Science.gov

Sample records for advanced radiation therapy

  1. Advances in radiation therapy dosimetry

    PubMed Central

    Paliwal, Bhudatt; Tewatia, Dinesh

    2009-01-01

    During the last decade, there has been an explosion of new radiation therapy planning and delivery tools. We went through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments, and additional new techniques for motion-adaptive radiation therapy are being introduced. These advances push the frontiers in our effort to provide better patient care; and with the addition of IMRT, temporal dimensions are major challenges for the radiotherapy patient dosimetry and delivery verification. Advanced techniques are less tolerant to poor implementation than are standard techniques. Mis-administrations are more difficult to detect and can possibly lead to poor outcomes for some patients. Instead of presenting a manual on quality assurance for radiation therapy, this manuscript provides an overview of dosimetry verification tools and a focused discussion on breath holding, respiratory gating and the applications of four-dimensional computed tomography in motion management. Some of the major challenges in the above areas are discussed. PMID:20098555

  2. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  3. Advanced Interventional Therapy for Radiation-Induced Cardiovascular Disease

    PubMed Central

    2016-01-01

    This report describes the case of a 61-year-old woman who presented with dyspnea, aortic stenosis, and coronary artery disease—typical side effects of radiation therapy for Hodgkin lymphoma. A poor candidate for surgery, she underwent successful high-risk percutaneous coronary intervention and subsequent transcatheter aortic valve replacement. This report highlights some of the cardiovascular-specific sequelae of radiation therapy for cancer treatment; in addition, possible directions for future investigations are discussed. PMID:27547140

  4. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy.

    PubMed

    Detappe, Alexandre; Kunjachan, Sijumon; Sancey, Lucie; Motto-Ros, Vincent; Biancur, Douglas; Drane, Pascal; Guieze, Romain; Makrigiorgos, G Mike; Tillement, Olivier; Langer, Robert; Berbeco, Ross

    2016-09-28

    Radiation therapy is a major treatment regimen for more than 50% of cancer patients. The collateral damage induced on healthy tissues during radiation and the minimal therapeutic effect on the organ-of-interest (target) is a major clinical concern. Ultra-small, renal clearable, silica based gadolinium chelated nanoparticles (SiGdNP) provide simultaneous MR contrast and radiation dose enhancement. The high atomic number of gadolinium provides a large photoelectric cross-section for increased photon interaction, even for high-energy clinical radiation beams. Imaging and therapy functionality of SiGdNP were tested in cynomolgus monkeys and pancreatic tumor-bearing mice models, respectively. A significant improvement in tumor cell damage (double strand DNA breaks), growth suppression, and overall survival under clinical radiation therapy conditions were observed in a human pancreatic xenograft model. For the first time, safe systemic administration and systematic renal clearance was demonstrated in both tested species. These findings strongly support the translational potential of SiGdNP for MR-guided radiation therapy in cancer treatment. PMID:27423325

  5. Establishing radiation therapy advanced practice in New Zealand

    SciTech Connect

    Coleman, Karen; Jasperse, Marieke; Herst, Patries; Yielder, Jill

    2014-02-15

    Introduction: Advanced practice (AP) is of increasing interest to many radiation therapists (RTs) both nationally and internationally. In New Zealand, initial research (2005–2008) showed strong support for the development of an AP role for medical radiation technologists (MRTs). Here, we report on a nationwide survey in which RTs validated and prioritised nine AP profiles for future development. Methods: All registered RTs in New Zealand (n = 260) were invited to take part in a survey in December 2011; 73 of whom returned a complete response. Results: RTs supported the implementation of AP roles in New Zealand and the requirement of a Master's degree qualification to underpin clinical knowledge. Most RTs endorsed the criteria attributed to each of the nine proposed AP profiles. The study identified that activities may qualify as either advanced practice or standard practice depending on the department. All participants agreed that an advanced practitioner should be a leader in the field, able to initiate and facilitate future developments within as well as outside this specific role. Acceptance of the AP roles by RTs and other health professionals as well as the availability of resources for successful implementation, were concerns expressed by some RTs. Conclusion: The authors recommend (1) the development of one scope of practice titled ‘advanced practitioner’ with generic and specialist criteria for each profile as the future career pathway, (2) promotion and support for the AP pathway by the New Zealand Institute of Medical Radiation Technology and the New Zealand Medical Radiation Technologists Board.

  6. Establishing radiation therapy advanced practice in New Zealand

    PubMed Central

    Coleman, Karen; Jasperse, Marieke; Herst, Patries; Yielder, Jill

    2014-01-01

    Introduction: Advanced practice (AP) is of increasing interest to many radiation therapists (RTs) both nationally and internationally. In New Zealand, initial research (2005–2008) showed strong support for the development of an AP role for medical radiation technologists (MRTs). Here, we report on a nationwide survey in which RTs validated and prioritised nine AP profiles for future development. Methods: All registered RTs in New Zealand (n = 260) were invited to take part in a survey in December 2011; 73 of whom returned a complete response. Results: RTs supported the implementation of AP roles in New Zealand and the requirement of a Master's degree qualification to underpin clinical knowledge. Most RTs endorsed the criteria attributed to each of the nine proposed AP profiles. The study identified that activities may qualify as either advanced practice or standard practice depending on the department. All participants agreed that an advanced practitioner should be a leader in the field, able to initiate and facilitate future developments within as well as outside this specific role. Acceptance of the AP roles by RTs and other health professionals as well as the availability of resources for successful implementation, were concerns expressed by some RTs. Conclusion: The authors recommend (1) the development of one scope of practice titled ‘advanced practitioner’ with generic and specialist criteria for each profile as the future career pathway, (2) promotion and support for the AP pathway by the New Zealand Institute of Medical Radiation Technology and the New Zealand Medical Radiation Technologists Board. PMID:26229634

  7. Technological Advancements and Error Rates in Radiation Therapy Delivery

    SciTech Connect

    Margalit, Danielle N.

    2011-11-15

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There

  8. Radiation Therapy

    MedlinePlus

    ... people who have radiation therapy may feel more tired than usual, not feel hungry, or lose their ... of radiation therapy include: Fatigue. Fatigue, or feeling tired, is the most common side effect of radiation ...

  9. Radiation therapy

    MedlinePlus

    ... Because radiation is most harmful to quickly growing cells, radiation therapy damages cancer cells more than normal cells. ... cells from growing and dividing, and leads to cell death. Radiation therapy is used to fight many types of ...

  10. Reducing the Human Burden of Breast Cancer: Advanced Radiation Therapy Yields Improved Treatment Outcomes.

    PubMed

    Currey, Adam D; Bergom, Carmen; Kelly, Tracy R; Wilson, J Frank

    2015-01-01

    Radiation therapy is an important modality in the treatment of patients with breast cancer. While its efficacy in the treatment of breast cancer was known shortly after the discovery of x-rays, significant advances in radiation delivery over the past 20 years have resulted in improved patient outcomes. With the development of improved systemic therapy, optimizing local control has become increasingly important and has been shown to improve survival. Better understanding of the magnitude of treatment benefit, as well as patient and biological factors that confer an increased recurrence risk, have allowed radiation oncologists to better tailor treatment decisions to individual patients. Furthermore, significant technological advances have occurred that have reduced the acute and long-term toxicity of radiation treatment. These advances continue to reduce the human burden of breast cancer. It is important for radiation oncologists and nonradiation oncologists to understand these advances, so that patients are appropriately educated about the risks and benefits of this important treatment modality.

  11. Radiation Therapy

    MedlinePlus

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  12. Treatment of Locally Advanced Pancreatic Cancer: The Role of Radiation Therapy

    SciTech Connect

    Johung, Kimberly; Saif, Muhammad Wasif; Chang, Bryan W.

    2012-02-01

    Pancreatic cancer remains associated with an extremely poor prognosis. Surgical resection can be curative, but the majority of patients present with locally advanced or metastatic disease. Treatment for patients with locally advanced disease is controversial. Therapeutic options include systemic therapy alone, concurrent chemoradiation, or induction chemotherapy followed by chemoradiation. We review the evidence to date regarding the treatment of locally advanced pancreatic cancer (LAPC), as well as evolving strategies including the emerging role of targeted therapies. We propose that if radiation is used for patients with LAPC, it should be delivered with concurrent chemotherapy and following a period of induction chemotherapy.

  13. Age Disparity in Palliative Radiation Therapy Among Patients With Advanced Cancer

    SciTech Connect

    Wong, Jonathan; Xu, Beibei; Yeung, Heidi N.; Roeland, Eric J.; Martinez, Maria Elena; Le, Quynh-Thu; Mell, Loren K.; Murphy, James D.

    2014-09-01

    Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences in patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end

  14. Treatment of advanced head and neck cancer: multiple daily dose fractionated radiation therapy and sequential multimodal treatment approach.

    PubMed

    Nissenbaum, M; Browde, S; Bezwoda, W R; de Moor, N G; Derman, D P

    1984-01-01

    Fifty-eight patients with advanced head and neck cancer were entered into a randomised trial comparing chemotherapy (DDP + bleomycin) alone, multiple daily fractionated radiation therapy, and multimodality therapy consisting of chemotherapy plus multiple fractionated radiation therapy. Multimodal therapy gave a significantly higher response rate (69%) than either single-treatment modality. The use of a multiple daily dose fractionation allowed radiation therapy to be completed over 10 treatment days, and the addition of chemotherapy to the radiation treatment did not significantly increase toxicity. Patients receiving multimodal therapy also survived significantly longer (median 50 weeks) than those receiving single-modality therapy (median 24 weeks).

  15. Nutritional rehabilitation in patients with advanced head and neck cancer receiving radiation therapy.

    PubMed

    Daly, J M; Hearne, B; Dunaj, J; LePorte, B; Vikram, B; Strong, E; Green, M; Muggio, F; Groshen, S; DeCosse, J J

    1984-10-01

    maintained mean mid-arm circumference and recovered mean serum albumin levels after radiation therapy in contrast with the orally fed group. Intensive outpatient tube-feeding nutritional support during radiation therapy in patients with advanced inoperable squamous cancer of the oropharynx significantly improved mean weight maintenance, mean caloric and protein intake, and mean serum albumin levels compared with patients who received optimal oral nutrition. Tumor response to radiation therapy, however, was unchanged.

  16. Concurrent cisplatin, 5-FU, paclitaxel, and radiation therapy in patients with locally advanced esophageal cancer

    SciTech Connect

    Roof, Kevin S. . E-mail: kroof@sero.net; Coen, John; Lynch, Thomas J.; Wright, Cameron; Fidias, Panos; Willett, Christopher G.; Choi, Noah C.

    2006-07-15

    Purpose: Phase I-II data regarding neoadjuvant cisplatin, 5-fluorouracil (5-FU), paclitaxel, and radiation (PFT-R) from our institution demonstrated encouraging pathologic complete response (pCR) rates. This article updates our experience with PFT-R, and compares these results to our experience with cisplatin, 5-FU, and radiation therapy (PF-R) in locally advanced esophageal cancer. Patients and Methods: We searched the Massachusetts General Hospital cancer registry for esophageal cancer patients treated with radiation therapy and chemotherapy between 1994-2002. Records of patients treated with curative, neoadjuvant therapy were examined for chemotherapeutic regimen. Outcomes of patients treated with PF-R or PFT-R were assessed for response to therapy, toxicity, and survival. Results: A total of 177 patients were treated with neoadjuvant therapy with curative intent; 164 (93%) received PF-R (n = 81) or PFT-R (n = 83). Median overall survival was 24 months. After a median follow-up of 54 months for surviving patients, 3-year overall survival was 40% with no significant difference between PF-R (39%) and PFT-R (42%). Conclusions: Our findings failed to demonstrate an improvement in pCR or survival with PFT-R vs. PF-R. These results do not support this regimen of concurrent neoadjuvant PFT-R in esophageal cancer, and suggest that further investigations into alternative regimens and novel agents are warranted.

  17. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    SciTech Connect

    Thorek, Daniel L.J.; Kramer, Robin M.; Chen, Qing; Jeong, Jeho; Lupu, Mihaela E.; Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve; Ulmert, David; Zanzonico, Pat; Deasy, Joseph O.; Humm, John L.; Russell, James

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.

  18. Advances in image-guided radiation therapy-the role of PET-CT

    SciTech Connect

    Heron, Dwight E. . E-mail: heronD2@upmc.edu; Smith, Ryan P.; Andrade, Regiane S.

    2006-04-01

    In the era of image-guided radiation therapy (IGRT), the greatest challenge remains target delineation, as the opportunity to maximize cures while simultaneously decreasing radiation dose to the surrounding normal tissues is to be realized. Over the last 2 decades, technological advances in radiographic imaging, biochemistry, and molecular biology have played an increasing role in radiation treatment planning, delivery, and evaluation of response. Previously, fluoroscopy formed the basis of radiation treatment planning. Beginning in the late 1980s, computed tomography (CT) has become the basis for modern radiation treatment planning and delivery, coincident with the rise of 3-dimensional conformal radiation therapy (3DCRT). Additionally, multi-modality anatomic imaging registration was the solution pursued to augment delineation of tumors and surrounding structures on CT-based treatment planning. Although these imaging modalities provide the customary anatomic details necessary for radiation treatment planning, they have limitations, including difficulty with identification of small tumor deposits, tumor extension, and distinction from scar tissues. To overcome these limitations, PET and, more recently, PET-CT have been innovative regarding the extent of disease appraisal, target delineation in the treatment planning, and assessment of therapy response. We review the role of functional imaging in IGRT as it reassures transformations on the field of radiation oncology. As we move toward the era of IGRT, the use of multi-modality imaging fusion, and the introduction of more sensitive and specific PET-CT tracers may further assist target definition. Furthermore, the potential to predict early outcome or even detect early recurrence of tumor, may allow for the tailoring of intervention in cancer patients. The convergence of a biological target volume, and perhaps multi-tracer tumor, molecular, and genetic profile tumors will probably be vital in cancer treatment

  19. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    PubMed

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  20. Radiation Therapy (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A A ... many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from X- ...

  1. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    SciTech Connect

    Appelt, Ane L.; Ploen, John; Vogelius, Ivan R.; Bentzen, Soren M.; Jakobsen, Anders

    2013-01-01

    Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D{sub 50,i}, and the normalized dose-response gradient, {gamma}{sub 50,i}. Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D{sub 50,TRG1} = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), {gamma}{sub 50,TRG1} = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D{sub 50,TRG1} and {sub 2} = 72.1 Gy (CI 65.3-94.0 Gy), {gamma}{sub 50,TRG1} and {sub 2} = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.

  2. Pilot study of local hyperthermia, radiation therapy, etanidazole, and cisplatin for advanced superficial tumours.

    PubMed

    Bornstein, B A; Herman, T S; Hansen, J L; Buswell, L; Zouranjian, P S; Fraser, S M; Teicher, B A; Svensson, G K; Coleman, C N

    1995-01-01

    Five patients (six hyperthermia sites) with advanced superficial tumours were treated with combined etanidazole, cisplatin, local hyperthermia, and radiation therapy as part of a Phase I pilot study. Treatment was given once weekly and consisted of etanidazole 3 gm/m2 IV bolus, cisplatin 50 mg/m2 IV bolus, hyperthermia for 60 min with a target temperature of 43 degrees C, and radiation therapy 500 cGy/fraction (median total dose 3000 cGy) for a total of six weeks. Blood levels of etanidazole were taken during treatment at week 1 and week 4. Etanidazole drug exposure was calculated using the trapezoidal rule and expressed as the area under the curve (AUC) of plasma concentration x time. Five of six treatment sites had received prior irradiation. Prior chemotherapy had been given in three patients and tamoxifen therapy given in the other two patients. The median follow-up time is 34 months; 3/5 patients have died of disease. The most significant toxicity was grade I or II nausea and vomiting associated with 19/32 treatments (59%) and a second degree burn in 2/6 fields. None of the five patients experienced peripheral neuropathy, skin ulceration, or needed surgical repair. In addition, there was mild renal toxicity; pharmacokinetic analysis showed a 28-75% increase in the week 1 to week 4 AUC in three patients, all of whom had a decrease in creatinine clearance over the same time of 15-47%. This pilot study suggests this combined modality therapy can be delivered without major complications and that renal function, determined by creatinine clearance, affects clearance of etanidazole and alters the AUC. Therefore, monitoring renal function is important in patients receiving etanidazole in addition to other nephrotoxic agents such as cisplatin. The impact of etanidazole on the therapeutic index of hyperthermia, radiation therapy and cisplatin may be worth of study, especially since a positive interaction between these modalities is found in laboratory models. PMID

  3. Planned preoperative radiation therapy for advanced laryngeal carcinoma. [/sup 60/Co

    SciTech Connect

    Kazem, I.; van den Broek, P.; Huygen, P.L.M.

    1982-09-01

    One hundred ten patients with predominantly advanced laryngeal carcinoma were treated in the period 1969-1978 with planned preoperative radiation therapy followed by surgery. Site distribution was: 63 supraglottic, 26 glottic, 15 transglottic and 6 subglottic. There were 4 Stage II patients, 66 Stage III and 40 Stage IV. Preoperative radiation therapy consisted of Telecobalt irradiation to a total dose of 25 Gy given to a target volume encompassing the larynx and regional neck nodes, given in 5 equal daily fractions of 5 Gy in 5 consecutive days. Surgery was performed 2 days later. Total laryngectomy was performed on 48 patients, total laryngectomy with neck dissection on 55 patients, supraglottic laryngectomy on 5 and supraglottic laryngectomy with neck dissection on 2 patients. Crude actuarial 5 and 10 year survival probability for the whole group is 71 and 61%, respectively. The corrected 5 and 10 year survival is 75%. For patients with T/sub 3/-T/sub 4/-N/sub 0/ tumors 5 and 10 year survival probability is: crude 65 and 58%, and corrected 70% respectively. For T/sub 3/-T/sub 4/-N/sub +/ crude: 75 and 60% and corrected: 78%. Of 110 patients, one died postoperative, three died of intercurrent disease, five died as a result of second malignancy, and 23 died of their larynx carcinoma: 12/23 because of locoregional failure, and 11/23 because of distant metastasis. We concluded that short intensive preoperative radiation therapy and surgery offer a high cure rate in the treatment of advanced resectable laryngeal carcinoma. The merits of this technique are outlined in the text.

  4. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    SciTech Connect

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  5. Eight-drug/radiation therapy program (MOPP/ABDV/RT) for advanced Hodgkin's disease

    SciTech Connect

    Straus, D.J.; Myers, J.; Passe, S.

    1980-07-15

    Eighty-four evaluable patients with advanced Hodgkin's disease (Stages IIB, IIIA age > 35 or mixed cellularity or lymphocyte depletion histology, IIIB, IVA, and IVB) were treated with alternating monthly MOPP and Adriamycin, bleomycin, dacarbazine, and vinblastine (ABDV). Radiation therapy (RT), 2000 rads in two weeks, was given to areas of initial bulky disease in untreated patients. Complete remission (CR) rates were 80% for previously untreated, 65% for prior RT or minimal chemotherapy treated, and 50% for heavily pretreated patients. Among 49 previously untreated patients there were no primary treatment failures. The estimated two-year relapse rate for the CR group was 9%. The therapeutic effectiveness of this program may have been due to either or both of the following elements: (1) two non-cross-resistant drug combinations; (2) low dose adjuvant RT to initial sites of bulky disease. These early results are among the best reported for the treatment of advanced Hodgkin's disease.

  6. Reverse-contrast imaging and targeted radiation therapy of advanced pancreatic cancer models

    PubMed Central

    Thorek, Daniel L.J.; Kramer, Robin M.; Chen, Qing; Jeong, Jeho; Lupu, Mihaela E.; Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve; Ulmert, H. David; Zanzonico, Pat; Deasy, Joseph O.; Humm, John L.; Russell, James

    2015-01-01

    Purpose To evaluate the feasibility of delivering experimental radiotherapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by X-ray CT. With this technique we delineated the pancreas, and both orthotopic xenografts and genetically engineered disease. CT imaging was validated by comparison with magnetic resonance (MR) imaging. Therapeutic radiation was delivered via a 1 cm diameter field. Selective X-ray radiation therapy (XRT) of the non-invasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360-degree arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic XRT to orthotopic tumors. Results Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times post-treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions This advance permits evaluation of radiation planning and dosing parameters. Accurate non-invasive longitudinal imaging and monitoring of tumor progression and therapeutic response in pre-clinical models is now possible, and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response. PMID:26238952

  7. Accelerated fractionation radiation therapy for advanced squamous cell carcinoma of the head and neck

    SciTech Connect

    Giri, P.G.; Gemer, L.S. )

    1991-09-01

    The authors treated 14 patients who had advanced head and neck cancer with an accelerated fractionation schedule of irradiation consisting of two fractions given 6 hours apart. In the morning a volume of 1.7 Gy was given to an area that encompassed the entire tumor, enlarged lymph nodes, and all areas at risk for microscopic disease. Six hours later, 1.1 Gy was given to an area that included only the tumor and any enlarged lymph nodes, with a 2-cm margin. The treatment was well tolerated; of the 13 patients who completed therapy, six did not require a break in therapy, and seven patients did. The median rest period was 2 days. There was no grade 4 toxicity. Grade 3 toxicity included skin changes (one case), mucositis (two), dysphagia (two), weight loss (three), and a decrease in the hemoglobin level (one case). The response rate in the 13 who completed therapy was 13/13 (100%); 11 of the 13 (83%) had a complete response. Only one of the 11 who achieved a complete response had failure at the primary site. At a median follow-up of 24 months, the absolute survival was 7/13 (54%) and the corrected survival was 7/10 (70%). This technique permits radiation therapy to be given on an accelerated schedule without a planned break in treatment. The overall response rate and survival at 2 years was excellent.

  8. Advanced malignant solitary fibrous tumor in pelvis responding to radiation therapy.

    PubMed

    Kawamura, Shinobu; Nakamura, Takafumi; Oya, Takeshi; Ishizawa, Shin; Sakai, Yuta; Tanaka, Tomonori; Saito, Shigeru; Fukuoka, Junya

    2007-04-01

    Solitary fibrous tumor (SFT) is a rare spindle cell neoplasm that is benign in most cases. Although SFT was first recognized to arise only in the pleura, recent reports indicate that SFT can involve a wide range of anatomical sites. To date, 17 cases of pelvic SFT have been reported. Herein is reported a case of a 74-year-old woman with a giant malignant SFT in the pelvis. Along with massive invasion to adjacent organs and multiple lung metastases detected on radiography, biopsy from the tumor through the vaginal wall showed malignant looking spindle-cell neoplasm with increased cellularity, areas of necrosis, and high mitotic activity (5/10 high-power fields). Immunohistochemically, the tumor cells were diffusely and strongly positive for CD34, CD99, and bcl-2. Based on pathological features and clinical presentation, diagnosis of malignant SFT was made. The patient received systemic and the intra-arterial chemotherapy followed by whole pelvic radiation therapy (50 Gy). Initial chemotherapies failed to control the tumor. Afterwards, improvement was observed radiologically and pathologically in the 12 months' follow up after the radiation therapy. This is the first report related to therapeutic remarks on advanced malignant SFT.

  9. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    SciTech Connect

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M.; Tryggestad, Erik; Ford, Eric; Herman, Joseph M.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  10. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: a dosimetric analysis.

    PubMed

    Kumar, Rachit; Wild, Aaron T; Ziegler, Mark A; Hooker, Ted K; Dah, Samson D; Tran, Phuoc T; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M; Tryggestad, Erik; Ford, Eric; Herman, Joseph M

    2013-01-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non-duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal Dmax of<30Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal Dmean, Dmax, D1cc, D4%, and V20Gy compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V95% (p = 0.01) and Dmean (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at risk, whereas for IMRT it is compromised target coverage

  11. Radiation Therapy for Cancer

    MedlinePlus

    ... What is radiation therapy? Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells ( ... is a measure of the amount of radiation energy absorbed by 1 kilogram of human tissue. Different ...

  12. Disparities in the Use of Radiation Therapy in Patients With Local-Regionally Advanced Breast Cancer

    SciTech Connect

    Martinez, Steve R.; Beal, Shannon H.; Chen, Steven L.; Canter, Robert J.; Khatri, Vijay P.; Chen, Allen; Bold, Richard J.

    2010-11-01

    Background: Radiation therapy (RT) is indicated for the treatment of local-regionally advanced breast cancer (BCa). Hypothesis: We hypothesized that black and Hispanic patients with local-regionally advanced BCa would receive lower rates of RT than their white counterparts. Methods: The Surveillance Epidemiology and End Results database was used to identify white, black, Hispanic, and Asian patients with invasive BCa and {>=}10 metastatic lymph nodes diagnosed between 1988 and 2005. Univariate and multivariate logistic regression evaluated the relationship of race/ethnicity with use of RT. Multivariate models stratified for those undergoing mastectomy or lumpectomy. Results: Entry criteria were met by 12,653 patients. Approximately half of the patients did not receive RT. Most patients were white (72%); the remainder were Hispanic (10.4%), black (10.3%), and Asian (7.3%). On univariate analysis, Hispanics (odd ratio [OR] 0.89; 95% confidence interval [CI], 0.79-1.00) and blacks (OR 0.79; 95% CI, 0.70-0.89) were less likely to receive RT than whites. On multivariate analysis, blacks (OR 0.76; 95% CI, 0.67-0.86) and Hispanics (OR 0.80; 95% CI, 0.70-0.90) were less likely than whites to receive RT. Disparities persisted for blacks (OR 0.74; 95% CI, 0.64-0.85) and Hispanics (OR 0.77; 95% CI, 0.67-0.89) who received mastectomy, but not for those who received lumpectomy. Conclusions: Many patients with local-regionally advanced BCa do not receive RT. Blacks and Hispanics were less likely than whites to receive RT. This disparity was noted predominately in patients who received mastectomy. Future efforts at improving rates of RT are warranted. Efforts at eliminating racial/ethnic disparities should focus on black and Hispanic candidates for postmastectomy RT.

  13. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy

    SciTech Connect

    Du, Zhongli; Zhang, Wencheng; Zhou, Yuling; Yu, Dianke; Chen, Xiabin; Chang, Jiang; Qiao, Yan; Zhang, Meng; Huang, Ying; Wu, Chen; Xiao, Zefen; Tan, Wen; and others

    2015-09-01

    Purpose: To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. Methods and Materials: Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. Results: We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. Conclusion: These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.

  14. A Multicenter Phase II Trial of S-1 With Concurrent Radiation Therapy for Locally Advanced Pancreatic Cancer

    SciTech Connect

    Ikeda, Masafumi; Ioka, Tatsuya; Ito, Yoshinori; Yonemoto, Naohiro; Nagase, Michitaka; Yamao, Kenji; Miyakawa, Hiroyuki; Ishii, Hiroshi; Furuse, Junji; Sato, Keiko; Sato, Tosiya; Okusaka, Takuji

    2013-01-01

    Purpose: The aim of this trial was to evaluate the efficacy and toxicity of S-1 and concurrent radiation therapy for locally advanced pancreatic cancer (PC). Methods and Materials: Locally advanced PC patients with histologically or cytologically confirmed adenocarcinoma or adenosquamous carcinoma, who had no previous therapy were enrolled. Radiation therapy was delivered through 3 or more fields at a total dose of 50.4 Gy in 28 fractions over 5.5 weeks. S-1 was administered orally at a dose of 80 mg/m{sup 2} twice daily on the day of irradiation during radiation therapy. After a 2- to 8-week break, patients received a maintenance dose of S-1 (80 mg/m{sup 2}/day for 28 consecutive days, followed by a 14-day rest period) was then administered until the appearance of disease progression or unacceptable toxicity. The primary efficacy endpoint was survival, and the secondary efficacy endpoints were progression-free survival, response rate, and serum carbohydrate antigen 19-9 (CA19-9) response; the safety endpoint was toxicity. Results: Of the 60 evaluable patients, 16 patients achieved a partial response (27%; 95% confidence interval [CI], 16%-40%). The median progression-free survival period, overall survival period, and 1-year survival rate of the evaluable patients were 9.7 months (95% CI, 6.9-11.6 months), 16.2 months (95% CI, 13.5-21.3 months), and 72% (95%CI, 59%-82%), respectively. Of the 42 patients with a pretreatment serum CA19-9 level of {>=}100 U/ml, 34 (81%) patients showed a decrease of greater than 50%. Leukopenia (6 patients, 10%) and anorexia (4 patients, 7%) were the major grade 3-4 toxicities with chemoradiation therapy. Conclusions: The effect of S-1 with concurrent radiation therapy in patients with locally advanced PC was found to be very favorable, with only mild toxicity.

  15. Radiation Therapy

    MedlinePlus

    ... Radiation (also called x-rays, gamma rays, or photons) either kills tumor cells directly or interferes with ... treatment per day, five days a week, for two to seven weeks. Potiential Side Effects Most people ...

  16. Long-term results of intraoperative electron beam radiation therapy for nonmetastatic locally advanced pancreatic cancer

    PubMed Central

    Chen, Yingtai; Che, Xu; Zhang, Jianwei; Huang, Huang; Zhao, Dongbing; Tian, Yantao; Li, Yexiong; Feng, Qinfu; Zhang, Zhihui; Jiang, Qinglong; Zhang, Shuisheng; Tang, Xiaolong; Huang, Xianghui; Chu, Yunmian; Zhang, Jianghu; Sun, Yuemin; Zhang, Yawei; Wang, Chengfeng

    2016-01-01

    Abstract To assess prognostic benefits of intraoperative electron beam radiation therapy (IOERT) in patients with nonmetastatic locally advanced pancreatic cancer (LAPC) and evaluate optimal adjuvant treatment after IOERT. A retrospective cohort study using prospectively collected data was conducted at the Cancer Hospital of the Chinese Academy of Medical Sciences, China National Cancer Center. Two hundred forty-seven consecutive patients with nonmetastatic LAPC who underwent IOERT between January 2008 and May 2015 were identified and included in the study. Overall survival (OS) was calculated from the day of IOERT. Prognostic factors were examined using Cox proportional hazards models. The 1-, 2-, and 3-year actuarial survival rates were 40%, 14%, and 7.2%, respectively, with a median OS of 9.0 months. On multivariate analysis, an IOERT applicator diameter < 6 cm (hazards ratio [HR], 0.67; 95% confidence interval [CI], 0.47–0.97), no intraoperative interstitial sustained-release 5-fluorouracil chemotherapy (HR, 0.46; 95% CI, 0.32–0.66), and receipt of postoperative chemoradiotherapy followed by chemotherapy (HR, 0.11; 95% CI, 0.04–0.25) were significantly associated with improved OS. Pain relief after IOERT was achieved in 111 of the 117 patients, with complete remission in 74 and partial remission in 37. Postoperative complications rate and mortality were 14.0% and 0.4%, respectively. Nonmetastatic LAPC patients with smaller size tumors could achieve positive long-term survival outcomes with a treatment strategy incorporating IOERT and postoperative adjuvant treatment. Chemoradiotherapy followed by chemotherapy might be a recommended adjuvant treatment strategy for well-selected cases. Intraoperative interstitial sustained-release 5-fluorouracil chemotherapy should not be recommended for patients with nonmetastatic LAPC. PMID:27661028

  17. Image Guided Hypofractionated 3-Dimensional Radiation Therapy in Patients With Inoperable Advanced Stage Non-Small Cell Lung Cancer

    SciTech Connect

    Osti, Mattia Falchetto; Agolli, Linda; Valeriani, Maurizio; Falco, Teresa; Bracci, Stefano; De Sanctis, Vitaliana; Enrici, Riccardo Maurizi

    2013-03-01

    Purpose: Hypofractionated radiation therapy (HypoRT) can potentially improve local control with a higher biological effect and shorter overall treatment time. Response, local control, toxicity rates, and survival rates were evaluated in patients affected by inoperable advanced stage non-small cell lung cancer (NSCLC) who received HypoRT. Methods and Materials: Thirty patients with advanced NSCLC were enrolled; 27% had stage IIIA, 50% had stage IIIB, and 23% had stage IV disease. All patients underwent HypoRT with a prescribed total dose of 60 Gy in 20 fractions of 3 Gy each. Radiation treatment was delivered using an image guided radiation therapy technique to verify correct position. Toxicities were graded according to Radiation Therapy Oncology Group morbidity score. Survival rates were estimated using the Kaplan-Meier method. Results: The median follow-up was 13 months (range, 4-56 months). All patients completed radiation therapy and received the total dose of 60 Gy to the primary tumor and positive lymph nodes. The overall response rate after radiation therapy was 83% (3 patients with complete response and 22 patients with partial response). The 2-year overall survival and progression-free survival rates were 38.1% and 36%, respectively. Locoregional recurrence/persistence occurred in 11 (37%) patients. Distant metastasis occurred in 17 (57%) patients. Acute toxicities occurred consisting of grade 1 to 2 hematological toxicity in 5 patients (17%) and grade 3 in 1 patient; grade 1 to 2 esophagitis in 12 patients (40%) and grade 3 in 1 patient; and grade 1 to 2 pneumonitis in 6 patients (20%) and grade 3 in 2 patients (7%). Thirty-three percent of patients developed grade 1 to 2 late toxicities. Only 3 patients developed grade 3 late adverse effects: esophagitis in 1 patient and pneumonitis in 2 patients. Conclusions: Hypofractionated curative radiation therapy is a feasible and well-tolerated treatment for patients with locally advanced NSCLC. Randomized

  18. Advances in Computational Radiation Biophysics for Cancer Therapy: Simulating Nano-Scale Damage by Low-Energy Electrons

    NASA Astrophysics Data System (ADS)

    Kuncic, Zdenka

    Computational radiation biophysics is a rapidly growing area that is contributing, alongside new hardware technologies, to ongoing developments in cancer imaging and therapy. Recent advances in theoretical and computational modeling have enabled the simulation of discrete, event-by-event interactions of very low energy (≪ 100 eV) electrons with water in its liquid thermodynamic phase. This represents a significant advance in our ability to investigate the initial stages of radiation induced biological damage at the molecular level. Such studies are important for the development of novel cancer treatment strategies, an example of which is given by microbeam radiation therapy (MRT). Here, new results are shown demonstrating that when excitations and ionizations are resolved down to nano-scales, their distribution extends well outside the primary microbeam path, into regions that are not directly irradiated. This suggests that radiation dose alone is insufficient to fully quantify biological damage. These results also suggest that the radiation cross-fire may be an important clue to understanding the different observed responses of healthy cells and tumor cells to MRT.

  19. Advances in Computational Radiation Biophysics for Cancer Therapy: Simulating Nano-Scale Damage by Low-Energy Electrons

    NASA Astrophysics Data System (ADS)

    Kuncic, Zdenka

    2015-10-01

    Computational radiation biophysics is a rapidly growing area that is contributing, alongside new hardware technologies, to ongoing developments in cancer imaging and therapy. Recent advances in theoretical and computational modeling have enabled the simulation of discrete, event-by-event interactions of very low energy (≪ 100 eV) electrons with water in its liquid thermodynamic phase. This represents a significant advance in our ability to investigate the initial stages of radiation induced biological damage at the molecular level. Such studies are important for the development of novel cancer treatment strategies, an example of which is given by microbeam radiation therapy (MRT). Here, new results are shown demonstrating that when excitations and ionizations are resolved down to nano-scales, their distribution extends well outside the primary microbeam path, into regions that are not directly irradiated. This suggests that radiation dose alone is insufficient to fully quantify biological damage. These results also suggest that the radiation cross-fire may be an important clue to understanding the different observed responses of healthy cells and tumor cells to MRT.

  20. Advances in 4D radiation therapy for managing respiration: part I - 4D imaging.

    PubMed

    Hugo, Geoffrey D; Rosu, Mihaela

    2012-12-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available "first generation" 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described.

  1. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    PubMed Central

    Hugo, Geoffrey D.; Rosu, Mihaela

    2014-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929

  2. Planned preoperative radiation therapy vs. definitive radiotherapy for advanced laryngeal carcinoma

    SciTech Connect

    Kazem, I.; van den Broek, P.

    1984-10-01

    In the period 1970-1980 inclusive, 191 patients with T3T4 laryngeal carcinoma (glottic: 63 and supraglottic: 128) received either definitive radiation therapy (RT) (60-65 Gy in 6-7 weeks) or planned preoperative radiation therapy (25 Gy in 5 equal daily fractions of 5 Gy) followed by laryngectomy with or without neck dissection (RT + S). Selection for RT vs. RT + S was based on medical operability and/or patient's refusal to undergo surgery. All patients are evaluable with minimum of 2 years observation. Crude 5 and 10-year survival probability for 32 patients with glottic localization who received RT is 55% and 38% vs. 65% and 65% respectively for 31 treated with RT + S. For 52 patients with supraglottic site who received RT, the 5 and 10-year survival is 44% and 44% vs. 82% and 60% for 76 patients treated with RT + S.

  3. [Advanced radiation therapy project for cancer treatment--from Hokkaido to the world, the world access to Hokkaido].

    PubMed

    Shimizu, Shinichi; Tsuchiya, Kazuhiko; Takao, Seishin; Shirato, Hiroki

    2014-05-01

    Cancer is the most major cause of death in Japan recently. In this symposium, we explained advanced treatment technology for cancer treatment, now used and that will be used in near future at the Hokkaido University Hospital. Intensity Moderated Radiation Therapy (IMRT) and Proton Beam Therapy (PBT) are considered to be the most promising and advanced technologies for cancer treatment. Various kinds of radiation treatment equipment and methods have been developed and constructed at the Hokkaido University. One of the most worlds wide famous one is the real time tumor tracking radiotherapy system. The FIRST (Funding for World-Leading Innovative R&D on Science and Technology) Program has been supporting us to produce cutting-edge technology. We hope that this symposium would help the audience to understand the latest technology for cancer treatment especially in the field of radiation therapy and also we wish the audience would recognize the importance of the research aspect that have been performed at Hokkaido University and its Hospital.

  4. The Modern Role of Radiation Therapy in Treating Advanced-Stage Retinoblastoma: Long-Term Outcomes and Racial Differences

    SciTech Connect

    Orman, Amber; Koru-Sengul, Tulay; Miao, Feng; Markoe, Arnold; Panoff, Joseph E.

    2014-12-01

    Purpose/Objective(s): To evaluate the effects of various patient characteristics and radiation therapy treatment variables on outcomes in advanced-stage retinoblastoma. Methods and Materials: This was a retrospective review of 41 eyes of 30 patients treated with external beam radiation therapy between June 1, 1992, and March 31, 2012, with a median follow-up time of 133 months (11 years). Outcome measures included overall survival, progression-free survival, local control, eye preservation rate, and toxicity. Results: Over 90% of the eyes were stage V. Definitive external beam radiation therapy (EBRT) was delivered in 43.9% of eyes, adjuvant EBRT in 22% of eyes, and second-line/salvage EBRT in 34.1% of eyes. A relative lens sparing (RLS) technique was used in 68.3% of eyes and modified lens sparing (MLS) in 24.4% of eyes. Three eyes were treated with other techniques. Doses ≥45 Gy were used in 68.3% of eyes. Chemotherapy was a component of treatment in 53.7% of eyes. The 10-year overall survival was 87.7%, progression-free survival was 80.5%, and local control was 87.8%. White patients had significantly better overall survival than did African-American patients in univariate analysis (hazard ratio 0.09; 95% confidence interval 0.01-0.84; P=.035). Toxicity was seen in 68.3% of eyes, including 24.3% with isolated acute dermatitis. Conclusions: External beam radiation therapy continues to be an effective treatment modality for advanced retinoblastoma, achieving excellent long-term local control and survival with low rates of treatment-related toxicity and secondary malignancy.

  5. Dose Escalation for Locally Advanced Lung Cancer Using Adaptive Radiation Therapy With Simultaneous Integrated Volume-Adapted Boost

    SciTech Connect

    Weiss, Elisabeth; Fatyga, Mirek; Wu, Yan; Dogan, Nesrin; Balik, Salim; Sleeman, William; Hugo, Geoffrey

    2013-07-01

    Purpose: To test the feasibility of a planned phase 1 study of image-guided adaptive radiation therapy in locally advanced lung cancer. Methods and Materials: Weekly 4-dimensional fan beam computed tomographs (4D FBCT) of 10 lung cancer patients undergoing concurrent chemoradiation therapy were used to simulate adaptive radiation therapy: After an initial intensity modulated radiation therapy plan (0-30 Gy/2 Gy), adaptive replanning was performed on week 2 (30-50 Gy/2 Gy) and week 4 scans (50-66 Gy/2 Gy) to adjust for volume and shape changes of primary tumors and lymph nodes. Week 2 and 4 clinical target volumes (CTV) were deformably warped from the initial planning scan to adjust for anatomical changes. On the week 4 scan, a simultaneous integrated volume-adapted boost was created to the shrunken primary tumor with dose increases in 5 0.4-Gy steps from 66 Gy to 82 Gy in 2 scenarios: plan A, lung isotoxicity; plan B, normal tissue tolerance. Cumulative dose was assessed by deformably mapping and accumulating biologically equivalent dose normalized to 2 Gy-fractions (EQD2). Results: The 82-Gy level was achieved in 1 in 10 patients in scenario A, resulting in a 13.4-Gy EQD2 increase and a 22.1% increase in tumor control probability (TCP) compared to the 66-Gy plan. In scenario B, 2 patients reached the 82-Gy level with a 13.9 Gy EQD2 and 23.4% TCP increase. Conclusions: The tested image-guided adaptive radiation therapy strategy enabled relevant increases in EQD2 and TCP. Normal tissue was often dose limiting, indicating a need to modify the present study design before clinical implementation.

