapy of the University of Torino between 1970 and 1988 were reviewed. There were 77 patients in stage III or IVa (59 in stage III and 18 in stage IVa); 74 patients were operated upon before radiotherapy and 3 had a pre-operative irradiation followed by surgery and post-operative boost. Complete resection was possible in 55.9% of cases with stage III and in none with stage IVa. Subtotal resection was done in 35.6% of patients in stage III and 83.3% in stage IVa. 8 patients had only a biopsy: 5 in stage III (8.5%) and 3 in stage IVa (16.6%). Post-operative radiation doses ranged between 39.6 and 46 Gy to the whole mediastinum followed by a 10-16 Gy boost on smaller fields in cases presenting residual disease after surgery. The pre-operative dose was 30 Gy followed by a post-operative boost of 16-24 Gy. Conventional fraction sizes of 1.8-2 Gy were always used. The 10 years survival rate was 58.3%. There was a significant difference between stage III (70.9%) and stage IVa (26.3%) (p less than 0.0004). Survival of patients in stage III was not significantly affected by the type of surgery. No significant difference in survival or recurrence rate was observed in patients with different histologies and in patients with or without myasthenia. Thoracic relapses occurred in 15.2% of patients in stage III and in 50% of patients in stage IVa (p less than 0.01). Only 7 relapses (9.1%) were within the limits of the radiation field.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2126388

  2. Vacuum system for the LBL Advanced Light Source (ALS)

    SciTech Connect

    Kennedy, K.; Henderson, T.; Meneghetti, J. )

    1989-03-01

    A 1.5 to 1.9 GeV synchrotron light source is being built at LBL. The vacuum system is designed to permit most synchrotron photons to escape the electron channel and be absorbed in an antechamber. The gas generated by the photons hitting the absorbers in the antechambers will be pumped by titanium sublimation pumps located directly under the absorbers. The electron channel and the antechamber are connected by a 10-mm-high slot that offers good electrodynamic isolation of the two chambers of frequencies affecting the store electron orbit. Twelve 10-meter-long vessels constitute the vacuum chambers for all the lattice magnets. Each chamber will be machined from two thick plates of 5083-H321 aluminum and welded at the perimeter. Machining both the inside and outside of the vacuum chamber permits the use of complex and accurate surfaces. The use of thick plates allows flanges to be machined directly into the wall of each chamber, thus avoiding much welding. 1 ref., 3 figs.

  3. Vacuum system for the LBL advanced light source (ALS)

    SciTech Connect

    Kennedy, K.

    1988-05-01

    A 1.5 to 1.9 GeV synchrotron light source is being built at LBL. The vacuum system is designed to permit all synchrotron photons on the median plane to escape the electron channel and go into an antechamber through a 10 mm high slot. This slot offers effective RF isolation between the electron duct and the antechamber. All unused synchrotron photons within a few mrad of the median plane will be stopped by 96 nearly horizontal absorbers located in the antechamber. The gas, generated by the photons hitting the absorbers, will be directed down to reactive titanium surfaces. Twelve 10 meter long vessels constitute the vacuum chambers for all the lattice magnets. Each chamber will be machined from two thick plates of 5083-H321 aluminum and welded at the perimeter. The nominal wall thickness of the vacuum chamber is 40 mm, which makes it possible to machine a flange into the chamber without the use of welding. 5 refs., 5 figs.

  4. EDITORIAL: Special Issue on advanced and emerging light sources Special Issue on advanced and emerging light sources

    NASA Astrophysics Data System (ADS)

    Haverlag, Marco; Kroesen, Gerrit; Ferguson, Ian

    2011-06-01

    The papers in this special issue of Journal of Physics D: Applied Physics (JPhysD) originate from the 12th International Symposium on the Science and Technology of Light Sources and the 3rd International Conference on White LEDs and Solid State Lighting, held 11-16 July 2010 at Eindhoven University. Abstracts of all papers presented at this combined conference were published in the Conference Proceedings LS-WLED 2010 by FAST-LS, edited by M Haverlag, G M W Kroesen and T Taguchi. Special issues of the previous three LS conferences have been well-cited and have proven to be an important source of information for the lighting community. The 2010 LS-Symposium was a combined conference with the White LED Conference in order to enhance the scope of this conference series towards new light source technologies such as LEDs and OLEDs, and this co-operation will be continued in the future. Given the faster technology development in these areas it was also decided to shorten the interval between conferences from three to two years. Well over 200 invited presentations, landmark presentations and poster contributions were presented at the 2010 LS-Symposium. The organizing committee have selected from these a number of outstanding contributions with a high technological content and invited the authors to submit a full paper in JPhysD. The criteria were that the work should not be a repetition of the work already published in the Proceedings, but should be new, complete, within the scope of JPhysD, and meeting the normal quality standards of this journal. After peer review a combined set of 18 papers is published in this JPhysD special issue. In addition, a number of lighting-application-orientated papers will be published in a special issue of Journal of Light & Visual Environment later in 2011. The papers in this special issue of JPhysD show that research in the science and technology of light sources still covers a broad set of subject areas which includes both 'classical

  5. A new bend magnet beam line for scanning transmission x-ray microscopy at the Advanced Light Source

    SciTech Connect

    Warwick, Tony; Ade, Harald; Kilcoyne, A.L. David; Kritscher, Michael; Tylisczcak, Tolek; Fakra, Sirine; Hitchcock, Adam P.; Hitchcock, Peter; Padmore, Howard A.

    2001-12-12

    The high brightness of the bend magnets at the Advanced Light Source has been exploited to illuminate a Scanning Transmission X-ray Microscope (STXM). This is the first diffraction-limited scanning x-ray microscope to operate with useful count rate on a synchrotron bend magnet source. A simple, dedicated beam line has been built covering the range of photon energy from 250 eV to 600 eV. Ease of use and operational availability are radically improved compared to previous installations using undulator beams. This facility provides radiation for C 1s, N 1s and O 1s near edge x-ray absorption spectro-microscopy with a spectral resolution up to about 1:5000 and with STXM count rates in excess of 1 MHz.

  6. A Cs2LiYCl6:Ce-based advanced radiation monitoring device

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Dallmann, N.; Baginski, M. J.; Best, D. J.; Smith, M. B.; Graham, S. A.; Dathy, C.; Frank, J. M.; McClish, M.

    2015-06-01

    Cs2LiYCl6:Ce3+ (CLYC) scintillator has gained recent interest because of its ability to perform simultaneous gamma spectroscopy and thermal neutron detection. Discrimination between the two incident particle types owes to the fundamentally unique emission waveforms, a consequence of the interaction and subsequent scintillation mechanisms within the crystal. Due to this dual-mode detector capability, CLYC was selected for the development of an Advanced Radiation Monitoring Device (ARMD), a compact handheld instrument for radioisotope identification and localization. ARMD consists of four 1 in.-right cylindrical CLYC crystals, custom readout electronics including a suitable multi-window application specific integrated circuit (ASIC), battery pack, proprietary software, and Android-based tablet for high-level analysis and display. We herein describe the motivation of the work and engineering design of the unit, and we explain the software embedded in the core module and for radioisotope analysis. We report an operational range of tens of keV to 8.5 MeV with approximately 5.3% gamma energy resolution at 662 keV, thermal neutron detection efficiency of 10%, battery lifetime of up to 10 h, manageable rates of 20 kHz; further, we describe in greater detail time to identify specific gamma source setups.

  7. 3D Finite-Difference Modeling of Acoustic Radiation from Seismic Sources

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Aldridge, D. F.; Jensen, R. P.

    2013-12-01

    Shallow seismic events, earthquakes as well as explosions, often generate acoustic waves in the atmosphere observable at local or even regional distances. Recording both the seismic and acoustic signals can provide additional constraints on source parameters such as epicenter coordinates, depth, origin time, moment, and mechanism. Recent advances in finite-difference (FD) modeling methods enable accurate numerical treatment of wave propagation across the ground surface between the (solid) elastic and (fluid) acoustic domains. Using a fourth-order, staggered-grid, velocity-stress FD algorithm, we are investigating the effects of various source parameters on the acoustic (or infrasound) signals transmitted from the solid earth into the atmosphere. Compressional (P), shear (S), and Rayleigh waves all radiate some acoustic energy into the air at the ground surface. These acoustic wavefronts are typically conical in shape, since their phase velocities along the surface exceed the sound speed in air. Another acoustic arrival with a spherical wavefront can be generated from the vicinity of the epicenter of a shallow event, due to the strong vertical ground motions directly above the buried source. Images of acoustic wavefields just above the surface reveal the radiation patterns and relative amplitudes of the various arrivals. In addition, we compare the relative effectiveness of different seismic source mechanisms for generating acoustic energy. For point sources at a fixed depth, double-couples with almost any orientation produce stronger acoustic signals than isotropic explosions, due to higher-amplitude S and Rayleigh waves. Of course, explosions tend to be shallower than most earthquakes, which can offset the differences due to mechanism. Low-velocity material in the shallow subsurface acts to increase vertical seismic motions there, enhancing the coupling to acoustic waves in air. If either type of source breaks the surface (e.g., an earthquake with surface rupture

  8. Treatment of Locally Advanced Pancreatic Cancer: The Role of Radiation Therapy

    SciTech Connect

    Johung, Kimberly; Saif, Muhammad Wasif; Chang, Bryan W.

    2012-02-01

    Pancreatic cancer remains associated with an extremely poor prognosis. Surgical resection can be curative, but the majority of patients present with locally advanced or metastatic disease. Treatment for patients with locally advanced disease is controversial. Therapeutic options include systemic therapy alone, concurrent chemoradiation, or induction chemotherapy followed by chemoradiation. We review the evidence to date regarding the treatment of locally advanced pancreatic cancer (LAPC), as well as evolving strategies including the emerging role of targeted therapies. We propose that if radiation is used for patients with LAPC, it should be delivered with concurrent chemotherapy and following a period of induction chemotherapy.

  9. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    NASA Astrophysics Data System (ADS)

    Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  10. Advances in Linac-Based Technology for Industrial Radiation Processing

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph

    1997-04-01

    Experience with the Industrial Materials Processing Electron Linear Accelerator, IMPELA, over 30,000 hours of 50 kW operation is reported for three irradiators, two of which are in commercial service. Operations are sufficiently mature that research is now concentrated on split beams, photon conversion, dose monitoring, beam scanning, new shielding designs and QA controls. The efficacy of increasing the incident electron energy on bremsstrahlung converters to 7.5 MeV, as proposed by an IAEA committee, is examined experimentally on an IMPELA accelerator over the energy range 7 MeV to 11 MeV to evaluate conversion efficiency, activation of machine components, converter engineering and the activation of red meat. Above 8 MeV the radioactive isotopes ^38Cl and ^24Na, formed primarily by neutrons produced in a tantalum converter, were clearly identified in the meat, while above 10.5 MeV the radiation from ^13N becomes dominant. Implications for the practicality of processing other high density products are discussed.

  11. Radiative properties of advanced spacecraft heat shield materials

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  12. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Astrophysics Data System (ADS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-10-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  13. Current advances in synchrotron radiation instrumentation for MX experiments.

    PubMed

    Owen, Robin L; Juanhuix, Jordi; Fuchs, Martin

    2016-07-15

    Following pioneering work 40 years ago, synchrotron beamlines dedicated to macromolecular crystallography (MX) have improved in almost every aspect as instrumentation has evolved. Beam sizes and crystal dimensions are now on the single micron scale while data can be collected from proteins with molecular weights over 10 MDa and from crystals with unit cell dimensions over 1000 Å. Furthermore it is possible to collect a complete data set in seconds, and obtain the resulting structure in minutes. The impact of MX synchrotron beamlines and their evolution is reflected in their scientific output, and MX is now the method of choice for a variety of aims from ligand binding to structure determination of membrane proteins, viruses and ribosomes, resulting in a much deeper understanding of the machinery of life. A main driving force of beamline evolution have been advances in almost every aspect of the instrumentation comprising a synchrotron beamline. In this review we aim to provide an overview of the current status of instrumentation at modern MX experiments. The most critical optical components are discussed, as are aspects of endstation design, sample delivery, visualisation and positioning, the sample environment, beam shaping, detectors and data acquisition and processing. PMID:27046341

  14. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  15. Design and experimental study of a secondary hohlraum radiation source with laser focal spots blocked

    NASA Astrophysics Data System (ADS)

    Song, Tianming; Zhu, Tuo; Yang, Jiamin; Huang, Chengwu; Wang, Feng; Peng, Xiaoshi; Xu, Tao; Li, Zhichao; Zhang, Huan

    2016-01-01

    A design of secondary hohlraum radiation source with laser focal spots blocked is introduced. The hard x-ray radiation such as the gold M-band emission and hot electrons from the coronal plasma were designed to be shielded using a cylindrical shield. Three-dimensional view factor analysis was carried out to optimize the shield structure to achieve higher radiation temperature. An experiment was performed at Shenguang III prototype laser facility to verify the design. Velocity Interferometer System for Any Reflector was used to measure the shock wave speed in a three-stepped Al sample driven by this radiation source and the peak radiation temperature of the radiation source was estimated to be about 90 eV.