  6. EDITORIAL Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment

    NASA Astrophysics Data System (ADS)

    Newhauser, Wayne

    2010-07-01

    The availability of low-cost, high-performance computing is rapidly transforming the landscape of cancer research. Computational techniques are playing an increasingly important role and have become the third major method of scientific inquiry, supplementing traditional methods of observation and theory. This evolution began in the 1940s when high-performance computing techniques were developed for military applications, including radiation transport calculations. These same basic methods are still widely utilized in a broad spectrum of computational problems in medicine, including radiation cancer therapy (Rogers 2006, Spezi 2010) and radiologic diagnostic imaging (Doi 2006, Kalender 2006). Supercomputing is also now being used to study the genetics and genomics of cancer (Geurts van Kessel 2010), with application to gene sequencing (Mardis 2008), genome-wide association studies (Pearson and Manolio 2008), biomolecular dynamics (Sanbonmatsu and Tung 2007) and systems biology (Wolkenhauer et al 2010). The extensive and growing body of literature is evidence of a remarkable expansion of activity and enormous boost to cancer research from the application of high-performance computing. Early successes were facilitated by inexpensive computing resources and advances in modeling algorithms. Many contemporary models require extensive approximations and phenomenological approaches. In fact, many critical problems remain computationally intractable; the underlying physical and biological processes are simply too complex to model with contemporary theory and computing capacity. In the future, a vast stream of new insights will flow from studies that use increasingly exact models and first-principles approaches. Hence, in the war on cancer the present status of computational research could be summarized as the beginning of the beginning. For these reasons, there is a vital need for scientists and clinicians to periodically discuss progress and future plans regarding

  7. Advances in 4D radiation therapy for managing respiration: part II - 4D treatment planning.

    PubMed

    Rosu, Mihaela; Hugo, Geoffrey D

    2012-12-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle - an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems.

  8. Advances in 4D Radiation Therapy for Managing Respiration: Part II – 4D Treatment Planning

    PubMed Central

    Rosu, Mihaela; Hugo, Geoffrey D.

    2014-01-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle – an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. PMID:22796324

  9. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  10. Phase 2 Study of Combined Sorafenib and Radiation Therapy in Patients With Advanced Hepatocellular Carcinoma

    SciTech Connect

    Chen, Shang-Wen; Lin, Li-Ching; Kuo, Yu-Cheng; Liang, Ji-An; Kuo, Chia-Chun; Chiou, Jeng-Fong

    2014-04-01

    Purpose: This phase 2 study evaluated the efficacy of radiation therapy (RT) with concurrent and sequential sorafenib therapy in patients with unresectable hepatocellular carcinoma (HCC). Methods and Materials: Forty patients with unresectable HCC unfit for transarterial chemoembolization were treated with RT with concurrent and sequential sorafenib. Sorafenib was administered from the commencement of RT at a dose of 400 mg twice daily and continued to clinical or radiologic progression, unacceptable adverse events, or death. All patients had underlying Child-Pugh A cirrhosis. The maximal tumor diameter ranged from 3.0 cm to 15.5 cm. Coexisting portal vein thrombosis was found in 24 patients and was irradiated simultaneously. The cumulative RT dose ranged from 40 Gy to 60 Gy (median, 50 Gy). Image studies were done 1 month after RT and then every 3 months thereafter. Results: Thirty-three (83%) completed the allocated RT. During RT, the incidence of hand-foot skin reactions ≥ grade 2 and diarrhea were 37.5% and 25%, respectively, and 35% of patients had hepatic toxicities grade ≥2. Twenty-two (55.0%) patients achieved complete or partial remission at the initial assessment, and 18 (45%) had stable or progressive disease. The 2-year overall survival and infield progression-free survival (IFPS) were 32% and 39%, respectively. A Cancer of the Liver Italian Program (CLIP) score ≥2 was associated with an inferior outcome in overall survival. Six patients (15%) developed treatment-related hepatic toxicity grade ≥3 during the sequential phase, and 3 of them were fatal. Conclusions: When RT and sorafenib therapy were combined in patients with unresectable HCC, the initial complete or partial response rate was 55% with a 2-year IFPS of 39%. A CLIP score ≥2 was associated with an inferior outcome in overall survival. Hepatic toxicities are a major determinant of the safety; the combination should be used with caution and needs further investigation.

  11. National Cancer Data Base Analysis of Radiation Therapy Consolidation Modality for Cervical Cancer: The Impact of New Technological Advancements

    SciTech Connect

    Gill, Beant S.; Lin, Jeff F.; Krivak, Thomas C.; Sukumvanich, Paniti; Laskey, Robin A.; Ross, Malcolm S.; Lesnock, Jamie L.; Beriwal, Sushil

    2014-12-01

    Purpose: To utilize the National Cancer Data Base to evaluate trends in brachytherapy and alternative radiation therapy utilization in the treatment of cervical cancer, to identify associations with outcomes between the various radiation therapy modalities. Methods and Materials: Patients with International Federation of Gynecology and Obstetrics stage IIB-IVA cervical cancer in the National Cancer Data Base who received treatment from January 2004 to December 2011 were analyzed. Overall survival was estimated by the Kaplan-Meier method. Univariate and multivariable analyses were performed to identify factors associated with type of boost radiation modality used and its impact on survival. Results: A total of 7654 patients had information regarding boost modality. A predominant proportion of patients were Caucasian (76.2%), had stage IIIB (48.9%) disease with squamous (82.0%) histology, were treated at academic/research centers (47.7%) in the South (34.8%), and lived 0 to 5 miles (27.9%) from the treating facility. A majority received brachytherapy (90.3%). From 2004 to 2011, brachytherapy use decreased from 96.7% to 86.1%, whereas intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use increased from 3.3% to 13.9% in the same period (P<.01). Factors associated with decreased brachytherapy utilization included older age, stage IVA disease, smaller tumor size, later year of diagnosis, lower-volume treatment centers, and facility type. After controlling for significant factors from survival analyses, IMRT or SBRT boost resulted in inferior overall survival (hazard ratio, 1.86; 95% confidence interval, 1.35-2.55; P<.01) as compared with brachytherapy. In fact, the survival detriment associated with IMRT or SBRT boost was stronger than that associated with excluding chemotherapy (hazard ratio, 1.61′ 95% confidence interval, 1.27-2.04′ P<.01). Conclusions: Consolidation brachytherapy is a critical treatment component for

  12. 177Lu-labeled Gold Nanoparticles for Radiation Therapy of Locally Advanced Breast Cancer

    NASA Astrophysics Data System (ADS)

    Yook, Simmyung

    Locally advanced breast cancer (LABC) occurs in about 10-15% of patients diagnosed with breast cancer (BC) and 30% of these patients have triple negative breast cancer (TNBC) that are often epidermal growth factor receptor (EGFR)-positive. The goal of the proposed research was design and evaluate preclinically a novel radiation nanomedicine for LABC composed of EGFR-targeted gold nanoparticles (AuNP) by covalently conjugating panitumumab and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) complexing 177Lu incorporated into a metal-chelating polymer (MCP) (177 Lu-T-AuNP) which could be used as a neoadjuvant treatment to improve the outcome of patients with LABC. 177Lu-T-AuNP were efficiently internalized by EGFR-positive BC cells and were significantly more effective than 177Lu-labeled and non-targeted (NT)-AuNP for killing these cells. For radiation treatment of EGFR-positive tumours, both 177Lu-T-AuNP and 177Lu-NT-AuNP were intratumourally (i.t.) injected into athymic mice with MDA-MB-468 BC xenografts for comparison. Biodistribution studies showed that 177Lu-T-AuNPs exhibited 2-fold higher tumour retention than 177Lu-NT-AuNPs following i.t. injection at 48 h p.i. Both forms of radiolabeled AuNP were highly effective for inhibiting tumour growth without normal organ toxicity due to local tumour retention of both form of AuNP. To minimize the displacement of 177Lu-labeled MCP from AuNP, polyethylene glycol (PEG) ligands presenting a disulfide [ 177Lu-DOTA-PEG-ortho-pyridyl disulfide (OPSS)], a lipoic acid (LA) [177Lu-DOTA-PEG-lipoic acid (LA)] or multi-LA [PEG- pGlu(177Lu-DOTA)8-LA4] for multivalent binding were synthesized and the stability of MCP-AuNP complexes determined. In vitro challenge study with thiol-containing molecules or human plasma, PEG-pGlu(DOTA)8-LA4-AuNP were most stable. In whole body elimination study, elimination of radioactivity due to displacement of 177Lu-MCP from AuNP in mice injected with 177Lu-DOTA-PEG-OPSS-AuNP was more

  13. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... This is refered to as immunotherapy . Intraoperative Radiation Therapy Radiation therapy given during surgery is called intraoperative ... external beam therapy or as brachytherapy . Novel Targeted Therapies Cancer doctors now know much more about how ...

  14. Preoperative Intensity Modulated Radiation Therapy and Chemotherapy for Locally Advanced Vulvar Carcinoma: Analysis of Pattern of Relapse

    SciTech Connect

    Beriwal, Sushil; Shukla, Gaurav; Shinde, Ashwin; Heron, Dwight E.; Kelley, Joseph L.; Edwards, Robert P.; Sukumvanich, Paniti; Richards, Scott; Olawaiye, Alexander B.; Krivak, Thomas C.

    2013-04-01

    Purpose: To examine clinical outcomes and relapse patterns in locally advanced vulvar carcinoma treated using preoperative chemotherapy and intensity modulated radiation therapy (IMRT). Methods and Materials: Forty-two patients with stage I-IV{sub A} (stage I, n=3; stage II, n=13; stage III, n=23; stage IV{sub A}, n=3) vulvar cancer were treated with chemotherapy and IMRT via a modified Gynecological Oncology Group schema using 5-fluorouracil and cisplatin with twice-daily IMRT during the first and last weeks of treatment or weekly cisplatin with daily radiation therapy. Median dose of radiation was 46.4 Gy. Results: Thirty-three patients (78.6%) had surgery for resection of vulva; 13 of these patients also had inguinal lymph node dissection. Complete pathologic response was seen in 48.5% (n=16) of these patients. Of these, 15 had no recurrence at a median time of 26.5 months. Of the 17 patients with partial pathological response, 8 (47.1%) developed recurrence in the vulvar surgical site within a median of 8 (range, 5-34) months. No patient had grade ≥3 chronic gastrointestinal/genitourinary toxicity. Of those having surgery, 8 (24.2%) developed wound infections requiring debridement. Conclusions: Preoperative chemotherapy/IMRT was well tolerated, with good pathologic response and clinical outcome. The most common pattern of recurrence was local in patients with partial response, and strategies to increase pathologic response rate with increasing dose or adding different chemotherapy need to be explored to help further improve outcomes.

  15. HPV Genotypes Predict Survival Benefits From Concurrent Chemotherapy and Radiation Therapy in Advanced Squamous Cell Carcinoma of the Cervix

    SciTech Connect

    Wang, Chun-Chieh; Lai, Chyong-Huey; Huang, Yi-Ting; Chao, Angel; Chou, Hung-Hsueh; Hong, Ji-Hong

    2012-11-15

    Purpose: To study the prognostic value of human papillomavirus (HPV) genotypes in patients with advanced cervical cancer treated with radiation therapy (RT) alone or concurrent chemoradiation therapy (CCRT). Methods and Materials: Between August 1993 and May 2000, 327 patients with advanced squamous cell carcinoma of the cervix (International Federation of Gynecology and Obstetrics stage III/IVA or stage IIB with positive lymph nodes) were eligible for this study. HPV genotypes were determined using the Easychip Registered-Sign HPV genechip. Outcomes were analyzed using Kaplan-Meier survival analysis and the Cox proportional hazards model. Results: We detected 22 HPV genotypes in 323 (98.8%) patients. The leading 4 types were HPV16, 58, 18, and 33. The 5-year overall and disease-specific survival estimates for the entire cohort were 41.9% and 51.4%, respectively. CCRT improved the 5-year disease-specific survival by an absolute 9.8%, but this was not statistically significant (P=.089). There was a significant improvement in disease-specific survival in the CCRT group for HPV18-positive (60.9% vs 30.4%, P=.019) and HPV58-positive (69.3% vs 48.9%, P=.026) patients compared with the RT alone group. In contrast, the differences in survival with CCRT compared with RT alone in the HPV16-positive and HPV-33 positive subgroups were not statistically significant (P=.86 and P=.53, respectively). An improved disease-specific survival was observed for CCRT treated patients infected with both HPV16 and HPV18, but these differenced also were not statistically significant. Conclusions: The HPV genotype may be a useful predictive factor for the effect of CCRT in patients with advanced squamous cell carcinoma of the cervix. Verifying these results in prospective trials could have an impact on tailoring future treatment based on HPV genotype.

  16. A Phase II Trial of Cetuximab, Gemcitabine, 5-Fluorouracil, and Radiation Therapy in Locally Advanced Nonmetastatic Pancreatic Adenocarcinoma

    PubMed Central

    Piperdi, Bilal; Bathini, Venu; Walsh, William V.; Yunus, Shakeeb; Tseng, Jennifer F.; Whalen, Giles F.; Wassef, Wahid Y.; Kadish, Sidney P.; FitzGerald, Thomas J.; Mikule, Christine; Wang, Yuxia; Grossman, Steven R.

    2013-01-01

    ABSTRACT BACKGROUND: Pancreatic cancer is the fourth leading cause of cancer deaths in the United States. A minority of patients present with localized disease and surgical resection still offers patients the only hope for long-term survival. Locally advanced pancreatic cancer is defined as surgically unresectable, but has no evidence of distant metastases. The purpose of this study is to evaluate the efficacy and safety of cetuximab in combination with gemcitabine and 5-FU along with radiation therapy in locally advanced non-resectable, pancreatic adenocarcinoma, using progression free survival as the primary end point. METHODS: This was a prospective, single arm, open label pilot phase II study to evaluate the anti-tumor activity of gemcitabine (200 mg/m2 per week) and cetuximab (250 mg/m2 per week after an initial 400 mg/m2 loading dose) with continuous infusion 5-FU (800 mg/m2 over 96 hours) and daily concurrent external beam radiation therapy (50.4 Gy total dose) for six weeks (cycle 1) in patients with non-metastatic, locally advanced pancreatic adenocarcinoma. Following neoadjuvant treatment, subjects were re-evaluated for response and surgical candidacy with restaging scans. After resection, or also if not resected; subjects received further therapy with four 28-day cycles (cycles 2-5) of weekly gemcitabine (1000 mg/m2) and cetuximab (250 mg/m2) on days 1, 8, and 15. RESULTS: Between 2006 and 2011, twenty-six patients were screened and eleven of them were enrolled in the study. Most common reasons for screen failures were having resectable disease, metastatic disease or co-morbidity. Ten patients were able to tolerate and complete cycle 1 of chemoradiotherapy. One patient stopped the study prematurely due to grade III diarrhea. All except this one patient received planned radiation therapy. The response evaluation after cycle 1 showed one Partial Response, eight Stable Disease and two Progressive Disease. Four patients subsequently underwent surgical

  17. Multicriteria Optimization in Intensity-Modulated Radiation Therapy Treatment Planning for Locally Advanced Cancer of the Pancreatic Head

    SciTech Connect

    Hong, Theodore S. Craft, David L.; Carlsson, Fredrik; Bortfeld, Thomas R.

    2008-11-15

    Purpose: Intensity-modulated radiation therapy (IMRT) affords the potential to decrease radiation therapy-associated toxicity by creating highly conformal dose distributions. However, the inverse planning process can create a suboptimal plan despite meeting all constraints. Multicriteria optimization (MCO) may reduce the time-consuming iteration loop necessary to develop a satisfactory plan while providing information regarding trade-offs between different treatment planning goals. In this exploratory study, we examine the feasibility and utility of MCO in physician plan selection in patients with locally advanced pancreatic cancer (LAPC). Methods and Materials: The first 10 consecutive patients with LAPC treated with IMRT were evaluated. A database of plans (Pareto surface) was created that met the inverse planning goals. The physician then navigated to an 'optimal' plan from the point on the Pareto surface at which kidney dose was minimized. Results: Pareto surfaces were created for all 10 patients. A physician was able to select a plan from the Pareto surface within 10 minutes for all cases. Compared with the original (treated) IMRT plans, the plan selected from the Pareto surface had a lower stomach mean dose in 9 of 10 patients, although often at the expense of higher kidney dose than with the treated plan. Conclusion: The MCO is feasible in patients with LAPC and allows the physician to choose a satisfactory plan quickly. Generally, when given the opportunity, the physician will choose a plan with a lower stomach dose. The MCO enables a physician to provide greater active clinical input into the IMRT planning process.

  18. EDITORIAL Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment

    NASA Astrophysics Data System (ADS)

    Newhauser, Wayne

    2010-07-01

    The availability of low-cost, high-performance computing is rapidly transforming the landscape of cancer research. Computational techniques are playing an increasingly important role and have become the third major method of scientific inquiry, supplementing traditional methods of observation and theory. This evolution began in the 1940s when high-performance computing techniques were developed for military applications, including radiation transport calculations. These same basic methods are still widely utilized in a broad spectrum of computational problems in medicine, including radiation cancer therapy (Rogers 2006, Spezi 2010) and radiologic diagnostic imaging (Doi 2006, Kalender 2006). Supercomputing is also now being used to study the genetics and genomics of cancer (Geurts van Kessel 2010), with application to gene sequencing (Mardis 2008), genome-wide association studies (Pearson and Manolio 2008), biomolecular dynamics (Sanbonmatsu and Tung 2007) and systems biology (Wolkenhauer et al 2010). The extensive and growing body of literature is evidence of a remarkable expansion of activity and enormous boost to cancer research from the application of high-performance computing. Early successes were facilitated by inexpensive computing resources and advances in modeling algorithms. Many contemporary models require extensive approximations and phenomenological approaches. In fact, many critical problems remain computationally intractable; the underlying physical and biological processes are simply too complex to model with contemporary theory and computing capacity. In the future, a vast stream of new insights will flow from studies that use increasingly exact models and first-principles approaches. Hence, in the war on cancer the present status of computational research could be summarized as the beginning of the beginning. For these reasons, there is a vital need for scientists and clinicians to periodically discuss progress and future plans regarding

  19. Case-Matched comparison of contemporary radiation therapy to surgery in patients with locally advanced prostate cancer

    SciTech Connect

    Fletcher, Sophie G.; Mills, Stacey E.; Smolkin, Mark E.; Theodorescu, Dan . E-mail: dt9d@virginia.edu

    2006-11-15

    Purpose: Few studies critically compare current radiotherapy techniques to surgery for patients with locally advanced prostate cancer, despite an urgent need to determine which approach offers superior cancer control. Our objective was to compare rates of biochemical relapse-free survival (BFS) and surrogates of disease specific survival among men with high risk adenocarcinoma of the prostate as a function of treatment modality. Methods and Materials: Retrospective data from 409 men with prostate-specific antigen (PSA) {>=}10 or Gleason 7-10 or Stage {>=}T2b cancer treated uniformly at one university between March 1988 and December 2000 were analyzed. Patients had undergone radical prostatectomy (RP), brachytherapy implant alone (BTM), or external beam radiotherapy with brachytherapy boost with short-term neoadjuvant and adjuvant androgen deprivation therapy (BTC). From the total study population a 1:1 matched-cohort analysis (208 patients matched via prostate-specific antigen, Gleason score) comparing RP with BTC was performed as well. Results: Estimated 4-year BFS rates were superior for patients treated with BTC (BTC 72%, BTM 25%, RP 53%; p < 0.001). Matched analysis of BTC vs. RP confirmed these results (BTC 73%, BTM 55%; p = 0.010). Relative risk (RR) of biochemical relapse for BTM and BTC compared with RP were 2.92 (1.95-4.36) and 0.56 (0.36-0.87) (p < 0.001, p = 0.010). RR for BTC from the matched cohort analysis was 0.44 (0.26-0.74; p = 0.002). Conclusions: High-risk prostate cancer patients receiving multimodality radiation therapy (BTC) display apparently superior BFS compared with those receiving surgery (RP) or brachytherapy alone (BTM)

  20. Torticollis following radiation therapy

    SciTech Connect

    Landan, I.; Cullis, P.A.

    1987-01-01

    A patient with adenocarcinoma in the apical portion of the lung producing a Pancoast's syndrome developed torticollis a few months after receiving a course of radiation therapy (5,040 rad) to his upper chest and neck. We describe this case, in which local radiation fibrosis of the neck muscles and perhaps segmental demyelination of the 11th cranial nerve resulted in peripheral nervous system lesion causing torticollis.

  1. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    NASA Astrophysics Data System (ADS)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  2. Cisplatin and Radiation Therapy With or Without Carboplatin and Paclitaxel in Patients With Locally Advanced Cervical Cancer

    ClinicalTrials.gov

    2016-10-26

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Chemotherapeutic Agent Toxicity; Cognitive Side Effects of Cancer Therapy; Psychological Impact of Cancer; Radiation Toxicity; Sexual Dysfunction and Infertility; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  3. Recent Advances in Combined Modality Therapy

    PubMed Central

    Nyati, Mukesh K.; Morgan, Meredith A.; Lawrence, Theodore S.

    2010-01-01

    Combined modality therapy emerged from preclinical data showing that carefully chosen drugs could enhance the sensitivity of tumor cells to radiation while having nonoverlapping toxicities. Recent advances in molecular biology involving the identification of cellular receptors, enzymes, and pathways involved in tumor growth and immortality have resulted in the development of biologically targeted drugs. This review highlights the recent clinical data in support of newer generation cytotoxic chemotherapies and systemic targeted agents in combination with radiation therapy. PMID:20413642

  4. Radiation Therapy for Testicular Cancer

    MedlinePlus

    ... therapy for testicular cancer Radiation therapy uses a beam of high-energy rays (such as gamma rays ... machine outside the body is known as external beam radiation . The treatment is much like getting an ...

  5. Radiation Therapy for Skin Cancer

    MedlinePlus

    ... Laser surgery Cancer cells are killed by laser beams.  Electrodessication The cancer is dried with an electric ... a chemical reaction that kills nearby cells. EXTERNAL BEAM RADIATION THERAPY External beam radiation therapy may be ...

  6. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    PubMed

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  7. Phase 1 Pharmacogenetic and Pharmacodynamic Study of Sorafenib With Concurrent Radiation Therapy and Gemcitabine in Locally Advanced Unresectable Pancreatic Cancer

    SciTech Connect

    Chiorean, E. Gabriela; Schneider, Bryan P.; Akisik, Fatih M.; Perkins, Susan M.; Anderson, Stephen; Johnson, Cynthia S.; DeWitt, John; Helft, Paul; Clark, Romnee; Johnston, Erica L.; Spittler, A. John; Deluca, Jill; Bu, Guixue; Shahda, Safi; Loehrer, Patrick J.; Sandrasegaran, Kumar; Cardenes, Higinia R.

    2014-06-01

    Purpose: To define the safety, efficacy, and pharmacogenetic and pharmacodynamic effects of sorafenib with gemcitabine-based chemoradiotherapy (CRT) in locally advanced pancreatic cancer. Methods and Materials: Patients received gemcitabine 1000 mg/m{sup 2} intravenously weekly × 3 every 4 weeks per cycle for 1 cycle before CRT and continued for up to 4 cycles after CRT. Weekly gemcitabine 600 mg/m{sup 2} intravenously was given during concurrent intensity modulated radiation therapy of 50 Gy to gross tumor volume in 25 fractions. Sorafenib was dosed orally 400 mg twice daily until progression, except during CRT when it was escalated from 200 mg to 400 mg daily, and 400 mg twice daily. The maximum tolerated dose cohort was expanded to 15 patients. Correlative studies included dynamic contrast-enhanced MRI and angiogenesis genes polymorphisms (VEGF-A and VEGF-R2 single nucleotide polymorphisms). Results: Twenty-seven patients were enrolled. No dose-limiting toxicity occurred during induction gemcitabine/sorafenib followed by concurrent CRT. The most common grade 3/4 toxicities were fatigue, hematologic, and gastrointestinal. The maximum tolerated dose was sorafenib 400 mg twice daily. The median progression-free survival and overall survival for 25 evaluable patients were 10.6 and 12.6 months, respectively. The median overall survival for patients with VEGF-A -2578 AA, -1498 CC, and -1154 AA versus alternate genotypes was 21.6 versus 14.7 months. Dynamic contrast-enhanced MRI demonstrated higher baseline K{sup trans} in responding patients. Conclusions: Concurrent sorafenib with CRT had modest clinical activity with increased gastrointestinal toxicity in localized unresectable pancreatic cancer. Select VEGF-A/VEGF-R2 genotypes were associated with favorable survival.

  8. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer

    PubMed Central

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-01-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR’s, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR’s DVH’s as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment. PMID:23776314

  9. [Radiation therapy of pancreatic cancer].

    PubMed

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended. PMID:27523418

  10. [Radiation therapy of pancreatic cancer].

    PubMed

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended.

  11. Radiation Therapy for Cutaneous T-Cell Lymphomas.

    PubMed

    Tandberg, Daniel J; Craciunescu, Oana; Kelsey, Chris R

    2015-10-01

    Radiation therapy is an extraordinarily effective skin-directed therapy for cutaneous T-cell lymphomas. Lymphocytes are extremely sensitive to radiation and a complete response is generally achieved even with low doses. Radiation therapy has several important roles in the management of mycosis fungoides. For the rare patient with unilesional disease, radiation therapy alone is potentially curative. For patients with more advanced cutaneous disease, radiation therapy to local lesions or to the entire skin can effectively palliate symptomatic disease and provide local disease control. Compared with other skin-directed therapies, radiation therapy is particularly advantageous because it can effectively penetrate and treat thicker plaques and tumors. PMID:26433843

  12. Radiation Therapy for Lung Cancer

    MedlinePlus

    ... whether surgery will be helpful for you EXTERNAL BEAM RADIATION THER APY External beam radiation therapy is the safe delivery of high- ... your cancer. A linear accelerator focuses the radiation beam to a precise location in your body for ...

  13. Microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  14. Role of radiation therapy for 'juvenile' angiofibroma.

    PubMed

    Gudea, F; Vega, M; Canals, E; Montserrat, J M; Valdano, J

    1990-09-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a rare benign neoplasm which occurs primarily in male adolescents and is characterized by aggressive local growth. The controversy concerning appropriate treatment for patients with juvenile angiofibroma persists. Radiation therapy and surgical resection have both been reported to be effective to control a high proportion of these tumours. The case reported here demonstrates a locally advanced JNA controlled by radiation therapy.

  15. Economic analysis of a phase III clinical trial evaluating the addition of total androgen suppression to radiation versus radiation alone for locally advanced prostate cancer (Radiation Therapy Oncology Group protocol 86-10)

    SciTech Connect

    Konski, Andre . E-mail: a_konski@fccc.edu; Sherman, Eric; Krahn, Murray; Bremner, Karen; Beck, J. Robert; Watkins-Bruner, Deborah; Pilepich, Michael

    2005-11-01

    Purpose: To evaluate the cost-effectiveness of adding hormone therapy to radiation for patients with locally advanced prostate cancer, using a Monte Carlo simulation of a Markov Model. Methods and Materials: Radiation Therapy Oncology Group (RTOG) protocol 86-10 randomized patients to receive radiation therapy (RT) alone or RT plus total androgen suppression (RTHormones) 2 months before and during RT for the treatment of locally advanced prostate cancer. A Markov model was designed with Data Pro (TreeAge Software, Williamstown, MA). The analysis took a payer's perspective. Transition probabilities from one state of health (i.e., with no disease progression or with hormone-responsive metastatic disease) to another were calculated from published rates pertaining to RTOG 86-10. Patients remained in one state of health for 1 year. Utility values for each health state and treatment were obtained from the literature. Distributions were sampled at random from the treatment utilities according to a second-order Monte Carlo simulation technique. Results: The mean expected cost for the RT-only treatments was $29,240 (range, $29,138-$29,403). The mean effectiveness for the RT-only treatment was 5.48 quality-adjusted life years (QALYs) (range, 5.47-5.50). The mean expected cost for RTHormones was $31,286 (range, $31,058-$31,555). The mean effectiveness was 6.43 QALYs (range, 6.42-6.44). Incremental cost-effectiveness analysis showed RTHormones to be within the range of cost-effectiveness at $2,153/QALY. Cost-effectiveness acceptability curve analysis resulted in a >80% probability that RTHormones is cost-effective. Conclusions: Our analysis shows that adding hormonal treatment to RT improves health outcomes at a cost that is within the acceptable cost-effectiveness range.

  16. Radiation oncology: physics advances that minimize morbidity.

    PubMed

    Allison, Ron R; Patel, Rajen M; McLawhorn, Robert A

    2014-12-01

    Radiation therapy has become an ever more successful treatment for many cancer patients. This is due in large part from advances in physics including the expanded use of imaging protocols combined with ever more precise therapy devices such as linear and particle beam accelerators, all contributing to treatments with far fewer side effects. This paper will review current state-of-the-art physics maneuvers that minimize morbidity, such as intensity-modulated radiation therapy, volummetric arc therapy, image-guided radiation, radiosurgery and particle beam treatment. We will also highlight future physics enhancements on the horizon such as MRI during treatment and intensity-modulated hadron therapy, all with the continued goal of improved clinical outcomes.

  17. Intensity modulated radiation therapy with simultaneous integrated boost based dose escalation on neoadjuvant chemoradiation therapy for locally advanced distal esophageal adenocarcinoma

    PubMed Central

    Zeng, Ming; Aguila, Fernando N; Patel, Taral; Knapp, Mark; Zhu, Xue-Qiang; Chen, Xi-Lin; Price, Phillip D

    2016-01-01

    AIM: To evaluate impact of radiation therapy dose escalation through intensity modulated radiation therapy with simultaneous integrated boost (IMRT-SIB). METHODS: We retrospectively reviewed the patients who underwent four-dimensional-based IMRT-SIB-based neoadjuvant chemoradiation protocol. During the concurrent chemoradiation therapy, radiation therapy was through IMRT-SIB delivered in 28 consecutive daily fractions with total radiation doses of 56 Gy to tumor and 5040 Gy dose-painted to clinical tumor volume, with a regimen at the discretion of the treating medical oncologist. This was followed by surgical tumor resection. We analyzed pathological completion response (pCR) rates its relationship with overall survival and event-free survival. RESULTS: Seventeen patients underwent dose escalation with the IMRT-SIB protocol between 2007 and 2014 and their records were available for analysis. Among the IMRT-SIB-treated patients, the toxicity appeared mild, the most common side effects were grade 1-3 esophagitis (46%) and pneumonitis (11.7%). There were no cardiac events. The Ro resection rate was 94% (n = 16), the pCR rate was 47% (n = 8), and the postoperative morbidity was zero. There was one mediastinal failure found, one patient had local failure at the anastomosis site, and the majority of failures were distant in the lung or bone. The 3-year disease-free survival and overall survival rates were 41% (n = 7) and 53% (n = 9), respectively. CONCLUSION: The dose escalation through IMRT-SIB in the chemoradiation regimen seems responsible for down-staging the distal esophageal with well-tolerated complications. PMID:27190587

  18. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    SciTech Connect

    Ng, Sweet Ping; David, Steven; Alamgeer, Muhammad; Ganju, Vinod

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  19. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... form of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy ... determine the correct angles for aiming the radiation beams and the proper dose of radiation. The treatment ...

  20. A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma

    SciTech Connect

    Brown, Michael W.; Ning, Holly; Arora, Barbara; Albert, Paul S.; Poggi, Matthew; Camphausen, Kevin; Citrin, Deborah . E-mail: citrind@mail.nih.gov

    2006-05-01

    Purpose: To perform an analysis of three-dimensional conformal radiation therapy (3D-CRT), sequential boost intensity-modulated radiation therapy (IMRTs), and integrated boost IMRT (IMRTi) for dose escalation in unresectable pancreatic carcinoma. Methods and Materials: Computed tomography images from 15 patients were used. Treatment plans were generated using 3D-CRT, IMRTs, and IMRTi for dose levels of 54, 59.4, and 64.8 Gy. Plans were analyzed for target coverage, doses to liver, kidneys, small bowel, and spinal cord. Results: Three-dimensional-CRT exceeded tolerance to small bowel in 1 of 15 (6.67%) patients at 54 Gy, and 4 of 15 (26.7%) patients at 59.4 and 64.8 Gy. 3D-CRT exceeded spinal cord tolerance in 1 of 15 patients (6.67%) at 59.4 Gy and liver constraints in 1 of 15 patients (6.67%) at 64.8 Gy; no IMRT plans exceeded tissue tolerance. Both IMRT techniques reduced the percentage of total kidney volume receiving 20 Gy (V20), the percentage of small bowel receiving 45 Gy (V45), and the percentage of liver receiving 35 Gy (V35). IMRTi appeared superior to IMRTs in reducing the total kidney V20 (p < 0.0001), right kidney V20 (p < 0.0001), and small bowel V45 (p = 0.02). Conclusions: Sequential boost IMRT and IMRTi improved the ability to achieve normal tissue dose goals compared with 3D-CRT. IMRTi allowed dose escalation to 64.8 Gy with acceptable normal tissue doses and superior dosimetry compared with 3D-CRT and IMRTs.

  1. Quality Assurance Needs for Modern Image-Based Radiotherapy: Recommendations From 2007 Interorganizational Symposium on 'Quality Assurance of Radiation Therapy: Challenges of Advanced Technology'

    SciTech Connect

    Williamson, Jeffrey F. Dunscombe, Peter B.; Sharpe, Michael B.; Thomadsen, Bruce R.; Purdy, James A.; Deye, James A.

    2008-05-01

    This report summarizes the consensus findings and recommendations emerging from 2007 Symposium, 'Quality Assurance of Radiation Therapy: Challenges of Advanced Technology.' The Symposium was held in Dallas February 20-22, 2007. The 3-day program, which was sponsored jointly by the American Society for Therapeutic Radiology and Oncology (ASTRO), American Association of Physicists in Medicine (AAPM), and National Cancer Institute (NCI), included >40 invited speakers from the radiation oncology and industrial engineering/human factor communities and attracted nearly 350 attendees, mostly medical physicists. A summary of the major findings follows. The current process of developing consensus recommendations for prescriptive quality assurance (QA) tests remains valid for many of the devices and software systems used in modern radiotherapy (RT), although for some technologies, QA guidance is incomplete or out of date. The current approach to QA does not seem feasible for image-based planning, image-guided therapies, or computer-controlled therapy. In these areas, additional scientific investigation and innovative approaches are needed to manage risk and mitigate errors, including a better balance between mitigating the risk of catastrophic error and maintaining treatment quality, complimenting the current device-centered QA perspective by a more process-centered approach, and broadening community participation in QA guidance formulation and implementation. Industrial engineers and human factor experts can make significant contributions toward advancing a broader, more process-oriented, risk-based formulation of RT QA. Healthcare administrators need to appropriately increase personnel and ancillary equipment resources, as well as capital resources, when new advanced technology RT modalities are implemented. The pace of formalizing clinical physics training must rapidly increase to provide an adequately trained physics workforce for advanced technology RT. The specific

  2. Stereotactic Body Radiation Therapy Can Be Used Safely to Boost Residual Disease in Locally Advanced Non-Small Cell Lung Cancer: A Prospective Study

    SciTech Connect

    Feddock, Jonathan; Arnold, Susanne M.; Shelton, Brent J.; Sinha, Partha; Conrad, Gary; Chen, Li; Rinehart, John; McGarry, Ronald C.

    2013-04-01

    Purpose: To report the results of a prospective, single-institution study evaluating the feasibility of conventional chemoradiation (CRT) followed by stereotactic body radiation therapy (SBRT) as a means of dose escalation for patients with stage II-III non-small cell lung cancer (NSCLC) with residual disease. Methods and Materials: Patients without metastatic disease and with radiologic evidence of limited residual disease (≤5 cm) within the site of the primary tumor and good or complete nodal responses after standard CRT to a target dose of 60 Gy were considered eligible. The SBRT boost was done to achieve a total combined dose biological equivalent dose >100 Gy to the residual primary tumor, consisting of 10 Gy × 2 fractions (20 Gy total) for peripheral tumors, and 6.5 Gy × 3 fractions (19.5 Gy total) for medial tumors using the Radiation Therapy Oncology Group protocol 0813 definitions. The primary endpoint was the development of grade ≥3 radiation pneumonitis (RP). Results: After a median follow-up of 13 months, 4 patients developed acute grade 3 RP, and 1 (2.9%) developed late and persistent grade 3 RP. No patients developed grade 4 or 5 RP. Mean lung dose, V2.5, V5, V10, and V20 values were calculated for the SBRT boost, and none were found to significantly predict for RP. Only advancing age (P=.0147), previous smoking status (P=.0505), and high CRT mean lung dose (P=.0295) were significantly associated with RP development. At the time of analysis, the actuarial local control rate at the primary tumor site was 82.9%, with only 6 patients demonstrating recurrence. Conclusions: Linear accelerator-based SBRT for dose escalation of limited residual NSCLC after definitive CRT was feasible and did not increase the risk for toxicity above that for standard radiation therapy.

  3. Concomitant cetuximab and radiation therapy: A possible promising strategy for locally advanced inoperable non-melanoma skin carcinomas

    PubMed Central

    DELLA VITTORIA SCARPATI, GIUSEPPINA; PERRI, FRANCESCO; PISCONTI, SALVATORE; COSTA, GIUSEPPE; RICCIARDIELLO, FILIPPO; DEL PRETE, SALVATORE; NAPOLITANO, ALBERTO; CARRATURO, MARCO; MAZZONE, SALVATORE; ADDEO, RAFFAELE

    2016-01-01

    Non-melanoma skin cancers (NMSCs) include a heterogeneous group of malignancies arising from the epidermis, comprising squamous cell carcinoma (SCC), basal cell carcinoma (BCC), Merkel cell carcinoma and more rare entities, including malignant pilomatrixoma and sebaceous gland tumours. The treatment of early disease depends primarily on surgery. In addition, certain patients present with extensive local invasion or metastasis, which renders these tumours surgically unresectable. Improving the outcome of radiotherapy through the use of concurrent systemic therapy has been demonstrated in several locally advanced cancer-treatment paradigms. Recently, agents targeting the human epidermal growth factor receptor (EGFR) have exhibited a consolidated activity in phase II clinical trials and case series reports. Cetuximab is a monoclonal antibody that binds to and completely inhibits the EGFR, which has been revealed to be up-regulated in a variety of SCCs, including NMSCs. The present review aimed to summarize the role of anti-EGFR agents in the predominant types of NMSC, including SCC and BCC, and focuses on the cetuximab-based studies, highlighting the biological rationale of this therapeutic option. In addition, the importance of the association between cetuximab and radiotherapy for locally advanced NMSC is discussed. PMID:27073643

  4. Simultaneous Integrated Boost–Intensity Modulated Radiation Therapy With Concomitant Capecitabine and Mitomycin C for Locally Advanced Anal Carcinoma: A Phase 1 Study

    SciTech Connect

    Deenen, Maarten J.; Dewit, Luc; Boot, Henk; Beijnen, Jos H.; Schellens, Jan H.M.; Cats, Annemieke

    2013-04-01

    Purpose: Newer radiation techniques, and the application of continuous 5-FU exposure during radiation therapy using oral capecitabine may improve the treatment of anal cancer. This phase 1, dose-finding study assessed the feasibility and efficacy of simultaneous integrated boost–intensity modulated radiation therapy (SIB-IMRT) with concomitant capecitabine and mitomycin C in locally advanced anal cancer, including pharmacokinetic and pharmacogenetic analyses. Methods and Materials: Patients with locally advanced anal carcinoma were treated with SIB-IMRT in 33 daily fractions of 1.8 Gy to the primary tumor and macroscopically involved lymph nodes and 33 fractions of 1.5 Gy electively to the bilateral iliac and inguinal lymph node areas. Patients received a sequential radiation boost dose of 3 × 1.8 Gy on macroscopic residual tumor if this was still present in week 5 of treatment. Mitomycin C 10 mg/m{sup 2} (maximum 15 mg) was administered intravenously on day 1, and capecitabine was given orally in a dose-escalated fashion (500-825 mg/m{sup 2} b.i.d.) on irradiation days, until dose-limiting toxicity emerged in ≥2 of maximally 6 patients. An additional 8 patients were treated at the maximum tolerated dose (MTD). Results: A total of 18 patients were included. The MTD of capecitabine was determined to be 825 mg/m{sup 2} b.i.d. The predominant acute grade ≥3 toxicities included radiation dermatitis (50%), fatigue (22%), and pain (6%). Fifteen patients (83% [95%-CI: 66%-101%]) achieved a complete response, and 3 (17%) patients a partial response. With a median follow-up of 28 months, none of the complete responders, and 2 partial responders had relapsed. Conclusions: SIB-IMRT with concomitant single dose mitomycin C and capecitabine 825 mg/m{sup 2} b.i.d. on irradiation days resulted in an acceptable safety profile, and proved to be a tolerable and effective treatment regimen for locally advanced anal cancer.