  16. Advanced Strained-Superlattice Photocathodes for Polarized Electron Sources

    SciTech Connect

    Dr. Aaron Moy

    2005-01-31

    Polarized electrons have been essential for high-energy parity-violating experiments and measurements of the nucleon spin structure. The availability of a polarized electron beam was crucial to the success of the Stanford Linear Collider (SLC) in achieving a precise measurement of the electroweak mixing angle, and polarized electron beams will be required for all future linear colliders. Polarized electrons are readily produced by GaAs photocathode sources. When a circularly polarized laser beam tuned to the bandgap minimum is directed to the negative-electron-affinity (NEA) surface of a GaAs crystal, longitudinally polarized electrons are emitted into vacuum. The electron polarization is easily reversed by reversing the laser polarization. The important properties of these photocathodes for accelerator applications are: degree of polarization of the extracted beam; ability to extract sufficient charge to meet accelerator pulse-structure requirements; efficiency and stability of operation; and absence of any asymmetries in the beam properties (charge, position, energy, etc.) upon polarization reversal. The performance of GaAs photocathodes has improved significantly since they were first introduced in 1978 [1]. The theoretical maximum polarization of 50% for natural GaAs was first exceeded in 1991 using the lattice mismatch of a thin InGaAs layer epitaxially grown over a GaAs substrate to generate a strain in the former that broke the natural degeneracy between the heavy- and light-hole valence bands [2]. Polarizations as high as 78% were produced for the SLC from photocathodes based on a thin GaAs epilayer grown on GaAsP [3,4]. After 10 years of experience with many cathode samples at several laboratories [5], the maximum polarization using the GaAs/GaAsP single strained-layer cathode remained limited to 80%, while the quantum efficiency (QE) for a 100-nm epilayer is only 0.3% or less. Two factors were known to limit the polarization of these cathodes: (1) the

  17. X-ray optics developments at the APS for third-generation synchrotron radiation sources

    SciTech Connect

    Mills, D.M.

    1996-09-01

    High brilliance third-generation synchrotron radiation sources simultaneously provide both a need and an opportunity for the development of new x-ray optical components. The high power and power densities of the x-ray beams produced by insertion devices have forced researchers to consider novel, and what may seem like exotic, approaches to the mitigation of thermal distortions that can dilute the beam brilliance delivered to the experiment or next optical component. Once the power has been filtered by such high heat load optical elements, specialized components can be employed that take advantage of the high degree of brilliance. This presentation reviews the performance of optical components that have been designed, fabricated, and tested at the Advanced Photon Source, starting with high heat load components and followed by examples of several specialized devices such as a milli-eV resolution (in-line) monochromator, a high energy x-ray phase retarder, and a phase zone plate with submicron focusing capability.

  18. New Spherical Gamma-Ray and Neutron Emitting Sources for Testing of Radiation Detection Instruments

    PubMed Central

    Lucas, L.; Pibida, L.

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed new gamma-ray and neutron emitting sources for testing radiation detection systems. These radioactive sources were developed for testing of detection systems in maritime applications. This required special source characteristics.

  19. Compact radiation sources for increased access to high brightness x-rays

    NASA Astrophysics Data System (ADS)

    O'Shea, Finn Henry

    The successful operation of the x-ray free electron lasers at LCLS and SACLA are a boon for science. The increase in brightness of 10 orders of magnitude over synchrotron sources as well as the sub-picosecond time profile of the x-rays are opening new avenues of research in fields ranging from biology to solid state physics. However, synchrotrons and free electron lasers that produce x-rays are expensive, with price tags that measured hundreds of millions. Further, the standard unit of measure for the scale of these sources is kilometers. The sheer size and prohibitive cost of these devices means that such sources are out of the reach of universities and smaller laboratories. The focus of this dissertation is in increasing access to x-ray sources by making them both smaller and, perhaps more importantly, cheaper. Current limitations to source size reduction are discussed which leads to the conclusion that smaller x-rays sources require short period undulators. In this context, two approaches to increasing access to x-rays are covered. The first is direct decrease in the period length of undulators through more advanced design and materials. This path begins with a discussion of the design and construction of a 9 mm period prototype. An analysis of the benefits of such a device, in reduced undulator and accelerator lengths at existing free electron lasers, is explored. And finally, the operation of the undulator in a realistic scenario is experimentally explored in a scaled experiment at optical frequencies. The second method for decreasing the period length of the light source is to replace the undulator with a laser, making an inverse Compton scattering source. The relationship between undulator radiation and the inverse Compton scattering process is examined, as well as the characteristics of the source itself. Lastly, as a demonstration of the function of the inverse Compton scattering source at Brookhaven National Laboratory as a diagnostic tool rather than an

  20. Design, development, and evaluation of a simple blackbody radiative source.

    PubMed

    Castrejón-García, R; Castrejón-Pita, J R; Castrejón-Pita, A A

    2010-05-01

    This paper presents a simple design and the testing of a blackbody prototype. The physical properties and geometry of the cavity produce a radiator or blackbody with an emissivity greater than 0.99. The prototype has the advantages of having a traditional spherical cavity made of alumina refractory cement and a radiative emission very close to that of an ideal blackbody. The prototype can be used as a calibration standard for other radiation measuring instruments or sensors. Experimental measurements of radiant flux of the prototype measured with a calibrated infrared radiometer and a wide spectrum radiometer are also presented. The prototype is easy to construct and the material required are available to most research centers, laboratories, industries, and universities. PMID:20515171

  1. Smoke detector with a radiation source operated in a pulse-like or intermittent mode

    SciTech Connect

    Muggli, J.; Guttinger, H.

    1985-03-19

    A smoke detector contains a pulse-operated radiation source and a radiation receiver arranged externally of the region directly irradiated by the radiation source. The radiation receiver, in the presence of smoke in the radiation region, is impinged by scattered radiation and delivers output pulses. There is provided an evaluation circuit which generates a blocking pulse, and which inputs a resetting signal to a counter device in consequence of the difference of the blocking pulse and output pulse of the radiation receiver. The counter or counting device, in the absence of a resetting signal, is switched further and upon reaching a predetermined counter state triggers an alarm signal. High-frequency electrical disturbances which arise, as long as the radiation source delivers radiation pulses, at most can generate an additional resetting signal for the counter, so that the integrity of the smoke detector against triggering of false alarms is enhanced. If there is connected in parallel to the radiation receiver a NTC-resistor, then there is obtained a smoke detector which responds to a further combustion criterion (temperature).

  2. Monte Carlo simulations of the vacuum performance of differential pumps at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, C.; Shu, D.; Kuzay, T. M.; Kersevan, R.

    1996-09-01

    Monte Carlo computer simulations have been successfully applied in the design of vacuum systems. These simulations allow the user to check the vacuum performance without the need of making a prototype of the vacuum system. In this paper we demonstrate the effectiveness and aptitude of these simulations in the design of differential pumps for synchrotron radiation beamlines. Eventually a good number of the beamline front ends at the Advanced Photon Source (APS) will use differential pumps to protect the synchrotron storage ring vacuum. A Monte Carlo computer program is used to calculate the molecular flow transmission and pressure distribution across the differential pump. A differential pump system, which consists of two 170 l/s ion pumps with three conductance-limiting apertures, was previously tested on an APS insertion-device beamline front end. Pressure distribution measurements using controlled leaks demonstrated a pressure difference of over two decades across the differential pump. A new differential pump utilizes a fixed mask between two 170 l/s ion pumps. The fixed mask, which has a conical channel with a small cross section of 4.5×4.5 mm2 in the far end, is used in the beamline to confine the photon beam. Monte Carlo simulations indicate that this configuration with the fixed mask significantly improves the pressure reduction capability of the differential pump, to ˜3×10-5, within the operational range from ˜10-4 to 10-10 Torr. The lower end of pressure is limited by outgassing from front-end components and the higher end by the pumping ability of the ion pump.

  3. Standards and the design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.P.; Knott, M.J.; Lenkszus, F.R.; Kraimer, M.R.; Daly, R.T.; Arnold, N.D.; Anderson, M.D.; Anderson, J.B.; Zieman, R.C.; Cha, Ben-Chin K.; Vong, F.C.; Nawrocki, G.J.; Gunderson, G.R.; Karonis, N.T.; Winans, J.R.

    1991-12-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  4. Standards and the design of the Advanced Photon Source control system

    NASA Astrophysics Data System (ADS)

    McDowell, W. P.; Knott, M. J.; Lenkszus, F. R.; Kraimer, M. R.; Daly, R. T.; Arnold, N. D.; Anderson, M. D.; Anderson, J. B.; Zieman, R. C.; Cha, Ben-Chin K.

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  5. Age Disparity in Palliative Radiation Therapy Among Patients With Advanced Cancer

    SciTech Connect

    Wong, Jonathan; Xu, Beibei; Yeung, Heidi N.; Roeland, Eric J.; Martinez, Maria Elena; Le, Quynh-Thu; Mell, Loren K.; Murphy, James D.

    2014-09-01

    Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences in patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end

  6. On the nature of the sources of hard pulse X-ray radiation

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1978-01-01

    Besides the identified sources of cosmic pulse X-ray radiation with globular clusters NGC 6624, NGC 1851 and MXB 1730-335 several new identifications were made. The source in Norma was probably identified with globular cluster NGC 5927, the source in Aquila with globular cluster NGC 6838 (M71), and the source in Puppis with globular cluster NGC 2298. Gamma pulses discovered by the Vela satellites and X-ray pulses thoroughly measured by the SAS-3, Ariel-5, and ANS satellites are thought to be the same phenomenon. The sources of such a radiation must be some kind of peculiarity at the central part of globular clusters; it is most probably a massive black hole. The sources of hard pulse radiation which cannot be identified with globular clusters are considered to be a new kind of galactic object, invisible globular clusters, which are naked nuclei of globular clusters.

  7. The Radiation Belt Storm Probes Mission: Advancing Our Understanding of the Earth's Radiation Belts

    NASA Technical Reports Server (NTRS)

    Sibeck, David; Kanekal, Shrikanth; Kessel, Ramona; Fox, Nicola; Mauk, Barry

    2012-01-01

    We describe NASA's Radiation Belt Storm Probe (RBSP) mission, whose primary science objective is to understand, ideally to the point of predictability, the dynamics of relativistic electrons and penetrating ions in the Earth's radiation belts resulting from variable solar activity. The overarching scientific questions addressed include: 1. the physical processes that produce radiation belt enhancement events, 2. the dominant mechanisms for relativistic electron loss, and 3. how the ring current and other geomagnetic processes affect radiation belt behavior. The RBSP mission comprises two spacecraft which will be launched during Fall 2012 into low inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigee altitudes and apogee radial distances of 600 km and 5.8 RE respectively. During the two-year primary mission, the spacecraft orbits precess once around the Earth and lap each other twice in each local time quadrant. The spacecraft are each equipped with identical comprehensive instrumentation packages to measure, electrons, ions and wave electric and magnetic fields. We provide an overview of the RBSP mission, onboard instrumentation and science prospects and invite scientific collaboration.

  8. International Conference on Advances in Radiation Oncology (ICARO): Outcomes of an IAEA Meeting

    PubMed Central

    2011-01-01

    The IAEA held the International Conference on Advances in Radiation Oncology (ICARO) in Vienna on 27-29 April 2009. The Conference dealt with the issues and requirements posed by the transition from conventional radiotherapy to advanced modern technologies, including staffing, training, treatment planning and delivery, quality assurance (QA) and the optimal use of available resources. The current role of advanced technologies (defined as 3-dimensional and/or image guided treatment with photons or particles) in current clinical practice and future scenarios were discussed. ICARO was organized by the IAEA at the request of the Member States and co-sponsored and supported by other international organizations to assess advances in technologies in radiation oncology in the face of economic challenges that most countries confront. Participants submitted research contributions, which were reviewed by a scientific committee and presented via 46 lectures and 103 posters. There were 327 participants from 70 Member States as well as participants from industry and government. The ICARO meeting provided an independent forum for the interaction of participants from developed and developing countries on current and developing issues related to radiation oncology. PMID:21294881

  9. Dose Measurements of Bremsstrahlung-Produced Neutrons at the Advanced Photon Source

    SciTech Connect

    Job, P.K.; Pisharody, M.; Semones, E.

    1998-08-01

    Bremsstrahlung is generated in the storage rings of the synchrotron radiation facilities by the radiative interaction of the circulating particle beam with both the residual gas molecules and storage ring components. These bremsstrahlung photons, having an energy range of zero to the maximum energy of the particle beam, interact with beamline components like beam stops and collimators generating photoneutrons of varying energies. There are three main processes by which photoneutrons may be produced by the high energy bremsstrahlung photons: giant nuclear dipole resonance and decay (10 MeV < E{sub {gamma}} < 30 MeV), quasi-deuteron production and decay (50 MeV < E{sub {gamma}} < 300 MeV), and intranuclear cascade and evaporation (E{sub {gamma}} > 140 MeV). The giant resonance neutrons are emitted almost isotropically and have an average energy of about 2 MeV. High energy neutrons (E > 10 MeV) emitted from the quasi-deuteron decay and intranuclear cascade are peaked in the forward direction. At the Advanced Photon Source (APS), where bremsstrahlung energy can be as high as 7 GeV, production of photoneutrons in varying yields is possible from all of the above three processes. The bremsstrahlung produced along a typical 15.38-m straight path of the insertion device (ID) beamline of the APS has been measured and analyzed in previous studies. High-Z materials constituting the beamline components, such as collimators and beam stops, can produce photoneutrons upon interaction with these bremsstrahlung photons. The 1/E nature of the bremsstrahlung spectrum and the fact that the photoneutron production cross section is comparatively larger in the energy region 10 MeV < E{sub {gamma}} < 30 MeV, results in the giant resonance interaction being the dominant mechanism that generates photoneutrons at the APS. Such neutron flux in the vicinities of the first optics enclosures (FOEs) of ID beamlines is important, from the point of view of radiation protection of the personnel. Only

  10. Natural Sources of Radiation Exposure and the Teaching of Radioecology

    ERIC Educational Resources Information Center

    Anjos, R. M.; Veiga, R.; Carvalho, C.; Sanches, N.; Estellita, L.; Zanuto, P.; Queiroz, E.; Macario, K.

    2008-01-01

    We have developed an experimental activity that introduces concepts of the natural ionizing radiation and its interaction with our contemporary environment that can be used with students from secondary to college level. The experiment is based on the use of traditional and cheap portable Geiger-Muller detectors as survey meters for "in situ"…

  11. A note on sound radiation from distributed sources

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1979-01-01

    The power output from a normally vibrating strip radiator is expressed in alternative general forms, one of these being chosen to refine and correct some particular estimates given by Heckl for different numerical ratios of strip width to wave length. An exact and explicit calculation is effected for sinusoidal velocity profiles when the strip width equals an integer number of half wave lengths.

  12. Global shielding analysis for the three-element core advanced neutron source reactor under normal operating conditions

    SciTech Connect

    Slater, C.O.; Bucholz, J.A.