  5. Particle therapy for cancers: a new weapon in radiation therapy.

    PubMed

    Jiang, Guo-Liang

    2012-06-01

    Particle irradiation started to draw attention in the past decade and has now become a hotspot in the radiation oncology community. This article reviews the most advanced developments in particle irradiation, focusing on the characteristics of proton and carbon ions in radiation physics and radiobiology. The Bragg peak of physical dose distribution causes proton and carbon beams to optimally meet the requirement for cancer irradiation because the Bragg peak permits the accurate concentration of the dose on the tumor, thus sparing the adjacent normal tissues. Moreover, carbon ion has more radiobiological benefits than photon and proton beams. These benefits include stronger sterilization effects on intrinsic radio-resistant tumors and more effective killing of hypoxic, G(0), and S phase cells. Compared with the most advanced radiation techniques using photon, such as three-dimensional conformal radiation therapy and intensity-modulated radiation therapy, proton therapy has yielded more promising outcomes in local control and survival for head and neck cancers, prostate carcinoma, and pediatric cancers. Carbon therapy in Japan showed even more promising results than proton therapy. The local controls and overall survivals were as good as that treated by surgery in early stages of non-small cell lung cancer, hepatocellular carcinoma, prostate carcinoma, and head and neck cancers, especially for such highly resistant tumors as melanoma. The non-invasive nature of particle therapy affords more patients with chances to receive and benefit from treatment. Particle therapy is gradually getting attention from the oncology community. However, the cost of particle therapy facilities has limited the worldwide use of this technology.

  6. Cisplatin versus Cetuximab Given Concurrently with Definitive Radiation Therapy for Locally Advanced Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Ley, Jessica; Mehan, Paul; Wildes, Tanya M.; Thorstad, Wade; Gay, Hiram A.; Michel, Loren; Nussenbaum, Brian; Trinkaus, Kathryn; Adkins, Douglas

    2013-01-01

    Objective Whether or not cisplatin and cetuximab are similarly effective in improving outcomes when added to radiation therapy(RT) in HNSCC is unknown. Methods Retrospective analysis of patients treated with definitive RT and cisplatin(n=18) or cetuximab(n=29). Results T and N classifications, stage, HPV status, and smoking history were balanced in the two groups; however, patients in the cisplatin group were younger, and had better performance status. Delivery of RT was similar between the two groups. Median follow-up was 23(4–64) months. Disease-specific(DSS) survival at 3 years was 83% in the cisplatin group and 31% in the cetuximab group. Recurrent disease was more common in the cetuximab group compared with the cisplatin group(17 versus 4 patients). Propensity score analysis to adjust for differences in patient characteristics which influenced treatment selection showed that DSS was indeed longer with cisplatin than with cetuximab(DSS Hazard Ratio[HR] 0.15{Confidence Interval[CI]0.033,0.66},p=0.012). Conclusions DSS was superior in the patients given cisplatin with definitive RT compared to cetuximab with definitive RT due to a lower risk of recurrent disease in the cisplatin group. These observations could not be explained by differences between the two groups in the patient and tumor characteristics or in treatment delivery. PMID:24217231

  7. Radiation Therapy for Soft Tissue Sarcomas

    MedlinePlus

    ... called palliative treatment . Types of radiation therapy External beam radiation therapy: For this treatment, radiation delivered from ... impact on healthy tissue. In some centers, proton beam radiation is an option. This uses streams of ...

  8. Translational research on advanced therapies.

    PubMed

    Belardelli, Filippo; Rizza, Paola; Moretti, Franca; Carella, Cintia; Galli, Maria Cristina; Migliaccio, Giovanni

    2011-01-01

    Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP) are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP) facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues) is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  9. Building immunity to cancer with radiation therapy.

    PubMed

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  10. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma

    PubMed Central

    Topkan, Erkan; Yavuz, Ali A; Aydin, Mehmet; Onal, Cem; Yapar, Fuat; Yavuz, Melek N

    2008-01-01

    Background To compare computed tomography (CT) with co-registered positron emission tomography-computed tomography (PET-CT) as the basis for delineating gross tumor volume (GTV) in unresectable, locally advanced pancreatic carcinoma (LAPC). Methods Fourteen patients with unresectable LAPC had both CT and PET images acquired. For each patient, two three-dimensional conformal plans were made using the CT and PET-CT fusion data sets. We analyzed differences in treatment plans and doses of radiation to primary tumors and critical organs. Results Changes in GTV delineation were necessary in 5 patients based on PET-CT information. In these patients, the average increase in GTV was 29.7%, due to the incorporation of additional lymph node metastases and extension of the primary tumor beyond that defined by CT. For all patients, the GTVCT versus GTVPET-CT was 92.5 ± 32.3 cm3 versus 104.5 ± 32.6 cm3 (p = 0.009). Toxicity analysis revealed no clinically significant differences between two plans with regard to doses to critical organs. Conclusion Co-registration of PET and CT information in unresectable LAPC may improve the delineation of GTV and theoretically reduce the likelihood of geographic misses. PMID:18808725

  11. Outcomes in a Multi-institutional Cohort of Patients Treated With Intraoperative Radiation Therapy for Advanced or Recurrent Renal Cell Carcinoma

    SciTech Connect

    Paly, Jonathan J.; Hallemeier, Christopher L.; Biggs, Peter J.; Niemierko, Andrzej; Roeder, Falk; Martínez-Monge, Rafael; Whitson, Jared; Calvo, Felipe A.; Fastner, Gerd; Sedlmayer, Felix; Wong, William W.; Ellis, Rodney J.; Haddock, Michael G.; Choo, Richard; Shipley, William U.; Zietman, Anthony L.; Efstathiou, Jason A.

    2014-03-01

    Purpose/Objective(s): This study aimed to analyze outcomes in a multi-institutional cohort of patients with advanced or recurrent renal cell carcinoma (RCC) who were treated with intraoperative radiation therapy (IORT). Methods and Materials: Between 1985 and 2010, 98 patients received IORT for advanced or locally recurrent RCC at 9 institutions. The median follow-up time for surviving patients was 3.5 years. Overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS) were estimated with the Kaplan-Meier method. Chained imputation accounted for missing data, and multivariate Cox hazards regression tested significance. Results: IORT was delivered during nephrectomy for advanced disease (28%) or during resection of locally recurrent RCC in the renal fossa (72%). Sixty-nine percent of the patients were male, and the median age was 58 years. At the time of primary resection, the T stages were as follows: 17% T1, 12% T2, 55% T3, and 16% T4. Eighty-seven percent of the patients had a visibly complete resection of tumor. Preoperative or postoperative external beam radiation therapy was administered to 27% and 35% of patients, respectively. The 5-year OS was 37% for advanced disease and 55% for locally recurrent disease. The respective 5-year DSS was 41% and 60%. The respective 5-year DFS was 39% and 52%. Initial nodal involvement (hazard ratio [HR] 2.9-3.6, P<.01), presence of sarcomatoid features (HR 3.7-6.9, P<.05), and higher IORT dose (HR 1.3, P<.001) were statistically significantly associated with decreased survival. Adjuvant systemic therapy was associated with decreased DSS (HR 2.4, P=.03). For locally recurrent tumors, positive margin status (HR 2.6, P=.01) was associated with decreased OS. Conclusions: We report the largest known cohort of patients with RCC managed by IORT and have identified several factors associated with survival. The outcomes for patients receiving IORT in the setting of local recurrence compare favorably to

  12. [Radiation therapy and redox imaging].

    PubMed

    Matsumoto, Ken-ichiro

    2015-01-01

    Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics. PMID:25948308

  13. [Radiation therapy and redox imaging].

    PubMed

    Matsumoto, Ken-ichiro

    2015-01-01

    Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics.

  14. The Megavoltage Radiation Therapy in Treatment of Patients With Advanced or Difficult Giant Cell Tumors of Bone

    SciTech Connect

    Ruka, Wlodzimierz; Ptaszynski, Konrad; Bylina, Elzbieta

    2010-10-01

    Purpose: To assess the outcomes of radiotherapy, in terms of local control and treatment complications, of advanced or difficult giant cell tumors of bone (GCTB) that could not be treated by surgery. Methods and Materials: Among 122 consecutive patients with confirmed GCTB from 1985 to 2007, 77 patients were treated by megavoltage radiotherapy because they were inappropriate candidates for surgery. We have performed analysis of all data in terms of progression-free survival (PFS) and treatment morbidity. Median follow-up time was 58 months. Results: In the irradiated group, maximal tumor size ranged from 5 to 18 cm (median, 8.5). Anatomic distribution was as follows: femur, 27 cases; tibia, 19; radial/ulnar bone, 12; sacrum, 9; pelvic bones, 5; other, 5. Twenty-one patients (27%) were referred for local recurrence after {>=}1 other treatment procedures. The radiation doses ranged from 26 to 89 Gy (median, 56; administered 1.8-2.0 Gy/fraction with average total duration of treatment of 5-7 weeks); 8 patients (10%) received <50 Gy. All patients tolerated treatment well without acute or late complications. All patients except two are alive. Local control was achieved in 65 patients (84%; bone recalcification/restitution of joint functions), 12 patients showed signs of local progression, all within irradiated fields (9 were treated successfully with salvage surgery). Five- and 10-year local PFS were 83% and 73%, respectively. Three patients developed lungs metastases. Malignant transformation of GCTB occurred in two patients. Conclusions: GCTB can be safely and effectively treated with megavoltage radiotherapy with local control rate >80% at 5 years. Our study confirms that radiotherapy of GCTB offers an alternative to difficult or complex surgery and may be an option of choice in the treatment of inoperable patients.

  15. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    PubMed Central

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-01

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTVP) and involved lymph nodes (GTVLN) to simulate the localization process in image-guided radiation therapy. Techniques included “standard” (direct registration of weekly images to a planning CT), “seeded” (manual prealignment of targets to guide standard registration), “transitive-based” (alignment of pretreatment and planning CTs through one or more intermediate images), and “rereferenced” (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 ± 5.4 mm and 5.4 ± 3.4 mm for the GTVP and GTVLN, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTVP centroid LE to 4.7 ± 3.7 mm (p = 0.011) and 4.3 ± 2.5 mm (p < 1 × 10−3), respectively, but the smallest GTVP LE of 2.4 ± 2.1 mm was provided by rereferenced registration (p < 1 × 10−6). Standard registration significantly reduced GTVLN centroid LE to 3.2 ± 2.5 mm (p < 1 × 10−3) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE as low as 3

  16. PET/CT Dose Planning for Volumetric Modulated Arc Radiation Therapy (VMAT) -Comparison with Conventional Approach in Advanced Prostate Cancer Patients.

    PubMed

    Kairemo, Kalevi; Rasulova, Nigora; Kiljunen, Timo; Partanen, Kaarina; Kangasmäki, Aki; Joensuu, Timo

    2015-01-01

    Molecular imaging is the only way of defining biological target volume (BTV) for externalbeam radiation therapy (EBRT) and may be used for advanced targeting in dose planning and dose painting. There are, however, no reports about the EBRT response when dose planning is based on BTV target definition in advanced prostate cancer. Clinical and biochemical results of two clinically equal group of patients with advanced prostate cancer patients were compared. Both groups were treated with volumetric modulated arc therapy (VMAT) based on target definition by PET/CT (1(st) group) or conventional imaging (2(nd) group). Biochemical relapse occurred in 16.6% (in 1 out of 6) of the patients in the first group and 50% (3 out of 6) patients in the second group during the follow up period. Clinical manifestation of disease occurred in 33% (2 out of 6) patients of the first group and in 5 out of 6 (83,3%) patients in the second one. 4 patients in the first group had no biochemical relapse and no clinical manifestation during the follow up period. The difference in the duration of progression free period was statistically significant between the groups (p<0.010) being in the first group 16.5±5.4 (10-24) months and 4.6±2.9 (2-10) months in the second one. Because patients with PET/CT based VMAT had lower incidence of biochemical relapse, less clinical manifestations and longer, statistically significant duration of progression free period as compared to patients treated with VMAT based on conventional imaging, our preliminary results suggest introducing BTV definition based on PET imaging for VMAT in the EBRT of prostate cancer.

  17. Advances in management of malignant diseases with the combination of radiation therapy and chemotherapy. Highlights from the 45th Annual Meeting of the American Society for Therapeutic Radiology and Oncology.

    PubMed

    Corn, Benjamin W

    2004-01-01

    From October 19 through October 24, 2003, the American Society for Therapeutic Radiology and Oncology held its 45th Annual Meeting in Salt Lake City, Utah. The meeting was devoted to the presentation of advances in the management of malignant diseases with radiation modalities. The meeting brought together investigators, clinicians, policy makers and professionals interested in the science and impact of radiation on cancerous disease. This report examines the advances in combined modality approaches (i.e., the use of radiation therapy and chemotherapy) for the treatment of malignant disease. The American Society for Therapeutic Radiology and Oncology sponsors an annual meeting devoted to the presentation of radiation-related advances in malignant disorders. The educational elements of this program are targeted at oncologists of all disciplines (i.e., surgical oncologists, medical oncologists, radiation oncologists), physicists, biologists, nurses, and therapists as well as all health care workers who are involved in the treatment of patients with malignant diseases. The program includes presentations on standard, investigational and experimental therapeutics as well as intensity-modulated radiation therapy, treatment planning, alternative fractionation, and molecular and radiation biology. Specific clinical areas include breast, central nervous system, gastrointestinal, genitourinary, gynecological, head and neck, and lung cancers. In addition, the program addresses quality of life, supportive care and socioeconomic issues. These topics are addressed by a combination of educational sessions, panel discussions, proffered papers and posters. Since a diminishing number of tumors can be managed solely by radiation therapy, among the most noteworthy developments this year were the combined modality approaches (i.e. radiation therapy combined with chemotherapy) in the treatment of malignant disease. In particular, a cluster of seminal papers was presented pertaining to

  18. NRG Oncology Radiation Therapy Oncology Group 0822: A Phase 2 Study of Preoperative Chemoradiation Therapy Using Intensity Modulated Radiation Therapy in Combination With Capecitabine and Oxaliplatin for Patients With Locally Advanced Rectal Cancer

    SciTech Connect

    Hong, Theodore S.; Moughan, Jennifer; Garofalo, Michael C.; Bendell, Johanna; Berger, Adam C.; Oldenburg, Nicklas B.E.; Anne, Pramila Rani; Perera, Francisco; Jabbour, Salma K.; Nowlan, Adam; DeNittis, Albert; Crane, Christopher

    2015-09-01

    Purpose: To evaluate the rate of gastrointestinal (GI) toxicity of neoadjuvant chemoradiation with capecitabine, oxaliplatin, and intensity modulated radiation therapy (IMRT) in cT3-4 rectal cancer. Methods and Materials: Patients with localized, nonmetastatic T3 or T4 rectal cancer <12 cm from the anal verge were enrolled in a prospective, multi-institutional, single-arm study of preoperative chemoradiation. Patients received 45 Gy with IMRT in 25 fractions, followed by a 3-dimensional conformal boost of 5.4 Gy in 3 fractions with concurrent capecitabine/oxaliplatin (CAPOX). Surgery was performed 4 to 8 weeks after the completion of therapy. Patients were recommended to receive FOLFOX chemotherapy after surgery. The primary endpoint of the study was acute grade 2 to 5 GI toxicity. Seventy-one patients provided 80% probability to detect at least a 12% reduction in the specified GI toxicity with the treatment of CAPOX and IMRT, at a significance level of .10 (1-sided). Results: Seventy-nine patients were accrued, of whom 68 were evaluable. Sixty-one patients (89.7%) had cT3 disease, and 37 (54.4%) had cN (+) disease. Postoperative chemotherapy was given to 42 of 68 patients. Fifty-eight patients had target contours drawn per protocol, 5 patients with acceptable variation, and 5 patients with unacceptable variations. Thirty-five patients (51.5%) experienced grade ≥2 GI toxicity, 12 patients (17.6%) experienced grade 3 or 4 diarrhea, and pCR was achieved in 10 patients (14.7%). With a median follow-up time of 3.98 years, the 4-year rate of locoregional failure was 7.4% (95% confidence interval [CI]: 1.0%-13.7%). The 4-year rates of OS and DFS were 82.9% (95% CI: 70.1%-90.6%) and 60.6% (95% CI: 47.5%-71.4%), respectively. Conclusion: The use of IMRT in neoadjuvant chemoradiation for rectal cancer did not reduce the rate of GI toxicity.

  19. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  20. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  1. External Radiation Therapy

    MedlinePlus Videos and Cool Tools

    Narrator: When the cancer is not completely contained in the prostate or when the patient is older the treatment that is frequently used ... There are different forms of radiation for prostate cancer. They really boil down to two different types. ...

  2. Immunomicelles for advancing personalized therapy.

    PubMed

    Sawant, Rupa R; Jhaveri, Aditi M; Torchilin, Vladimir P

    2012-10-01

    Personalized medicine, which ultimately seeks to afford tailored therapeutic regimens for individual patients, is quickly emerging as a new paradigm in the diagnosis and treatment of diseases. The idea of casting aside generic treatments in favor of patient-centric therapies has become feasible owing to advances in nanotechnology and drug delivery coupled with an enhanced knowledge of genomics and an understanding of disease at the molecular level. This review highlights polymeric immunomicelles as a class of nanocarriers that have the potential to combine diagnosis, targeted drug therapy, as well as imaging and monitoring of therapeutic response, to render a personalized approach to the management of disease. Smart multi-functional immunomicelles, as the next generation of nanocarriers, are poised for facilitating personalized cancer treatment. This review provides an assessment of immunomicelles as tools for advancing personalized therapy of diseases, with cancer being the major focus. PMID:22917778

  3. Early Clinical Outcomes and Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma: A Prospective Randomized Study

    SciTech Connect

    Gandhi, Ajeet Kumar; Sharma, Daya Nand; Rath, Goura Kisor; Julka, Pramod Kumar; Subramani, Vellaiyan; Sharma, Seema; Manigandan, Durai; Laviraj, M.A.; Kumar, Sunesh; Thulkar, Sanjay

    2013-11-01

    Purpose: To evaluate the toxicity and clinical outcome in patients with locally advanced cervical cancer (LACC) treated with whole pelvic conventional radiation therapy (WP-CRT) versus intensity modulated radiation therapy (WP-IMRT). Methods and Materials: Between January 2010 and January 2012, 44 patients with International Federation of Gynecology and Obstetrics (FIGO 2009) stage IIB-IIIB squamous cell carcinoma of the cervix were randomized to receive 50.4 Gy in 28 fractions delivered via either WP-CRT or WP-IMRT with concurrent weekly cisplatin 40 mg/m{sup 2}. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events, version 3.0, and late toxicity was graded according to the Radiation Therapy Oncology Group system. The primary and secondary endpoints were acute gastrointestinal toxicity and disease-free survival, respectively. Results: Of 44 patients, 22 patients received WP-CRT and 22 received WP-IMRT. In the WP-CRT arm, 13 patients had stage IIB disease and 9 had stage IIIB disease; in the IMRT arm, 12 patients had stage IIB disease and 10 had stage IIIB disease. The median follow-up time in the WP-CRT arm was 21.7 months (range, 10.7-37.4 months), and in the WP-IMRT arm it was 21.6 months (range, 7.7-34.4 months). At 27 months, disease-free survival was 79.4% in the WP-CRT group versus 60% in the WP-IMRT group (P=.651), and overall survival was 76% in the WP-CRT group versus 85.7% in the WP-IMRT group (P=.645). Patients in the WP-IMRT arm experienced significantly fewer grade ≥2 acute gastrointestinal toxicities (31.8% vs 63.6%, P=.034) and grade ≥3 gastrointestinal toxicities (4.5% vs 27.3%, P=.047) than did patients receiving WP-CRT and had less chronic gastrointestinal toxicity (13.6% vs 50%, P=.011). Conclusion: WP-IMRT is associated with significantly less toxicity compared with WP-CRT and has a comparable clinical outcome. Further studies with larger sample sizes and longer follow-up times are warranted to justify

  4. RTOG 0417: Efficacy of Bevacizumab in Combination With Definitive Radiation Therapy and Cisplatin Chemotherapy in Untreated Patients With Locally Advanced Cervical Carcinoma

    SciTech Connect

    Schefter, Tracey; Winter, Kathryn; Kwon, Janice S.; Stuhr, Kelly; Balaraj, Khalid; Yaremko, Brian Patrick; Small, William; Sause, William; Gaffney, David

    2014-01-01

    Purpose: Radiation Therapy Oncology Group 0417 was a phase II study that explored the safety and efficacy of the addition of bevacizumab to chemoradiation therapy. The safety results have been previously reported. Herein we report the secondary efficacy endpoints of overall survival (OS), locoregional failure (LRF), para-aortic nodal failure (PAF), distant failure (DF), and disease-free survival (DFS). Methods and Materials: Eligible patients with bulky Stage IB-IIIB disease were treated with once-weekly cisplatin (40 mg/m{sup 2}) chemotherapy and standard pelvic radiation therapy and brachytherapy. Bevacizumab was administered at 10 mg/kg intravenously every 2 weeks for 3 cycles during chemoradiation. For OS, failure was defined as death of any cause and was measured from study entry to date of death. LRF was defined as any failure in the pelvis. PAF was defined as any para-aortic nodal failure. DF was analyzed both including and excluding PAF. DFS was measured from study entry to date of first LRF. DF was measured with or without PAF or death. OS and DFS were estimated by the Kaplan-Meier method, and LRF and DF rates were estimated by the cumulative incidence method. Results: 49 eligible patients from 28 institutions were enrolled between 2006 and 2009. The median follow-up time was 3.8 years (range, 0.8-6.0 years). The surviving patients had a median follow-up time of 3.9 years (range, 2.1-6.0 years). Most patients had tumors of International Federation of Gynecology and Obstetrics Stage IIB (63%), and 80% were squamous. The 3-year OS, DFS, and LRF were 81.3% (95% confidence interval [CI], 67.2%-89.8%), 68.7% (95% CI, 53.5%-79.8%), and 23.2% (95% CI, 11%-35.4%), respectively. The PAF, DF without PAF, and DF with PAF at 3 years were 8.4% (95% CI, 0.4%-16.3%), 14.7% (95% CI, 4.5%-24.9%), and 23.1% (95% CI 11.0%-35.2%), respectively. Conclusion: In this study, bevacizumab in combination with standard pelvic chemoradiation therapy for locally advanced cervical

  5. Secondary Malignancy Risk Following Proton Radiation Therapy

    PubMed Central

    Eaton, Bree R.; MacDonald, Shannon M.; Yock, Torunn I.; Tarbell, Nancy J.

    2015-01-01

    Radiation-induced secondary malignancies are a significant, yet uncommon cause of morbidity and mortality among cancer survivors. Secondary malignancy risk is dependent upon multiple factors including patient age, the biological and genetic predisposition of the individual, the volume and location of tissue irradiated, and the dose of radiation received. Proton therapy (PRT) is an advanced particle therapy with unique dosimetric properties resulting in reduced entrance dose and minimal to no exit dose when compared with standard photon radiation therapy. Multiple dosimetric studies in varying cancer subtypes have demonstrated that PRT enables the delivery of adequate target volume coverage with reduced integral dose delivered to surrounding tissues, and modeling studies taking into account dosimetry and radiation cell biology have estimated a significantly reduced risk of radiation-induced secondary malignancy with PRT. Clinical data are emerging supporting the lower incidence of secondary malignancies after PRT compared with historical photon data, though longer follow-up in proton treated cohorts is awaited. This article reviews the current dosimetric and clinical literature evaluating the incidence of and risk factors associated with radiation-induced secondary malignancy following PRT. PMID:26636040

  6. The Evaluation and Study of Modern Radiation Dosimetry Methods as Applied to Advanced Radiation Therapy Treatments Using Intensity Modulated Megavoltage Photon Beams

    NASA Astrophysics Data System (ADS)

    Stambaugh, Cassandra K. K.

    The purpose of this work is to evaluate quasi-3D arrays for use with intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and to determine their clinical relevance. This is achieved using a Delta4 from Scandidos and ArcCheck from Sun Nuclear and the associated software. While certain aspects of these devices and software have been previously evaluated, the main goal of this work is to evaluate the new aspects, such as reconstructing dose on a patient CT set, and extending the capabilities. This includes the capability to reconstruct the dose based on a helical delivery as well as studying the dose to a moving target using measurement-guided motion simulations. It was found that Sun Nuclear's ArcCheck/3DVH system exhibited excellent agreement for dose reconstruction for IMRT/VMAT using a traditional C-arm linear accelerator and stringent 2%/2mm comparison constraints. It also is a powerful tool for measurement-guided dose estimates for moving targets, allowing for many simulations to be performed based on one measurement and the target motion data. For dose reconstruction for a helical delivery, the agreement was not as good for the stringent comparison but was reasonable for the clinically acceptable 3%/3mm comparison. Scandidos' Delta4 shows good agreement with stringent 2%/2mm constraints for its dose reconstruction on the phantom. However, the dose reconstruction on the patient CT set was poor and needs more work. Overall, it was found that quasi-3D arrays are powerful tools for dose reconstruction and treatment plan comparisons. The ability to reconstruct the dose allows for a dose resolution comparable to the treatment plan, which negates the previous issues with inadequate sampling and resolution issues found when just comparing the diodes. The ability to quickly and accurately compare many plans and target motions with minimum setup makes the quasi-3D array an attractive tool for both commissioning and patient specific

  7. Interfraction Displacement of Primary Tumor and Involved Lymph Nodes Relative to Anatomic Landmarks in Image Guided Radiation Therapy of Locally Advanced Lung Cancer

    SciTech Connect

    Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.; Mukhopadhyay, Nitai; Weiss, Elisabeth

    2014-01-01

    Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectors and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.

  8. Dosimetric Comparison Between 2-Dimensional Radiation Therapy and Intensity Modulated Radiation Therapy in Treatment of Advanced T-Stage Nasopharyngeal Carcinoma: To Treat Less or More in the Planning Organ-At-Risk Volume of the Brainstem and Spinal Cord

    SciTech Connect

    Chau, Ricky Teo, Peter; Kam, Michael; Leung, S.F.; Cheung, K.Y.; Chan, Anthony

    2007-01-01

    The aim of this study is to evaluate the deficiencies in target coverage and organ protection of 2-dimensional radiation therapy (2DRT) in the treatment of advanced T-stage (T3-4) nasopharyngeal carcinoma (NPC), and assess the extent of improvement that could be achieved with intensity modulated radiation therapy (IMRT), with special reference to of the dose to the planning organ-at-risk volume (PRV) of the brainstem and spinal cord. A dosimetric study was performed on 10 patients with advanced T-stage (T3-4 and N0-2) NPC. Computer tomography (CT) images of 2.5-mm slice thickness of the head and neck were acquired with the patient immobilized in semi-extended-head position. A 2D plan based on Ho's technique, and an IMRT plan based on a 7-coplanar portals arrangement, were established for each patient. 2DRT was planned with the field borders and shielding drawn on the simulator radiograph with reference to bony landmarks, digitized, and entered into a planning computer for reconstruction of the 3D dose distribution. The 2DRT and IMRT treatment plans were evaluated and compared with respect to the dose-volume histograms (DVHs) of the targets and the organs-at-risk (OARs), tumor control probability (TCP), and normal tissue complication probabilities (NTCPs). With IMRT, the dose coverage of the target was superior to that of 2DRT. The mean minimum dose of the GTV and PTV were increased from 33.7 Gy (2DRT) to 62.6 Gy (IMRT), and 11.9 Gy (2DRT) to 47.8 Gy (IMRT), respectively. The D{sub 95} of the GTV and PTV were also increased from 57.1 Gy (2DRT) to 67 Gy (IMRT), and 45 Gy (2DRT) to 63.6 Gy (IMRT), respectively. The TCP was substantially increased to 78.5% in IMRT. Better protection of the critical normal organs was also achieved with IMRT. The mean maximum dose delivered to the brainstem and spinal cord were reduced significantly from 61.8 Gy (2DRT) to 52.8 Gy (IMRT) and 56 Gy (2DRT) to 43.6 Gy (IMRT), respectively, which were within the conventional dose limits of 54

  9. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directional block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.

  10. Neoadjuvant Sandwich Treatment With Oxaliplatin and Capecitabine Administered Prior to, Concurrently With, and Following Radiation Therapy in Locally Advanced Rectal Cancer: A Prospective Phase 2 Trial

    SciTech Connect

    Gao, Yuan-Hong; Lin, Jun-Zhong; An, Xin; Luo, Jie-Lin; Cai, Mu-Yan; Cai, Pei-Qiang; Kong, Ling-Heng; Liu, Guo-Chen; Tang, Jing-Hua; Chen, Gong; Pan, Zhi-Zhong; Ding, Pei-Rong

    2014-12-01

    Purpose: Systemic failure remains the major challenge in management of locally advanced rectal cancer (LARC). To optimize the timing of neoadjuvant treatment and enhance systemic control, we initiated a phase 2 trial to evaluate a new strategy of neoadjuvant sandwich treatment, integrating induction chemotherapy, concurrent chemoradiation therapy, and consolidation chemotherapy. Here, we present preliminary results of this trial, reporting the tumor response, toxicities, and surgical complications. Methods and Materials: Fifty-one patients with LARC were enrolled, among which were two patients who were ineligible because of distant metastases before treatment. Patients were treated first with one cycle of induction chemotherapy consisting of oxaliplatin, 130 mg/m² on day 1, with capecitabine, 1000 mg/m² twice daily for 14 days every 3 weeks (the XELOX regimen), followed by chemoradiation therapy, 50 Gy over 5 weeks, with the modified XELOX regimen (oxaliplatin 100 mg/m²), and then with another cycle of consolidation chemotherapy with the XELOX regimen. Surgery was performed 6 to 8 weeks after completion of radiation therapy. Tumor responses, toxicities, and surgical complications were recorded. Results: All but one patent completed the planned schedule of neoadjuvant sandwich treatment. Neither life-threatening blood count decrease nor febrile neutropenia were observed. Forty-five patents underwent optimal surgery with total mesorectal excision (TME). Four patients refused surgery because of clinically complete response. There was no perioperative mortality in this cohort. Five patients (11.1%) developed postoperative complications. Among the 45 patients who underwent TME, pathologic complete response (pCR), pCR or major regression, and at least moderate regression were achieved in 19 (42.2%), 37 (82.2%), and 44 patients (97.8%), respectively. Conclusions: Preliminary results suggest that the strategy of neoadjuvant sandwich treatment using XELOX regimen

  11. A dosimetric evaluation of dose escalation for the radical treatment of locally advanced vulvar cancer by intensity-modulated radiation therapy

    SciTech Connect

    Bloemers, Monique C.W.M.; Portelance, Lorraine; Ruo, Russell; Parker, William; Souhami, Luis

    2012-10-01

    The purpose of this planning study was to determine whether intensity-modulated radiation therapy (IMRT) reduces the radiation dose to organs at risk (OAR) when compared with 3D conventional radiation therapy (3D-CRT) in patients with vulvar cancer treated by irradiation. This study also investigated the use of sequential IMRT boost (seq-IMRT) and simultaneous integrated boost (SIB-IMRT) for dose escalation in the treatment of locally advanced vulvar cancer. Five vulvar cancer patients treated in the postoperative setting and 5 patients treated with definitive intent (def-group) were evaluated. For the postoperative group, 3D-CRT and IMRT plans to a total dose (TD) of 45 Gy were generated. For the def-group, 4 plans were generated: a 3D-CRT and an IMRT plan to a TD of 56.4 Gy, a SIB-IMRT plan to a TD of 56 Gy, and a SIB-IMRT with dose escalation (SIB-IMRT-esc): TD of 67.2 Gy. Mean dose and dose-volume histograms were compared using Student's t-test. IMRT significantly (all p < 0.05) reduced the D{sub mean}, V30, and V40 for all OAR in the adjuvant setting. The V45 was also significantly reduced for all OAR except the bladder. For patients treated in the def-group, all IMRT techniques significantly reduced the D{sub mean}, V40, and V45 for all OAR. The mean femur doses with SIB-IMRT and SIB-IMRT-esc were 47% and 49% lower compared with 3D-CRT. SIB-IMRT-esc reduced the doses to the OAR compared with seq-3D-CRT but increased the D{sub max.} for the small bowel, rectum, and bladder. IMRT reduces the dose to the OAR compared with 3D-CRT in patients with vulvar cancer receiving irradiation to a volume covering the vulvar region and nodal areas without compromising the dosimetric coverage of the target volume. IMRT for vulvar cancer is feasible and an attractive option for dose escalation studies.

  12. Four-Week Neoadjuvant Intensity-Modulated Radiation Therapy With Concurrent Capecitabine and Oxaliplatin in Locally Advanced Rectal Cancer Patients: A Validation Phase II Trial

    SciTech Connect

    Arbea, Leire; Martinez-Monge, Rafael; Diaz-Gonzalez, Juan A.; Moreno, Marta; Rodriguez, Javier; Hernandez, Jose Luis; Sola, Jesus Javier; Ramos, Luis Isaac; Subtil, Jose Carlos; Nunez, Jorge; Chopitea, Ana; Cambeiro, Mauricio; Gaztanaga, Miren; Garcia-Foncillas, Jesus; Aristu, Javier

    2012-06-01

    Purpose: To validate tolerance and pathological complete response rate (pCR) of a 4-week preoperative course of intensity-modulated radiation therapy (IMRT) with concurrent capecitabine and oxaliplatin (CAPOX) in patients with locally advanced rectal cancer. Methods and Materials: Patients with T3 to T4 and/or N+ rectal cancer received preoperative IMRT (47.5 Gy in 19 fractions) with concurrent capecitabine (825 mg/m{sup 2} b.i.d., Monday to Friday) and oxaliplatin (60 mg/m{sup 2} on Days 1, 8, and 15). Surgery was scheduled 4 to 6 weeks after the completion of chemoradiation. Primary end points were toxicity and pathological response rate. Local control (LC), disease-free survival (DFS), and overall survival (OS) were also analyzed. Results: A total of 100 patients were evaluated. Grade 1 to 2 proctitis was observed in 73 patients (73%). Grade 3 diarrhea occurred in 9% of the patients. Grade 3 proctitis in 18% of the first 50 patients led to reduction of the dose per fraction to 47.5 Gy in 20 treatments. The rate of Grade 3 proctitis decreased to 4% thereafter (odds ratio, 0.27). A total of 99 patients underwent surgery. A pCR was observed in 13% of the patients, major response (96-100% of histological response) in 48%, and pN downstaging in 78%. An R0 resection was performed in 97% of the patients. After a median follow-up of 55 months, the LC, DFS, and OS rates were 100%, 84%, and 87%, respectively. Conclusions: Preoperative CAPOX-IMRT therapy (47.5 Gy in 20 fractions) is feasible and safe, and produces major pathological responses in approximately 50% of patients.

  13. Selenomethionine in Reducing Mucositis in Patients With Locally Advanced Head and Neck Cancer Who Are Receiving Cisplatin and Radiation Therapy

    ClinicalTrials.gov

    2014-08-08

    Chemotherapeutic Agent Toxicity; Mucositis; Radiation Toxicity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Xerostomia

  14. Intraoperative radiation therapy as adjuvant treatment in locally advanced stage tumours involving the middle ear: a hypothesis-generating retrospective study.

    PubMed

    Cristalli, G; Mercante, G; Marucci, L; Soriani, A; Telera, S; Spriano, G

    2016-04-01

    The objective of this study was to evaluate the safety, effectiveness and functional outcomes of intraoperative radiotherapy (IORT) followed by intensity-modulated radiation therapy (IMRT) in locally advanced stage tumours involving the middle ear. Data on 13 consecutive patients treated for malignant tumor of external auditory canal involving the middle ear were retrospectively reviewed. Median follow-up was 33 months (range 6-133). Five (38%) patients were stage III and 8 (62%) were Stage IV according to the University of Pittsburgh staging system. Lateral temporal bone resection (LTBR) was performed in all cases. LTBR was associated with parotidectomy in 5 (38%) cases, and with neck dissection and parotidectomy in 6 (46%) cases. No patients had gross residual tumour. Surgical treatment was followed by IORT (12 Gy) and IMRT (50 Gy). Adjuvant chemotherapy was used in 4 (30%) cases. Preoperative and postoperative audiometric tests were performed to assess hearing loss. 5-year local-control (LC), 5-year distant-metastasis (DM), 5-year disease-free-survival (DFS) and 5-year overall-survival (OS) were calculated with Kaplan-Meyer method. Significant changes in bone conduction were reported after treatment. Partial flap necrosis was the only early complication observed in three (23%) cases, while meningeal fistula was seen in one (7.6%) case as a late complication. The 5-year LC-rate was 68%. The 5-year DM-rate was 90%. The 5-year DFS-rate was 61%. The 5-year OS-rate was 69%. IORT followed by IMRT for the treatment of advanced external auditory canal and middle ear tumours seems to be safe. No intraoperative death was reported. IORT may reduce the postoperative irradiation of remnant tissue obtaining the same full dose on the tumour bed. No complications of the residual external ear were observed. Detriment of neurosensory hearing may be expected. Future studies are required to confirm the benefit of this procedure in the ear.

  15. Single-Fraction Stereotactic Body Radiation Therapy and Sequential Gemcitabine for the Treatment of Locally Advanced Pancreatic Cancer

    SciTech Connect

    Schellenberg, Devin; Kim, Jeff; Christman-Skieller, Claudia; Chun, Carlene L.; Columbo, Laurie Ann; Ford, James M.; Fisher, George A.; Kunz, Pamela L.; Van Dam, Jacques; Quon, Andrew; Desser, Terry S.; Norton, Jeffrey; Hsu, Annie; Maxim, Peter G.; Xing, Lei; Goodman, Karyn A.; Chang, Daniel T.; Koong, Albert C.

    2011-09-01

    Purpose: This Phase II trial evaluated the toxicity, local control, and overall survival in patients treated with sequential gemcitabine and linear accelerator-based single-fraction stereotactic body radiotherapy (SBRT). Methods and Materials: Twenty patients with locally advanced, nonmetastatic pancreatic adenocarcinoma were enrolled on this prospective single-institution, institutional review board-approved study. Gemcitabine was administered on Days 1, 8, and 15, and SBRT on Day 29. Gemcitabine was restarted on Day 43 and continued for 3-5 cycles. SBRT of 25 Gy in a single fraction was delivered to the internal target volume with a 2- 3-mm margin using a nine-field intensity-modulated radiotherapy technique. Respiratory gating was used to account for breathing motion. Follow-up evaluations occurred at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All patients completed SBRT and a median of five cycles of chemotherapy. Follow-up for the 2 remaining alive patients was 25.1 and 36.4 months. No acute Grade 3 or greater nonhematologic toxicity was observed. Late Grade 3 or greater toxicities occurred in 1 patient (5%) and consisted of a duodenal perforation (G4). Three patients (15%) developed ulcers (G2) that were medically managed. Overall, median survival was 11.8 months, with 1-year survival of 50% and 2-year survival of 20%. Using serial computed tomography, the freedom from local progression was 94% at 1 year. Conclusion: Linear accelerator-delivered SBRT with sequential gemcitabine resulted in excellent local control of locally advanced pancreatic cancer. Future studies will address strategies for reducing long-term duodenal toxicity associated with SBRT.

  16. Radiation therapy of esophageal cancer

    SciTech Connect

    Hancock, S.L.; Glatstein, E.

    1984-06-01

    Radiation therapy has been used extensively in the management of patients with cancer of the esophagus. It has demonstrated an ability to cure a small minority of patients. Cure is likely to be limited to patients who have lesions less than 5 cm in length and have minimal, if any, involvement of lymph nodes. Esophagectomy is likely to cure a similar, small percentage of patients with the same presentation of minimal disease but has a substantial acute postoperative mortality rate and greater morbidity than irradiation. Combining surgery and either preoperative or postoperative irradiation may cure a small percentage of patients beyond the number cured with either modality alone. Radiation has demonstrated benefit as an adjuvant to surgery following the resection of minimal disease. However, radiation alone has never been compared directly with surgery for the highly select, minimal lesions managed by surgery. Radiation provides good palliation of dysphagia in the majority of patients, and roughly one third may have adequate swallowing for the duration of their illness when ''radical'' doses have been employed. Surgical bypass procedures have greater acute morbidity but appear to provide more reliable, prolonged palliation of dysphagia. Several approaches to improving the efficacy of irradiation are currently under investigation. These approahces include fractionation schedules, radiosensitizers, neutron-beam therapy, and helium-ion therapy.

  17. Radiation therapy of acromegaly.

    PubMed

    Eastman, R C; Gorden, P; Glatstein, E; Roth, J

    1992-09-01

    Conventional megavoltage irradiation of GH-secreting tumors has predictable effects on tumor mass, GH, and pituitary function. 1. Further growth of the tumor is prevented in more than 99% of patients, with only a fraction of a percent of patients requiring subsequent surgery for tumor mass effects. 2. GH falls predictably with time. By 2 years GH falls by about 50% from the baseline level, and by 5 years by about 75% from the baseline level. The initial GH elevation and the size and erosive features of the sella turcica do not affect the percent decrease in GH from the baseline elevation. 3. With prolonged follow-up, further decrease in GH is seen at 10 and 15 years, with the fraction of surviving patients achieving GH levels less than 5 ng/mL approaching 90% after 15 years in our experience. Gender, previous surgery, and hyperprolactinemia do not seem to affect the response to treatment. Patients with initial GH greater than 100 ng/mL are significantly less likely to achieve GH values less than 5 ng/mL during long-term follow-up. 4. Hypopituitarism is a predictable outcome of treatment, is delayed, and may be more likely in patients who have had surgery prior to irradiation. There is no evidence that this complication is more common in patients with acromegaly than in patients with other pituitary adenomas receiving similar treatment. 5. Vision loss due to megavoltage irradiation--using modern techniques and limiting the total dose to 4680 rad given in 25 fractions over 35 days, with individual fractions not exceeding 180 rad--is extremely rare. The reported cases have occurred almost entirely in patients who have received larger doses or higher fractional doses. The theory that patients with acromegaly are prone to radiation-induced injury to the CNS and optic nerves and chiasm because of small vessel disease is not supported by a review of the reported cases. 6. Brain necrosis and secondary neoplasms induced by irradiation are extremely rare. 7. Although

  18. Long-Term Follow-Up of Preoperative Pelvic Radiation Therapy and Concomitant Boost Irradiation in Locally Advanced Rectal Cancer Patients: A Multi-Institutional Phase II Study (KROG 04-01)

    SciTech Connect

    Lee, Jong Hoon; Kim, Dae Yong; Nam, Taek-Keun; Yoon, Sei-Chul; Lee, Doo Seok; Park, Ji Won; Oh, Jae Hwan; Chang, Hee Jin; Yoon, Mee Sun; Jeong, Jae-Uk; Jang, Hong Seok

    2012-11-15

    Purpose: To perform a prospective phase II study to investigate the efficacy and safety of preoperative pelvic radiation therapy and concomitant small-field boost irradiation with 5-fluorouracil and leucovorin for 5 weeks in locally advanced rectal cancer patients. Methods and Materials: Sixty-nine patients with locally advanced, nonmetastatic, mid-to-lower rectal cancer were prospectively enrolled. They had received preoperative chemoradiation therapy and total mesorectal excision. Pelvic radiation therapy of 43.2 Gy in 24 fractions plus concomitant boost radiation therapy of 7.2 Gy in 12 fractions was delivered to the pelvis and tumor bed for 5 weeks. Two cycles of 5-fluorouracil and leucovorin were administered for 3 days in the first and fifth week of radiation therapy. The pathologic response, survival outcome, and treatment toxicity were evaluated for the study endpoints. Results: Of 69 patients, 8 (11.6%) had a pathologically complete response. Downstaging rates were 40.5% for T classification and 68.1% for N classification. At the median follow-up of 69 months, 36 patients have been followed up for more than 5 years. The 5-year disease-free survival (DFS) and overall survival rates were 66.0% and 75.3%, respectively. Higher pathologic T (P = .045) and N (P = .032) classification were significant adverse prognostic factors for DFS, and high-grade histology was an adverse prognostic factor for both DFS (P = .025) and overall survival (P = .031) on the multivariate analysis. Fifteen patients (21.7%) experienced grade 3 or 4 acute toxicity, and 7 patients (10.1%) had long-term toxicity. Conclusion: Preoperative pelvic radiation therapy with concomitant boost irradiation with 5-fluorouracil and leucovorin for 5 weeks showed acceptable acute and long-term toxicities. However, the benefit of concomitant small-field boost irradiation for 5 weeks in rectal cancer patients was not demonstrated beyond conventional irradiation for 6 weeks in terms of tumor response and

  19. Concurrent weekly docetaxel and concomitant boost radiation therapy in the treatment of locally advanced squamous cell cancer of the head and neck

    SciTech Connect

    Tishler, Roy B. . E-mail: roy_tishler@dfci.harvard.edu; Posner, Marshall R.; Norris, Charles M.; Mahadevan, Anand; Sullivan, Christopher; Goguen, Laura; Wirth, Lori J.; Costello, Rosemary; Case, MaryAnn; Stowell, Sara; Sammartino, Dan; Busse, Paul M.; Haddad, Robert I.

    2006-07-15

    Purpose: In a Phase I/II trial, we investigated concurrent weekly docetaxel and concomitant boost radiation in patients with locally advanced squamous cell cancer of the head and neck (SCCHN) after induction chemotherapy. Patients and Methods: Patients presented with American Joint Committee on Cancer Stage III/IV and were treated initially with induction chemotherapy using cisplatinum/5-fluorouracil (PF), carboplatinum-5-FU, or docetaxel-PF. Patients then received docetaxel four times weekly with concomitant boost (CB) radiation (1.8 Gy once-daily X20, 1.8/1.5 Gy twice a day). Fifteen patients each received 20 mg/M{sup 2} and 25 mg/M{sup 2}. Results: Thirty-one patients were enrolled and 30 were evaluable for response and toxicity. Median follow-up was 42 months (range, 27-63 months). Primary sites were: oropharynx 19, oral cavity 2, larynx/hypopharynx 5, and unknown primary 4. Eighty-seven percent of patients had N2/N3 disease; 60% had T3/T4 disease. Twenty percent of patients had a complete response (CR) to induction chemotherapy. After chemoradiotherapy, 21 of 30 patients had a CR, 2 had progressive disease, and 7 had partial response (PR). Nineteen of 26 patients presenting with neck disease had neck dissections, and 7 of 19 were positive. Ninety-three percent of all patients were rendered disease-free after all planned therapy. Treatment failed in 8 patients, and 7 have died of disease. An additional patient died with no evidence of disease. Twenty-one patients (70%) are currently alive with no evidence of disease. No acute dose-limiting toxicity was observed at either dose level. Conclusions: This intensive treatment regimen of concurrent docetaxel/concomitant boost radiation and surgery after induction chemotherapy in poor prognosis patients yields good local regional control and survival. Docetaxel/CB chemoradiotherapy represents an aggressive alternative regimen to platinum-based chemoradiotherapy or surgery in patients who have a poor response to

  20. Radiation Therapy and Hearing Loss

    SciTech Connect

    Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham; Pan, Charlie C.; Flickinger, John C.; Antonelli, Patrick; Mendenhall, William M.

    2010-03-01

    A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented.

  1. Intraoperative Radiation Therapy Reduces Local Recurrence Rates in Patients With Microscopically Involved Circumferential Resection Margins After Resection of Locally Advanced Rectal Cancer

    SciTech Connect

    Alberda, Wijnand J.; Verhoef, Cornelis; Nuyttens, Joost J.; Meerten, Esther van; Rothbarth, Joost; Wilt, Johannes H.W. de; Burger, Jacobus W.A.

    2014-04-01

    Purpose: Intraoperative radiation therapy (IORT) is advocated by some for patients with locally advanced rectal cancer (LARC) who have involved or narrow circumferential resection margins (CRM) after rectal surgery. This study evaluates the potentially beneficial effect of IORT on local control. Methods and Materials: All surgically treated patients with LARC treated in a tertiary referral center between 1996 and 2012 were analyzed retrospectively. The outcome in patients treated with IORT with a clear but narrow CRM (≤2 mm) or a microscopically involved CRM was compared with the outcome in patients who were not treated with IORT. Results: A total of 409 patients underwent resection of LARC, and 95 patients (23%) had a CRM ≤ 2 mm. Four patients were excluded from further analysis because of a macroscopically involved resection margin. In 43 patients with clear but narrow CRMs, there was no difference in the cumulative 5-year local recurrence-free survival of patients treated with (n=21) or without (n=22) IORT (70% vs 79%, P=.63). In 48 patients with a microscopically involved CRM, there was a significant difference in the cumulative 5-year local recurrence-free survival in favor of the patients treated with IORT (n=31) compared with patients treated without IORT (n=17) (84 vs 41%, P=.01). Multivariable analysis confirmed that IORT was independently associated with a decreased local recurrence rate (hazard ratio 0.24, 95% confidence interval 0.07-0.86). There was no significant difference in complication rate of patients treated with or without IORT (65% vs 52%, P=.18) Conclusion: The current study suggests that IORT reduces local recurrence rates in patients with LARC with a microscopically involved CRM.

  2. Influence of Tumor Thrombus Location on the Outcome of External-beam Radiation Therapy in Advanced Hepatocellular Carcinoma With Macrovascular Invasion

    SciTech Connect

    Hou Jiazhou; Zeng Zhaochong; Zhang Jianying; Fan Jia; Zhou Jian; Zeng Mengsu

    2012-10-01

    Purpose: The present study evaluates the influence of portal vein (PV) vs. inferior vena cava (IVC) tumor thrombosis sites on the effectiveness of external-beam radiation therapy (EBRT) in advanced hepatocellular carcinoma (HCC) with macrovascular invasion. Methods and Materials: We retrospectively reviewed 181 HCC patients with PV and/or IVC tumor thrombi who were referred for EBRT at our institution between 2000 and 2009. EBRT was designed to focus on the tumor thrombi with or without primary intrahepatic tumors to deliver a median total conventional dose of 50 Gy (range, 30-60 Gy). Predictors of survival were identified using univariate and multivariate analyses. Results: The median survival was 10.2, 7.4, 17.4, and 8.5 months for patients with PV branch, PV trunk, IVC, and PV plus IVC tumor thrombosis, respectively. Unfavorable pretreatment predictors were associated by multivariate analysis with lower albumin and higher {alpha}-fetoprotein levels, poorer Child-Pugh liver function classification, multiple intrahepatic foci, lymph node metastases, thrombus location, less chance to receive post-EBRT transarterial chemoembolization (TACE) and the two-dimensional EBRT technique. In comparison to patients with PV tumor thrombosis, patients with IVC thrombi had a higher occurrence of solitary intrahepatic lesions (p = 0.027), well-controlled intrahepatic tumors (p < 0.001), and a better response to EBRT (p < 0.001), and they were more likely to receive post-EBRT TACE (p = 0.033). Conclusions: In HCC, patients with IVC thrombus treated with EBRT had a better response rate and longer survival than those with PV thrombus.

  3. Baseline Metabolic Tumor Volume and Total Lesion Glycolysis Are Associated With Survival Outcomes in Patients With Locally Advanced Pancreatic Cancer Receiving Stereotactic Body Radiation Therapy

    SciTech Connect

    Dholakia, Avani S.; Chaudhry, Muhammad; Leal, Jeffrey P.; Chang, Daniel T.; Raman, Siva P.; Hacker-Prietz, Amy; Su, Zheng; Pai, Jonathan; Oteiza, Katharine E.; Griffith, Mary E.; Wahl, Richard L.; Tryggestad, Erik; Pawlik, Timothy; Laheru, Daniel A.; Wolfgang, Christopher L.; Koong, Albert C.; and others

    2014-07-01

    Purpose: Although previous studies have demonstrated the prognostic value of positron emission tomography (PET) parameters in other malignancies, the role of PET in pancreatic cancer has yet to be well established. We analyzed the prognostic utility of PET for patients with locally advanced pancreatic cancer (LAPC) undergoing fractionated stereotactic body radiation therapy (SBRT). Materials and Methods: Thirty-two patients with LAPC in a prospective clinical trial received up to 3 doses of gemcitabine, followed by 33 Gy in 5 fractions of 6.6 Gy, using SBRT. All patients received a baseline PET scan prior to SBRT (pre-SBRT PET). Metabolic tumor volume (MTV), total lesion glycolysis (TLG), and maximum and peak standardized uptake values (SUV{sub max} and SUV{sub peak}) on pre-SBRT PET scans were calculated using custom-designed software. Disease was measured at a threshold based on the liver SUV, using the equation Liver{sub mean} + [2 × Liver{sub sd}]. Median values of PET parameters were used as cutoffs when assessing their prognostic potential through Cox regression analyses. Results: Of the 32 patients, the majority were male (n=19, 59%), 65 years or older (n=21, 66%), and had tumors located in the pancreatic head (n=27, 84%). Twenty-seven patients (84%) received induction gemcitabine prior to SBRT. Median overall survival for the entire cohort was 18.8 months (95% confidence interval [CI], 15.7-22.0). An MTV of 26.8 cm{sup 3} or greater (hazard ratio [HR] 4.46, 95% CI 1.64-5.88, P<.003) and TLG of 70.9 or greater (HR 3.08, 95% CI 1.18-8.02, P<.021) on pre-SBRT PET scan were associated with inferior overall survival on univariate analysis. Both pre-SBRT MTV (HR 5.13, 95% CI 1.19-22.21, P=.029) and TLG (HR 3.34, 95% CI 1.07-10.48, P=.038) remained independently associated with overall survival in separate multivariate analyses. Conclusions: Pre-SBRT MTV and TLG are potential predictive factors for overall survival in patients with LAPC and may assist in

  4. [Clinical trials with advanced therapy medicinal products].

    PubMed

    Schüssler-Lenz, M; Schneider, C K

    2010-01-01

    For advanced therapies, the same basic principles for assessment apply as for any other biotechnological medicinal product. Nevertheless, the extent of data for quality, safety, and efficacy can be highly specific. Until recently, advanced therapies were not uniformly regulated across Europe, e.g., tissue engineered products were regulated either as medicinal products or medical devices. Thus, for some products no data from clinical studies are available, e.g., for autologous chondrocyte products. The draft guideline on Good Clinical Practice for clinical trials with advanced therapies describes specific additional requirements, e.g., ensuring traceability. Most clinical studies with advanced therapies in Germany are still in early phase I or II trials with highly divergent types of products and clinical indications. The Committee for Advanced Therapies (CAT) at the European Medicines Agency (EMEA) has been established to meet the scientific and regulatory challenges with advanced therapies.

  5. Recent advances in migraine therapy.

    PubMed

    Antonaci, Fabio; Ghiotto, Natascia; Wu, Shizheng; Pucci, Ennio; Costa, Alfredo

    2016-01-01

    Migraine is a common and highly disabling neurological disorder associated with a high socioeconomic burden. Effective migraine management depends on adequate patient education: to avoid unrealistic expectations, the condition must be carefully explained to the patient soon as it is diagnosed. The range of available acute treatments has increased over time. At present, abortive migraine therapy can be classed as specific (ergot derivatives and triptans) or non-specific (analgesics and non-steroidal anti-inflammatory drugs). Even though acute symptomatic therapy can be optimised, migraine continues to be a chronic and potentially progressive condition. In addition to the drugs officially approved for migraine prevention by international governmental regulatory agencies, numerous different agents are commonly used for this indication, showing various levels of evidence of efficacy and tolerability. Guidelines published in recent years, based on evidence-based medicine data on migraine prophylaxis, are a useful source of guidance, especially for primary care physicians and neurologists without specific expertise in headache medicine. Although the field of pharmacological migraine prevention has seen few advances in recent years, potential novel approaches are now being developed. This review looks at emerging pharmacological strategies for acute and preventive migraine treatment that are nearing or have already entered the clinical trial phase. Specifically, it discusses preclinical and clinical data on compounds acting on calcitonin gene-related peptide or its receptor, the serotonin 5-HT1F receptor, nitric oxide synthase, and acid-sensing ion channel blockers. PMID:27330903

  6. Stereotactic Body Radiation Therapy for Pancreatic Cancer.

    PubMed

    Goodman, Karyn A

    2016-01-01

    The role of radiation therapy in the management of pancreatic cancer represents an area of some controversy. However, local disease progression remains a significant cause of morbidity and even mortality for patients with this disease. Stereotactic body radiotherapy (SBRT) is an emerging treatment option for pancreatic cancer, primarily for locally advanced (unresectable) disease as it can provide a therapeutic benefit with significant advantages for patients' quality of life over standard conventional chemoradiation. There may also be a role for SBRT as neoadjuvant therapy for patients with borderline resectable disease to allow conversion to resectability. The objective of this review is to present the data supporting SBRT in pancreatic cancer as well as the potential limitations and caveats of current studies.

  7. Efficacy Endpoints of Radiation Therapy Group Protocol 0247: A Randomized, Phase 2 Study of Neoadjuvant Radiation Therapy Plus Concurrent Capecitabine and Irinotecan or Capecitabine and Oxaliplatin for Patients With Locally Advanced Rectal Cancer

    SciTech Connect

    Wong, Stuart J.; Moughan, Jennifer; Meropol, Neal J.; Anne, Pramila Rani; Kachnic, Lisa A.; Rashid, Asif; Watson, James C.; Mitchell, Edith P.; Pollock, Jondavid; Lee, R. Jeffrey; Haddock, Michael; Erickson, Beth A.; Willett, Christopher G.

    2015-01-01

    Purpose: To report secondary efficacy endpoints of Radiation Therapy Oncology Group protocol 0247, primary endpoint analysis of which demonstrated that preoperative radiation therapy (RT) with capecitabine plus oxaliplatin achieved a pathologic complete remission prespecified threshold (21%) to merit further study, whereas RT with capecitabine plus irinotecan did not (10%). Methods and Materials: A randomized, phase 2 trial evaluated preoperative RT (50.4 Gy in 1.8-Gy fractions) with 2 concurrent chemotherapy regimens: (1) capecitabine (1200 mg/m{sup 2}/d Monday-Friday) plus irinotecan (50 mg/m{sup 2}/wk × 4); and (2) capecitabine (1650 mg/m{sup 2}/d Monday-Friday) plus oxaliplatin (50 mg/m{sup 2}/wk × 5) for clinical T3 or T4 rectal cancer. Surgery was performed 4 to 8 weeks after chemoradiation, then 4 to 6 weeks later, adjuvant chemotherapy (oxaliplatin 85 mg/m{sup 2}; leucovorin 400 mg/m{sup 2}; 5-fluorouracil 400 mg/m{sup 2}; 5-fluorouracil 2400 mg/m{sup 2}) every 2 weeks × 9. Disease-free survival (DFS) and overall survival (OS) were estimated univariately by the Kaplan-Meier method. Local–regional failure (LRF), distant failure (DF), and second primary failure (SP) were estimated by the cumulative incidence method. No statistical comparisons were made between arms because each was evaluated individually. Results: A total of 104 patients (median age, 57 years) were treated; characteristics were similar for both arms. Median follow-up for RT with capecitabine/irinotecan arm was 3.77 years and for RT with capecitabine/oxaliplatin arm was 3.97 years. Four-year DFS, OS, LRF, DF, and SP estimates for capecitabine/irinotecan arm were 68%, 85%, 16%, 24%, and 2%, respectively. The 4-year DFS, OS, LRF, DF, and SP failure estimates for capecitabine/oxaliplatin arm were 62%, 75%, 18%, 30%, and 6%, respectively. Conclusions: Efficacy results for both arms are similar to other reported studies but suggest that pathologic complete remission is an

  8. Selecting the optimum particle for radiation therapy.

    PubMed

    Slater, James M

    2007-08-01

    Ionizing radiation therapy is one of the primary modalities for treating cancers. Ideally, the particle selected to deliver ionizing radiation for routine therapy should control the disease, cause minimal side effects, and be affordable. Two major properties for judging the utility of a particle, physical controllability and selective cell destruction, influence the decision for selection. The proton, at present, has the best combination of capabilities for routine radiation therapy. Heavier ions require further study to determine their role in patient treatment. PMID:17668950

  9. A Phase I Study of UFT/Leucovorin, Carboplatin, and Paclitaxel in Combination With External Beam Radiation Therapy for Advanced Esophageal Carcinoma

    SciTech Connect

    Czito, Brian G. Cohen, Darrel P.; Kelsey, Chris R.; Lockhart, A. Craig; Bendell, Johanna C.; Willett, Christopher G.; Petros, William P.; D'Amico, Thomas A.; Truax, Roxanne R.N.; Hurwitz, Herbert I.

    2008-03-15

    Purpose: Concurrent chemotherapy and radiation therapy (RT) are used to treat patients with esophageal cancer. The optimal combination of chemotherapeutic agents with RT is not well established. We evaluated the safety and preliminary efficacy of a combination of UFT/leucovorin, carboplatin, and paclitaxel with RT in a Phase I study of patients with advanced esophageal cancer. Methods and Materials: Patients with squamous cell carcinoma or adenocarcinoma of the esophagus initially received UFT/leucovorin, carboplatin, and paclitaxel with RT (1.8 Gy daily to 45 Gy). After completion, the disease was restaged and patients were evaluated for surgery. Primary end points included determination of dose-limiting toxicities (DLTs) and a recommended Phase II dose. Secondary objectives included determination of non-DLTs, as well as preliminary radiographic and pathologic response rates. Results: Twelve patients were enrolled (11 men, 1 woman). All were assessable for toxicity and efficacy. One of 6 patients at Dose Level 1 (UFT/leucovorin, 200/30 mg twice daily on RT days; carboplatin, area under the curve [AUC] 5, Weeks 1 and 4; paclitaxel, 175 mg/m{sup 2} Weeks 1 and 4) had a DLT (febrile neutropenia). Of these 6 patients, 4 underwent esophagectomy and none achieved a pathologic complete response. Six patients were then enrolled at Dose Level 2 (UFT/leucovorin, 300/30 mg in the morning and 200/30 mg in the evening on RT days; carboplatin, AUC 5, Weeks 1 and 4; paclitaxel, 175 mg/m{sup 2} Weeks 1 and 4). Two of 6 patients at Dose Level 2 developed DLTs (febrile neutropenia in both). Esophagectomy was performed in 3 patients, with 2 achieving a pathologic complete response. Conclusions: Maximum tolerated doses in this study were UFT/leucovorin, 200/30 mg twice daily on RT days; carboplatin, AUC 5, Weeks 1 and 4; and paclitaxel, 175 mg/m{sup 2} Weeks 1 and 4 when delivered with external RT. In this small study, this regimen appears active, but toxic.

  10. SU-E-J-244: Development and Validation of a Knowledge Based Planning Model for External Beam Radiation Therapy of Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Liu, Z; Kennedy, A; Larsen, E; Hayes, C; Grow, A; Bahamondes, S.; Zheng, Y; Wu, X; Choi, M; Pai, S; Li, J; Cranford, K

    2015-06-15

    Purpose: The study aims to develop and validate a knowledge based planning (KBP) model for external beam radiation therapy of locally advanced non-small cell lung cancer (LA-NSCLC). Methods: RapidPlan™ technology was used to develop a lung KBP model. Plans from 65 patients with LA-NSCLC were used to train the model. 25 patients were treated with VMAT, and the other patients were treated with IMRT. Organs-at-risk (OARs) included right lung, left lung, heart, esophagus, and spinal cord. DVH and geometric distribution DVH were extracted from the treated plans. The model was trained using principal component analysis and step-wise multiple regression. Box plot and regression plot tools were used to identify geometric outliers and dosimetry outliers and help fine-tune the model. The validation was performed by (a) comparing predicted DVH boundaries to actual DVHs of 63 patients and (b) using an independent set of treatment planning data. Results: 63 out of 65 plans were included in the final KBP model with PTV volume ranging from 102.5cc to 1450.2cc. Total treatment dose prescription varied from 50Gy to 70Gy based on institutional guidelines. One patient was excluded due to geometric outlier where 2.18cc of spinal cord was included in PTV. The other patient was excluded due to dosimetric outlier where the dose sparing to spinal cord was heavily enforced in the clinical plan. Target volume, OAR volume, OAR overlap volume percentage to target, and OAR out-of-field volume were included in the trained model. Lungs and heart had two principal component scores of GEDVH, whereas spinal cord and esophagus had three in the final model. Predicted DVH band (mean ±1 standard deviation) represented 66.2±3.6% of all DVHs. Conclusion: A KBP model was developed and validated for radiotherapy of LA-NSCLC in a commercial treatment planning system. The clinical implementation may improve the consistency of IMRT/VMAT planning.

  11. Missed Radiation Therapy and Cancer Recurrence

    Cancer.gov

    Patients who miss radiation therapy sessions during cancer treatment have an increased risk of their disease returning, even if they eventually complete their course of radiation treatment, according to a new study.

  12. Radiation therapy for Graves' disease

    SciTech Connect

    Brennan, M.W.; Leone, C.R. Jr.; Janaki, L.

    1983-08-01

    We used radiation therapy (a total of 2,000 rads) to treat 14 patients (three men and 11 women, ranging in age from 27 to 72 years) with Graves' disease. Three of these patients had refused to take corticosteroids and the other 11 had failed to respond to them, had experienced side effects, or had other contraindications to their use. After follow-up periods ranging from six months to three years, soft-tissue inflammation was reduced in 13 of the 14 patients. All but two patients showed a decrease in proptosis of 1 to 3 mm. Myopathy showed the least improvement. Although we noted transient eyelid erythema, there were no permanent sequelae and none of the patients has had a recurrence of the inflammation.

  13. Melioidosis: reactivation during radiation therapy

    SciTech Connect

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-05-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia.

  14. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  15. Progress and controversies: Radiation therapy for prostate cancer.

    PubMed

    Martin, Neil E; D'Amico, Anthony V

    2014-01-01

    Radiation therapy remains a standard treatment option for men with localized prostate cancer. Alone or in combination with androgen-deprivation therapy, it represents a curative treatment and has been shown to prolong survival in selected populations. In this article, the authors review recent advances in prostate radiation-treatment techniques, photon versus proton radiation, modification of treatment fractionation, and brachytherapy-all focusing on disease control and the impact on morbidity. Also discussed are refinements in the risk stratification of men with prostate cancer and how these are better for matching patients to appropriate treatment, particularly around combined androgen-deprivation therapy. Many of these advances have cost and treatment burden implications, which have significant repercussions given the prevalence of prostate cancer. The discussion includes approaches to improve value and future directions for research. PMID:25234700

  16. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy.

    PubMed

    Hess, Clayton B; Thompson, Holly M; Benedict, Stanley H; Seibert, J Anthony; Wong, Kenneth; Vaughan, Andrew T; Chen, Allen M

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning--a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of "gentle IGRT."

  17. Radiation Therapy for Liver Tumors: Ready for Inclusion in Guidelines?

    PubMed Central

    Tanguturi, Shyam K.; Wo, Jennifer Y.; Zhu, Andrew X.; Dawson, Laura A.

    2014-01-01

    Despite the historically limited role of radiotherapy in the management of primary hepatic malignancies, modern advances in treatment design and delivery have renewed enthusiasm for radiation as a potentially curative treatment modality. Surgical resection and/or liver transplantation are traditionally regarded as the most effective forms of therapy, although the majority of patients with hepatocellular carcinoma and intrahepatic cholangiocarcinoma present with locally advanced or unresectable disease on the basis of local vascular invasion or inadequate baseline hepatobiliary function. In this context, many efforts have focused on nonoperative treatment approaches including novel systemic therapies, transarterial chemoembolization, ethanol ablation, radiofrequency ablation, and stereotactic body radiation therapy (SBRT). This review aims to summarize modern advances in radiotherapy, particularly SBRT, in the treatment of primary hepatic malignancies. PMID:25001265

  18. [PVB therapy for advanced testicular cancer].

    PubMed

    Nakao, M; Nakagawa, S; Toyoda, K; Nukui, M; Takada, H; Ebisui, K; Sugimoto, K; Watanabe, H; Maegawa, M; Miyakoda, K

    1989-11-01

    Twelve cases of advanced testicular cancer, including 5 cases of seminoma, 3 cases of teratocarcinoma, 1 case of yolk sac tumor, 1 case of embryonal carcinoma and 2 cases of mixed cell type, were treated with cisplatin-vinblastine-bleomycin (PVB) therapy. Among them, 10 cases had measurable metastatic lesions and the objective response rate was 80%. Three cases showed complete response. Ten cases showed nonexistent disease after PVB therapy and salvage operation. Though PVB therapy was useful for the treatment of advanced testicular cancer, a few cases having poor prognostic factors showed no response to the therapy.

  19. Radiation therapy facilities in the United States

    SciTech Connect

    Ballas, Leslie K.; Elkin, Elena B. . E-mail: elkine@mskcc.org; Schrag, Deborah; Minsky, Bruce D.; Bach, Peter B.

    2006-11-15

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care.

  20. Late Consequential Surgical Bed Soft Tissue Necrosis in Advanced Oropharyngeal Squamous Cell Carcinomas Treated With Transoral Robotic Surgery and Postoperative Radiation Therapy

    SciTech Connect

    Lukens, J. Nicholas; Lin, Alexander; Gamerman, Victoria; Mitra, Nandita; Grover, Surbhi; McMenamin, Erin M.; Weinstein, Gregory S.; O'Malley, Bert W.; Cohen, Roger B.; Orisamolu, Abimbola; Ahn, Peter H.; Quon, Harry

    2014-08-01

    Purpose: A subset of patients with oropharyngeal squamous cell carcinoma (OP-SCC) managed with transoral robotic surgery (TORS) and postoperative radiation therapy (PORT) developed soft tissue necrosis (STN) in the surgical bed months after completion of PORT. We investigated the frequency and risk factors. Materials and Methods: This retrospective analysis included 170 consecutive OP-SCC patients treated with TORS and PORT between 2006 and 2012, with >6 months' of follow-up. STN was defined as ulceration of the surgical bed >6 weeks after completion of PORT, requiring opioids, biopsy, or hyperbaric oxygen therapy. Results: A total of 47 of 170 patients (28%) had a diagnosis of STN. Tonsillar patients were more susceptible than base-of-tongue (BOT) patients, 39% (41 of 104) versus 9% (6 of 66), respectively. For patients with STN, median tumor size was 3.0 cm (range 1.0-5.6 cm), and depth of resection was 2.2 cm (range 1.0-5.1 cm). Median radiation dose and dose of fraction to the surgical bed were 6600 cGy and 220 cGy, respectively. Thirty-one patients (66%) received concurrent chemotherapy. Median time to STN was 2.5 months after PORT. All patients had resolution of STN after a median of 3.7 months. Multivariate analysis identified tonsillar primary (odds ratio [OR] 4.73, P=.01), depth of resection (OR 3.12, P=.001), total radiation dose to the resection bed (OR 1.51 per Gy, P<.01), and grade 3 acute mucositis (OR 3.47, P=.02) as risk factors for STN. Beginning May 2011, after implementing aggressive avoidance of delivering >2 Gy/day to the resection bed mucosa, only 8% (2 of 26 patients) experienced STN (all grade 2). Conclusions: A subset of OP-SCC patients treated with TORS and PORT are at risk for developing late consequential surgical bed STN. Risk factors include tonsillar location, depth of resection, radiation dose to the surgical bed, and severe mucositis. STN risk is significantly decreased with carefully avoiding a radiation dosage of >2 Gy/day to the

  1. Stereotactic body radiation therapy for lung cancer: achievements and perspectives.

    PubMed

    Hiraoka, Masahiro; Matsuo, Yukinori; Takayama, Kenji

    2010-09-01

    Stereotactic body radiation therapy is a new treatment modality where narrow beams from several directions focus on the target while sparing the adjacent normal tissues with high accuracy. This technique basically derived from that of radiosurgery for intracranial lesions allows us to deliver high dose to the target leading to high control of the tumor without causing significant cytotoxicities associated with the treatment. Early-stage non-small cell lung cancers are regarded as most appropriate malignancies for this modality and accordingly have most intensively been investigated. With many encouraging outcomes in retrospective studies, several prospective clinical trials have been started world-wide. Japan Clinical Oncology Group protocol 0403 is a phase II trial of stereotactic body radiation therapy for T1N0M0 non-small cell lung cancer including both inoperable and operable patients. The results for operable patients are to be disclosed this year after 3 years of follow-up. It is highly probable that stereotactic body radiation therapy can be a standard treatment modality for inoperable patients for early-stage non-small cell lung cancer. The role of stereotactic body radiation therapy for operable patients is expected to be clarified by the outcomes of coming clinical trials. Tremendous advance in stereotactic body radiation therapy is expected when four-dimensional radiation therapy coping with tumor movement is realized. Among several approaches, tumor tracking appears most ideal. The new image-guided radiotherapy system which has the capability of tumor tracking has been developed in Japan.

  2. What to Know about External Beam Radiation Therapy

    MedlinePlus

    ... Understanding Radiation Therapy What To Know About External Beam Radiation Therapy “My wife and I made a ... treatment. He also told me that the external beam radiation therapy wouldn’t make me radioactive. I ...

  3. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    SciTech Connect

    Toyama, Shingo; Tsuji, Hiroshi; Mizoguchi, Nobutaka; Nomiya, Takuma; Kamada, Tadashi; Tokumaru, Sunao; Mizota, Atsushi; Ohnishi, Yoshitaka; Tsujii, Hirohiko

    2013-06-01

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose of C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up was 4.6 years (range, 0.5-10.6 years). The 5-year overall survival, cause-specific survival, local control, distant metastasis-free survival, and eye retention rates were 80.4% (95% confidence interval 89.0%-71.8%), 82.2% (90.6%-73.8%), 92.8% (98.5%-87.1%), 72.1% (81.9%-62.3%), and 92.8% (98.1%-87.5%), respectively. The overall 5-year NVG incidence rate was 35.9% (25.9%-45.9%) and that of 1-port group and 2-port group were 41.6% (29.3%-54.0%) and 13.9% (3.2%-24.6%) with statistically significant difference (P<.001). The dose-volume histogram analysis showed that the average irradiated volume of the iris-ciliary body was significantly lower in the non-NVG group than in the NVG group at all dose levels, and significantly lower in the 2-port group than in the 1-port group at high dose levels. Conclusions: The long-term results of C-ion RT for choroidal melanoma are satisfactory. CT-based 2-port C-ion RT can be used to reduce the high-dose irradiated volume of the iris-ciliary body and the resulting risk of NVG.

  4. Radiation Therapy Physics, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Hendee, William R.; Ibbott, Geoffrey S.; Hendee, Eric G.

    2004-08-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an updated and expanded section on computer applications in radiation therapy and electron beam therapy, and features enhanced user-friendliness and visual appeal with a new, easy-to-follow format, including sidebars and a larger trim size. With its user-friendly presentation and broad, comprehensive coverage of radiotherapy physics, this Third Edition doubles as a medical text and handy professional reference.

  5. External beam radiation therapy for orthopaedic pathology.

    PubMed

    Gross, Christopher E; Frank, Rachel M; Hsu, Andrew R; Diaz, Aidnag; Gitelis, Steven

    2015-04-01

    External beam radiation therapy is essential in the management of a wide spectrum of musculoskeletal conditions, both benign and malignant, including bony and soft-tissue sarcomas, metastatic tumors, pigmented villonodular synovitis, and heterotopic ossification. Radiation therapy, in combination with surgery, helps reduce the functional loss from cancer resections. Although the field of radiation therapy is firmly rooted in physics and radiation biology, its indications and delivery methods are rapidly evolving. External beam radiation therapy mainly comes in the form of four sources of radiotherapy: protons, photons, electrons, and neutrons. Each type of energy has a unique role in treating various pathologies; however, these energy types also have their own distinctive limitations and morbidities. PMID:25712073

  6. [Image guided radiation therapy (IGRT)].

    PubMed

    Lagrange, J-L; de Crevoisier, R

    2010-07-01

    Image guided radiation therapy (IGRT) is a major technical innovation of radiotherapy. It allows locating the tumor under the linear accelerator just before the irradiation, by direct visualization (3D mode soft tissue) or indirect visualization (2D mode and radio-opaque markers). The technical implementation of IGRT is done by very different complex devices. The most common modality, because available in any new accelerator, is the cone beam CT. The main experiment of IGRT focuses on prostate cancer. Preliminary studies suggest the use of IGRT combined with IMRT should increase local control and decrease toxicity, especially rectal toxicity. In head and neck tumors, due to major deformation, a rigid registration is insufficient and replanning is necessary (adaptive radiotherapy). The onboard imaging delivers a specific dose, needed to be measured and taken into account, in order not to increase the risk of toxicity. Studies comparing different modalities of IGRT according to clinical and economic endpoints are ongoing; to better define the therapeutic indications.

  7. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  8. Cisplatin, hyperthermia, and radiation (trimodal therapy) in patients with locally advanced head and neck tumors: A phase I-II study

    SciTech Connect

    Amichetti, M.; Graiff, C.; Fellin, G.; Pani, G.; Bolner, A.; Maluta, S. ); Valdagni, R. Istituto per la Ricerca Scientifica e Tecnologica, Trento )

    1993-08-01

    Hyperthermia is now being widely used to treat clinical malignancies, especially combined with radiotherapy and more rarely with chemotherapy. The combination of heat, radiation, and chemotherapy (trimodality) can lead to potent interaction. The present Phase I-II study was conducted to evaluate the feasibility and acute toxicity of a combination of cisplantin, hyperthermia, and irradiation in the treatment of superficial cervical nodal metastases from head and neck cancer. Eighteen patients with measurable neck metastases from previously untreated squamous cell head and neck tumors were entered into the trial. Therapy consisted of a conventional irradiation (total dose 70 Gy, 2 Gy five times a week) combined with a weekly administration of 20 mg/m[sup 2] iv of cisplatin and a total of two sessions of local external microwave hyperthermia (desired temperature of 42.5[degrees]C for 30 min). Feasibility of the treatment was demonstrated. Acute local toxicity was mild; no thermal blisters or ulcerations were reported and only two patients experienced local pain during hyperthermia. Cutaneous toxicity appeared greater than in previous studies with irradiation plus hyperthermia and irradiation plus cisplatin. Systematic toxicity was moderate with major toxic effects observed in three patients (World Health Organization (WHO) grade 3 anaemia). Even though it was not an aim of the study to evaluate the nodal response, they observed a complete response rate of 72.2% (95% confidence interval 51-93.4%), 16.6% of partial response and 11.1% of no change. The study confirms the feasibility of the combination of cisplantin, heat, and radiation with an acceptable toxicity profile. The trimodal therapy deserves further evaluation as a way to enhance the efficacy of irradiation in the treatment of nodal metastases from head and neck tumors. 43 refs., 3 figs., 4 tabs.

  9. Advances in Neutron Capture Therapy

    SciTech Connect

    Soloway, A.H.; Barth, R.F.; Carpenter, D.E.

    1993-12-31

    This volume contains the proceedings of the Fifth International Symposium on Neutron Capture Therapy held September 14--17, 1992 in Columbus, Ohio. Individual papers were separately abstracted and indexed for the database.

  10. HIV gene therapy research advances.

    PubMed

    Jacobson, Jeffrey M

    2013-02-28

    In this issue of Blood, Tebas et al report antiviral effects in a clinical trial of multiple infusions of lentiviral vector–modified autologous CD4T lymphocytes in 17 HIV-infected patients aviremic on antiretroviral therapy (ART).

  11. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. PMID:26235550

  12. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  13. Prototype demonstration of radiation therapy planning code system

    SciTech Connect

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care.

  14. [Therapy of radiation enteritis--current challenges].

    PubMed

    Baranyai, Zsolt; Sinkó, Dániel; Jósa, Valéria; Zaránd, Attila; Teknos, Dániel

    2011-07-10

    Radiation enteritis is one of the most feared complications after abdominal and pelvic radiation therapy. The incidence varies from 0.5 to 5%. It is not rare that the slowly progressing condition will be fatal. During a period of 13 years 24 patients were operated due to the complication of radiation enteritis. Despite different types of surgery repeated operation was required in 25% of cases and finally 4 patients died. Analyzing these cases predisposing factors and different therapeutic options of this condition are discussed. Treatment options of radiation induced enteritis are limited; however, targeted therapy significantly improves the outcome. Cooperation between oncologist, gastroenterologist and surgeon is required to establish adequate therapeutic plan.