    1995-08-01

    Two-dimensional discrete ordinates radiation transport calculations were performed for a model of the three-element core Advanced Neutron Source reactor design under normal operating conditions. The core consists of two concentric upper elements and a lower element radially centered in the annulus between the upper elements. The initial radiation transport calculations were performed with the DORT two-dimensional discrete ordinates radiation transport code using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub 6} quadrature, and a P{sub 1} Legendre polynomial expansion of the cross sections to determine the fission neutron source distribution in the core fuel elements. These calculations were limited to neutron groups only. The final radiation transport calculations, also performed with DORT using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub l0} quadrature, and a P{sub 3} Legendre polynomial expansion of the cross sections, produced neutron and gamma-ray fluxes over the full extent of the geometry model. Responses (or activities) at various locations in the model were then obtained by folding the appropriate response functions with the fluxes at those locations. Some comparisons were made with VENTURE-calculated (diffusion theory) 20-group neutron fluxes that were summed into four broad groups. Tne results were in reasonably good agreement when the effects of photoneutrons were not included, thus verifying the physics model upon which the shielding model was based. Photoneutrons increased the fast-neutron flux levels deep within the D{sub 2}0 several orders of magnitude. Results are presented as tables of activity values for selected radial and axial traverses, plots of the radial and axial traverse data, and activity contours superimposed on the calculational geometry model.

  13. Radiation detectors and sources enhanced with micro/nanotechnology

    NASA Astrophysics Data System (ADS)

    Whitney, Chad Michael

    The ongoing threat of nuclear terrorism presents major challenges to maintaining national security. Currently, only a small percentage of the cargo containers that enter America are searched for fissionable bomb making materials. This work reports on a multi-channel radiation detection platform enabled with nanoparticles that is capable of detecting and discriminating all types of radiation emitted from fissionable bomb making materials. Typical Geiger counters are limited to detecting only beta and gamma radiation. The micro-Geiger counter reported here detects all species of radiation including beta particles, gamma/X-rays, alpha particles, and neutrons. The multi-species detecting micro-Geiger counter contains a hermetically sealed and electrically biased fill gas. Impinging radiation interacts with tailored nanoparticles to release secondary charged particles that ionize the fill gas. The ionized particles collect on respectively biased electrodes resulting in a characteristic electrical pulse. Pulse height spectroscopy and radiation energy binning techniques can then be used to analyze the pulses to determine the specific radiation isotope. The ideal voltage range of operation for energy discrimination was found to be in the proportional region at 1000VDC. In this region, specific pulse heights for different radiation species resulted. The amplification region strength which determines the device sensitivity to radiation energy can be tuned with the electrode separation distance. Considerable improvements in count rates were achieved by using the charge conversion nanoparticles with the highest cross sections for particular radiation species. The addition of tungsten nanoparticles to the microGeiger counter enabled the device to be four times more efficient at detecting low level beta particles with a dose rate of 3.2uR/hr (micro-Roentgen per hour) and just under three times more efficient than an off the shelf Geiger counter. The addition of lead

  14. Magnetic Field Discontinuity as a New Brighter Source of Infrared Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Mathis, Y.-L.; Roy, P.; Tremblay, B.; Nucara, A.; Lupi, S.; Calvani, P.; Gerschel, A.

    1998-02-01

    Strong emission of highly collimated infrared radiation demonstrates the presence of dipole edge emission and transient undulator radiation emission. The photon flux and spatial distribution for the Super-ACO sources (both dipole edge and wiggler) including coherence effects have been evaluated using the exact expression for the emission of a charged particle. The excellent agreement between these results and measurements performed at the SIRLOIN (Spectroscopie en Infrarouge LOINtain) beam line provides a new level of understanding of infrared synchrotron radiation.

  15. Localization of non-stationary sources of electromagnetic radiation with the aid of phasometry

    NASA Technical Reports Server (NTRS)

    Mersov, G. A.

    1978-01-01

    The possibility of localizing sources of electromagnetic radiation by measurement of the time of passage of the radiation or the measurement of its phase at various points of cosmic space, at which are located satellite observatories is examined. Algorithms are proposed for localization using two, three, and four astronomical observatories. The precision of the localization and several partial results of practical significance are deduced.

  16. Advanced Light Source First-Phase Scientific Program, 1993/1994

    SciTech Connect

    Not Available

    1992-08-01

    This composite document outlines ten different experiments planned for the beamline at the Advanced Light Source. Researchers from various parts of the country have detailed their methods and equipment to be used in experiments in biology and physics. X-ray spectroscopy and microscopy are the common topics to these experiments. (GHH)

  17. Designing for safety in the conceptual design of the Advanced Neutron Source

    SciTech Connect

    Harrington, R.M.; West, C.D.

    1993-06-01

    The Advanced Neutron Source is a major new research facility proposed by the Department of Energy for construction over the next six years. The unique set of nuclear safety features selected to give the recently completed conceptual design a high degree of safety are identified and discussed.

  18. ADVANCED TOOLS FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS AND SOURCE WATERS

    EPA Science Inventory

    The purpose of this poster is to present the application and assessment of advanced state-of-the-art technologies in a real-world environment - wastewater effluent and source waters - for detecting six drugs [azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, m...

  19. A divide-down RF source generation system for the Advanced Photon Source

    SciTech Connect

    Horan, D.; Lenkszus, F.; Laird, R.

    1997-08-01

    A divide-down rf source system has been designed and built at Argonne National Laboratory to provide harmonically-related and phase-locked rf source signals between the APS 352-MHz storage ring and booster synchrotron rf systems and the 9.77-MHz and 117-MHz positron accumulator ring rf systems. The design provides rapid switching capability back to individual rf synthesizers for each one. The system also contains a digital bucket phase shifter for injection bucket selection. Input 352-MHz rf from a master synthesizer is supplied to a VXI-based ECL divider board which produces 117-MHz and 9.77-MHz square-wave outputs. These outputs are passed through low-pass filters to produce pure signals at the required fundamental frequencies. These signals, plus signals at the same frequencies from independent synthesizers, are fed to an interface chassis where source selection is made via local/remote control of coaxial relays. This chassis also produces buffered outputs at each frequency for monitoring and synchronization of ancillary equipment.

  20. Solid state sensor for locating and imaging sources of gamma and x-radiation

    SciTech Connect

    Kronenberg, S.; Brucker, G.J.; Bechtel, E.

    1998-06-01

    This paper describes the design and characterization of a directional Solid State Detector (SSD) that generates images of radiation point sources and scatter patterns from irradiated targets, thus accurately identifying their locations. Previous papers demonstrated that other types of directional radiation sensors, such as Ionization Chambers, Geiger-Mueller and Scintillation Counters, can be designed to detect and locate arrays of gamma ray and x-ray point sources and broad scatter patterns.

  1. Advances in Nuclear Cardiac Instrumentation with a View Towards Reduced Radiation Exposure

    PubMed Central

    Dey, Damini; Duvall, W. Lane; Henzlova, Milena J.; Berman, Daniel S.; Germano, Guido

    2013-01-01

    Recent advances in nuclear cardiology instrumentation have enabled myocardial perfusion imaging (MPI) with improved image quality and fast scan times. These developments also can be exploited to reduce the effective radiation dose to the patient. In this review, we discuss these technologies including new single photon emission computed tomography (SPECT) and positron emission tomography (PET) scanners, as well as novel reconstruction software with regard to their potential for the reduction of the patient radiation dose. New advances in nuclear cardiology instrumentation will allow routine rest/stress MPI imaging with low radiation doses (< 5 mSv) and fast imaging times, even by the software-only solutions. It is possible to further reduce the MPI radiation dose to less than 2 to 3 mSv range with standard acquisition times. PET perfusion imaging also can be performed with very low doses especially by the three-dimensional scanners allowing hybrid PET/computed tomographic angiography (CTA) imaging with low overall dose. In addition, stress-only protocols can be utilized to further reduce the radiation dose and the overall test time. PMID:22327929

  2. Management of locally advanced carcinoma of the breast by primary radiation therapy

    SciTech Connect

    Harris, J.R.; Sawicka, J.; Gelman, R.; Hellman, S.

    1983-03-01

    A retrospective review of 137 patients with locally advanced breast cancer, but without distant metastases, who were treated with radical radiation therapy is presented. Ninety percent of patients had an initial complete response to their radiation therapy. The 5 year rates of local tumor control, survival free of distant failure, and overall survival were 54% 28% and 30%, respectively. Multivariate analysis revealed that the following features were associated with improved local tumor control: clinically negative axillary nodes, excisional biopsy, radiation dose greater than 6000 rad, and the use of adjuvant systemic therapy. Improved freedom from distant relapse was seen in patients with small primaries and non-inflammatory carcinoma, as well as clinically negative axillary nodes, excisional biopsy, radiation dose greater than 6000 rad, and the use of adjuvant systemic therapy. The results suggest that adequate levels of radiation therapy can provide local tumor control in a significant proportion of patients with locally advanced breast cancer and that adjuvant systemic therapy is useful in improving both local tumor control and freedom from distant relapse in these patients.

  3. A Novel Murine Model for Localized Radiation Necrosis and its Characterization Using Advanced Magnetic Resonance Imaging

    SciTech Connect

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2009-10-01

    Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 {mu}m{sup 2}/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 {mu}m{sup 2}/ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.

  4. Conceptualisation of the characteristics of advanced practitioners in the medical radiation professions

    PubMed Central

    Smith, Tony; Harris, Jillian; Woznitza, Nick; Maresse, Sharon; Sale, Charlotte

    2015-01-01

    Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as ‘a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care’. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiences in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities. PMID:26451243

  5. [New advance of research on therapy of severe acute radiation sickness with mesenchymal stem cells].

    PubMed

    Guo, Ling-Ling; Li, Ming; Xing, Shuang; Luo, Qing-Liang

    2011-06-01

    Mesenchymal stem cells (MSC) are a kind of non-hematopoietic adult stem cells with self-renewal and multilineage differentiation potential, which have special biological characteristics, such as secreting various cytokines, promoting hematopoiesis, accelerating stem cells homing and reconstructing hematopoietic microenvironment. MSC are collected and amplified easily, and can be transfected by exogenous gene. Many reports indicated that MSC were applied in therapy for variety of tissues and organs injury, meanwhile the treatment for acute radiation sickness has made significant progress. In this review, the biological characteristics and new research advance on MSC in treatment of severe acute radiation sickness are summarized and discussed. PMID:21729581

  6. Recent advances in X-ray nanolithography using synchrotron radiation at Super-ACO

    NASA Astrophysics Data System (ADS)

    Rousseaux, F.; Chen, Y.; Haghiri-Gosnet, A. M.; Launois, H.

    1995-02-01

    This paper describes our recent advances in high resolution synchrotron radiation lithography. Fabrication processes of high resolution X-ray masks based on our current {SiC}/{W} technology have been optimized to be compatible with a commercial Karl Süss stepper. As a result, well defined 50 nm wide isolated lines and small gratings of period down to 100 nm have been fabricated and tested in proximity X-ray lithography with the stepper. Replication tests were done with a minimum gap setting down to 5 μm. Results show that proximity X-ray lithography using synchrotron radiation is a viable technology for printing 50 nm linewidth features.

  7. The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere

    NASA Technical Reports Server (NTRS)

    Mason, V. B.

    1973-01-01

    In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.

  8. Modular Stirling Radioisotope Power System (SRPS) using an advanced heat source

    NASA Astrophysics Data System (ADS)

    Moul, David S.

    2001-02-01

    The advanced Stirling engine/alternator developed by Stirling Technology Company has potential for a wide range of space applications, at an efficiency comparable to solar cells and triple that of thermoelectric elements. However, the unique design of the Stirling engine requires a concentrated heat input in an annular band which would be optimized with an advanced heat source design. The concentrated heat rejection area of the Stirling engine would also be optimized with the use of a Capillary Pumped Loop to transport the waste heat from the engine. This advanced concept will explore using a Capillary Pumped Loop to transport the waste heat to the mission spacecraft for operational heating. Use of these advanced techniques will allow a specific power approaching 8 We/kg, compared to 5 We for a conventional RTG. .

  9. Broadband picosecond radiation source based on noncollinear optical parametric amplifier

    SciTech Connect

    Arakcheev, V G; Morozov, V B; Vereshchagin, A K; Vereshchagin, K A; Tunkin, V G; Yakovlev, D V

    2014-04-28

    Amplification of broadband radiation of modeless dye laser by a noncollinear optical parametric amplifier based on a KTP crystal has been implemented upon pumping by 63-ps second-harmonic pulses of a Nd : YAG laser. Pulses with a bandwidth of 21 nm, a duration of 26 ps and an energy of 1.2 mJ have been obtained at the centre wavelength of 685 nm. (nonlinear optical phenomena)

  10. R&D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    SciTech Connect

    Piot, P.; Brau, C.A.; Choi, B.K.; Gabella, W.E.; Jarvis, J.D.; Mendenhall, M.H.; Lewellen, J.W.; Mihalcea, D.; /Northern Illinois U.

    2012-08-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B {approx} 10{sup 12} photons.(mm-mrd){sup -2}.(0.1% BW){sup -1} .s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  11. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation

    PubMed Central

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis. PMID:27194417

  12. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation

    NASA Astrophysics Data System (ADS)

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-05-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.

  13. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    SciTech Connect

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

  14. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.

    PubMed

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis. PMID:27194417

  15. The Radiation Dose Determination of the Pulsed X-ray Source

    NASA Astrophysics Data System (ADS)

    Miloichikova, I.; Stuchebrov, S.; Zhaksybayeva, G.; Wagner, A.

    2014-10-01

    In this paper the radiation dose measurement technique of the pulsed X-ray source RAP-160-5 is described. The dose rate measurement results from the pulsed X-ray beams at the different distance between the pulsed X-ray source focus and the detector obtained with the help of the thermoluminescent detectors DTL-02, the universal dosimeter UNIDOS E equipped with the plane-parallel ionization chamber type 23342, the dosimeter-radiometer DKS-96 and the radiation dosimeter AT 1123 are demonstrated. The recommendations for the dosimetry measurements of the pulsed X-ray generator RAP-160-5 under different radiation conditions are proposed.