  15. Hyperbaric oxygen therapy for radiation myelitis

    SciTech Connect

    Poulton, T.J.; Witcofski, R.L.

    1985-12-01

    Radiation therapy may damage healthy tissues adjacent to tumor. Hyperbaric oxygen therapy (HBO) is useful in treating soft tissue and osteoradionecrosis. In addition, HBO has been recommended to treat radiation-induced myelitis. We used radiation to induce a predictable myelitis in the spinal cords of rats who were randomized into treatment (HBO) and control groups 8 wk after irradiation. Serial neurologic examination showed no benefit or harm as a result of HBO. This small pilot study did not demonstrate any clinically significant benefit of HBO for radiation myelitis in rats.

  16. Comparing Postoperative Radiation Therapies for Brain Metastases

    Cancer.gov

    In this clinical trial, patients with one to four brain metastases who have had at least one of the metastatic tumors removed surgically will be randomly assigned to undergo whole-brain radiation therapy or stereotactic radiosurgery.

  17. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  18. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  19. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  20. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  1. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  2. Hypofractionation in radiation therapy and its impact

    SciTech Connect

    Papiez, Lech; Timmerman, Robert

    2008-01-15

    A brief history of the underlying principles of the conventional fractionation in radiation therapy is discussed, followed by the formulation of the hypothesis for hypofractionated stereotactic body radiation therapy (SBRT). Subsequently, consequences of the hypothesis for SBRT dose shaping and dose delivery techniques are sketched. A brief review of the advantages of SBRT therapy in light of the existing experience is then provided. Finally, the need for new technological developments is advocated to make SBRT therapies more practical, safer, and clinically more effective. It is finally concluded that hypofractionated SBRT treatment will develop into a new paradigm that will shape the future of radiation therapy by providing the means to suppress the growth of most carcinogen-induced carcinomas and by supporting the cure of the disease.

  3. Nursing care update: Internal radiation therapy

    SciTech Connect

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references.

  4. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  5. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  6. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  7. Prognostic significance of p16 in locoregionally advanced head and neck cancer treated with concurrent 5-fluorouracil, hydroxyurea, cetuximab and intensity-modulated radiation therapy.

    PubMed

    Tong, Charles C L; Lau, K H Vincent; Rivera, Michael; Cannan, David; Aguirre-Ghiso, Julio; Sikora, Andrew G; Gupta, Vishal; Forsythe, Kevin; Ko, Eric C; Misiukiewicz, Krzysztof; Gurudutt, Vivek; Teng, Marita S; Packer, Stuart H; Genden, Eric M; Kao, Johnny

    2012-05-01

    A phase II trial was conducted to evaluate the tolerability and efficacy of incorporating cetuximab and simultaneous integrated boost intensity-modulated radiation therapy (SIB-IMRT) into a well-described 5-fluorouracil (5-FU) and hydroxyurea (HU)-based chemoradiation regimen. Patients with stage IVa-IVb or high-risk stage III squamous cell carcinomas were enrolled. Prior organ-conserving surgery or induction chemotherapy was allowed. IMRT was administered in 1.5 Gy fractions twice daily on days 1-5 of weeks 1, 3, 5, 7±9 for a total dose of 60-73.5 Gy. Concurrent systemic therapy consisted of 5-FU (600 mg/m2), HU (500 mg BID) and cetuximab (250 mg/m2). p16INK4A expression was assessed by immunohistochemistry. From January 2007 to January 2010, 65 patients (61 with stage IV disease; 31 with oropharyngeal primaries) were enrolled. At a median follow-up of 28 months, 2-year locoregional control, distant control, progression-free survival, event-free survival and overall survival were 79, 83, 72, 63 and 80%, respectively. In 48 patients with available pre-treatment tissue, p16 overexpression was associated with significantly increased distant control (p=0.03), progression-free survival (p=0.02), event-free survival (p=0.007) and overall survival (p=0.03). The most common grade 3-4 toxicities were mucositis (46%), leukopenia (18%), anemia (18%) and dermatitis (17%). Concurrent 5-FU, HU, cetuximab and SIB-IMRT is a highly active regimen, particularly in patients with p16-positive disease. PMID:22322320

  8. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    PubMed

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques.

  9. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    PubMed

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques. PMID:27125096

  10. The physical basis and future of radiation therapy.

    PubMed

    Bortfeld, T; Jeraj, R

    2011-06-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued "fuelling" of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more "professionalism" in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  11. Particle Radiation Therapy: Requiem or Reveille

    PubMed Central

    Alexander, Leslie L.; Goldson, Alfred L.; Alexander, George A.

    1979-01-01

    The 1960s and 1970s witnessed a surge of many institutions devoted to electron therapy. Currently, many facilities are adding or have added particle types of radiation to their armamentarium against cancer. The authors review the concepts, problems, and potentials of this form of therapy. ImagesFigure 1 PMID:423289

  12. Radiologist, computed tomography, and radiation therapy

    SciTech Connect

    Goitein, M.; Meyer, J.

    1982-06-01

    The use of computed tomography (CT) in planning radiation therapy is discussed. The three major issues that involve collaboration between the diagnostic radiologist and the radiation therapist are identified as selection of equipment, logistics, and conduct of individual CT studies. The importance of cooperation between the diagnostic and therapeutic radiologist is stressed.

  13. Radiation Therapy Oncology Group Protocol 02-29: A Phase II Trial of Neoadjuvant Therapy With Concurrent Chemotherapy and Full-Dose Radiation Therapy Followed by Surgical Resection and Consolidative Therapy for Locally Advanced Non-small Cell Carcinoma of the Lung

    SciTech Connect

    Suntharalingam, Mohan; Paulus, Rebecca; Edelman, Martin J.; Krasna, Mark; Burrows, Whitney; Gore, Elizabeth; Wilson, Lynn D.; Choy, Hak

    2012-10-01

    Purpose: To evaluate mediastinal nodal clearance (MNC) rates after induction chemotherapy and concurrent, full-dose radiation therapy (RT) in a phase II trimodality trial (Radiation Therapy Oncology Group protocol 0229). Patients and Methods: Patients (n=57) with stage III non-small cell lung cancer (pathologically proven N2 or N3) were eligible. Induction chemotherapy consisted of weekly carboplatin (AUC = 2.0) and paclitaxel 50 mg/m{sup 2}. Concurrent RT was prescribed, with 50.4 Gy to the mediastinum and primary tumor and a boost of 10.8 Gy to all gross disease. The mediastinum was pathologically reassessed after completion of chemoradiation. The primary endpoint of the study was MNC, with secondary endpoints of 2-year overall survival and postoperative morbidity/mortality. Results: The grade 3/4 toxicities included hematologic 35%, gastrointestinal 14%, and pulmonary 23%. Forty-three patients (75%) were evaluable for the primary endpoint. Twenty-seven patients achieved the primary endpoint of MNC (63%). Thirty-seven patients underwent resection. There was a 14% incidence of grade 3 postoperative pulmonary complications and 1 30-day, postoperative grade 5 toxicity (3%). With a median follow-up of 24 months for all patients, the 2-year overall survival rate was 54%, and the 2-year progression-free survival rate was 33%. The 2-year overall survival rate was 75% for those who achieved nodal clearance, 52% for those with residual nodal disease, and 23% for those who were not evaluable for the primary endpoint (P=.0002). Conclusions: This multi-institutional trial confirms the ability of neoadjuvant concurrent chemoradiation with full-dose RT to sterilize known mediastinal nodal disease.

  14. Phase 2 Study of Concurrent Cetuximab Plus Definitive Thoracic Radiation Therapy Followed by Consolidation Docetaxel Plus Cetuximab in Poor Prognosis or Elderly Patients With Locally Advanced Non-Small Cell Lung Cancer

    SciTech Connect

    Dilling, Thomas J.; Extermann, Martine; Kim, Jongphil; Thompson, Lora M.; Yue, Binglin; Stevens, Craig W.; Antonia, Scott; Gray, Jhanelle; Williams, Charles; Haura, Eric; Pinder-Schenck, Mary; Tanvetyanon, Tawee; Kim, Sungjune; Chiappori, Alberto

    2014-11-15

    Background: Recursive partitioning analysis has shown that Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) ≥2, male sex, and age ≥70 years are prognostic of poor outcome in locally advanced non-small cell lung cancer (LA-NSCLC) patients. Concurrent chemoradiation therapy (CRT) improves survival, but toxicity is a concern in this frail patient cohort. We therefore opened this trial of concurrent definitive thoracic radiation therapy (XRT) and cetuximab, followed by consolidation docetaxel plus cetuximab. Methods and Materials: Eligible patients had pathologically proven, unresectable LA-NSCLC (stage IIA-“dry” IIIB). They had ECOG PS 2 or weight loss ≥5% in 3 months or were aged ≥70 years. The primary objective was progression-free survival (PFS). Secondary objectives included overall survival (OS) and overall response rate (ORR). Results: From May 2008 to November 2010, a total of 32 patients were evaluated in our single-institution, institutional review board–approved prospective clinical trial. Three patients were screen failures and 2 more withdrew consent before treatment, leaving 27 evaluable patients. One was removed because of poor therapy compliance, and 2 were taken off trial because of grade 3 cetuximab-related toxicities but were followed up under intent-to-treat analysis. The median follow-up and OS were 10.5 months. The median PFS was 7.5 months. The ORR was 59.3%. Eight early/sudden deaths were reported. Upon review, 6 patients developed severe pulmonary complications. Conclusions: Patients enrolled in this trial had improved OS compared with poor-PS historical controls (10.5 vs 6.4 months) and comparable OS to good-PS historical controls (10.5 vs 11.9 months) treated with XRT alone. However, pulmonary toxicity is a concern. Consolidative cetuximab/docetaxel, in conjunction with high-dose radiation therapy, is a putative cause.

  15. New therapeutic strategies in radiation therapy

    SciTech Connect

    Kinsella, T.J.; Bloomer, W.D.

    1981-04-24

    Radiation therapy has been an integral part of curative cancer therapy for many decades. The tolerance of normal tissues traversed by radiation and resistant tumor cell populations traditionally have limited the radiocurability of certain tumors, especially with higher clinical stages. However, research in radiobiology and radiation physics is providing ways to increase cure while limiting morbidity. Computer-controlled dynamic treatment, radioprotector drugs, hyperbaric oxygen, carbogen breathing during irradiation, particle irradiation, and hypoxic cell sensitizing drugs are presently undergoing clinical evaluation with some encouraging preliminary results. We review the fundamental concepts underlying these clinical trials and analyze the results.

  16. Phase II Study of the Addition of Bevacizumab to Standard Chemoradiation for Loco-regionally Advanced Nasopharyngeal Carcinoma: Radiation Therapy Oncology Group (RTOG) Trial 0615

    PubMed Central

    Lee, Nancy Y.; Zhang, Ed; Pfister, David. G.; Kim, John; Garden, Adam. S.; Mechalakos, James; Hu, Kenneth; Le, Quynh T.; Colevas, A. Dimitrios; Glisson, Bonnie S.; Chan, Anthony T.C.; Ang, K. Kian

    2016-01-01

    Purpose We sought to improve the outcomes for loco-regionally advanced nasopharyngeal carcinoma (NPC) by testing the feasibility/safety of adding bevacizumab to chemoradiation. Patients/Methods Eligible patients with ≥T2b and/or positive node(s) were prescribed 3 cycles of bevacizumab (15 mg/kg) and cisplatin (100 mg/m2) both given on days 1, 22, and 43 of radiation (70 Gy) using IMRT delivered over 33 days on a daily basis, Monday through Friday. This is followed by 3 cycles of bevacizumab (15 mg/kg), cisplatin (80 mg/m2) both were given on days 64, 85, and 106 and fluorouracil (1000 mg/m2/d) on days 64–67, 85–88, 106–109 after radiation. The primary endpoint was to evaluate the safety of the addition of bevacizumab to chemoradiation, specifically looking at treatment-related Grade 4 hemorrhage and/or any Grade 5 adverse event in the first year. Toxicity during and after treatment were collected along with tumor control endpoints. The analysis was done per protocol. This protocol has completed its target accrual. Results There were a total of 46 patients enrolled in this study of whom 44 patients were eligible for analysis. No grade 3–4 hemorrhage or grade 5 adverse events were observed; 9 patients (20.5%) experienced grade 1–2 hemorrhage. Grade 4 adverse events were experienced by the following numbers of patients: leukopenia NOS – 6; lymphopenia – 5; neutrophil count – 5; pharyngolaryngeal pain – 2; hemoglobin – 1; infection with grade 3–4 neutrophils (blood) – 1; infection with grade 3–4 neutrophils [skin (cellulitis)] – 1; tinnitus – 1; thrombosis – 1; radiation mucositis – 1. The most common grade 3 adverse events were radiation mucositis – 33; dysphagia – 25; and mucositis/stomatitis (clinical exam) (pharynx) – 15. Two patients experienced late grade 3 xerostomia. Other late grade 3 adverse events were: dysphagia – 5; hearing impaired – 3; neuralgia NOS – 2; constitutional symptoms (other) – 1; dehydration

  17. [Laser radiations in medical therapy].

    PubMed

    Richand, P; Boulnois, J L

    1983-06-30

    The therapeutic effects of various types of laser beams and the various techniques employed are studied. Clinical and experimental research has shown that Helio-Neon laser beams are most effective as biological stimulants and in reducing inflammation. For this reasons they are best used in dermatological surgery cases (varicose ulcers, decubital and surgical wounds, keloid scars, etc.). Infrared diode laser beams have been shown to be highly effective painkillers especially in painful pathologies like postherpetic neuritis. The various applications of laser therapy in acupuncture, the treatment of reflex dermatologia and optic fibre endocavital therapy are presented. The neurophysiological bases of this therapy are also briefly described.

  18. Photodynamic Cancer Therapy - Recent Advances

    SciTech Connect

    Abrahamse, Heidi

    2011-09-22

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  19. How Should I Care for Myself During Radiation Therapy?

    MedlinePlus

    ... Upper GI What is Radiation Therapy? Find a Radiation Oncologist Last Name: Facility: City: State: Zip Code: ... information How Should I Care for Myself During Radiation Therapy? Get plenty of rest. Many patients experience ...

  20. Ocular neuromyotonia after radiation therapy

    SciTech Connect

    Lessell, S.; Lessell, I.M.; Rizzo, J.F. III

    1986-12-15

    Ocular neuromyotonia is a paroxysmal monocular deviation that results from spasm of eye muscles secondary to spontaneous discharges from third, fourth, or sixth nerve axons. We observed this rare disorder in four patients who had been treated with radiation for tumors in the region of the sella turcica and cavernous sinus. Based on these cases and four others identified in the literature it would appear that radiation predisposes to a cranial neuropathy in which ocular neuromyotonia may be the major manifestation. Radiation appears to be the most common cause of ocular neuromyotonia.

  1. Advances in stem cell therapy.

    PubMed

    Pérez López, Silvia; Otero Hernández, Jesús

    2012-01-01

    Since the beginning of stem cell biology, considerable effort has been focused in the translation of scientific insights into new therapies. Cell-based assays represent a new strategy for organ and tissue repair in several pathologies. Moreover, alternative treatment strategies are urgently needed due to donor organ shortage that costs many lives every year and results in lifelong immunosuppression. At the moment, only the use of hematopoietic stem cells is considered as the standard for the treatment of malignant and genetic bone marrow disorders, being all other stem cell applications highly experimental. The present chapter tries to summarize some ongoing approaches of stem cell regenerative medicine and also introduces recent findings from published studies and trials conducted in various tissues such as skeletal muscle, liver and lung.

  2. Impaired skin integrity related to radiation therapy

    SciTech Connect

    Ratliff, C.

    1990-09-01

    Skin reactions associated with radiation therapy require frequent nursing assessment and intervention. Preventive interventions and early management can minimize the severity of the skin reaction. With the understanding of the pathogenesis of radiation skin reactions, the ET nurse can determine who is at risk and then implement preventive measures. Because radiation treatment is fractionated, skin reactions do not usually occur until midway through the course of therapy and will subside within a few weeks after completion of radiation. Many patients and their families still fear that radiation causes severe burns. Teaching and anticipatory guidance by the ET nurse is needed to assist patients and their families to overcome this fear, and to educate them on preventive skin care regimens.

  3. Resource Letter MPRT-1: Medical Physics in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Ratliff, Steven T.

    2009-09-01

    This resource letter provides a guide to the literature on medical physics in the field of radiation therapy. Journal articles, books, and websites are cited for the following topics: radiological physics, particle accelerators, radiation dose measurements, protocols for radiation dose measurements, radiation shielding and radiation protection, neutron, proton, and heavy-ion therapies, imaging for radiation therapy, brachytherapy, quality assurance, treatment planning, dose calculations, and intensity-modulated and image-guided therapy.

  4. Combination Therapy for Advanced Kaposi Sarcoma

    Cancer.gov

    In this clinical trial, adult patients with any form of advanced Kaposi sarcoma will be treated with liposomal doxorubicin and bevacizumab every 3 weeks for a maximum of six treatments.  Patients who respond to this therapy or have stable disease will rec

  5. Preoperative therapy in locally advanced esophageal cancer

    PubMed Central

    Garg, Pankaj Kumar; Sharma, Jyoti; Jakhetiya, Ashish; Goel, Aakanksha; Gaur, Manish Kumar

    2016-01-01

    Esophageal cancer is an aggressive malignancy associated with dismal treatment outcomes. Presence of two distinct histopathological types distinguishes it from other gastrointestinal tract malignancies. Surgery is the cornerstone of treatment in locally advanced esophageal cancer (T2 or greater or node positive); however, a high rate of disease recurrence (systemic and loco-regional) and poor survival justifies a continued search for optimal therapy. Various combinations of multimodality treatment (preoperative/perioperative, or postoperative; radiotherapy, chemotherapy, or chemoradiotherapy) are being explored to lower disease recurrence and improve survival. Preoperative therapy followed by surgery is presently considered the standard of care in resectable locally advanced esophageal cancer as postoperative treatment may not be feasible for all the patients due to the morbidity of esophagectomy and prolonged recovery time limiting the tolerance of patient. There are wide variations in the preoperative therapy practiced across the centres depending upon the institutional practices, availability of facilities and personal experiences. There is paucity of literature to standardize the preoperative therapy. Broadly, chemoradiotherapy is the preferred neo-adjuvant modality in western countries whereas chemotherapy alone is considered optimal in the far East. The present review highlights the significant studies to assist in opting for the best evidence based preoperative therapy (radiotherapy, chemotherapy or chemoradiotherapy) for locally advanced esophageal cancer.

  6. Radiation therapy in cholangiocellular carcinomas.

    PubMed

    Brunner, Thomas B; Seufferlein, Thomas

    2016-08-01

    Cholangiocarcinoma can arise in all parts of the biliary tract and this has implications for therapy. Surgery is the mainstay of therapy however local relapse is a major problem. Therefore, adjuvant treatment with chemoradiotherapy was tested in trials. The SWOG-S0809 trial regimen of chemoradiotherapy which was tested in extrahepatic cholangiocarcinoma and in gallbladder cancer can currently be regarded as highest level of evidence for this indication. In contrast to adjuvant therapy where only conventionally fractionated radiotherapy plays a role, stereotactic body radiotherapy (SBRT) today has become a powerful alternative to chemoradiotherapy for definitive treatment due to the ability to administer higher doses of radiotherapy to improve local control. Sequential combinations with chemotherapy are also frequently employed. Nevertheless, in general cholangiocarcinoma is an orphan disease and future clinical trials will have to improve the available level of evidence. PMID:27644907

  7. Radiation sensitization in cancer therapy

    SciTech Connect

    Greenstock, C.L.

    1981-02-01

    One possible benefit of stimulated oxygen consumption rendering aerobic cancer cells hypoxic, and the reductive sensitizer drug metabolism which has been found to be selective for hypoxic tissue, is that the resulting reductive metabolites are selectively toxic and may be useful in chemotherapy to kill sensitive hypoxic tumor cells. Radiation chemical, biochemical and pharmacological studies are continuing to provide additional information on drug delivery, metabolism and cytotoxicity, in order to select and evaluate clinically acceptable sensitizer drugs. Radiation chemical studies over the past decade have led to the development and selection of the nitroimidazoles, metronidazole and misonidazole for clinical evaluation in terms of improved cancer treatments. The results of ongoing clinical trials will, within the next few years, indicate how successful this application of basic radiation chemical research has been. 39 references are included. (JMT)

  8. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    SciTech Connect

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.; Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C.; Chang, Daniel T.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  9. Advances in Therapeutic Development for Radiation Cystitis.

    PubMed

    Rajaganapathy, Bharathi Raja; Jayabalan, Nirmal; Tyagi, Pradeep; Kaufman, Jonathan; Chancellor, Michael B

    2014-01-01

    Radiation treatment for pelvic malignancies is typically associated with radiation injury to urinary bladder that can ultimately lead to radiation cystitis (RC). The late sequelae of radiation therapy may take many years to develop and include bothersome storage symptoms such as hematuria, which may be life-threatening in severe cases of hemorrhagic cystitis. Although no definitive treatment is currently available, various interventions are used for radiation and hemorrhagic cystitis including blood transfusion, bladder irrigation, intravesical instillation of substances such as alum, silver nitrate, prostaglandins or formalin, and fulguration of intravesical bleeding sites and surgery options such as supravesical urinary diversions and cystectomy. Effects of non-surgical treatments for radiation and hemorrhagic cystitis are of modest success and studies are lacking to control the effects caused by RC. When such measures have proven ineffective, use of bladder botulinum toxin injection has been reported. New therapy, such as intravesical immunosuppression with local tacrolimus formulation is being developed for the treatment of radiation hemorrhagic cystitis.

  10. Advances in Therapeutic Development for Radiation Cystitis.

    PubMed

    Rajaganapathy, Bharathi Raja; Jayabalan, Nirmal; Tyagi, Pradeep; Kaufman, Jonathan; Chancellor, Michael B

    2014-01-01

    Radiation treatment for pelvic malignancies is typically associated with radiation injury to urinary bladder that can ultimately lead to radiation cystitis (RC). The late sequelae of radiation therapy may take many years to develop and include bothersome storage symptoms such as hematuria, which may be life-threatening in severe cases of hemorrhagic cystitis. Although no definitive treatment is currently available, various interventions are used for radiation and hemorrhagic cystitis including blood transfusion, bladder irrigation, intravesical instillation of substances such as alum, silver nitrate, prostaglandins or formalin, and fulguration of intravesical bleeding sites and surgery options such as supravesical urinary diversions and cystectomy. Effects of non-surgical treatments for radiation and hemorrhagic cystitis are of modest success and studies are lacking to control the effects caused by RC. When such measures have proven ineffective, use of bladder botulinum toxin injection has been reported. New therapy, such as intravesical immunosuppression with local tacrolimus formulation is being developed for the treatment of radiation hemorrhagic cystitis. PMID:26663493

  11. Respiratory Motion Prediction in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Vedam, Sastry

    Active respiratory motion management has received increasing attention in the past decade as a means to reduce the internal margin (IM) component of the clinical target volume (CTV)—planning target volume (PTV) margin typically added around the gross tumor volume (GTV) during radiation therapy of thoracic and abdominal tumors. Engineering and technical developments in linear accelerator design and respiratory motion monitoring respectively have made the delivery of motion adaptive radiation therapy possible through real-time control of either dynamic multileaf collimator (MLC) motion (gantry based linear accelerator design) or robotic arm motion (robotic arm mounted linear accelerator design).

  12. Radiation Therapy for Pilocytic Astrocytomas of Childhood

    SciTech Connect

    Mansur, David B.; Rubin, Joshua B.; Kidd, Elizabeth A.; King, Allison A.; Hollander, Abby S.; Smyth, Matthew D.; Limbrick, David D.; Park, T.S.; Leonard, Jeffrey R.

    2011-03-01

    Purpose: Though radiation therapy is generally considered the most effective treatment for unresectable pilocytic astrocytomas in children, there are few data to support this claim. To examine the efficacy of radiation therapy for pediatric pilocytic astrocytomas, we retrospectively reviewed the experience at our institution. Methods and Materials: Thirty-five patients 18 years old or younger with unresectable tumors and without evidence of neurofibromatosis have been treated since 1982. Patients were treated with local radiation fields to a median dose of 54 Gy. Six patients were treated with radiosurgery to a median dose of 15.5 Gy. Five patients were treated with initial chemotherapy and irradiated after progression. Results: All patients were alive after a median follow-up of 5.0 years. However, progression-free survival was 68.7%. None of 11 infratentorial tumors progressed compared with 6 of 20 supratentorial tumors. A trend toward improved progression-free survival was seen with radiosurgery (80%) compared with external beam alone (66%), but this difference did not reach statistical significance. Eight of the 9 patients progressing after therapy did so within the irradiated volume. Conclusions: Although the survival of these children is excellent, almost one third of patients have progressive disease after definitive radiotherapy. Improvements in tumor control are needed in this patient population, and the optimal therapy has not been fully defined. Prospective trials comparing initial chemotherapy to radiation therapy are warranted.

  13. Anesthesia for intraoperative radiation therapy in children

    SciTech Connect

    Friesen, R.H.; Morrison, J.E. Jr.; Verbrugge, J.J.; Daniel, W.E.; Aarestad, N.O.; Burrington, J.D.

    1987-06-01

    Intraoperative radiation therapy (IORT) is a relatively new mode of cancer treatment which is being used with increasing frequency. IORT presents several challenges to the anesthesiologist, including patients who are debilitated from their disease or chemotherapy, operations involving major tumor resections, intraoperative interdepartmental transport of patients, and remote monitoring of patients during electron beam therapy. This report discusses the anesthetic management of ten children undergoing IORT. With adequate preparation and interdepartmental communication, complications can be avoided during these challenging cases.

  14. Effects of radiation therapy in microvascular anastomoses

    SciTech Connect

    Fried, M.P.

    1985-07-01

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels.

  15. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  16. Bullous pemphigoid after radiation therapy

    SciTech Connect

    Duschet, P.; Schwarz, T.; Gschnait, F.

    1988-02-01

    Electron beam therapy applied to a lymph node metastasis from a squamous cell carcinoma was followed by the development of histologically and immunologically typical bullous pemphigoid, the lesions being initially strictly confined to the irradiation area. This observation suggests that the bullous pemphigoid antigen may be altered or unmasked by electron beam radiotherapy, leading subsequently to the production of autoantibodies. The disease in this case effectively responded to the administration of tetracycline and niacinamide, a therapeutic regimen described recently.

  17. Recent Advances and Prospects for Multimodality Therapy in Pancreatic Cancer.

    PubMed

    Chadha, Awalpreet S; Khoo, Allison; Aliru, Maureen L; Arora, Harpreet K; Gunther, Jillian R; Krishnan, Sunil

    2016-10-01

    The outcomes for treatment of pancreatic cancer have not improved dramatically in many decades. However, the recent promising results with combination chemotherapy regimens for metastatic disease increase optimism for future treatments. With greater control of overt or occult metastatic disease, there will likely be an expanding role for local treatment modalities, especially given that nearly a third of pancreatic cancer patients have locally destructive disease without distant metastatic disease at the time of death. Technical advances have allowed for the safe delivery of dose-escalated radiation therapy, which can then be combined with chemotherapy, targeted agents, immunotherapy, and nanoparticulate drug delivery techniques to produce novel and improved synergistic effects. Here we discuss recent advances and future directions for multimodality therapy in pancreatic cancer. PMID:27619253

  18. Recent Advances and Prospects for Multimodality Therapy in Pancreatic Cancer.

    PubMed

    Chadha, Awalpreet S; Khoo, Allison; Aliru, Maureen L; Arora, Harpreet K; Gunther, Jillian R; Krishnan, Sunil

    2016-10-01

    The outcomes for treatment of pancreatic cancer have not improved dramatically in many decades. However, the recent promising results with combination chemotherapy regimens for metastatic disease increase optimism for future treatments. With greater control of overt or occult metastatic disease, there will likely be an expanding role for local treatment modalities, especially given that nearly a third of pancreatic cancer patients have locally destructive disease without distant metastatic disease at the time of death. Technical advances have allowed for the safe delivery of dose-escalated radiation therapy, which can then be combined with chemotherapy, targeted agents, immunotherapy, and nanoparticulate drug delivery techniques to produce novel and improved synergistic effects. Here we discuss recent advances and future directions for multimodality therapy in pancreatic cancer.

  19. [Systemic therapy and hyperthermia for locally advanced soft tissue sarcoma].

    PubMed

    Lindner, L H; Angele, M; Dürr, H R; Rauch, J; Bruns, C

    2014-05-01

    Patients with high-risk soft tissue sarcomas (FNCLCC grades 2-3, > 5 cm and deep lying) are at a high risk of local recurrence or distant metastases despite optimal surgical tumor resection. Therefore, multimodal treatment should be considered for this difficult to treat patient group. Besides surgery, radiation therapy and chemotherapy, hyperthermia has become a valid, complementary treatment option within multimodal treatment concepts. Hyperthermia in this context means the selective heating of the tumor region to temperatures of 40-43 °C for 60 min by microwave radiation in addition to simultaneous chemotherapy or radiation therapy. A randomized phase III study demonstrated that the addition of hyperthermia to neoadjuvant chemotherapy improved tumor response and was associated with a minimal risk of early disease progression as compared to chemotherapy alone. The addition of hyperthermia to a multimodal treatment regimen for high-risk soft tissue sarcoma consisting of surgery, radiation therapy and chemotherapy, either in the neoadjuvant or adjuvant setting after incomplete or marginal tumor resection, significantly improved local progression-free and disease-free survival. Based on these results and due to the generally good tolerability of hyperthermia, this treatment method in combination with chemotherapy should be considered as a standard treatment option within multimodal treatment approaches for locally advanced high-risk soft tissue sarcoma.

  20. Intensity-modulated radiation therapy: dynamic MLC (DMLC) therapy, multisegment therapy and tomotherapy. An example of QA in DMLC therapy.

    PubMed

    Webb, S

    1998-10-01

    Intensity-modulated radiation therapy will make a quantum leap in tumor control. It is the new radiation therapy for the new millennium. The major methods to achieve IMRT are: 1. dynamic multileaf collimator (DMLC) therapy, 2. multisegment therapy, and 3. tomotherapy. The principles of these 3 techniques are briefly reviewed. Each technique presents unique QA issues which are outlined. As an example this paper will present the results of a recent new study of an important QA concern in DMLC therapy.

  1. Systemic Therapy for Advanced Soft Tissue Sarcoma.

    PubMed

    Sheng, Jennifer Y; Movva, Sujana

    2016-10-01

    Soft tissue sarcomas are rare tumors that present with distant metastasis in up to 10% of patients. Survival has improved significantly because of advancements in histologic classification and improved management approaches. Older agents such as doxorubicin, ifosfamide, gemcitabine, and paclitaxel continue to demonstrate objective response rates from 18% to 25%. Newer agents such as trabectedin, eribulin, aldoxorubicin, and olaratumab have demonstrated improvements in progression-free survival, overall survival, or toxicity profiles. Future studies on treatment of advanced soft tissue sarcoma will continue to concentrate on reducing toxicity, personalization of therapy, and targeting novel pathways. PMID:27542647

  2. Glossodynia after radiation therapy and chemotherapy

    SciTech Connect

    Naylor, G.D.; Marino, G.G.; Shumway, R.C.

    1989-10-01

    Radiation therapy and chemotherapy have decreased the mortality rates of cancer patients, but the morbidity associated with oral complications is high in many cases. A pretreatment oral evaluation and institution of a preventive care program reduce oral symptoms such as glossodynia considerably. When oral symptoms are minimized, the dentist can improve the patient's quality of life.40 references.

  3. Process of Coping with Radiation Therapy.

    ERIC Educational Resources Information Center

    Johnson, Jean E.; And Others

    1989-01-01

    Evaluated ability of self-regulation and emotional-drive theories to explain effects of informational intervention entailing objective descriptions of experience on outcomes of coping with radiation therapy among 84 men with prostate cancer. Consistent with self-regulation theory, similarity between expectations and experience and degree of…

  4. Stereotactic body radiation therapy delivery validation

    NASA Astrophysics Data System (ADS)

    Olding, T.; Garcia, L.; Alexander, K.; Schreiner, L. J.; Joshi, C.

    2013-06-01

    This work describes the use of a motion phantom and 1D, 2D, and 3D ion chamber, EBT3 film, electronic portal imaging device (EPID) and FXG gel measurements for dosimetric validation of a stereotactic ablative radiation therapy (SBRT) technique in our clinic. Results show good agreement between the measurements and calculated treatment plan dose.

  5. Radiation therapy for orbital lymphoma

    SciTech Connect

    Zhou Ping . E-mail: pzhou@partners.org; Ng, Andrea K.; Silver, Barbara; Li Sigui; Hua Ling; Mauch, Peter M.

    2005-11-01

    Purpose: To describe radiation techniques and evaluate outcomes for orbital lymphoma. Methods and Materials: Forty-six patients (and 62 eyes) with orbital lymphoma treated with radiotherapy between 1987 and 2003 were included. The majority had mucosa-associated lymphoid tissue (48%) or follicular (30%) lymphoma. Seventeen patients had prior lymphoma at other sites, and 29 had primary orbital lymphoma. Median follow-up was 46 months. Results: The median dose was 30.6 Gy; one-third received <30 Gy. Electrons were used in 9 eyes with disease confined to the conjunctiva or eyelid, and photons in 53 eyes with involvement of intraorbital tissues to cover entire orbit. Local control rate was 98% for all patients and 100% for those with indolent lymphoma. Three of the 26 patients with localized primary lymphoma failed distantly, resulting in a 5-year freedom-from-distant-relapse rate of 89%. The 5-year disease-specific and overall survival rates were 95% and 88%, respectively. Late toxicity was mainly cataract formation in patients who received radiation without lens block. Conclusions A dose of 30 Gy is sufficient for indolent orbital lymphoma. Distant relapse rate in patients with localized orbital lymphoma was lower than that reported for low-grade lymphoma presenting in other sites. Orbital radiotherapy can be used for salvage of recurrent indolent lymphoma.

  6. Complementary strategies for the management of radiation therapy side effects.

    PubMed

    Stubbe, Christine E; Valero, Meighan

    2013-07-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten-tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com-mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu-puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc-yrrhizinated licorice. This article provides an overview of these thera-pies as well as related research and analysis. PMID:25032003

  7. Complementary strategies for the management of radiation therapy side effects.

    PubMed

    Stubbe, Christine E; Valero, Meighan

    2013-07-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten-tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com-mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu-puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc-yrrhizinated licorice. This article provides an overview of these thera-pies as well as related research and analysis.

  8. Radiation biology: the conceptual and practical impact on radiation therapy

    SciTech Connect

    Suit, H.D.

    1983-04-01

    Radiation biology has had an important impact on clinical radiation therapy by providing a rationale for implementation of new treatment strategies and for clinical concepts or practices thereby increasing their acceptance. The observed rather narrow range of D/sub 0/ and n values for mammalian cells contributed to successful trials of radiation treatment of several ''radiation-resistant'' tumors, e.g., carcinoma of prostate, color-rectum, and sarcoma of soft tissue. Attention of clinicians was forcibly directed to assessment of local results (local failure, treatment complications) and not merely survival at 5 years by the extensive literature of cell survival curves (in vivo and in vitro) and dose-response assays on normal and tumor tissues. Upon these same laboratory results a scientific rationale was developed for use of shrinking field technique, low dose for subclinical disease, and the combination of moderate dose radiation therapy and conservative surgery. The entire area of clinical research into altered dose fractionation schedules is based upon research on cell proliferation kinetics and repair of radiation damage. The understanding that the time for complete regression of tumor depends not only upon cell kill but also on the pattern of cell proliferation of the progeny of lethally irradiated cells and the abundance of stroma provided a basis for accepting patients with slowly responding tumors for treatment. There remains a wide field of need in research in this area as even today a large proportion of patients who die of cancer die with their cancer uncontrolled at the primary site.

  9. Updates in Therapy for Advanced Melanoma.

    PubMed

    Singh, Bhavana P; Salama, April K S

    2016-01-15

    Cutaneous melanoma is one of the most aggressive forms of skin cancer, and is correlated with a large proportion of skin cancer-related deaths. Therapy for cutaneous melanoma has advanced greatly through careful identification of therapeutic targets and the development of novel immunotherapeutic approaches. The identification of BRAF as well as other driver mutations, have allowed for a specialized approach to treatment. In addition, immune checkpoint inhibition has dramatically changed the treatment landscape over the past 5-10 years. The successful targeting of CTLA-4, as well as PD-1/PD-L1, has been translated into meaningful clinical benefit for patients, with multiple other potential agents in development. Systemic therapy for cutaneous melanoma is becoming more nuanced and often takes a multifaceted strategy. This review aims to discuss the benefits and limitations of current therapies in systemic melanoma treatment as well as areas of future development.

  10. Computed Tomography–Guided Interstitial High-Dose-Rate Brachytherapy in Combination With Regional Positive Lymph Node Intensity-Modulated Radiation Therapy in Locally Advanced Peripheral Non–Small Cell Lung Cancer: A Phase 1 Clinical Trial

    SciTech Connect

    Xiang, Li; Zhang, Jian-wen; Lin, Sheng; Luo, Hui-Qun; Wen, Qing-Lian; He, Li-Jia; Shang, Chang-Ling; Ren, Pei-Rong; Yang, Hong-Ru; Pang, Hao-Wen; Yang, Bo; He, Huai-Lin; Chen, Yue; Wu, Jing-Bo

    2015-08-01

    Purpose: To assess the technical safety, adverse events, and efficacy of computed tomography (CT)-guided interstitial high-dose-rate (HDR) brachytherapy in combination with regional positive lymph node intensity modulated radiation therapy in patients with locally advanced peripheral non–small cell lung cancer (NSCLC). Methods and Materials: Twenty-six patients with histologically confirmed NSCLC were enrolled in a prospective, officially approved phase 1 trial. Primary tumors were treated with HDR brachytherapy. A single 30-Gy dose was delivered to the 90% isodose line of the gross lung tumor volume. A total dose of at least 70 Gy was administered to the 95% isodose line of the planning target volume of malignant lymph nodes using 6-MV X-rays. The patients received concurrent or sequential chemotherapy. We assessed treatment efficacy, adverse events, and radiation toxicity. Results: The median follow-up time was 28 months (range, 7-44 months). There were 3 cases of mild pneumothorax but no cases of hemothorax, dyspnea, or pyothorax after the procedure. Grade 3 or 4 acute hematologic toxicity was observed in 5 patients. During follow-up, mild fibrosis around the puncture point was observed on the CT scans of 2 patients, but both patients were asymptomatic. The overall response rates (complete and partial) for the primary mass and positive lymph nodes were 100% and 92.3%, respectively. The 1-year and 2-year overall survival (OS) rates were 90.9% and 67%, respectively, with a median OS of 22.5 months. Conclusion: Our findings suggest that HDR brachytherapy is safe and feasible for peripheral locally advanced NSCLC, justifying a phase 2 clinical trial.

  11. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  12. Proton beam therapy for locally advanced lung cancer: A review

    PubMed Central

    Schild, Steven E; Rule, William G; Ashman, Jonathan B; Vora, Sujay A; Keole, Sameer; Anand, Aman; Liu, Wei; Bues, Martin

    2014-01-01

    Protons interact with human tissue differently than do photons and these differences can be exploited in an attempt to improve the care of lung cancer patients. This review examines proton beam therapy (PBT) as a component of a combined modality program for locally advanced lung cancers. It was specifically written for the non-radiation oncologist who desires greater understanding of this newer treatment modality. This review describes and compares photon (X-ray) radiotherapy (XRT) to PBT. The physical differences of these beams are described and the clinical literature is reviewed. Protons can be used to create treatment plans delivering significantly lower doses of radiation to the adjacent organs at risk (lungs, esophagus, and bone marrow) than photons. Clinically, PBT combined with chemotherapy has resulted in low rates of toxicity compared to XRT. Early results suggest a possible improvement in survival. The clinical results of proton therapy in lung cancer patients reveal relatively low rates of toxicity and possible survival benefits. One randomized study is being performed and another is planned to clarify the clinical differences in patient outcome for PBT compared to XRT. Along with the development of better systemic therapy, newer forms of radiotherapy such as PBT should positively impact the care of lung cancer patients. This review provides the reader with the current status of this new technology in treating locally advanced lung cancer. PMID:25302161

  13. Long-Term Results of Concomitant Boost Radiation Plus Concurrent Cisplatin for Advanced Head and Neck Carcinomas: A Phase II Trial of the Radiation Therapy Oncology Group (RTOG 99-14)

    SciTech Connect

    Garden, Adam S.; Harris, Jonathan M.S.; Trotti, Andy; Jones, Christopher U.; Carrascosa, Luis; Cheng, Jonathan D.; Spencer, Sharon S.; Forastiere, Arlene; Weber, Randal S.; Ang, K. Kian

    2008-08-01

    Purpose: The feasibility of combining concomitant boost-accelerated radiation regimen (AFX-C) with cisplatin was previously demonstrated in this Phase II trial. This article reports the long-term toxicity, relapse patterns, and survival in patients with advanced head and neck carcinoma. Methods and Materials: Between April and November 2000, 84 patients with Stage III-IV HNC were enrolled, and 76 patients were analyzable. Radiation consisted of 72 Gy over 6 weeks. Cisplatin dose was 100 mg/m{sup 2} on Days 1 and 22. Tumor and clinical status were assessed, and acute-late toxicities were graded. Results: The median follow-up for surviving patients is 4.3 years. The 2- and 4-year locoregional failure rates were 33% and 36%, respectively, and the 2- and 4-year survival rates were 70% and 54%, respectively. The worst overall late Grade 3 or 4 toxicity rate was 42%. The prevalence rates of a gastrostomy at any time during follow-up, at 12 months, and at 48 months were 83%, 41%, and 17%, respectively. Five of 36 patients (14%) alive and without disease at last follow-up were gastrostomy-tube dependent. Conclusion: These data of long-term follow-up of patients treated with AFX-C with cisplatin show encouraging results with regard to locoregional disease control and survival, with few recurrences after 2 years. The late toxicity rates are relatively high. However, although prolonged dysphagia was noted in our preliminary report, its prevalence does decreased over time. A Phase III trial comparing AFX-C plus cisplatin against standard radiation plus cisplatin has completed accrual.

  14. FOREWORD: Conference on Advanced Metrology for Cancer Therapy 2011 Conference on Advanced Metrology for Cancer Therapy 2011

    NASA Astrophysics Data System (ADS)

    Ankerhold, Ulrike

    2012-10-01

    Although physical treatments play a central role in cancer therapy, SI-traceable metrology has only been established for some of them. Several forms of treatment currently used (particularly intensity-modulated radiation therapy (IMRT), hadron therapy, high-intensity therapeutic ultrasound (HITU) and brachytherapy) suffer from the limited metrological support, which restricts the success of these techniques. Recognizing this deficit, the European Union identified metrology for health as one of the first four Targeted Programmes in the framework of the European Metrology Research Programme (EMRP) running from 2008 to 2011. This programme included two EMRP projects addressing metrology for cancer therapy: project T2.J06 dealing with brachytherapy project T2.J07 dealing with external beam cancer therapy using ionizing radiation and high-intensity therapeutic ultrasound. Primary measurement standards applicable to modern treatment conditions were developed under both projects, together with measurement techniques which are meant as a basis for future protocols for dosimetry, treatment planning and monitoring. In order to provide a platform for the presentation of current developments in clinical measurement techniques for cancer therapy, together with the achievements of both projects, an international Conference on Advanced Metrology for Cancer Therapy (CAMCT) was held from 29 November to 1 December 2011 at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The main sessions of the conference: Primary and secondary standards of absorbed dose to water for IMRT and brachytherapy, 3D dose distributions and treatment planning for IMRT and brachytherapy, Hadron therapy (protons and carbon ions), High-intensity therapeutic ultrasound (HITU), were geared to the main foci of the projects. Metrologists and medical physicists from countries all over the world attended the conference and made it into a forum for the exchange of information and expertise

  15. Radiation Therapy -- What It Is, How It Helps

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Radiation Therapy -- What It Is, How It Helps Download ... to-read guide offers a basic explanation of radiation therapy. Click on the topics below to get ...

  16. Comparison of particle-radiation-therapy modalities

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1981-01-01

    The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, ..pi../sup -/, He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapy on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only /sup 60/Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities.

  17. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  18. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    SciTech Connect

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  19. Stereotactic radiation therapy and radiosurgery.

    PubMed

    Ostertag, C B

    1994-01-01

    In all stereotactic irradiation procedures, a high dose is delivered to a relatively small target volume. Whether fractionated stereotactic radiotherapy is preferable (based on a therapeutic ratio) or a radiosurgical method (aiming at the precise and complete destruction of a tissue volume) depends on the definition and composition of the target. The methodologies can be grouped in closed-skull external focussed beam stereotactic radiosurgery/radiotherapy and in stereotactic implantation/injection of radiation sources. Although originally developed to treat functional disorders of the brain, stereotactic radiosurgery has been used most successfully for over 4 decades to treat cerebral arteriovenous malformations. Complete obliteration ranges from 30 to 50% after 1 year are reported. At 2 years the results range from 72 to 90%. Clearly the outcome is influenced by patient selection. In the treatment of acoustic neurinomas follow-up data of larger series of radiosurgery show that the treatment performed under local anesthesia on an outpatient basis becomes comparable with the best microsurgery data. Using multiple isocenters and MR localization tumor growth control is achieved in more than 90% of cases, with hearing preservation of approximately 50%. Pituitary tumors with Cushing's syndrome, acromegaly, Nelson's syndrome, prolactinomas and nonsecreting adenomas have been treated with various stereotactic irradiation methods. Further refinement of both localization techniques, dose distribution and beam manipulation will make radiosurgery an attractive modality because of its noninvasive character and low morbidity. Only a small subgroup of patients with low-grade gliomas are candidates for stereotactic localized irradiation treatment, namely those with circumscribed tumors with only limited spread of tumor cells into the periphery. For this subgroup, which usually comprises not more than 25% of all low-grade gliomas, the results from interstitial radiosurgery compete

  20. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  1. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  2. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  3. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  4. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  5. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  6. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  7. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  8. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  9. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  10. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  11. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  12. Complementary Strategies for the Management of Radiation Therapy Side Effects

    PubMed Central

    Stubbe, Christine E.; Valero, Meighan

    2013-01-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten­tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com­mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu­puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc­yrrhizinated licorice. This article provides an overview of these thera­pies as well as related research and analysis. PMID:25032003

  13. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    SciTech Connect

    Barker, Christopher A.; Postow, Michael A.

    2014-04-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.

  14. Magnetically scanned ion beams for radiation therapy

    SciTech Connect

    Alonso, J.R.

    1988-10-01

    The advantageous physical characteristics of slowing-down and stopping charged particle ion beams have been demonstrated to be highly desirable for application to radiation therapy. Specifically, the prospect of concentrating the dose delivered into a sharp-defined treatment volume while keeping to a minimum the total dose to tissues outside this volume is most appealing, offering very significant improvements over what is possible with established radiation therapy techniques. Key to achieving this physical dose distribution in an actual treatment setting is the technique used for delivering the beam into the patient. Magnetically scanned beams are emerging as the technique of choice, but daunting problems remain still in achieving the utmost theoretically possible dose distributions. 21 refs., 2 figs.

  15. Para-aortic lymph node radiation in advanced cervical cancer

    SciTech Connect

    Emami, B.; Watring, W.G.; Tak, W.; Anderson, B.; Piro, A.J.

    1980-09-01

    Thirty-six patients with advanced carcinoma of the uterine cervix and with iliac or para-aortic nodes interpreted as un-equivocally positive on lymphangiography have received radiation therapy to the para-aortic area at the Department of Therapeutic Radiology at Tufts-New England Medical Center Hospital. Of 29 patients who received para-aortic area irradiation as part of their initial treatment, local control was achieved in 18 patients (62%). Overall, four patients developed major complications requiring surgical intervention. Detailed results and our current pre-treatment evaluation policy including lymphangiography, percutaneous needle biopsy and selective extra-peritoneal lymph node biopsy will be discussed.

  16. CROI 2016: Advances in Antiretroviral Therapy.

    PubMed

    Taylor, Barbara S; Olender, Susan A; Tieu, Hong-Van; Wilkin, Timothy J

    2016-01-01

    The 2016 Conference on Retroviruses and Opportunistic Infections highlighted exciting advances in antiretroviral therapy, including important data on investigational antiretroviral drugs and clinical trials. Clinical trials demonstrated benefits from a long-acting injectable coformulation given as maintenance therapy, examined intravenous and subcutaneous administration of a monoclonal antibody directed at the CD4 binding site of HIV-1, and provided novel data on tenofovir alafenamide. Several studies focused on the role of HIV drug resistance, including the significance of minority variants, transmitted drug resistance, use of resistance testing, and drug class-related resistance. Novel data on the HIV care continuum in low- and middle-income settings concentrated on differentiated HIV care delivery models and outcomes. Data on progress toward reaching World Health Organization 90-90-90 targets as well as outcomes related to expedited initiation of HIV treatment and adherence strategies were presented. Results from a trial in Malawi showed reduced rates of mother-to-child transmission among HIV-infected women who initiated antiretroviral therapy prior to pregnancy, and several studies highlighted the effect of antiretroviral therapy in pediatric populations. A special session was dedicated to the findings of studies of Ebola virus disease and treatment during the outbreak in West Africa. PMID:27398863

  17. Magnetic tracking system for radiation therapy.

    PubMed

    Wing-Fai Loke; Tae-Young Choi; Maleki, Teimour; Papiez, Lech; Ziaie, Babak; Byunghoo Jung

    2010-08-01

    Intensity-modulated radiation therapy (IMRT) requires precise delivery of the prescribed dose of radiation to the target and surrounding tissue. Irradiation of moving body anatomy is possible only if stable, accurate, and reliable information about the moving body structures are provided in real time. This paper presents a magnetic position tracking system for radiation therapy. The proposed system uses only four transmitting coils and an implantable transponder. The four transmitting coils generate a magnetic field which is sensed and measured by a biaxial magnetoresistive sensor in the transponder in the tumor. The transponder transmits the information back to a computer to determine the position of the transponder allowing it to track the tumor in real time. The transmission of the information from the transponder to the computer can be wired or wireless. Measurements using a biaxial sensor agree well with the field strength calculated from the ideal equations. The translation from the measurement data to the 3-D location and orientation requires a numerical technique because the equations are in nonclosed forms. The algorithm of tracking is implemented using MATLAB. Each calculation of the position along the target trajectory takes 30 ms, which makes the proposed system suitable for real-time tracking of the transponder for radiation assessment and delivery. An error of less than 2 mm is achieved in the demonstration.

  18. Localized hyperthermia and radiation in cancer therapy.

    PubMed

    Abe, M; Hiraoka, M

    1985-04-01

    Clinical researches in hyperthermia have recently expanded rapidly with the increase in our knowledge of the biological effects of heat on experimental systems. This article provides background information on the biological rationale and current status of technologies concerning thermometry and heating equipment for the application of hyperthermia to human cancer treatment. Much data has been accumulated recently in hyperthermia treatment with and without radiation to superficial tumours which are refractory to conventional treatments. In this paper the treatment results published recently have been surveyed. The complete responses of tumours treated by heat alone are in the range of 15 per cent as opposed to approximately 60 per cent for the combination of heat plus radiation. Clinical results so far published have demonstrated that local control is consistently better in the lesions treated with radiation plus heat than with radiation alone. The morbidity related to heat therapy is within tolerable limits. Several articles on the clinical results of deep-seated tumours treated by hyperthermia are reviewed. Problems to be solved in the application of heat to cancer therapy are discussed.

  19. Chronic neuroendocrinological sequelae of radiation therapy

    SciTech Connect

    Sklar, C.A.; Constine, L.S.

    1995-03-30

    A variety of neuroendocrine disturbances are observed following treatment with external radiation therapy when the hypothalamic-pituitary axis (HPA) is included in the treatment field. Radiation-induced abnormalities are generally dose dependent and may develop many years after irradiation. Growth hormone deficiency and premature sexual development can occur following doses as low as 18 Gy fractionated radiation and are the most common neuroendocrine problems noted in children. Deficiency of gonadotropins, thyroid stimulating hormone, and adrenocorticotropin are seen primarily in individuals treated with > 40 Gy HPA irradiation. Hyperprolactinemia can be seen following high-dose radiotherapy (>40 Gy), especially among young women. Most neuroendocrine disturbances that develop as a result of HPA irradiation are treatable; patients at risk require long-term endocrine follow-up. 23 refs., 6 figs., 2 tabs.

  20. Impact of Incidental Irradiation on Clinically Uninvolved Nodal Regions in Patients With Advanced Non-Small-Cell Lung Cancer Treated With Involved-Field Radiation Therapy: Does Incidental Irradiation Contribute to the Low Incidence of Elective Nodal Failure?

    SciTech Connect

    Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi

    2010-06-01

    Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.

  1. Role of radiation therapy in lung cancer management - a review.

    PubMed

    Shi, J-G; Shao, H-J; Jiang, F-E; Huang, Y-D

    2016-07-01

    Lung cancer is the leading cause of cancer death worldwide. Furthermore, more than 50% of lung cancer patients are found affected by distant metastases at the time of diagnosis. On the other hand, 20% of these patients are without regional spread and are good candidates for surgical operation. The remaining 30% represent an intermediate group whose tumors have metastasized up to regional lymph nodes. These remain 30% are the most appropriate candidates for radiation therapy. These patients are also called as "locally advanced lung cancer" or stage III lung cancer patients. In these patients strategy of combination therapy viz. radiation therapy in combination with chemotherapy is also tried by various groups in the recent past for this better management. However, long-term survival is still poor with a 5-year survival in 5-25% of patients. During the last decades, there has been a development in radiation strategies. The present review article focuses on different approaches to optimize radiotherapy for these patients. PMID:27466995

  2. Radiation therapy technology manpower needs 1982.

    PubMed

    Rominger, C J; Browning, D; Diamond, J; Gardner, P; Kramer, S

    1983-12-01

    A shortage of radiation therapy technologists has existed in the United States for many years. This report analyzes the data from the third manpower survey of ACR/ASTR carried out in 1981 to 1982, using the Patterns of Care master facility list. Of 1106 questionnaires mailed, 77% were returned. The survey identified 3757 technologists performing radiation therapy technology duties. Of these, 2537 of these were Registered Technologists (Therapy) American Registry of Radiologic Technologists RTT (ARRT), 1220 were not. There has been a good growth in the total number of RTT (ARRT) members as indicated by the 1982 ARRT Annual Report (1148 in May, 1977, 2878 in May, 1982). Using the "Blue Book" Criteria of 1981 of 2 RTT/megavoltage unit or 2 RTT/300 new patients, the technology need (2900) would appear filled. However, 860 of the RTT were performing supervisory or dosimetry duties and 42% of the 2897 staff technologists were non RTT personnel. At the time of the survey, 597 funded vacancies existed (241 in 1977). A trend toward a changing standard of 3 RTT/megavoltage unit, reflecting the increased complexity of modern radiation therapy techniques, especially in Patterns of Care Strata A1, A2, C1 institutions was identified. While great progress has been made, there is a continuing need for recruitment into the 113 existing educational programs to try to stabilize the supply of technologists. Attention should also be given to measures for upgrading the skills and knowledge of the non RTT personnel in the field and retention of the RTT personnel.

  3. The Frank Ellis memorial lecture: the use of three-dimensional imaging in gynaecological radiation therapy.

    PubMed

    Viswanathan, A N

    2008-02-01

    The use of three-dimensional image guidance in radiation therapy has increased dramatically over the past decade. In gynaecological malignancies, three-dimensional image guidance assists with both external beam and brachytherapy treatment planning, increasing the accuracy of dose delivery. During his lifetime, Frank Ellis made significant contributions to gynaecological brachytherapy. This lecture will focus on novel advances in three-dimensional image-guided radiation therapy for cervical cancer, with the ultimate goal of improving outcomes for our patients.

  4. Radiation therapy options for management of the brain tumor patient.

    PubMed

    Lamb, S A

    1995-03-01

    Radiation therapy rarely cures malignant brain tumors; however, it is the best treatment available at present. Refinement of radiation delivery systems must continue in order to minimize normal tissue injury and to maximize the quality of life. Multimodal therapy designed to attack cancer at its genetic makeup holds great promise. Radiation therapy will always remain one of the forms of therapy used to treat malignant brain tumors.

  5. Imaging Tumor Hypoxia to Advance Radiation Oncology

    PubMed Central

    Lee, Chen-Ting; Boss, Mary-Keara

    2014-01-01

    Abstract Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313–337. PMID:24329000

  6. Early initiation of salvage hormone therapy influences survival in patients who failed initial radiation for locally advanced prostate cancer: A secondary analysis of RTOG protocol 86-10

    SciTech Connect

    Shipley, William U. . E-mail: wshipley@partners.org; DeSilvio, Michelle; Pilepich, Michael V.; Roach, Mack; Wolkov, Harvey B.; Sause, William T.; Rubin, Philip; Lawton, Colleen A.

    2006-03-15

    Purpose: We examined overall and disease-specific survival outcomes both from the time of initial treatment and from the start of salvage hormone therapy (HT), by the extent of disease progression at the time salvage HT was started in patients treated on RTOG Protocol 86-10. Methods and Materials: With a median follow-up of 9.0 years, 247 patients (54%) had received subsequent salvage HT. The overall survival (OVS) and disease-specific survival (DSS) were compared by the extent of disease progression at the time salvage HT was started. Results: For those patients with distant metastases (DM) present at the start of salvage HT, the OVS and DSS were significantly reduced when compared with those with DM absent at the time salvage HT was started (OVS at 8 years, 31% vs. 58%; DSS at 8 years, 38% vs. 65%). A statistically significant increase in DSS was observed among the 143 patients with DM absent when patients with prostate-specific antigen (PSA) less than 20 were compared with those with PSA greater than 20 at the time salvage HT was started. Conclusions: The DSS and the OVS of the relapsed patient are decreased in those with more extensive disease at the time of salvage HT. However, because this protocol could not evaluate the effect of posttreatment PSA velocity on outcomes, which is likely a better predictor of long-term success with salvage HT, these results cannot be taken to demonstrate that early salvage HT in patients with long posttreatment PSA doubling times is necessary for longer survival.

  7. Intensity-Modulated Radiation Therapy, Proton Therapy, or Conformal Radiation Therapy and Morbidity and Disease Control in Localized Prostate Cancer

    PubMed Central

    Sheets, Nathan C.; Goldin, Gregg H.; Meyer, Anne-Marie; Wu, Yang; Chang, YunKyung; Stürmer, Til; Holmes, Jordan A.; Reeve, Bryce B.; Godley, Paul A.; Carpenter, William R.; Chen, Ronald C.

    2013-01-01

    Context There has been rapid adoption of newer radiation treatments such as intensitymodulated radiation therapy (IMRT) and proton therapy despite greater cost and limited demonstrated benefit compared with previous technologies. Objective To determine the comparative morbidity and disease control of IMRT, proton therapy, and conformal radiation therapy for primary prostate cancer treatment. Design, Setting, and Patients Population-based study using Surveillance, Epidemiology, and End Results–Medicare-linked data from 2000 through 2009 for patients with nonmetastatic prostate cancer. Main Outcome Measures Rates of gastrointestinal and urinary morbidity, erectile dysfunction, hip fractures, and additional cancer therapy. Results Use of IMRT vs conformal radiation therapy increased from 0.15% in 2000 to 95.9% in 2008. In propensity score–adjusted analyses (N=12 976), men who received IMRT vs conformal radiation therapy were less likely to receive a diagnosis of gastrointestinal morbidities (absolute risk, 13.4 vs 14.7 per 100 person-years; relative risk [RR], 0.91; 95% CI, 0.86–0.96) and hip fractures (absolute risk, 0.8 vs 1.0 per 100 person-years; RR, 0.78; 95% CI, 0.65–0.93) but more likely to receive a diagnosis of erectile dysfunction (absolute risk, 5.9 vs 5.3 per 100 person-years; RR, 1.12; 95% CI, 1.03–1.20). Intensitymodulated radiation therapy patients were less likely to receive additional cancer therapy (absolute risk, 2.5 vs 3.1 per 100 person-years; RR, 0.81; 95% CI, 0.73–0.89). In a propensity score–matched comparison between IMRT and proton therapy (n=1368), IMRT patients had a lower rate of gastrointestinal morbidity (absolute risk, 12.2 vs 17.8 per 100 person-years; RR, 0.66; 95% CI, 0.55–0.79). There were no significant differences in rates of other morbidities or additional therapies between IMRT and proton therapy. Conclusions Among patients with nonmetastatic prostate cancer, the use of IMRT compared with conformal radiation

  8. The Role of Hypofractionated Radiation Therapy with Photons, Protons, and Heavy Ions for Treating Extracranial Lesions

    PubMed Central

    Laine, Aaron Michael; Pompos, Arnold; Timmerman, Robert; Jiang, Steve; Story, Michael D.; Pistenmaa, David; Choy, Hak

    2016-01-01

    Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation-induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal, and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently, there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and, in addition, there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward. PMID:26793619

  9. Intraoperative radiation therapy in recurrent ovarian cancer

    SciTech Connect

    Yap, O.W. Stephanie . E-mail: stbeast@stanford.edu; Kapp, Daniel S.; Teng, Nelson N.H.; Husain, Amreen

    2005-11-15

    Purpose: To evaluate disease outcomes and complications in patients with recurrent ovarian cancer treated with cytoreductive surgery and intraoperative radiation therapy (IORT). Methods and Materials: A retrospective study of 24 consecutive patients with ovarian carcinoma who underwent secondary cytoreduction and intraoperative radiation therapy at our institution between 1994 and 2002 was conducted. After optimal cytoreductive surgery, IORT was delivered with orthovoltage X-rays (200 kVp) using individually sized and beveled cone applications. Outcomes measures were local control of disease, progression-free interval, overall survival, and treatment-related complications. Results: Of these 24 patients, 22 were available for follow-up analysis. Additional treatment at the time of and after IORT included whole abdominopelvic radiation, 9; pelvic or locoregional radiation, 5; chemotherapy, 6; and no adjuvant treatment, 2. IORT doses ranged from 9-14 Gy (median, 12 Gy). The anatomic sites treated were pelvis (sidewalls, vaginal cuff, presacral area, anterior pubis), para-aortic and paracaval lymph node beds, inguinal region, or porta hepatitis. At a median follow-up of 24 months, 5 patients remain free of disease, whereas 17 patients have recurred, of whom 4 are alive with disease and 13 died from disease. Five patients recurred within the radiation fields for a locoregional relapse rate of 32% and 12 patients recurred at distant sites with a median time to recurrence of 13.7 months. Five-year overall survival was 22% with a median survival of 26 months from time of IORT. Nine patients (41%) experienced Grade 3 toxicities from their treatments. Conclusion: In carefully selected patients with locally recurrent ovarian cancer, combined IORT and tumor reductive surgery is reasonably tolerated and may contribute to achieving local control and disease palliation.

  10. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    SciTech Connect

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June Lee, Yoon-Jin

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  11. Personalized Radiation Therapy (PRT) for Lung Cancer.

    PubMed

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

  12. Personalized Radiation Therapy (PRT) for Lung Cancer.

    PubMed

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness. PMID:26703805

  13. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  14. Photodynamic therapy of advanced malignant tumors

    NASA Astrophysics Data System (ADS)

    Wang, Lian-xing; Dai, Lu-pin; Lu, Wen-qin

    1993-03-01

    Forty patients with advanced tumors were treated by photodynamic therapy (PDT) from May 1991 to August 1991 in our hospital with age ranges from 30 to 81 years old. The pathological diagnosis shows that 13 had tumors in the colon, 3 in the stomach, 2 in the oesophageal, 2 in the palatum, 1 in the cervix, and 19 others with malignant cancers of the skin. The histology was as follows: squamous cell in 20, adenocarcinoma in 19, melanocarcinoma in 1. By TNM classification there were no cases of T1, 5 cases of T2, and 35 cases of T2 - T3. All patients were stage IV. The overall effective rate was 85%, our experience is that the PDT is suitable for the patients with advanced tumor, especially those whose tumor recurrences are hard to treat after conventional treatment (surgery, radiotherapy, chemotherapy). The PDT appears to be a new and promising possibility to treat advanced tumors and to improve the patients' survival rates.

  15. Methods for implementing microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.

    2007-03-20

    A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.

  16. [Radiation therapy for prostate cancer in modern era].

    PubMed

    Nishimura, Takuya

    2016-01-01

    The purpose of this paper is to provide overview of the latest research trend on technique of radiation therapy of prostate cancer. Three-dimensional conformal radiation therapy(3D -CRT) has achieved better outcome of treatment for prostate cancer than 2-dimensional radiation therapy. Intensity-modulated radiation therapy(IMRT) is considered to be superior to 3D-CRT at certain points. Image-guided (IG) radiation therapy (IGRT), mainly IG-IMRT, is investigated what kind of influence it has on an outcome, both tumor control rate and adverse events. Particle therapy is a most ideal therapy theoretically. There is, however, few evidence which revealed that the therapy is superior to any other modalities.

  17. Eustachian Tube Obstruction and Radiation Therapy

    PubMed Central

    Duggan, H. E.; Weijer, D. L.

    1964-01-01

    One hundred and ninety-four patients with eustachian tube obstruction due to lymphoid tissue were treated with radiation therapy administered once a week for four weeks. Total dose to the skin for each lateral port was 600 r, and midline dose for a skull of 12 cm. width was approximately 42 rad for every 100 r on the skin. Of 121 patients under 15 years of age, 70% were completely better or markedly improved at six months; 8% showed no change. Long-term follow-up, averaging four and a half years after therapy, indicated that 82% were completely better or markedly improved and 8% were unchanged. Of 73 patients over 15 years of age, 58% were completely better or markedly improved at six months and 20% showed no change. After long-term follow-up (four years and four months after treatment) 68% were completely better or markedly improved and 17% showed no change. PMID:14158555

  18. Advances in Stem Cell Therapy for Leukemia.

    PubMed

    Tian, Hong; Qu, Qi; Liu, Liming; Wu, Depei

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective post remission treatment for leukemia, resulting in lower relapse rates than alternative therapies. However, it is limited by the lack of suitable human leukocyte antigen (HLA) matched donors and high rates of transplant-related morbidity and mortality. Cord blood transplantation (CBT) and haploidentical SCT (haplo-SCT) expand the potential donor pool but are also associated with major complications. Co-infusion of third-party donor stem cells with a CBT/haplo-SCT, which is called "dual transplantation," has been reported to improve the outcome of HSCT by accelerating hematopoietic reconstitution and reducing the incidence of graft-versus-host disease (GVHD). In addition, infusion of HLA-mismatched donor granulocyte colony-stimulating factor-mobilized donor peripheral blood stem cells after chemotherapy, the so called "microtransplantation", has been shown to promote the graft-versus-leukemia effect and hasten hematopoietic recovery without amplifying GVHD. Herein, we review recent advances in stem cell therapy for leukemia with a specific focus on dual transplantation and microtransplantation.

  19. Intensity-modulated radiation therapy: supportive data for prostate cancer.

    PubMed

    Cahlon, Oren; Hunt, Margie; Zelefsky, Michael J

    2008-01-01

    Since its introduction into clinical use in the mid-1990s, intensity-modulated radiation therapy (IMRT) has emerged as the most effective and widely used form of external-beam radiotherapy for localized prostate cancer. Multiple studies have confirmed the importance of delivering sufficiently high doses to the prostate to achieve cure. The dosimetric superiority of IMRT over conventional techniques to produce conformal dose distributions that allow for organ sparing has been shown. A growing number of reports have confirmed that IMRT is the safest way to deliver high doses of external-beam irradiation to the prostate and the regional lymph nodes. Advances in imaging and onboard verification systems continue to advance the capabilities of IMRT and have potential implications with regards to further dose escalation and hypofractionated regimens. The clinical data in support of IMRT and the associated technical aspects of IMRT treatment planning and implementation are highlighted in this review.

  20. Long-term results of intraoperative electron beam radiation therapy for nonmetastatic locally advanced pancreatic cancer: Retrospective cohort study, 7-year experience with 247 patients at the National Cancer Center in China.

    PubMed

    Chen, Yingtai; Che, Xu; Zhang, Jianwei; Huang, Huang; Zhao, Dongbing; Tian, Yantao; Li, Yexiong; Feng, Qinfu; Zhang, Zhihui; Jiang, Qinglong; Zhang, Shuisheng; Tang, Xiaolong; Huang, Xianghui; Chu, Yunmian; Zhang, Jianghu; Sun, Yuemin; Zhang, Yawei; Wang, Chengfeng

    2016-09-01

    To assess prognostic benefits of intraoperative electron beam radiation therapy (IOERT) in patients with nonmetastatic locally advanced pancreatic cancer (LAPC) and evaluate optimal adjuvant treatment after IOERT.A retrospective cohort study using prospectively collected data was conducted at the Cancer Hospital of the Chinese Academy of Medical Sciences, China National Cancer Center.Two hundred forty-seven consecutive patients with nonmetastatic LAPC who underwent IOERT between January 2008 and May 2015 were identified and included in the study. Overall survival (OS) was calculated from the day of IOERT. Prognostic factors were examined using Cox proportional hazards models. The 1-, 2-, and 3-year actuarial survival rates were 40%, 14%, and 7.2%, respectively, with a median OS of 9.0 months. On multivariate analysis, an IOERT applicator diameter < 6 cm (hazards ratio [HR], 0.67; 95% confidence interval [CI], 0.47-0.97), no intraoperative interstitial sustained-release 5-fluorouracil chemotherapy (HR, 0.46; 95% CI, 0.32-0.66), and receipt of postoperative chemoradiotherapy followed by chemotherapy (HR, 0.11; 95% CI, 0.04-0.25) were significantly associated with improved OS. Pain relief after IOERT was achieved in 111 of the 117 patients, with complete remission in 74 and partial remission in 37. Postoperative complications rate and mortality were 14.0% and 0.4%, respectively. Nonmetastatic LAPC patients with smaller size tumors could achieve positive long-term survival outcomes with a treatment strategy incorporating IOERT and postoperative adjuvant treatment.Chemoradiotherapy followed by chemotherapy might be a recommended adjuvant treatment strategy for well-selected cases. Intraoperative interstitial sustained-release 5-fluorouracil chemotherapy should not be recommended for patients with nonmetastatic LAPC. PMID:27661028

  1. QA in Radiation Therapy: The RPC Perspective

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.

    2010-11-01

    The Radiological Physics Center (RPC) is charged with assuring the consistent delivery of radiation doses to patients on NCI-sponsored clinical trials. To accomplish this, the RPC conducts annual mailed audits of machine calibration, dosimetry audit visits to institutions, reviews of treatment records, and credentialing procedures requiring the irradiation of anthropomorphic phantoms. Through these measurements, the RPC has gained an understanding of the level of quality assurance practiced in this cohort of institutions, and a database of measurements of beam characteristics of a large number of treatment machines. The results of irradiations of phantoms have yielded insight into the delivery of advanced technology treatment procedures.

  2. Collimator design for experimental minibeam radiation therapy

    SciTech Connect

    Babcock, Kerry; Sidhu, Narinder; Kundapur, Vijayananda; Ali, Kaiser

    2011-04-15

    Purpose: To design and optimize a minibeam collimator for minibeam radiation therapy studies using a 250 kVp x-ray machine as a simulated synchrotron source. Methods: A Philips RT250 orthovoltage x-ray machine was modeled using the EGSnrc/BEAMnrc Monte Carlo software. The resulting machine model was coupled to a model of a minibeam collimator with a beam aperture of 1 mm. Interaperture spacing and collimator thickness were varied to produce a minibeam with the desired peak-to-valley ratio. Results: Proper design of a minibeam collimator with Monte Carlo methods requires detailed knowledge of the x-ray source setup. For a cathode-ray tube source, the beam spot size, target angle, and source shielding all determine the final valley-to-peak dose ratio. Conclusions: A minibeam collimator setup was created, which can deliver a 30 Gy peak dose minibeam radiation therapy treatment at depths less than 1 cm with a valley-to-peak dose ratio on the order of 23%.

  3. Mapping the literature of radiation therapy

    PubMed Central

    Delwiche, Frances A.

    2013-01-01

    Objective: This study characterizes the literature of the radiation therapy profession, identifies the journals most frequently cited by authors writing in this discipline, and determines the level of coverage of these journals by major bibliographic indexes. Method: Cited references from three discipline-specific source journals were analyzed according to the Mapping the Literature of Allied Health Project Protocol of the Nursing and Allied Health Resources Section of the Medical Library Association. Bradford's Law of Scattering was applied to all journal references to identify the most frequently cited journal titles. Results: Journal references constituted 77.8% of the total, with books, government documents, Internet sites, and miscellaneous sources making up the remainder. Although a total of 908 journal titles were cited overall, approximately one-third of the journal citations came from just 11 journals. MEDLINE and Scopus provided the most comprehensive indexing of the journal titles in Zones 1 and 2. The source journals were indexed only by CINAHL and Scopus. Conclusion: The knowledgebase of radiation therapy draws heavily from the fields of oncology, radiology, medical physics, and nursing. Discipline-specific publications are not currently well covered by major indexing services, and those wishing to conduct comprehensive literature searches should search multiple resources. PMID:23646027

  4. Radiation Therapy for the Management of Brain Metastases.

    PubMed

    Garrett, Matthew D; Wu, Cheng-Chia; Yanagihara, Ted K; Jani, Ashish; Wang, Tony J C

    2016-08-01

    Brain metastases are the most common malignant intracranial tumors and carry a poor prognosis. The management of brain metastases may include a variety of treatment modalities including surgical resection, radiation therapy, and/or systemic therapy. The traditional treatment for brain metastasis involved whole brain irradiation. However, improved systemic control of primary cancers has led to longer survival for some groups of patients and there is increasing need to consider the late effects of radiation to the entire brain. With advances in imaging and radiation treatment planning and delivery stereotactic radiosurgery has become more frequently utilized and may be delivered through Gamma Knife Stereotactic Radiosurgery or linear accelerator-based systems. Furthermore, experience in treating thousands of patients on clinical trials has led to diagnosis-specific prognostic assessment systems that help guide our approach to the management of this common clinical scenario. This review provides an overview of the literature supporting radiotherapy for brain metastasis and an update on current radiotherapeutic options that is tailored for the nonradiation oncologist. PMID:27213494

  5. Prognostic Significance of Carbohydrate Antigen 19-9 in Unresectable Locally Advanced Pancreatic Cancer Treated With Dose-Escalated Intensity Modulated Radiation Therapy and Concurrent Full-Dose Gemcitabine: Analysis of a Prospective Phase 1/2 Dose Escalation Study

    SciTech Connect

    Vainshtein, Jeffrey M.; Schipper, Matthew; Zalupski, Mark M.; Lawrence, Theodore S.; Abrams, Ross; Francis, Isaac R.; Khan, Gazala; Leslie, William; Ben-Josef, Edgar

    2013-05-01

    Purpose: Although established in the postresection setting, the prognostic value of carbohydrate antigen 19-9 (CA19-9) in unresectable locally advanced pancreatic cancer (LAPC) is less clear. We examined the prognostic utility of CA19-9 in patients with unresectable LAPC treated on a prospective trial of intensity modulated radiation therapy (IMRT) dose escalation with concurrent gemcitabine. Methods and Materials: Forty-six patients with unresectable LAPC were treated at the University of Michigan on a phase 1/2 trial of IMRT dose escalation with concurrent gemcitabine. CA19-9 was obtained at baseline and during routine follow-up. Cox models were used to assess the effect of baseline factors on freedom from local progression (FFLP), distant progression (FFDP), progression-free survival (PFS), and overall survival (OS). Stepwise forward regression was used to build multivariate predictive models for each endpoint. Results: Thirty-eight patients were eligible for the present analysis. On univariate analysis, baseline CA19-9 and age predicted OS, CA19-9 at baseline and 3 months predicted PFS, gross tumor volume (GTV) and black race predicted FFLP, and CA19-9 at 3 months predicted FFDP. On stepwise multivariate regression modeling, baseline CA19-9, age, and female sex predicted OS; baseline CA19-9 and female sex predicted both PFS and FFDP; and GTV predicted FFLP. Patients with baseline CA19-9 ≤90 U/mL had improved OS (median 23.0 vs 11.1 months, HR 2.88, P<.01) and PFS (14.4 vs 7.0 months, HR 3.61, P=.001). CA19-9 progression over 90 U/mL was prognostic for both OS (HR 3.65, P=.001) and PFS (HR 3.04, P=.001), and it was a stronger predictor of death than either local progression (HR 1.46, P=.42) or distant progression (HR 3.31, P=.004). Conclusions: In patients with unresectable LAPC undergoing definitive chemoradiation therapy, baseline CA19-9 was independently prognostic even after established prognostic factors were controlled for, whereas CA19-9 progression

  6. Manifestation Pattern of Early-Late Vaginal Morbidity After Definitive Radiation (Chemo)Therapy and Image-Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer: An Analysis From the EMBRACE Study

    SciTech Connect

    Kirchheiner, Kathrin; Nout, Remi A.; Tanderup, Kari; Lindegaard, Jacob C.; Westerveld, Henrike; Haie-Meder, Christine; Petrič, Primož; Mahantshetty, Umesh; Dörr, Wolfgang; Pötter, Richard

    2014-05-01

    Background and Purpose: Brachytherapy in the treatment of locally advanced cervical cancer has changed substantially because of the introduction of combined intracavitary/interstitial applicators and an adaptive target concept, which is the focus of the prospective, multi-institutional EMBRACE study ( (www.embracestudy.dk)) on image-guided adaptive brachytherapy (IGABT). So far, little has been reported about the development of early to late vaginal morbidity in the frame of IGABT. Therefore, the aim of the present EMBRACE analysis was to evaluate the manifestation pattern of vaginal morbidity during the first 2 years of follow-up. Methods and Materials: In total, 588 patients with a median follow-up time of 15 months and information on vaginal morbidity were included. Morbidity was prospectively assessed at baseline, every 3 months during the first year, and every 6 months in the second year according to the Common Terminology Criteria for Adverse Events, version 3, regarding vaginal stenosis, dryness, mucositis, bleeding, fistula, and other symptoms. Crude incidence rates, actuarial probabilities, and prevalence rates were analyzed. Results: At 2 years, the actuarial probability of severe vaginal morbidity (grade ≥3) was 3.6%. However, mild and moderate vaginal symptoms were still pronounced (grade ≥1, 89%; grade ≥2, 29%), of which the majority developed within 6 months. Stenosis was most frequently observed, followed by vaginal dryness. Vaginal bleeding and mucositis were mainly mild and infrequently reported. Conclusion: Severe vaginal morbidity within the first 2 years after definitive radiation (chemo)therapy including IGABT with intracavitary/interstitial techniques for locally advanced cervical cancer is limited and is significantly less than has been reported from earlier studies. Thus, the new adaptive target concept seems to be a safe treatment with regard to the vagina being an organ at risk. However, mild to moderate vaginal morbidity

  7. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  8. Management of metastatic malignant thymoma with advanced radiation and chemotherapy techniques: report of a rare case.

    PubMed

    D'Andrea, Mark A; Reddy, G Kesava

    2015-02-25

    Malignant thymomas are rare epithelial neoplasms of the anterior superior mediastinum that are typically invasive in nature and have a higher risk of relapse that may ultimately lead to death. Here we report a case of an advanced malignant thymoma that was successfully treated with neoadjuvant chemotherapy followed by surgical resection and subsequently with advanced and novel radiation therapy techniques. A 65-year-old male was diagnosed with a stage IV malignant thymoma with multiple metastatic lesions involving the left peripheral lung and pericardium. Initial neoadjuvant chemotherapy with a cisplatin-based regimen resulted in a partial response allowing the inoperable tumor to become operable. Following surgical resection of the residual disease, the tumor recurred within a year. The patient then underwent a course of targeted three-dimensional intensity modulated radiation therapy (IMRT) and image-guided radiation therapy (IGRT). Five years after radiation therapy, the localized soft tissue thickening at the left upper lung anterior pleural space had resolved. Seven years after radiation therapy the tumor mass had completely resolved. No recurrences were seen and the patient is well even 8 years after IMRT/IGRT with a favorable outcome. Chemotherapy with targeted three-dimensional IMRT/IGRT should be considered the primary modality for the management of advanced malignant thymoma patients.

  9. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy

    PubMed Central

    Su, Xiang-Yu; Liu, Pei-Dang; Wu, Hao; Gu, Ning

    2014-01-01

    Radiation therapy performs an important function in cancer treatment. However, resistance of tumor cells to radiation therapy still remains a serious concern, so the study of radiosensitizers has emerged as a persistent hotspot in radiation oncology. Along with the rapid advancement of nanotechnology in recent years, the potential value of nanoparticles as novel radiosensitizers has been discovered. This review summarizes the latest experimental findings both in vitro and in vivo and attempts to highlight the underlying mechanisms of response in nanoparticle radiosensitization. PMID:25009750

  10. [Stereotactic body radiation therapy: uncertainties and margins].