  16. Lloyd’s mirror interference lithography with EUV radiation from a high-harmonic source

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-su; Baksh, Peter; Odstrcil, Michal; Miszczak, Magdalena; Frey, Jeremy G.; Juschkin, Larissa; Brocklesby, William S.

    2016-07-01

    We demonstrate interference lithography using a high-harmonic source. Extreme ultraviolet (EUV) radiation is produced by high-harmonic generation with 800 nm light from a femtosecond Ti:sapphire laser (40 fs pulses, 1 kHz, 2 W average power) in argon gas. Interference patterns created using Lloyd’s mirror setup and monochromatized radiation at the 27th harmonic (29 nm) are recorded using a ZEP-520A photoresist, producing features with <200 nm pitch. The effect of the use of femtosecond pulsed EUV radiation on the recorded pattern is investigated. The capability of the high-harmonic source for high-resolution patterning is discussed.

  17. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    SciTech Connect

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  18. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    NASA Technical Reports Server (NTRS)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  19. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    SciTech Connect

    D. V. Morgan; S. Iversen; R. A. Hilko

    2002-06-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value.

  20. Krypton gas cylinders as a source of radiation.

    PubMed

    Fischer, Helmut W; Bielefeld, Tom; Hettwig, Bernd

    2010-07-01

    A standard 40 foot shipping container with a cargo of pressurized krypton gas in 159 steel cylinders, which had triggered a radiation alarm, was investigated to address radiation safety and illicit nuclear trafficking concerns. The investigation included contamination and dose rate measurements as well as in situ high resolution gamma spectroscopy. The dose rate measurements gave a maximum value of 0.07 microSv h(-1) above background (0.08 to 0.11 microSv h(-1)) on the cylinder surface and no detectable increase above background at distances of 1 m and higher. Contamination monitor readings showed a similar relative increase (plus 8 cpm) above background (about 12 cpm) to the dose rate readings. Quantitative gamma spectroscopy revealed a contamination of the gas with 85Kr at a level of 3.5 x 10(5) Bq kg(-1). This value was found to be consistent with analytical and numerical estimates based on current data for atmospheric 85Kr, which is captured from ambient air together with stable krypton during the production process. This incident demonstrates an apparent lack of radiation-related knowledge by those who handle krypton gas, as well as by border control personnel and emergency responders. We therefore propose to improve labeling and documentation standards for such shipments. This effort may be facilitated by introducing the new category of "technically enhanced artificial radioactive material," or "TEARM" (similar to the existing "naturally occurring radioactive material" or "NORM" and "technically enhanced naturally occurring radioactive material" or "TENORM" categories). PMID:20539125

  1. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  2. Phase 1 Study of Erlotinib Plus Radiation Therapy in Patients With Advanced Cutaneous Squamous Cell Carcinoma

    SciTech Connect

    Heath, C. Hope; Deep, Nicholas L.; Nabell, Lisle; Carroll, William R.; Desmond, Renee; Clemons, Lisa; Spencer, Sharon; Magnuson, J. Scott; Rosenthal, Eben L.

    2013-04-01

    Purpose: To assess the toxicity profile of erlotinib therapy combined with postoperative adjuvant radiation therapy in patients with advanced cutaneous squamous cell carcinoma. Methods and Materials: This was a single-arm, prospective, phase 1 open-label study of erlotinib with radiation therapy to treat 15 patients with advanced cutaneous head-and-neck squamous cell carcinoma. Toxicity data were summarized, and survival was analyzed with the Kaplan-Meier method. Results: The majority of patients were male (87%) and presented with T4 disease (93%). The most common toxicity attributed to erlotinib was a grade 2-3 dermatologic reaction occurring in 100% of the patients, followed by mucositis (87%). Diarrhea occurred in 20% of the patients. The 2-year recurrence rate was 26.7%, and mean time to cancer recurrence was 10.5 months. Two-year overall survival was 65%, and disease-free survival was 60%. Conclusions: Erlotinib and radiation therapy had an acceptable toxicity profile in patients with advanced cutaneous squamous cell carcinoma. The disease-free survival in this cohort was comparable to that in historical controls.

  3. A biotechnological project with a gamma radiation source of 100,000 Ci

    NASA Astrophysics Data System (ADS)

    Lombardo, J. H.; Smolko, E. E.

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.

  4. Gray-Body Radiation Using a Blackbody Source and an Optical Chopper

    NASA Astrophysics Data System (ADS)

    Rodríguez-Arteaga, H.; Cárdenas-García, D.

    2015-08-01

    The emissivity of most material surfaces that can be used as radiation sources is a function of wavelength. On the other hand, blackbody cavities with emissivities higher than 0.995 in a wide wavelength range are readily available in many laboratories. If it were possible to attenuate by a constant factor the radiation emitted by those blackbodies, then they could be used as gray-body radiators. A neutral density filter is not an option to attenuate the radiation from a blackbody source because its transmittance is wavelength dependent. Optical choppers, usually rotating disk shutters, are widely used to modulate the intensity of a light beam. The apparent transmittance of an optical chopper is defined in terms of the mark-to-space ratio. Most optical choppers have a 1:1 ratio which would be equivalent to 50 % transmittance. To attenuate the radiation coming from a blackbody, the optical chopper should have a stable rotating speed and a high chopping frequency so its mark-to-space cycle time is very short compared to a radiation thermometer response time. If this condition is fulfilled, the radiation thermometer would display a temperature reading as if it were aiming to a gray-body at the temperature of the blackbody and with an emissivity equal to the optical chopper transmittance. This method to obtain a gray-body radiator using a blackbody source and an optical chopper is discussed, and some measurements including its uncertainty analysis are reported.

  5. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  6. Internet as a Source of Misconception: "Radiation and Radioactivity"

    ERIC Educational Resources Information Center

    Acar Sesen, Burcin; Ince, Elif

    2010-01-01

    The purpose of this study is to examine students' usage styles of the Internet for seeking information and to investigate whether information obtained from the Internet is a source of misconceptions. For this reason, a two-stage study was conducted. At the first stage, a questionnaire was developed to get information about students' Internet usage…

  7. Prospects for the study of biological systems with high power sources of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Weightman, Peter

    2012-10-01

    The emergence of intense sources of terahertz radiation based on lasers and electron accelerators has considerable potential for research on biological systems. This perspective gives a brief survey of theoretical work and the results of experiments on biological molecules and more complex biological systems. Evidence is accumulating that terahertz radiation influences biological systems and this needs to be clarified in order to establish safe levels of human exposure to this radiation. The use of strong sources of terahertz radiation may contribute to the resolution of controversies over the mechanism of biological organization. However the potential of these sources will only be realized if they are accompanied by the development of sophisticated pump-probe and multidimensional experimental techniques and by the study of biological systems in the controlled environments necessary for their maintenance and viability.

  8. Polarization of Resonance Lines in the Case of Partially Polarized Primary Radiation Sources

    NASA Astrophysics Data System (ADS)

    Dementyev, A. V.

    2016-06-01

    The transfer of polarized radiation in a resonance line in a semi-infinite plane-parallel nonmagnetic atmosphere is examined. It is assumed that scattering takes place with complete frequency redistribution within the line and continuum absorption is taken into account. The primary radiation sources in the atmosphere are assumed to be partially polarized; here the function describing these sources is given by the product of a polynomial and an exponential of the optical depth. The Stokes vector of the emerging radiation is found using a general analytic theory of Î -matrices (the Î -matrix is a generalization of the scalar Chandrasekhar H-function). It is shown that the Stokes vector of the radiation emerging from an atmosphere in which primary sources of this form are distributed can be expressed in terms of the solution of a single, so-called standard problem.

  9. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    PubMed

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-01

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective. PMID:23548030

  10. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, J.

    2014-01-01

    We outline a plan to develop a physics based predictive toolset RISCS to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 AU; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements.

  11. INVITED REVIEW-IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-03-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. PMID:26777133

  12. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  13. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    SciTech Connect

    Moore, Kevin L. Moiseenko, Vitali; Kagadis, George C.; McNutt, Todd R.; Mutic, Sasa

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  14. Advances in clinical research in gynecologic radiation oncology: an RTOG symposium.

    PubMed

    Gaffney, David; Mundt, Arno; Schwarz, Julie; Eifel, Patricia

    2012-05-01

    There have been inexorable improvements in gynecologic radiation oncology through technologically advances, 3-dimensional imaging, and clinical research. Investment in these 3 critical areas has improved, and will continue to improve, the lives of patients with gynecologic cancer. Advanced technology delivery in gynecologic radiation oncology is challenging owing to the following: (1) setup difficulties, (2) managing considerable internal organ motion, and (3) responding to tumor volume reduction during treatment. Image guidance is a potential route to solve these problems and improve delivery to tumor and sparing organs at risk. Imaging with positron emission tomography-computed tomography and magnetic resonance imaging are contributing significantly to improved accuracy in diagnosis, treatment, and follow-up in cancer of the cervix. Functional imaging by exploiting tumor biology may improve prognosis and treatment. Clinical trials have been the greatest mechanism to improve and establish standards of care in women with vulvar, endometrial, and cervical cancer. There have been multiple technological advances and practice changing trials within the past several decades. Many important questions remain in optimizing care for women with gynecologic malignancies. The performance of clinical trials will be advanced with the use of consistent language (ie, similar staging system and criteria), eligibility criteria that fit the research question, end points that matter, adequate statistical power, complete follow-up, and prompt publication of mature results. PMID:22398709

  15. One-way data transfer for PLC to VME status reporting at the Advanced Photon Source

    SciTech Connect

    Stein, S.J.

    1993-11-01

    The Personnel Safety System for the experimental beamlines at the Advanced Photon Source will use a large number of Allen Bradley Programmable Logic Controllers (PLC) to replace conventional relay logic. PLCs allow for the design of a very advanced safety system that can handle a large number of I/O points. Certain situations Require monitoring of the safety system from various locations around the storage ring via EPICS OPI (operator interface)consoles. This presentation covers the method of choice for transferring data from the Personnel Safety System into an EPICS database. Specifics on PLC ladder design, EPICS database design, and hardware selection are also discussed.

  16. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  17. A Novel Murine Model for Localized Radiation Necrosis and its Characterization using Advanced Magnetic Resonance Imaging

    PubMed Central

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2013-01-01

    Introduction Magnetic resonance (MR) images following external beam radiotherapy for brain tumors often display signal changes characteristic of either tumor progression and/or radiation injury. No non-invasive diagnostic biomarkers have been identified that clearly distinguish between these two disease processes. This study’s objective was to develop a murine model of radiation necrosis using fractionated, sub-total cranial irradiation and to investigate the imaging signature of radiation-induced tissue damage using advanced MR imaging techniques. Methods Twenty four mice each received 60 Gy of hemispheric (left) irradiation in ten equal fractions. MR images at 4.7 T were subsequently collected using T1-, T2- and diffusion-sequences at selected time points following irradiation or implantation. Following imaging, animals were euthanized and their brains were fixed for correlative histology. Results Contrast-enhanced T1- and T2-weighted MR images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 μm2/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 μm2/ms) (p<0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that DWI may be helpful in answering this diagnostic question in clinical settings. PMID:19735877

  18. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    PubMed Central

    2010-01-01

    Background DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity. PMID:20868468

  19. Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Loeb, Norman G.; Kato, Seiji; Su, Wenying; Wong, Takmeng; Rose, Fred G.; Doelling, David R.; Norris, Joel R.; Huang, Xianglei

    2012-07-01

    This paper highlights how the emerging record of satellite observations from the Earth Observation System (EOS) and A-Train constellation are advancing our ability to more completely document and understand the underlying processes associated with variations in the Earth's top-of-atmosphere (TOA) radiation budget. Large-scale TOA radiation changes during the past decade are observed to be within 0.5 Wm-2 per decade based upon comparisons between Clouds and the Earth's Radiant Energy System (CERES) instruments aboard Terra and Aqua and other instruments. Tropical variations in emitted outgoing longwave (LW) radiation are found to closely track changes in the El Niño-Southern Oscillation (ENSO). During positive ENSO phase (El Niño), outgoing LW radiation increases, and decreases during the negative ENSO phase (La Niña). The coldest year during the last decade occurred in 2008, during which strong La Nina conditions persisted throughout most of the year. Atmospheric Infrared Sounder (AIRS) observations show that the lower temperatures extended throughout much of the troposphere for several months, resulting in a reduction in outgoing LW radiation and an increase in net incoming radiation. At the global scale, outgoing LW flux anomalies are partially compensated for by decreases in midlatitude cloud fraction and cloud height, as observed by Moderate Resolution Imaging Spectrometer and Multi-angle Imaging SpectroRadiometer, respectively. CERES data show that clouds have a net radiative warming influence during La Niña conditions and a net cooling influence during El Niño, but the magnitude of the anomalies varies greatly from one ENSO event to another. Regional cloud-radiation variations among several Terra and A-Train instruments show consistent patterns and exhibit marked fluctuations at monthly timescales in response to tropical atmosphere-ocean dynamical processes associated with ENSO and Madden-Julian Oscillation.

  20. Terahertz radiation source based on self-wake beam bunching

    SciTech Connect

    Antipov, Sergey; Jing Chunguang; Schoessow, Paul; Kanareykin, Alexei; Jiang Bo; Yakimenko, Vitaly; Zholents, Alexander; Gai Wei

    2012-12-21

    A table top device for producing high power T-ray beams is described. A rectangular electron beam that can be produced out of a photoinjector via stacking of the laser pulse, and running off-crest of the photoinjector rf is sent through a dielectric loaded waveguide. Due to the beam's self-wake its energy becomes modulated. In the chicane beamline following the dielectric energy-bunching section this energy modulation is converted to a density modulation-a bunch train. The density modulated beam can be sent through a power extraction section, like a dielectric loaded accelerating structure, or simply can intercept a foil target, producing THz radiation of various bandwidths and power levels.