    PubMed

    Lacornerie, T; Marchesi, V; Reynaert, N

    2014-01-01

    The principles governing stereotactic body radiation therapy are tight margins and large dose gradients around targets. Every step of treatment preparation and delivery must be evaluated before applying this technique in the clinic. Uncertainties remain in each of these steps: delineation, prescription with the biological equivalent dose, treatment planning, patient set-up taking into account movements, the machine accuracy. The calculation of margins to take into account uncertainties differs from conventional radiotherapy because of the delivery of few fractions and large dose gradients around the target. The quest of high accuracy is complicated by the difficulty to reach it and the lack of consensus regarding the prescription. Many schemes dose/number of fractions are described in clinical studies and there are differences in the way describing the delivered doses. While waiting for the ICRU report dedicated to this technique, it seems desirable to use the quantities proposed in ICRU Report 83 (IMRT) to report the dose distribution. PMID:25023588

  11. Molecular targeted therapy for advanced gastric cancer

    PubMed Central

    2013-01-01

    Although medical treatment has been shown to improve quality of life and prolong survival, no significant progress has been made in the treatment of advanced gastric cancer (AGC) within the last two decades. Thus, the optimum standard first-line chemotherapy regimen for AGC remains debatable, and most responses to chemotherapy are partial and of short duration; the median survival is approximately 7 to 11 months, and survival at 2 years is exceptionally > 10%. Recently, remarkable progress in tumor biology has led to the development of new agents that target critical aspects of oncogenic pathways. For AGC, many molecular targeting agents have been evaluated in international randomized studies, and trastuzumab, an anti-HER-2 monoclonal antibody, has shown antitumor activity against HER-2-positive AGC. However, this benefit is limited to only ~20% of patients with AGC (patients with HER-2-positive AGC). Therefore, there remains a critical need for both the development of more effective agents and the identification of molecular predictive and prognostic markers to select those patients who will benefit most from specific chemotherapeutic regimens and targeted therapies. PMID:23525404

  12. Radiation pneumonitis after stereotactic radiation therapy for lung cancer

    PubMed Central

    Yamashita, Hideomi; Takahashi, Wataru; Haga, Akihiro; Nakagawa, Keiichi

    2014-01-01

    Stereotactic body radiation therapy (SBRT) has a local control rate of 95% at 2 years for non-small cell lung cancer (NSCLC) and should improve the prognosis of inoperable patients, elderly patients, and patients with significant comorbidities who have early-stage NSCLC. The safety of SBRT is being confirmed in international, multi-institutional Phase II trials for peripheral lung cancer in both inoperable and operable patients, but reports so far have found that SBRT is a safe and effective treatment for early-stage NSCLC and early metastatic lung cancer. Radiation pneumonitis (RP) is one of the most common toxicities of SBRT. Although most post-treatment RP is Grade 1 or 2 and either asymptomatic or manageable, a few cases are severe, symptomatic, and there is a risk for mortality. The reported rates of symptomatic RP after SBRT range from 9% to 28%. Being able to predict the risk of RP after SBRT is extremely useful in treatment planning. A dose-effect relationship has been demonstrated, but suggested dose-volume factors like mean lung dose, lung V20, and/or lung V2.5 differed among the reports. We found that patients who present with an interstitial pneumonitis shadow on computed tomography scan and high levels of serum Krebs von den Lungen-6 and surfactant protein D have a high rate of severe radiation pneumonitis after SBRT. At our institution, lung cancer patients with these risk factors have not received SBRT since 2006, and our rate of severe RP after SBRT has decreased significantly since then. PMID:25276313

  13. Prostate cancer radiation therapy: A physician's perspective.

    PubMed

    Dal Pra, Alan; Souhami, Luis

    2016-03-01

    Prostate cancer is the second most common cancer in men and a major cause of cancer deaths worldwide. Ionizing radiation has played a substantial role in the curative treatment of this disease. The historical evolution of radiotherapy techniques through 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and image-guided radiotherapy (IGRT) has allowed more accurate and precise treatments toward significant improvements in the therapeutic ratio. The addition of androgen deprivation therapy has significantly improved overall survival becoming the standard therapy for intermediate- and high-risk disease. Many randomized controlled trials have shown improved local control with dose escalation, and hypofractionated RT has been consolidated with proven efficacy and safe clinical results. However, several questions remain open in the radiotherapeutic management of prostate cancer patients and hopefully ongoing studies will shed light on these uncertainties. More individualized approaches are essential through better prognostic and novel predictive biomarkers of prostate radiotherapy response. Clinicians should critically interpret the evolving technologies in prostate cancer radiotherapy with important optimism but balancing the costs and the actual magnitude of clinical benefit. This article provides an overview of the basic aspects of radiotherapy treatment in localized prostate cancer from a physician's perspective. PMID:27056435

  14. Radiation therapy for breast cancer: Literature review.

    PubMed

    Balaji, Karunakaran; Subramanian, Balaji; Yadav, Poonam; Anu Radha, Chandrasekaran; Ramasubramanian, Velayudham

    2016-01-01

    Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit of the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment. PMID:27545009

  15. Radiation therapy for breast cancer: Literature review.

    PubMed

    Balaji, Karunakaran; Subramanian, Balaji; Yadav, Poonam; Anu Radha, Chandrasekaran; Ramasubramanian, Velayudham

    2016-01-01

    Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit of the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment.

  16. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  17. Virtual reality in radiation therapy training.

    PubMed

    Boejen, Annette; Grau, Cai

    2011-09-01

    Integration of virtual reality (VR) in clinical training programs is a novel tool in radiotherapy. This paper presents a review of the experience with VR and Immersive visualization in 3D perspective for planning and delivery of external radiotherapy. Planning and delivering radiation therapy is a complex process involving physicians, physicists, radiographers and radiation therapists/nurses (RTT's). The specialists must be able to understand spatial relationships in the patient anatomy. Although still in its infancy, VR tools have become available for radiotherapy training, enabling students to simulate and train clinical situations without interfering with the clinical workflow, and without the risk of making errors. Immersive tools like a 3D linear accelerator and 3D display of dose distributions have been integrated into training, together with IT-labs with clinical software. Training in a VR environment seems to be cost-effective for the clinic. Initial reports suggest that 3D display of dose distributions may improve treatment planning and decision making. Whether VR training qualifies the students better than conventional training is still unsettled, but the first results are encouraging. PMID:20724144

  18. A multileaf collimator for neutron radiation therapy

    NASA Astrophysics Data System (ADS)

    Farr, J. B.; Maughan, R. L.; Yudelev, M.; Forman, J. D.; Blosser, E. J.; Horste, T.

    2001-12-01

    A multi-leaf collimator (MLC) has been designed for installation on the super-conducting cyclotron at the Gershenson Radiation Oncology Center. This MLC will replace the existing multi-rod collimator and the increased efficiency thus achieved should allow for a 50% increase in the number of patients treated. A study of the penumbra region of the neutron beam with focused and unfocused collimator leaves has been completed, together with activation measurements in steel and tungsten. Results of these studies were used to finalize the collimator leaf design. A steel collimator leaf with a 5 mm projection at the isocenter and a wedge shaped section has been chosen, to provide beam divergence in the direction perpendicular to the leaf motion. The leaf profile is "stepped" to prevent neutron leakage. The rationale for this leaf design is discussed. The overall design of the collimator system and the incorporation of a remote wedge-changing device will be presented. Each leaf is positioned using a stepping motor; the leaf position is independently confirmed using an optical system incorporating a coherent fiber optic and a CCD camera. The control system is being designed to allow for the implementation of intensity modulated neutron radiation therapy (IMNRT).

  19. Primary radiation therapy for juvenile nasopharyngeal angiofibroma.

    PubMed

    Cummings, B J; Blend, R; Keane, T; Fitzpatrick, P; Beale, F; Clark, R; Garrett, P; Harwood, A; Payne, D; Rider, W

    1984-12-01

    Evidence is presented of the effectiveness and relative lack of serious toxicity of external beam megavoltage radiation therapy (RT) as primary treatment for juvenile nasopharyngeal angiofibroma. The importance of careful radiological evaluation of tumor extent prior to irradiation is stressed, and only moderate dose RT is required. Fifty-five patients have been treated by RT and followed for from 3 to 26 years. Forty-four of 55 patients (80%) had permanent tumor control following a single course of 3000 cGy to 3500 cGy over 3 weeks. Surgical resection or a second course of RT controlled the tumor in all 11 patients in whom regrowth occurred. Angiofibromas involute slowly after RT so that 50% of patients still had visible masses in the nasopharynx 12 months after treatment, but only 10% had any visible abnormality 36 months after RT. Retreatment was necessary only if symptoms recurred, and continued follow-up showed that most asymptomatic nasopharyngeal masses resolved completely. Acute and late toxicity rates were low. Two patients developed tumors in the head or neck following RT. There was no significant clinical impairment of growth or endocrine function. A single course of external beam megavoltage radiation to 3000 cGy in 3 weeks is an effective first treatment for patients with juvenile nasopharyngeal angiofibroma.

  20. Understanding Radiation Therapy: A Guide for Patients and Families

    MedlinePlus

    ... Saved Articles » My ACS » A Guide to Radiation Therapy Download Printable Version [PDF] » ( En español ) You’ve ... you and your doctor have agreed that radiation therapy is your best choice – either alone or along ...

  1. Severe prostatic calcification after radiation therapy for cancer.

    PubMed

    Jones, W A; Miller, E V; Sullivan, L D; Chapman, W H

    1979-06-01

    Severe symptomatic prostatic calcification was seen in 3 patients who had carcinoma of the prostate treated initially with transurethral resection, followed in 2 to 4 weeks by definitive radiation therapy. This complication is probably preventable if an interval of 6 weeks is allowed between transurethral resection of the prostate and radiation therapy.

  2. [Importance of sonotomography in radiation therapy (author's transl)].

    PubMed

    Heckemann, R; Quast, U; Glaeser, L; Schmitt, G

    1976-08-01

    Ultrasound tomography provides true scale representation of body contours and organ structures. The image supplies substantial, individual geometrical data, essential for computerized radiation treatment planning. The mehtod is described. Typical planning examples for therapy are demonstrated. The value of follow up sonograms for radiation therapy is described. The limitations of the method are pointed out.

  3. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  4. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  5. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  6. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    NASA Astrophysics Data System (ADS)

    Van Dyk, J.; Battista, J.

    2014-03-01

    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of "in vivo" dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses.

  7. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  8. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  9. Patterns of Failure in Advanced Stage Diffuse Large B-Cell Lymphoma Patients After Complete Response to R-CHOP Immunochemotherapy and the Emerging Role of Consolidative Radiation Therapy

    SciTech Connect

    Shi, Zheng; Das, Satya; Okwan-Duodu, Derick; Esiashvili, Natia; Flowers, Christopher; Chen, Zhengjia; Wang, Xiaojing; Jiang, Kun; Nastoupil, Loretta J.; Khan, Mohammad K.

    2013-07-01

    Purpose: The role of consolidative radiation therapy (RT) after complete response (CR) to rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for stage III-IV diffuse large B-cell lymphoma (DLBCL) patients is unclear. We aimed to evaluate our institutional experience when consolidative RT is delivered to initial presenting sites or bulky sites in these patients. Methods and Materials: We identified 211 histologically confirmed stage III-IV DLBCL patients who received R-CHOP from January 2000 to May 2012 at our institution. Patterns of failure for patients who achieved CR to R-CHOP were analyzed. Local control (LC), distant control (DC), progression-free survival (PFS), and overall survival (OS) were estimated using Kaplan-Meier method and compared between patients who received R-CHOP alone versus R-CHOP plus consolidative RT using the log–rank test. Multivariate analyses were also performed using Cox proportional hazards model. Results: Detailed treatment records were available for 163 patients. After a median 6 cycles of R-CHOP, 110 patients (67.5%) achieved CR and were entered for analysis. Fourteen patients (12.7%) received consolidative RT. After median follow-up of 32.9 months, 43.8% of patients who received R-CHOP alone failed at the initial sites with or without distant recurrence (DR), whereas isolated DR only occurred in 3.7% of these patients. Consolidative RT was associated with significantly improved LC (91.7% vs 48.8%), DC (92.9% vs 71.9%), PFS (85.1% vs 44.2%), and OS (92.3% vs 68.5%; all Ps<.0001) at 5 years compared with patients with R-CHOP alone. On multivariate analysis, consolidative RT and nonbulky disease were predictive of increased LC and PFS, whereas bone marrow involvement was associated with increased risk of DR and worse OS. Consolidative RT was also associated with marginal improved OS. Conclusions: Forty-four percent of patients with advanced stage DLBCL failed at initial presenting sites after

  10. Diagnosis of delayed cerebral radiation necrosis following proton beam therapy

    SciTech Connect

    Kaufman, M.; Swartz, B.E.; Mandelkern, M.; Ropchan, J.; Gee, M.; Blahd, W.H. )

    1990-04-01

    A 27-year-old man developed delayed cerebral radiation necrosis following proton beam therapy to an arteriovenous malformation. Neuroimaging with technetium 99m diethylenetriamine penta-acetic acid and positron emission tomographic scanning with fludeoxyglucose F 18 aided in his evaluation. Significant improvement of his neurologic deficits resulted from corticosteroid therapy. Clinical resolution was corroborated by serial computed tomographic scans demonstrating regression of the abnormality (a mass lesion). Various facets of radiation injury are discussed, including pathogenesis, risk factors, diagnosis, and therapy.

  11. Carcinoma of the nasal vestibule treated with radiation therapy

    SciTech Connect

    Mendenhall, N.P.; Parsons, J.T.; Cassisi, N.J.; Million, R.R.

    1987-05-01

    Twenty-two patients with squamous carcinoma of the nasal vestibule were treated at the University of Florida Division of Radiation Therapy with curative intent. Fifteen lesions were de novo and seven recurrent after surgery. By AJCC classification, 7 lesions were Tx or T1, 2 were T2, 2 were T3, and 11 were T4. Management of the primary tumor and regional lymphatic drainage was highly individualized. Local control was achieved in 19 out of 22 lesions. The ultimate regional lymph node control rate was 22 out of 22, although two patients required radical neck dissection after development of lymph node disease in untreated regional lymphatics. Two patients have died of cancer and three of intercurrent disease. Cosmetic results are generally excellent but may be compromised by previous surgery in recurrent lesions or tumor destruction of normal tissues in advanced lesions. Complications of treatment are minimal.

  12. Stereotactic Body Radiation Therapy Versus Intensity-Modulated Radiation Therapy for Prostate Cancer: Comparison of Toxicity

    PubMed Central

    Yu, James B.; Cramer, Laura D.; Herrin, Jeph; Soulos, Pamela R.; Potosky, Arnold L.; Gross, Cary P.

    2014-01-01

    Purpose Stereotactic body radiation therapy (SBRT) is a technically demanding prostate cancer treatment that may be less expensive than intensity-modulated radiation therapy (IMRT). Because SBRT may deliver a greater biologic dose of radiation than IMRT, toxicity could be increased. Studies comparing treatment cost to the Medicare program and toxicity are needed. Methods We performed a retrospective study by using a national sample of Medicare beneficiaries age ≥ 66 years who received SBRT or IMRT as primary treatment for prostate cancer from 2008 to 2011. Each SBRT patient was matched to two IMRT patients with similar follow-up (6, 12, or 24 months). We calculated the cost of radiation therapy treatment to the Medicare program and toxicity as measured by Medicare claims; we used a random effects model to compare genitourinary (GU), GI, and other toxicity between matched patients. Results The study sample consisted of 1,335 SBRT patients matched to 2,670 IMRT patients. The mean treatment cost was $13,645 for SBRT versus $21,023 for IMRT. In the 6 months after treatment initiation, 15.6% of SBRT versus 12.6% of IMRT patients experienced GU toxicity (odds ratio [OR], 1.29; 95% CI, 1.05 to 1.53; P = .009). At 24 months after treatment initiation, 43.9% of SBRT versus 36.3% of IMRT patients had GU toxicity (OR, 1.38; 95% CI, 1.12 to 1.63; P = .001). The increase in GU toxicity was due to claims indicative of urethritis, urinary incontinence, and/or obstruction. Conclusion Although SBRT was associated with lower treatment costs, there appears to be a greater rate of GU toxicity for patients undergoing SBRT compared with IMRT, and prospective correlation with randomized trials is needed. PMID:24616315

  13. Radiation Therapy for Chloroma (Granulocytic Sarcoma)

    SciTech Connect

    Bakst, Richard; Wolden, Suzanne; Yahalom, Joachim

    2012-04-01

    Objectives: Chloroma (granulocytic sarcoma) is a rare, extramedullary tumor of immature myeloid cells related to acute nonlymphocytic leukemia or myelodysplastic syndrome. Radiation therapy (RT) is often used in the treatment of chloromas; however, modern studies of RT are lacking. We reviewed our experience to analyze treatment response, disease control, and toxicity associated with RT to develop treatment algorithm recommendations for patients with chloroma. Patients and Methods: Thirty-eight patients who underwent treatment for chloromas at our institution between February 1990 and June 2010 were identified and their medical records were reviewed and analyzed. Results: The majority of patients that presented with chloroma at the time of initial leukemia diagnosis (78%) have not received RT because it regressed after initial chemotherapy. Yet most patients that relapsed or remained with chloroma after chemotherapy are in the RT cohort (90%). Thirty-three courses of RT were administered to 22 patients. Radiation subsite breakdown was: 39% head and neck, 24% extremity, 9% spine, 9% brain, 6% genitourinary, 6% breast, 3% pelvis, and 3% genitourinary. Median dose was 20 (6-36) Gy. Kaplan-Meier estimates of progression-free survival and overall survival in the RT cohort were 39% and 43%, respectively, at 5 years. At a median follow-up of 11 months since RT, only 1 patient developed progressive disease at the irradiated site and 4 patients developed chloromas at other sites. RT was well tolerated without significant acute or late effects and provided symptom relief in 95% of cases. Conclusions: The majority of patients with chloromas were referred for RT when there was extramedullary progression, marrow relapse, or rapid symptom relief required. RT resulted in excellent local disease control and palliation of symptoms without significant toxicity. We recommend irradiating chloromas to at least 20 Gy, and propose 24 Gy in 12 fractions as an appropriate regimen.

  14. Refusal of Curative Radiation Therapy and Surgery Among Patients With Cancer

    SciTech Connect

    Aizer, Ayal A.; Chen, Ming-Hui; Parekh, Arti; Choueiri, Toni K.; Kim, Simon P.; Martin, Neil E.; Trinh, Quoc-Dien; Nguyen, Paul L.

    2014-07-15

    Purpose: Surgery and radiation therapy represent the only curative options for many patients with solid malignancies. However, despite the recommendations of their physicians, some patients refuse these therapies. This study characterized factors associated with refusal of surgical or radiation therapy as well as the impact of refusal of recommended therapy on patients with localized malignancies. Methods and Materials: We used the Surveillance, Epidemiology, and End Results program to identify a population-based sample of 925,127 patients who had diagnoses of 1 of 8 common malignancies for which surgery and/or radiation are believed to confer a survival benefit between 1995 and 2008. Refusal of oncologic therapy, as documented in the SEER database, was the primary outcome measure. Multivariable logistic regression was used to investigate factors associated with refusal. The impact of refusal of therapy on cancer-specific mortality was assessed with Fine and Gray's competing risks regression. Results: In total, 2441 of 692,938 patients (0.4%) refused surgery, and 2113 of 232,189 patients (0.9%) refused radiation, despite the recommendations of their physicians. On multivariable analysis, advancing age, decreasing annual income, nonwhite race, and unmarried status were associated with refusal of surgery, whereas advancing age, decreasing annual income, Asian American race, and unmarried status were associated with refusal of radiation (P<.001 in all cases). Refusal of surgery and radiation were associated with increased estimates of cancer-specific mortality for all malignancies evaluated (hazard ratio [HR], 2.80, 95% confidence interval [CI], 2.59-3.03; P<.001 and HR 1.97 [95% CI, 1.78-2.18]; P<.001, respectively). Conclusions: Nonwhite, less affluent, and unmarried patients are more likely to refuse curative surgical and/or radiation-based oncologic therapy, raising concern that socioeconomic factors may drive some patients to forego potentially life-saving care.

  15. On probabilistically defined margins in radiation therapy

    NASA Astrophysics Data System (ADS)

    Papiez, Lech; Langer, Mark

    2006-08-01

    Margins about a target volume subject to external beam radiation therapy are designed to assure that the target volume of tissue to be sterilized by treatment is adequately covered by a lethal dose. Thus, margins are meant to guarantee that all potential variation in tumour position relative to beams allows the tumour to stay within the margin. Variation in tumour position can be broken into two types of dislocations, reducible and irreducible. Reducible variations in tumour position are those that can be accommodated with the use of modern image-guided techniques that derive parameters for compensating motions of patient bodies and/or motions of beams relative to patient bodies. Irreducible variations in tumour position are those random dislocations of a target that are related to errors intrinsic in the design and performance limitations of the software and hardware, as well as limitations of human perception and decision making. Thus, margins in the era of image-guided treatments will need to accommodate only random errors residual in patient setup accuracy (after image-guided setup corrections) and in the accuracy of systems designed to track moving and deforming tissues of the targeted regions of the patient's body. Therefore, construction of these margins will have to be based on purely statistical data. The characteristics of these data have to be determined through the central limit theorem and Gaussian properties of limiting error distributions. In this paper, we show how statistically determined margins are to be designed in the general case of correlated distributions of position errors in three-dimensional space. In particular, we show how the minimal margins for a given level of statistical confidence are found. Then, how they are to be used to determine geometrically minimal PTV that provides coverage of GTV at the assumed level of statistical confidence. Our results generalize earlier recommendations for statistical, central limit theorem

  16. Refining Preoperative Therapy for Locally Advanced Rectal Cancer

    Cancer.gov

    In the PROSPECT trial, patients with locally advanced, resectable rectal cancer will be randomly assigned to receive either standard neoadjuvant chemoradiation therapy or neoadjuvant FOLFOX chemotherapy, with chemoradiation reserved for nonresponders.

  17. Combination Therapy Shows Promise for Treating Advanced Breast Cancer

    Cancer.gov

    Adding the drug everolimus (Afinitor®) to exemestane helped postmenopausal women whose advanced breast cancer had stopped responding to hormonal therapy live about 4 months longer without the disease progressing than women who received exemestane alone.

  18. Geometric accuracy in radiation therapy: Dosimetric, imaging and economic considerations

    NASA Astrophysics Data System (ADS)

    Ploquin, Nicolas P.

    In 2007 in Canada, 159,900 men and women will be diagnosed with cancer. Radiation Therapy (RT) is the treatment of cancer by irradiating malignant tissue with ionizing radiation and it is used on up to 50% of all cancers. The objective of radiation therapy is to deliver a lethal dose of radiation to the tumour while sparing the surrounding healthy tissues and organs at risks (OARs). Thus, the accuracy with which the radiation therapy process must be carried out is critical. The presence of setup errors and uncertainties throughout the RT process impacts the dose received by the tumour and OARs and can compromise the outcome for the patient. This thesis focuses on the study of the limiting geometrical accuracy imposed by factors present in radiation therapy process (such as setup errors and uncertainties or the spatial resolution of the imaging systems that we use) and its consequences for the patient. The consequences are quantified through the use of a physical outcome surrogate, the Equivalent Uniform Dose (EUD), which numerically describes the dose distribution received by the target and normal structures surrounding it. A cost-outcome analysis is presented in which the incremental cost of radiation therapy is directly related to the patients outcome (using the EUD) for using various imaging modalities and correction protocols in Image Guided Adaptive Radiation Therapy (IGART).

  19. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy

    PubMed Central

    Zhang, Longjiang; Chen, Hongwei; Wang, Liya; Liu, Tian; Yeh, Julie; Lu, Guangming; Yang, Lily; Mao, Hui

    2010-01-01

    Radiation therapy is an effective cancer treatment option in conjunction with chemotherapy and surgery. Emerging individualized internal and systemic radiation treatment promises significant improvement in efficacy and reduction of normal tissue damage; however, it requires cancer cell targeting platforms for efficient delivery of radiation sources. With recent advances in nanoscience and nanotechnology, there is great interest in developing nanomaterials as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery and tumor response to the treatment. This paper provides an overview on developing nanoparticles for carrying and delivering therapeutic radioisotopes for systemic radiation treatment. Topics discussed in the review include: selecting nanoparticles and radiotherapy isotopes, strategies for targeting nanoparticles to cancers, together with challenges and potential solutions for the in vivo delivery of nanoparticles. Some examples of using nanoparticle platforms for the delivery of therapeutic radioisotopes in preclinical studies of cancer treatment are also presented. PMID:24198480

  20. Basic physics and biology of radiation therapy.

    PubMed

    Crocker, I R; Popowski, Y

    1997-06-01

    The therapeutic use of ionizing radiation followed shortly after the discovery of X-rays by Roentgen in 1895. The radiobiological principles that underlie the clinical use of ionizing radiation have been ablated slowly over the past century. Ionizing radiation, which is used therapeutically for benign and malignant conditions, is characterized by the localized release of large amounts of energy. These radiations may be electromagnetic (X- or gamma rays) or particulate (electrons, protons, alpha particles, neutrons, etc.). In this paper we will review some basic radiation physics and radiation biology principles which might be unfamiliar to the interventional cardiologist interested in this evolving application of radiation to prevent restenosis. PMID:9546997

  1. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy

    PubMed Central

    Baird, Jason R.; Savage, Talicia; Cottam, Benjamin; Friedman, David; Bambina, Shelly; Messenheimer, David J.; Fox, Bernard; Newell, Pippa; Bahjat, Keith S.; Gough, Michael J.; Crittenden, Marka R.

    2016-01-01

    The anecdotal reports of promising results seen with immunotherapy and radiation in advanced malignancies have prompted several trials combining immunotherapy and radiation. However, the ideal timing of immunotherapy with radiation has not been clarified. Tumor bearing mice were treated with 20Gy radiation delivered only to the tumor combined with either anti-CTLA4 antibody or anti-OX40 agonist antibody. Immunotherapy was delivered at a single timepoint around radiation. Surprisingly, the optimal timing of these therapies varied. Anti-CTLA4 was most effective when given prior to radiation therapy, in part due to regulatory T cell depletion. Administration of anti-OX40 agonist antibody was optimal when delivered one day following radiation during the post-radiation window of increased antigen presentation. Combination treatment of anti-CTLA4, radiation, and anti-OX40 using the ideal timing in a transplanted spontaneous mammary tumor model demonstrated tumor cures. These data demonstrate that the combination of immunotherapy and radiation results in improved therapeutic efficacy, and that the ideal timing of administration with radiation is dependent on the mechanism of action of the immunotherapy utilized. PMID:27281029

  2. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy.

    PubMed

    Young, Kristina H; Baird, Jason R; Savage, Talicia; Cottam, Benjamin; Friedman, David; Bambina, Shelly; Messenheimer, David J; Fox, Bernard; Newell, Pippa; Bahjat, Keith S; Gough, Michael J; Crittenden, Marka R

    2016-01-01

    The anecdotal reports of promising results seen with immunotherapy and radiation in advanced malignancies have prompted several trials combining immunotherapy and radiation. However, the ideal timing of immunotherapy with radiation has not been clarified. Tumor bearing mice were treated with 20Gy radiation delivered only to the tumor combined with either anti-CTLA4 antibody or anti-OX40 agonist antibody. Immunotherapy was delivered at a single timepoint around radiation. Surprisingly, the optimal timing of these therapies varied. Anti-CTLA4 was most effective when given prior to radiation therapy, in part due to regulatory T cell depletion. Administration of anti-OX40 agonist antibody was optimal when delivered one day following radiation during the post-radiation window of increased antigen presentation. Combination treatment of anti-CTLA4, radiation, and anti-OX40 using the ideal timing in a transplanted spontaneous mammary tumor model demonstrated tumor cures. These data demonstrate that the combination of immunotherapy and radiation results in improved therapeutic efficacy, and that the ideal timing of administration with radiation is dependent on the mechanism of action of the immunotherapy utilized. PMID:27281029

  3. Mesenchymal stem cell therapy for acute radiation syndrome.

    PubMed

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  4. Practice and Educational Gaps in Radiation Therapy in Dermatology.

    PubMed

    Cognetta, Armand B; Wolfe, Christopher M; Goldberg, David J; Hong, Hyokyoung Grace

    2016-07-01

    Guidelines for appropriate use of superficial radiation therapy are based on decades of research; although no formal appropriate use criteria have been developed, they are warranted. Superficial radiation in the outpatient dermatologic setting is the least expensive form of radiation treatment. Although higher cure rates may be possible with Mohs surgery, this should never argue against dermatologists retaining and refining a modality, nor should we limit its use by our successors. Most important, our elderly and infirm patients should continue to benefit from superficial radiation therapy in outpatient dermatologic settings. PMID:27363889

  5. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  6. Redox-Modulated Phenomena and Radiation Therapy: The Central Role of Superoxide Dismutases

    PubMed Central

    Holley, Aaron K.; Miao, Lu; St. Clair, Daret K.

    2014-01-01

    Abstract Significance: Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. Recent Advances: ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. Critical Issues: Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. Future Directions: Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation. Antioxid. Redox Signal. 20, 1567–1589. PMID:24094070

  7. Function of the parotid gland following radiation therapy for head and neck cancer

    SciTech Connect

    Cheng, V.S.T.; Downs, J.; Herbert, D.; Aramany, M.

    1981-02-01

    The parotid gland was selected for study of its salivary output before and after radiation therapy for head and neck cancer. Before radiation therapy, a sialogram of the parotid gland was performed with the patient's head positioned for radiation therapy; a lateral radiographic view of the parotid gland was used to compare with the radiation treatment portal to determine the portion of the parotid gland to be irradiated. Samples of stimulated saliva were collected from the parotid gland before and at 1 and 6 months post-radiation. Eighteen patients with head and neck cancer who received radiation therapy were studied. The data showed that in the irradiation of nasopharyngeal, advanced oropharyngeal and Waldeyer's ring lesions, 100% of the parotid gland was irradiated; for the early oropharyngeal and hypopharyngeal lesions, from 30 to 90% of the parotid gland was irradiated and for the supraglottic and oral cavity lesions, 25 to 30% of the parotid gland was irradiated. When 100% of the parotid gland was irradiated, no saliva was produced at 1 month post-radiation; this remained the same when re-tested at 4 to 8 months, however, when any portion of the parotid gland was not irradiated, there was residual salivary function.

  8. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    SciTech Connect

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S.; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T.; Mauch, Peter; Mikhaeel, N. George; Ng, Andrea

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  9. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  10. Role of stereotactic body radiation therapy for hepatocellular carcinoma

    PubMed Central

    Sanuki, Naoko; Takeda, Atsuya; Kunieda, Etsuo

    2014-01-01

    The integration of new technologies has raised an interest in liver tumor radiotherapy, with literature evolving to support its efficacy. These advances, particularly stereotactic body radiation therapy (SBRT), have been critical in improving local control or potential cure in liver lesions not amenable to first-line surgical resection or radiofrequency ablation. Active investigation of SBRT, particularly for hepatocellular carcinoma (HCC), has recently started, yielding promising local control rates. In addition, data suggest a possibility that SBRT can be an alternative option for HCC unfit for other local therapies. However, information on optimal treatment indications, doses, and methods remains limited. In HCC, significant differences in patient characteristics and treatment availability exist by country. In addition, the prognosis of HCC is greatly influenced by underlying liver dysfunction and treatment itself in addition to tumor stage. Since they are closely linked to treatment approach, it is important to understand these differences in interpreting outcomes from various reports. Further studies are required to validate and maximize the efficacy of SBRT by a large, multi-institutional setting. PMID:24696597

  11. Superficial Radiation Therapy for the Treatment of Nonmelanoma Skin Cancers.

    PubMed

    McGregor, Sean; Minni, John; Herold, David

    2015-12-01

    Superficial radiation therapy has become more widely available to dermatologists. With the advent of more portable machines, it has become more convenient for dermatology practices to employ in an office-based setting. The goal of this paper is to provide a deeper insight into the role of superficial radiation therapy in dermatology practice and to review the current literature surrounding its use in the treatment of both basal and squamous cell carcinomas.

  12. Thyroid neoplasia following radiation therapy for Hodgkin's lymphoma

    SciTech Connect

    McHenry, C.; Jarosz, H.; Calandra, D.; McCall, A.; Lawrence, A.M.; Paloyan, E.

    1987-06-01

    The question of thyroid neoplasia following high-dose radiation treatment to the neck and mediastinum for malignant neoplasms such as Hodgkin's lymphoma in children and young adults has been raised recently. Five patients, 19 to 39 years old, were operated on for thyroid neoplasms that developed following cervical and mediastinal radiation therapy for Hodgkin's lymphoma. Three patients had papillary carcinomas and two had follicular adenomas. The latency period between radiation exposure and the diagnosis of thyroid neoplasm ranged from eight to 16 years. This limited series provided strong support for the recommendation that children and young adults who are to receive high-dose radiation therapy to the head, neck, and mediastinum should receive suppressive doses of thyroxine prior to radiation therapy in order to suppress thyrotropin (thyroid-stimulating hormone) and then be maintained on a regimen of suppression permanently.

  13. Nuclear data needs for radiation protection and therapy dosimetry

    SciTech Connect

    Chadwick, M.B.; DeLuca, P.M. Jr.; Haight, R.C.

    1995-12-31

    New nuclear data are required for improved neutron and proton radiotherapy treatment planning as well as future applications of high-energy particle accelerators. Modern neutron radiotherapy employs energies extending to 70 MeV, while industrial applications such as transmutation and tritium breeding may generate neutrons exceeding energies of 100 MeV. Secondary neutrons produced by advanced proton therapy facilities can have energies as high as 250 MeV. Each use requires nuclear data for transport calculations and analysis of radiation effects (dosimetry). We discuss the nuclear data needs supportive of these applications including the different information requirements. As data in this energy region are sparse and likely to remain so, advanced nuclear model calculations can provide some of the needed information. ln this context, we present new evaluated nuclear data for C, N, and O. Additional experimental information, including integral and differential data, are required to confirm these results and to bound further calculations. We indicate the required new data to be measured and the difficulties in carrying out such experiments.

  14. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    PubMed

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment. PMID:21275334

  15. Radiation therapy among atomic bomb survivors, Hiroshima and Nagasaki.

    PubMed

    Kato, K; Antoku, S; Russell, W J; Fujita, S; Pinkston, J A; Hayabuchi, N; Hoshi, M; Kodama, K

    1998-06-01

    As a follow-up to the two previous surveys of radiation therapy among the atomic bomb survivors, a large-scale survey was performed to document (1) the number of radiation therapy treatments received by the atomic bomb survivors and (2) the types of radiation treatments conducted in Hiroshima and Nagasaki. The previous two surveys covered the radiation treatments among the Radiation Effects Research Foundation Adult Health Study (AHS) population, which is composed of 20,000 persons. In the present survey, the population was expanded to include the Life Span Study (LSS), including 93,611 atomic bomb survivors and 26,517 Hiroshima and Nagasaki citizens who were not in the cities at the times of the bombings. The LSS population includes the AHS population. The survey was conducted from 1981 to 1984. The survey teams reviewed all the medical records for radiation treatments of 24,266 patients at 11 large hospitals in Hiroshima and Nagasaki. Among them, the medical records for radiation treatments of 1556 LSS members were reviewed in detail. By analyzing the data obtained in the present and previous surveys, the number of patients receiving radiation therapy was estimated to be 4501 (3.7%) in the LSS population and 1026 (5.1%) in the AHS population between 1945-1980. During 1945-1965, 98% of radiation treatments used medium-voltage X rays, and 66% of the treatments were for benign diseases. During 1966-1980, 94% of the radiation treatments were for malignant neoplasms. During this period, 60Co gamma-ray exposure apparatus and high-energy electron accelerators were the prevalent mode of treatment in Hiroshima and in Nagasaki, respectively. The mean frequency of radiation therapy among the LSS population was estimated to have been 158 courses/year during 1945-1965 and 110 courses/year during 1966-1980. The present survey revealed that 377 AHS members received radiation therapy. The number was approximately twice the total number of cases found in the previous two surveys

  16. The PEREGRINETM program: using physics and computer simulation to improve radiation therapy for cancer

    NASA Astrophysics Data System (ADS)

    Hartmann Siantar, Christine L.; Moses, Edward I.

    1998-11-01

    When using radiation to treat cancer, doctors rely on physics and computer technology to predict where the radiation dose will be deposited in the patient. The accuracy of computerized treatment planning plays a critical role in the ultimate success or failure of the radiation treatment. Inaccurate dose calculations can result in either insufficient radiation for cure, or excessive radiation to nearby healthy tissue, which can reduce the patient's quality of life. This paper describes how advanced physics, computer, and engineering techniques originally developed for nuclear weapons and high-energy physics research are being used to predict radiation dose in cancer patients. Results for radiation therapy planning, achieved in the Lawrence Livermore National Laboratory (LLNL) 0143-0807/19/6/005/img2 program show that these tools can give doctors new insights into their patients' treatments by providing substantially more accurate dose distributions than have been available in the past. It is believed that greater accuracy in radiation therapy treatment planning will save lives by improving doctors' ability to target radiation to the tumour and reduce suffering by reducing the incidence of radiation-induced complications.

  17. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    SciTech Connect

    Gay, Hiram A.; Barthold, H. Joseph; O'Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  18. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  19. Radiation-induced undifferentiated pleomorphic sarcoma after radiation therapy for a desmoid tumour.

    PubMed

    Di Marco, J; Kaci, R; Orcel, P; Nizard, R; Laredo, J-D

    2016-02-01

    Radiation-induced sarcoma is a long-term complication of radiation therapy. The most common secondary neoplasia is the undifferentiated pleomorphic sarcoma, which is usually described in the deep soft tissue of the trunk or extremities. Radiation-induced sarcomas have a poor prognosis. An early diagnosis and management are needed to improve the survival rate of such patients. We presently report a case of a radiation-induced undifferentiated pleomorphic sarcoma of the left gluteus maximus muscle, which developed 25 years after an initial diagnosis of aggressive fibromatosis and 21 years after a tumour recurrence. This case study illustrates the risk of developing a sarcoma in a radiation field and the need for long-term follow-up after radiation therapy. Unnecessary radiation therapy, in particular in the case of benign conditions in young patients, should be avoided.

  20. Radiation therapy: model standards for determination of need

    SciTech Connect

    Lagasse, L.G.; Devins, T.B.

    1982-03-01

    Contents: Health planning process; Health care requirements (model for projecting need for megavoltage radiation therapy); Operational objectives (manpower, megavoltage therapy and treatment planning equipment, support services, management and evaluation of patient care, organization and administration); Compliance with other standards imposed by law; Financial feasibility and capability; Reasonableness of expenditures and costs; Relative merit; Environmental impact.

  1. An Investigation of Vascular Strategies to Augment Radiation Therapy

    NASA Astrophysics Data System (ADS)

    El Kaffas, Ahmed Nagy

    Radiation therapy is administered to more than 50% of patients diagnosed with cancer. Mechanisms of interaction between radiation and tumour cells are relatively well understood on a molecular level, but much remains uncertain regarding how radiation interacts with the tumour as a whole. Recent studies have suggested that tumour response to radiation may in fact be regulated by endothelial cell response, consequently stressing the role of tumour blood vessels in radiation treatment response. As a result, various treatment regimens have been proposed to strategically combine radiation with vascular targeting agents. A great deal of effort has been aimed towards developing efficient vascular targeting agents. Nonetheless, no optimal method has yet been devised to strategically deliver such agents. Recent evidence suggesting that these drugs may "normalize" tumour blood vessels and enhance radiosensitivity, is supporting experiments where anti-angiogenic drugs are combined with cytotoxic therapies such as radiotherapy. In contrast, ultrasound-stimulated microbubbles have recently been demonstrated to enhance radiation therapy by biophysically interacting with endothelial cells. When combined with single radiation doses, these microbubbles are believed to cause localized vascular destruction followed by tumour cell death. Finally, a new form of 'pro-angiogenics' has also been demonstrated to induce a therapeutic tumour response. The overall aim of this thesis is to study the role of tumour blood vessels in treatment responses to single-dose radiation therapy and to investigate radiation-based vascular targeting strategies. Using pharmacological and biophysical agents, blood vessels were altered to determine how they influence tumour cell death, clonogenicity, and tumour growth, and to study how these may be optimally combined with radiation. Three-dimensional high-frequency power Doppler ultrasound was used throughout these studies to investigate vascular response to

  2. Application of GEANT4 in the Development of New Radiation Therapy Treatment Methods

    NASA Astrophysics Data System (ADS)

    Brahme, Anders; Gudowska, Irena; Larsson, Susanne; Andreassen, Björn; Holmberg, Rickard; Svensson, Roger; Ivanchenko, Vladimir; Bagulya, Alexander; Grichine, Vladimir; Starkov, Nikolay

    2006-04-01

    There is a very fast development of new radiation treatment methods today, from advanced use of intensity modulated photon and electron beams to light ion therapy with narrow scanned beam based treatment units. Accurate radiation transport calculations are a key requisite for these developments where Geant4 is a very useful Monte Carlo code for accurate design of new treatment units. Today we cannot only image the tumor by PET-CT imaging before the treatment but also determine the tumor sensitivity to radiation and even measure in vivo the delivered absorbed dose in three dimensions in the patient. With such methods accurate Monte Carlo calculations will make radiation therapy an almost exact science where the curative doses can be calculated based on patient individual response data. In the present study results from the application of Geant4 are discussed and the comparisons between Geant4 and experimental and other Monte Carlo data are presented.

  3. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    ERIC Educational Resources Information Center

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  4. Runaway implantable defibrillator--a rare complication of radiation therapy.

    PubMed

    Nemec, Jan

    2007-05-01

    A case of a patient with runaway implantable cardioverter defibrillator (ICD) due to radiation therapy of a lung cancer is reported. This manifested as poorly tolerated wide complex tachycardia due to inappropriate rapid ventricular pacing, The event terminated with polymorphic VT, which inhibited pacing and ceased spontaneously before ICD discharge. The likely cause was corruption of device random access memory by ionizing radiation.

  5. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  6. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  7. Advances in gene therapy for muscular dystrophies.

    PubMed

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  8. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    SciTech Connect

    Brown, Lindsay; Harmsen, William; Blanchard, Miran; Goetz, Matthew; Jakub, James; Mutter, Robert; Petersen, Ivy; Rooney, Jessica; Stauder, Michael; Yan, Elizabeth; Laack, Nadia

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  9. Radiation therapy for the palliation of multiple myeloma

    SciTech Connect

    Leigh, B.R.; Kurtts, T.A.; Mack, C.F.; Matzner, M.B.; Shimm, D.S. )

    1993-04-02

    This study reviews the experience at the University of Arizona in an effort to define the minimum effective radiation dose for durable pain relief in the majority of patients with symptomatic multiple myeloma. The records of 101 patients with multiple myeloma irradiated for palliation at the University of Arizona between 1975 and 1990 were reviewed. Three hundred sixteen sites were treated. Ten sites were asymptomatic, including six hemibody fields with advanced disease unresponsive to chemotherapy and four local fields with impending pathological fractures. Three hundred six evaluable symptomatic sites remained. The most common symptom was bone pain. Other symptoms included neurological impairment with a palpable mass. Total tumor dose ranged from 3.0 to 60 Gy, with a mean of 25 Gy. Symptom relief was obtained in 297 of 306 evaluable symptomatic sites (97%). Complete relief of symptoms was obtained in 26% and partial relief in 71%. Symptom relief was obtained in 92% of sites receiving a total dose less than 10 Gy (n = 13) and 98% of sites receiving 10 Gy or more (n = 293). No dose-response could be demonstrated. The likelihood of symptom relief was not influenced by the location of the lesion or the use of concurrent chemotherapy. Of the 297 responding sites, 6% (n = 19) relapsed after a median symptom-free interval of 16 months. Neither the probability of relapse nor the time to relapse was related to the radiation dose. Retreatment of relapsing sites provided effective palliation in all cases. Radiation therapy is effective in palliating local symptoms in multiple myeloma. A total dose of 10 Gy should provide durable symptom relief in the majority of patients. 16 refs., 3 figs., 4 tabs.

  10. Biologic therapies for advanced pancreatic cancer.

    PubMed

    He, Aiwu Ruth; Lindenberg, Andreas Peter; Marshall, John Lindsay

    2008-08-01

    Patients with metastatic pancreatic cancer have poor prognosis and short survival due to lack of effective therapy and aggressiveness of the disease. Pancreatic cancer has widespread chromosomal instability, including a high rate of translocations and deletions. Upregulated EGF signaling and mutation of K-RAS are found in most pancreatic cancers. Therefore, inhibitors that target EGF receptor, K-RAS, RAF, MEK, mTOR, VEGF and PDGF, for example, have been evaluated in patients with pancreatic cancer. Although significant activities of these inhibitors have not been observed in the majority of pancreatic cancer patients, an enormous amount of experience and knowledge has been obtained from recent clinical trials. With a better inhibitor or combination of inhibitors, and improvement in the selection of patients for available inhibitors, better therapy for pancreatic cancer is on the horizon.

  11. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  12. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  13. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  14. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  15. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  16. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  17. [The application of total quality management (TQM) in quality management of radiation therapy].

    PubMed

    Jiang, Rui-yao; Fu, Shen; Li, Bin

    2009-03-01

    The strategies and methods of the total quality management (TQM) need to applied in quality management of radiation therapy. We should improve the level of quality control and quality assurance in radiation therapy. By establishing quality control system in radiation therapy, standardization of radiation therapy workflow, strengthening quality control of devices and physical technique and paying attention to safety protection and staff training.

  18. A systems biology approach to radiation therapy optimization.

    PubMed

    Brahme, Anders; Lind, Bengt K

    2010-05-01

    During the last 20 years, the field of cellular and not least molecular radiation biology has been developed substantially and can today describe the response of heterogeneous tumors and organized normal tissues to radiation therapy quite well. An increased understanding of the sub-cellular and molecular response is leading to a more general systems biological approach to radiation therapy and treatment optimization. It is interesting that most of the characteristics of the tissue infrastructure, such as the vascular system and the degree of hypoxia, have to be considered to get an accurate description of tumor and normal tissue responses to ionizing radiation. In the limited space available, only a brief description of some of the most important concepts and processes is possible, starting from the key functional genomics pathways of the cell that are not only responsible for tumor development but also responsible for the response of the cells to radiation therapy. The key mechanisms for cellular damage and damage repair are described. It is further more discussed how these processes can be brought to inactivate the tumor without severely damaging surrounding normal tissues using suitable radiation modalities like intensity-modulated radiation therapy (IMRT) or light ions. The use of such methods may lead to a truly scientific approach to radiation therapy optimization, particularly when invivo predictive assays of radiation responsiveness becomes clinically available at a larger scale. Brief examples of the efficiency of IMRT are also given showing how sensitive normal tissues can be spared at the same time as highly curative doses are delivered to a tumor that is often radiation resistant and located near organs at risk. This new approach maximizes the probability to eradicate the tumor, while at the same time, adverse reactions in sensitive normal tissues are as far as possible minimized using IMRT with photons and light ions. PMID:20191284

  19. Radiation therapy for adjunctive treatment of adrenal cortical carcinoma

    SciTech Connect

    Markoe, A.M.; Serber, W.; Micaily, B.; Brady, L.W. )

    1991-04-01

    Adrenocortical carcinoma is a rare disease which is primarily approached surgically. There have been few reports of the efficacy of radiation therapy and, for the most part, these have been anecdotal. This paper reports on the potential adjuvant role of radiation therapy after surgical excision of primary adrenal cortical carcinoma and also comments about the efficacy of palliative radiation therapy for metastases. We have identified eight patients treated for adrenal cortical carcinomas at Hahnemann University Hospital (HUH) from 1962 until the present and have also identified five patients with the same diagnosis at Philadelphia General Hospital (PGH) from 1962 until its close in 1975. These two groups are examined separately. In the PGH group, in which two patients were diagnosed at autopsy and only one patient was treated by radiation therapy, the median survival was between 0 and 1 month for Stage IV disease with the only patient surviving to 6 months being that patient receiving radiation therapy. In the HUH group, five of eight patients were treated adjunctively after diagnosis, one was not and two received palliative therapy. The median survival for treated Stage III patients was between 34 months and 7 years. The suggestion, based on a limited patient series, is that patients treated postoperatively to the tumor bed and nodal areas in Stage III disease may have improved survival over historic series and improved local control.

  20. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  1. Rationale for combining surgery and radiation therapy

    SciTech Connect

    Suit, H.D.; Todoroki, T.

    1985-05-01

    The combination of radiation and surgery is being employed increasingly in preference to radical surgery alone or high radiation dose alone in the treatment of malignant epithelial and mesenchymal neoplasms. The basis for this interest is that the scope of the surgery and/or the radiation dose level are less than if either were employed alone. A reduction in treatment related morbidity, improved cosmetic and functional status, and in some instances a lower local failure rate may be achieved by this approach. The rationale for combining radiation and surgery is that radiation at moderate dose levels is effective in the eradication of microscopic extensions of tumor beyond the clearly obvious mass while the surgery (usually more conservative) removes the principal mass.

  2. Progress in systemic therapy of advanced hepatocellular carcinoma

    PubMed Central

    Gong, Xin-Lei; Qin, Shu-Kui

    2016-01-01

    Primary liver cancer, mainly consisting of hepatocellular carcinoma (HCC), is one of common malignancies worldwide, and prevalent among the Chinese population. A diagnosis of early stage HCC has proven to be very difficult because of its insidious feature in onset and development. At the time of diagnosis, most HCC cases are locally advanced and/or distant metastatic, which results in difficulty to be treated and poor prognosis. For advanced HCC, systemic therapy is frequently adopted as an important palliative method. In recent years, clinical studies and observations have often reported about systemic anti-cancer therapy of advanced HCC, including molecular target therapy, systemic chemotherapy and immunotherapy. In this article, we review these treatment modalities to provide a reference for clinicians. PMID:27547002

  3. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  4. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  5. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy

    SciTech Connect

    Koritzinsky, Marianne

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers.

  6. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy.

    PubMed

    Koritzinsky, Marianne

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers. PMID:26383681

  7. [Gene therapy for hereditary ophthalmological diseases: Advances and future perspectives].

    PubMed

    Chacón-Camacho, Óscar Francisco; Astorga-Carballo, Aline; Zenteno, Juan Carlos

    2015-01-01

    Gene therapy is a promising new therapeutic strategy that could provide a novel and more effective way of targeting hereditary ophthalmological diseases. The eye is easily accessible, highly compartmentalized, and an immune-privileged organ that gives advantages as an ideal gene therapy target. Recently, important advances in the availability of various intraocular vector delivery routes and viral vectors that are able to efficiently transduce specific ocular cell types have been described. Gene therapy has advanced in some retinal inherited dystrophies; in this way, preliminary success is now being reported for the treatment of Leber congenital amaurosis (LCA). This review will provide an update in the field of gene therapy for the treatment of ocular inherited diseases.

  8. Radiation processing of carbon fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit

    2001-12-01

    Carbon fibre-reinforced advanced composites are being used for a variety of structural applications, because of their useful mechanical properties, including high strength-to-weight ratio and corrosion resistance. Thermal curing of composite products results in internal stresses, due to the mismatch of the coefficients of expansion of the tools and the composite products. Because radiation curing can be done at ambient temperatures, the possibility that the residual stresses might be absent, or much lower in the radiation-cured products, originally led to the start of work on radiation curing of advanced composites at AECL's Whiteshell Laboratories in Pinawa, Canada, in 1985. Research work during the last two decades has shown that advanced composites can be radiation-cured with electron beams or γ radiation. Many of the advantages of radiation curing, as compared to thermal curing, which include curing at ambient temperature, reduced curing time, improved resin stability and reduced volatile emissions, have now been demonstrated. The initial work focussed on electron curing of acrylated epoxy matrices. Since then, procedures have been developed to radiation cure conventional aerospace epoxies, as well. Electron beam cured advanced composites are now being developed for use in the aircraft and aerospace industry. Repair of advanced composite structures is also possible using radiation curing technology. Radiation curing work is continuing at Pinawa and has also been done by Aerospatiale, who have facilities for electron curing composite rocket motor casings and by Chappas and co-workers who have electron cured part of a boat hull. In this paper, the work done on this emerging new technology by the various groups is briefly reviewed.

  9. Recent advances in neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1985-01-01

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  10. Nanomedicine in cardiovascular therapy: recent advancements.

    PubMed

    Binsalamah, Ziyad Mohammed; Paul, Arghya; Prakash, Satya; Shum-Tim, Dominique

    2012-06-01

    Cardiovascular disease (CVD) is comprised of a group of disorders affecting the heart and blood vessels of the human body and is one of the leading causes of death worldwide. Current therapy for CVD is limited to the treatment of already established disease, and it includes pharmacological and/or surgical procedures, such as percutaneous coronary intervention with stenting and coronary artery bypass grafting. However, lots of complications have been raised with these modalities of treatment, including systemic toxicity with medication, stent thrombosis with percutaneous coronary intervention and nonsurgical candidate patients for coronary artery bypass grafting. Nanomedicine has emerged as a potential strategy in dealing with these obstacles. Applications of nanotechnology in medicine are already underway and offer tremendous promise. This review explores the recent developments of nanotechnology in the field of CVD and gives an insight into its potential for diagnostics and therapeutics applications. The authors also explore the characteristics of the widely used biocompatible nanomaterials for this purpose and evaluate their opportunities and challenges for developing novel nanobiotechnological tools with high efficacy for biomedical applications, such as radiological imaging, vascular implants, gene therapy, myocardial infarction and targeted delivery systems.

  11. The transthyretin amyloidoses: advances in therapy.

    PubMed

    Dubrey, Simon; Ackermann, Elizabeth; Gillmore, Julian

    2015-08-01

    There are two forms of transthyretin (TTR) amyloidosis: non-hereditary and hereditary. The non-hereditary form (ATTRwt) is caused by native or wild-type TTR and was previously referred to as senile systemic amyloidosis. The hereditary form (ATTRm) is caused by variant TTR which results from a genetic mutation of TTR. The predominant effect of ATTRwt amyloidosis is on the heart, with patients having a greater left ventricular wall thickness at presentation than the devastating form which is light chain (AL) amyloidosis. ATTRm amyloidosis is broadly split into two categories: a type that predominantly affects the nervous system (often called familial amyloid polyneuropathy (FAP)) and one with a predilection for the heart (often called familial amyloid cardiomyopathy (FAC)). Approximately half of all TTR mutations known to express a clinical phenotype cause a cardiomyopathy. Since the introduction of orthotopic liver transplantation for ATTRm amyloidosis in 1991, several additional therapies have been developed. These therapies aim to provide a reduction or elimination of TTR from the plasma (through genetic approaches), stabilisation of the TTR molecule (to prevent deposition) and dissolution of the amyloid matrix. We describe the latest developments in these approaches to management, many of which are also applicable to wild-type amyloidosis. PMID:26048914

  12. [Radiation therapy and immunomodulation: Focus on experimental data].

    PubMed

    Deutsch, É; Lévy, A; Chargari, C

    2015-10-01

    The immunosuppressive effects of radiation therapy have long been the only ones considered. It has been demonstrated that exposure to ionizing radiation induces the release of tumour antigens which activates both the innate immune system and the adaptive immune response of the host. The purpose of tumour immunotherapy is based on the principle that reversal of tolerance to immunogenic tumours would be able to activate an immune response against tumour cells. Preclinical data and clinical studies early phase suggest a potential therapeutic benefit of immunotherapy combined with radiation therapy. The objective of this article is to review how tumour cells interact with the immune system and how ionizing radiation modulate this interaction and finally the combination of perspectives of immunotherapy and ionizing radiation by focusing on existing clinical data.

  13. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  14. Complications following radiation therapy to the head

    SciTech Connect

    Helpin, M.L.; Krejmas, N.L.; Krolls, S.O.

    1986-03-01

    A case is presented in which a child who received therapeutic radiation as part of his treatment regimen for rhabdomyosarcoma of the infratemporal and parapharyngeal region demonstrated undesirable sequelae in the dentition and the mandible.

  15. Quantitative analysis of tomotherapy, linear-accelerator-based 3D conformal radiation therapy, intensity-modulated radiation therapy, and 4D conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee

    2012-04-01

    This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could

  16. Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination With Immunotherapy

    PubMed Central

    Wargo, Jennifer A.; Reuben, Alexandre; Cooper, Zachary A.; Oh, Kevin S.; Sullivan, Ryan J.

    2016-01-01

    There have been significant advances in cancer treatment over the past several years through the use of chemotherapy, radiation therapy, molecularly targeted therapy, and immunotherapy. Despite these advances, treatments such as monotherapy or monomodality have significant limitations. There is increasing interest in using these strategies in combination; however, it is not completely clear how best to incorporate molecularly targeted and immune-targeted therapies into combination regimens. This is particularly pertinent when considering combinations with immunotherapy, as other types of therapy may have significant impact on host immunity, the tumor microenvironment, or both. Thus, the influence of chemotherapy, radiation therapy, and molecularly targeted therapy on the host anti-tumor immune response and the host anti-host response (ie, autoimmune toxicity) must be taken into consideration when designing immunotherapy-based combination regimens. We present data related to many of these combination approaches in the context of investigations in patients with melanoma and discuss their potential relationship to management of patients with other tumor types. Importantly, we also highlight challenges of these approaches and emphasize the need for continued translational research. PMID:26320064

  17. Recent advances in systemic therapy for gastrointestinal neuroendocrine tumors.

    PubMed

    Pelley, R J; Bukowski, R M

    1999-01-01

    Neuroendocrine tumors of the gastrointestinal tract are rare tumors which can be classified as amine precursor uptake and decarboxylation tumors (APU-Domas). Although the majority of clinically apparent tumors are malignant, they are frequently slow growing. Despite this characteristic, they may generate disabling hormonal syndromes requiring aggressive treatment to achieve palliation. Recent advances in understanding the pathophysiology of these tumors has led to better medical therapy with chemotherapeutic agents, somatostatin analogues, and biologic therapies. This review will update the recent efforts in systemic therapies of the gastrointestinal neuroendocrine tumors.

  18. Recent advances in the optimization of cardiac resynchronization therapy.

    PubMed

    Chandraprakasam, Satish; Mentzer, Gina G

    2015-02-01

    Heart failure (HF) continues to grow and affect more than five million people in the USA. One of the leading device therapies in HF is cardiac resynchronization therapy (CRT) which has been studied for over 20 years. Recent advancements in lead placement, lead technology, patient selection, and CRT optimization by electrical maneuvers and imaging modalities have improved outcomes in morbidity, hospitalization reductions and mortalities in those who have responded CRT therapy. This review article is intended to discuss the mechanisms and benefits of CRT, clinical trials, and guidelines for CRT along with a focus on recent updates from the past 3 to 5 years and glimpse into future directions. PMID:25315038

  19. Advances in sickle cell therapies in the hydroxyurea era.

    PubMed

    Field, Joshua J; Nathan, David G

    2014-01-01

    In the hydroxyurea era, insights into mechanisms downstream of erythrocyte sickling have led to new therapeutic approaches for patients with sickle cell disease (SCD). Therapies have been developed that target vascular adhesion, inflammation and hemolysis, including innovative biologics directed against P-selectin and invariant natural killer T cells. Advances in hematopoietic stem cell transplant and gene therapy may also provide more opportunities for cures in the near future. Several clinical studies are underway to determine the safety and efficacy of these new treatments. Novel approaches to treat SCD are desperately needed, since current therapies are limited and rates of morbidity and mortality remain high. PMID:25549232

  20. Radiation Therapy for Primary Carcinoma of the Extrahepatic Biliary System

    PubMed Central

    Flickinger, John C.; Epstein, Alan H.; Iwatsuki, Shunzaburo; Carr, Brian I.; Starzl, Thomas E.

    2010-01-01

    From 1976 to 1988, 63 patients received radiation therapy for primary cancers of the extrahepatic biliary system (eight gallbladder and 55 extrahepatic biliary duct). Twelve patients underwent orthotopic liver transplantation. Chemotherapy was administered to 13 patients. Three patients underwent intraluminal brachytherapy alone (range, 28 to 55 Gy). Sixty patients received megavoltage external-beam radiation therapy (range, 5.4 to 61.6 Gy; median, 45 Gy), of whom nine received additional intraluminal brachytherapy (range, 14 to 45 Gy; median, 30 Gy). The median survival of all patients was 7 months. Sixty patients died, all within 39 months of radiation therapy. One patient is alive 11 months after irradiation without surgical resection, and two are alive 50 months after liver transplantation and irradiation. Symptomatic duodenal ulcers developed after radiation therapy in seven patients but were not significantly related to any clinical variable tested. Extrahepatic biliary duct cancers, the absence of metastases, increasing calendar year of treatment, and liver transplantation with postoperative radiation therapy were factors significantly associated with improved survival. PMID:2070327

  1. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  2. Radiation therapy for localized duodenal low-grade follicular lymphoma

    PubMed Central

    Harada, Arisa; Oguchi, Masahiko; Terui, Yasuhito; Takeuchi, Kengo; Igarashi, Masahiro; Kozuka, Takuyo; Harada, Ken; Uno, Takashi; Hatake, Kiyohiko

    2016-01-01

    The aim of this study was to evaluate the initial treatment results and toxicities of radiation therapy for patients with early stage low-grade follicular lymphoma (FL) arising from the duodenum. We reviewed 21 consecutive patients with early stage duodenal FL treated with radiation therapy between January 2005 and December 2013 at the Cancer Institute Hospital, Tokyo. The characteristics of patients were: median age 62 years (range, 46–79 years), gender (male, 6; female, 15), clinical stage (I, 20; II1, 1), histological grade (I, 17; II, 4). All patients were treated with radiation therapy alone. The median radiation dose was 30.6 Gy (range, 30.6–39.6) in 17 fractions. The involved-site radiation therapy was delivered to the whole duodenum. The median follow-up time was 43.2 months (range 21.4–109.3). The 3-year overall survival (OS), relapse-free survival (RFS) and local control (LC) rates were 94.7%, 79.3% and 100%, respectively. There were four relapses documented outside the treated volumes: two in the gastrointestinal tract (jejunum, terminal ileum), one in an abdominal lymph node (mesenteric lymph node) and one in the bone marrow. None died of the disease; one death was due to acute myeloid leukemia. No toxicities greater than Grade 1 were observed during treatment and over the follow-up time. The 30.6 Gy of involved-site radiation therapy provided excellent local control with very low toxicities. Radiation therapy could be an effective and safe treatment option for patients with localized low grade FL arising from the duodenum. PMID:27009323

  3. Cardiac gene therapy: Recent advances and future directions.

    PubMed

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.

  4. A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.

    PubMed

    Hathout, Leith; Patel, Vishal; Wen, Patrick

    2016-09-01

    Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model. PMID:27572745

  5. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. PMID:26777133

  6. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms.

  7. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    SciTech Connect

    Liu Hui; Zhang Xu; Vinogradskiy, Yevgeniy Y.; Swisher, Stephen G.; Komaki, Ritsuko; Chang, Joe Y.

    2012-11-15

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T <4 cm, N0, M0, or Mx). Severe (grade {>=}3) RP and potential predictive factors were analyzed by univariate and multivariate logistic regression analyses. A scoring system was established to predict the risk of RP. Results: At a median follow-up time of 16 months after SABR (range, 4-56 months), 15 patients had severe RP (14 [18.9%] grade 3 and 1 [1.4%] grade 5) and 1 patient (1.4%) had a local recurrence. In univariate analyses, Eastern Cooperative Oncology Group performance status (ECOG PS) before SABR, forced expiratory volume in 1 second (FEV1), and previous planning target volume (PTV) location were associated with the incidence of severe RP. The V{sub 10} and mean lung dose (MLD) of the previous plan and the V{sub 10}-V{sub 40} and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 {<=}65% before SABR (P=.012), V{sub 20} {>=}30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 {<=}65%, a previous PTV spanning the bilateral mediastinum, and V{sub 20} {>=}30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  8. Advanced CMOS Radiation Effects Testing Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  9. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  10. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  11. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  12. Effect of ionizing radiation on advanced life support medications

    SciTech Connect

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-06-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs.

  13. Proton Radiation Therapy for the Treatment of Retinoblastoma

    SciTech Connect

    Mouw, Kent W.; Sethi, Roshan V.; Yeap, Beow Y.; MacDonald, Shannon M.; Chen, Yen-Lin E.; Tarbell, Nancy J.; Yock, Torunn I.; Munzenrider, John E.; Adams, Judith; Grabowski, Eric; Mukai, Shizuo; Shih, Helen A.

    2014-11-15

    Purpose: To investigate long-term disease and toxicity outcomes for pediatric retinoblastoma patients treated with proton radiation therapy (PRT). Methods and Materials: This is a retrospective analysis of 49 retinoblastoma patients (60 eyes) treated with PRT between 1986 and 2012. Results: The majority (84%) of patients had bilateral disease, and nearly half (45%) had received prior chemotherapy. At a median follow-up of 8 years (range, 1-24 years), no patients died of retinoblastoma or developed metastatic disease. The post-PRT enucleation rate was low (18%), especially in patients with early-stage disease (11% for patients with International Classification for Intraocular Retinoblastoma [ICIR] stage A-B disease vs 23% for patients with ICIR stage C-D disease). Post-PRT ophthalmologic follow-up was available for 61% of the preserved eyes (30 of 49): 14 of 30 eyes (47%) had 20/40 visual acuity or better, 7 of 30 (23%) had moderate visual acuity (20/40-20/600), and 9 of 30 (30%) had little or no useful vision (worse than 20/600). Twelve of 60 treated eyes (20%) experienced a post-PRT event requiring intervention, with cataracts the most common (4 eyes). No patients developed an in-field second malignancy. Conclusions: Long-term follow-up of retinoblastoma patients treated with PRT demonstrates that PRT can achieve high local control rates, even in advanced cases, and many patients retain useful vision in the treated eye. Treatment-related ocular side effects were uncommon, and no radiation-associated malignancies were observed.

  14. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy.

    PubMed

    FitzGerald, Thomas J; Bishop-Jodoin, Maryann; Followill, David S; Galvin, James; Knopp, Michael V; Michalski, Jeff M; Rosen, Mark A; Bradley, Jeffrey D; Shankar, Lalitha K; Laurie, Fran; Cicchetti, M Giulia; Moni, Janaki; Coleman, C Norman; Deye, James A; Capala, Jacek; Vikram, Bhadrasain

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.

  15. Advances in Oncolytic Virus Therapy for Glioma

    PubMed Central

    Haseley, Amy; Alvarez-Breckenridge, Christopher; Chaudhury, Abhik Ray; Kaur, Balveen

    2009-01-01

    The World Health Organization grossly classifies the various types of astrocytomas using a grade system with grade IV gliomas having the worst prognosis. Oncolytic virus therapy is a novel treatment option for GBM patients. Several patents describe various oncolytic viruses used in preclinical and clinical trials to evaluate safety and efficacy. These viruses are natural or genetically engineered from different viruses such as HSV-1, Adenovirus, Reovirus, and New Castle Disease Virus. While several anecdotal studies have indicated therapeutic advantage, recent clinical trials have revealed the safety of their usage, but demonstration of significant efficacy remains to be established. Oncolytic viruses are being redesigned with an interest in combating the tumor microenvironment in addition to defeating the cancerous cells. Several patents describe the inclusion of tumor microenvironment modulating genes within the viral backbone and in particular those which attack the tumor angiotome. The very innovative approaches being used to improve therapeutic efficacy include: design of viruses which can express cytokines to activate a systemic antitumor immune response, inclusion of angiostatic genes to combat tumor vasculature, and also enzymes capable of digesting tumor extra cellular matrix (ECM) to enhance viral spread through solid tumors. As increasingly more novel viruses are being tested and patented, the future battle against glioma looks promising. PMID:19149710

  16. Determinants of job satisfaction among radiation therapy faculty.

    PubMed

    Swafford, Larry G; Legg, Jeffrey S

    2009-01-01

    Job satisfaction is one of the most significant predictors of employee retention in a variety of occupational settings, including health care and education. A national survey of radiation therapy educators (n = 90) has indicated that respondents are not satisfied with their jobs based on data collected using the Minnesota Satisfaction Questionnaire (MSQ). To predict the factors associated with job satisfaction or dissatisfaction, the authors used a nine-item questionnaire derived from the MSQ. Educators were grouped according to their job satisfaction scores, and multiple discriminant analysis was used to determine which factors were predictive of satisfaction among groups of educators. Statistical results indicate that ability utilization, institutional support, compensation, personnel, and job characteristics were key determinants of job satisfaction among radiation therapy educators. These results may better inform faculty and administration of important factors that can promote job satisfaction and retain faculty in radiation therapy education programs.

  17. Overcoming Challenges Facing Advanced Therapies in the EU Market.

    PubMed

    Abou-El-Enein, Mohamed; Elsanhoury, Ahmed; Reinke, Petra

    2016-09-01

    While advanced therapy medicinal products offer great clinical promise, most EU-approved products have not achieved satisfactory commercial performance. Here we highlight a number of issues that prevent current products from obtaining commercial success and pitfalls that developers must overcome in future product development.

  18. Factors that Predict Who Takes Advanced Courses in Cognitive Therapy

    ERIC Educational Resources Information Center

    Pehlivanidis, Artemios

    2007-01-01

    Training in Cognitive Therapy (CT) includes theoretical and didactic components combined with clinical supervision. An introductory course in CT might satisfy training needs in psychotherapy and help in the selection of those trainees who wish to continue to an advanced training level. Predictors of success at such an introductory course have been…

  19. TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity.

    PubMed

    Vanpouille-Box, Claire; Diamond, Julie M; Pilones, Karsten A; Zavadil, Jiri; Babb, James S; Formenti, Silvia C; Barcellos-Hoff, Mary Helen; Demaria, Sandra

    2015-06-01

    T cells directed to endogenous tumor antigens are powerful mediators of tumor regression. Recent immunotherapy advances have identified effective interventions to unleash tumor-specific T-cell activity in patients who naturally develop them. Eliciting T-cell responses to a patient's individual tumor remains a major challenge. Radiation therapy can induce immune responses to model antigens expressed by tumors, but it remains unclear whether it can effectively prime T cells specific for endogenous antigens expressed by poorly immunogenic tumors. We hypothesized that TGFβ activity is a major obstacle hindering the ability of radiation to generate an in situ tumor vaccine. Here, we show that antibody-mediated TGFβ neutralization during radiation therapy effectively generates CD8(+) T-cell responses to multiple endogenous tumor antigens in poorly immunogenic mouse carcinomas. Generated T cells were effective at causing regression of irradiated tumors and nonirradiated lung metastases or synchronous tumors (abscopal effect). Gene signatures associated with IFNγ and immune-mediated rejection were detected in tumors treated with radiation therapy and TGFβ blockade in combination but not as single agents. Upregulation of programmed death (PD) ligand-1 and -2 in neoplastic and myeloid cells and PD-1 on intratumoral T cells limited tumor rejection, resulting in rapid recurrence. Addition of anti-PD-1 antibodies extended survival achieved with radiation and TGFβ blockade. Thus, TGFβ is a fundamental regulator of radiation therapy's ability to generate an in situ tumor vaccine. The combination of local radiation therapy with TGFβ neutralization offers a novel individualized strategy for vaccinating patients against their tumors. PMID:25858148

  20. Radiation Therapy for Soft Tissue Sarcoma: Indications and Controversies for Neoadjuvant Therapy, Adjuvant Therapy, Intraoperative Radiation Therapy, and Brachytherapy.

    PubMed

    Larrier, Nicole A; Czito, Brian G; Kirsch, David G

    2016-10-01

    Soft tissue sarcomas are rare mesenchymal cancers that pose a treatment challenge. Although small superficial soft tissue sarcomas can be managed by surgery alone, adjuvant radiotherapy in addition to limb-sparing surgery substantially increases local control of extremity sarcomas. Compared with postoperative radiotherapy, preoperative radiotherapy doubles the risk of a wound complication, but decreases the risk for late effects, which are generally irreversible. For retroperitoneal sarcomas, intraoperative radiotherapy can be used to safely escalate the radiation dose to the tumor bed. Patients with newly diagnosed sarcoma should be evaluated before surgery by a multidisciplinary team that includes a radiation oncologist. PMID:27591502

  1. Radiation therapy - questions to ask your doctor

    MedlinePlus

    ... stools or diarrhea? How long after I start radiation treatment might these problems start? What can I do if I am sick to my stomach or have diarrhea often? What should I be eating to keep my weight and strength up? Are there any foods I should avoid? ...

  2. The Role for Radiation Therapy in the Management of Sarcoma.

    PubMed

    Leachman, Brooke K; Galloway, Thomas J

    2016-10-01

    Although there is no consensus regarding the optimal sequencing of external beam radiotherapy and surgery for extremity soft tissue sarcoma, radiation therapy delivered before or after limb-sparing surgery significantly improves local control, particularly for high-grade tumors. Large database analyses suggest that improved local control may translate into an overall survival benefit. Best practices require ample communication between the radiation and surgical teams to ensure appropriate tissues are targeted, unnecessary radiation is avoided, and patients are afforded the best opportunity for cure while maintaining function. Modern experiences with intensity-modulated radiotherapy/image-guided radiation therapy suggest toxicity is reduced through field size reduction and precise targeting, improving the therapeutic ratio. PMID:27542646

  3. Advances in space radiation shielding codes.

    PubMed

    Wilson, John W; Tripathi, Ram K; Qualls, Garry D; Cucinotta, Francis A; Prael, Richard E; Norbury, John W; Heinbockel, John H; Tweed, John; De Angelis, Giovanni

    2002-12-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  4. Complications of head and neck radiation therapy and their management

    SciTech Connect

    Engelmeier, R.L.; King, G.E.

    1983-04-01

    Patients who receive radiation therapy to the head and neck suffer potential complications and undesirable side-effects of this therapy. The extent of undesirable responses is dependent on the source of irradiation, the fields of irradiation, and the dose. The radiotherapist determines these factors by the extent, location, and radiosensitivity of the tumor. The potential undesirable side-effects are xerostomia, mucositis, fibrosis, trismus, dermatitis, photosensitivity, radiation caries, soft tissue necrosis, and osteoradionecrosis. Each of these clinical entities and their proposed management have been discussed.

  5. Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Qiao, Yong; Wang, Chaoming; Ma, Liyuan; Su, Ming

    2014-08-01

    A challenge of X-ray radiation therapy is that high dose X-ray under therapeutic conditions damages normal cells. This paper describes a nanoparticle-based method to enhance X-ray radiation therapy by delivering radio-sensitizing gold nanoparticles into cancer cells. The nanoparticles have been modified with cationic polyelectrolytes to allow internalization. Upon X-ray irradiation of nanoparticles, more photoelectrons and Auger electrons are generated to cause water ionization, leading to formation of free radicals that damage DNA of cancer cells. The X-ray dose required for DNA damage and cell killing is reduced by delivering gold nanoparticles inside cancer cells.

  6. Radiation beam therapy evolution: From X-rays to hadrons

    SciTech Connect

    Khoroshkov, V. S.

    2006-10-15

    The history of external radiation beam therapy (radiotherapy)-in particular, proton therapy (PT)-is brietly outlined. Two possible strategies in increasing the efficacy of radiotherapy are considered. The radiotherapy methods and techniques are brietly described. The possibilities of PT in providing effective treatment and the main achievements are demonstrated. The state of the art in the PT development involving the active creation of large clinical PT centers since 1990 is analyzed.

  7. Synchrotron Radiation Therapy from a Medical Physics point of view

    NASA Astrophysics Data System (ADS)

    Prezado, Y.; Adam, J. F.; Berkvens, P.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Vautrin, M.; Deman, P.; Bräuer-Krisch, E.; Renier, M.; Elleaume, H.; Estève, F.; Bravin, A.

    2010-07-01

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT). The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  8. Synchrotron Radiation Therapy from a Medical Physics point of view

    SciTech Connect

    Prezado, Y.; Berkvens, P.; Braeuer-Krisch, E.; Renier, M.; Bravin, A.; Adam, J. F.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Deman, P.; Vautrin, M.

    2010-07-23

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT).The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  9. Phenytoin Induced Erythema Multiforme after Cranial Radiation Therapy

    PubMed Central

    Tekkök, İsmail Hakkı

    2015-01-01

    The prophylactic use of phenytoin during and after brain surgery and cranial irradiation is a common measure in brain tumor therapy. Phenytoin has been associated with variety of adverse skin reactions including urticaria, erythroderma, erythema multiforme (EM), Stevens-Johnson syndrome, and toxic epidermal necrolysis. EM associated with phenytoin and cranial radiation therapy (EMPACT) is a rare specific entity among patients with brain tumors receiving radiation therapy while on prophylactic anti-convulsive therapy. Herein we report a 41-year-old female patient with left temporal glial tumor who underwent surgery and then received whole brain radiation therapy and chemotherapy. After 24 days of continous prophylactic phenytoin therapy the patient developed minor skin reactions and 2 days later the patient returned with generalized erythamatous and itchy maculopapuler rash involving neck, chest, face, trunk, extremities. There was significant periorbital and perioral edema. Painful mucosal lesions consisting of oral and platal erosions also occurred and prevented oral intake significantly. Phenytoin was discontinued gradually. Systemic admistration of corticosteroids combined with topical usage of steroids for oral lesions resulted in complete resolution of eruptions in 3 weeks. All cutaneous lesions in patients with phenytoin usage with the radiotherapy must be evoluated with suspicion for EM. PMID:26361537

  10. Maxillary sinus carcinoma: result of radiation therapy

    SciTech Connect

    Shibuya, H.; Horiuchi, J.; Suzuki, S.; Shioda, S.; Enomoto, S.

    1984-07-01

    This hundred and sixteen patients with carcinoma of the maxillary sinus received primary therapy consisting of external beam irradiation alone or in combination with surgery and/or chemotherapy at the Department of Radiology, Tokyo Medical and Dental University Hospital, between 1953 and 1982. In our institution, methods of treating cancer of the maxillary sinus have been changed from time to time and showed different control rates and clinical courses. An actuarial 10-year survival rate of 21% has been obtained by the megavoltage irradiation alone as well as 34% actuarial 10-year survival rate by megavoltage irradiation with surgery. After the introduction of conservative surgery followed by conventional trimodal combination therapy, the local control rate has been improved. The amount of functional, cosmetic, and brain damages have been remarkably decreased by this mode of therapy. The actuarial five year survival rate was 67%. In addition, along with the improvement of the local control rate, the control of nodal and distant organ metastases have been emerging as one of the important contributions to the prognosis of this disease.

  11. The Advanced Light Source (ALS) Radiation Safety System. Revised

    SciTech Connect

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies.

  12. Pelvic radiation therapy: Between delight and disaster

    PubMed Central

    Morris, Kirsten AL; Haboubi, Najib Y

    2015-01-01

    In the last few decades radiotherapy was established as one of the best and most widely used treatment modalities for certain tumours. Unfortunately that came with a price. As more people with cancer survive longer an ever increasing number of patients are living with the complications of radiotherapy and have become, in certain cases, difficult to manage. Pelvic radiation disease (PRD) can result from ionising radiation-induced damage to surrounding non-cancerous tissues resulting in disruption of normal physiological functions and symptoms such as diarrhoea, tenesmus, incontinence and rectal bleeding. The burden of PRD-related symptoms, which impact on a patient’s quality of life, has been under appreciated and sub-optimally managed. This article serves to promote awareness of PRD and the vast potential there is to improve current service provision and research activities. PMID:26649150

  13. Phototherapy cabinet for ultraviolet radiation therapy

    SciTech Connect

    Horwitz, S.N.; Frost, P.

    1981-08-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities.

  14. Comparison of three dimensional conformal radiation therapy, intensity modulated radiation therapy and volumetric modulated arc therapy for low radiation exposure of normal tissue in patients with prostate cancer.

    PubMed

    Cakir, Aydin; Akgun, Zuleyha; Fayda, Merdan; Agaoglu, Fulya

    2015-01-01

    Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment.

  15. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    NASA Astrophysics Data System (ADS)

    Musabaeva, L. I.; Startseva, Zh. A.; Gribova, O. V.; Velikaya, V. V.; Lisin, V. A.

    2016-08-01

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  16. Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study

    SciTech Connect

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2013-12-01

    are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.

  17. The Application of FLUKA to Dosimetry and Radiation Therapy

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  18. Immunomodulatory effects of radiation: what is next for cancer therapy?

    PubMed

    Kumari, Anita; Simon, Samantha S; Moody, Tomika D; Garnett-Benson, Charlie

    2016-01-01

    Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.

  19. Radiation therapy for primary optic nerve meningiomas

    SciTech Connect

    Smith, J.L.; Vuksanovic, M.M.; Yates, B.M.; Bienfang, D.C.

    1981-06-01

    Optic nerve sheath meningiomas, formerly thought to be rare, have been encountered with surprising frequency since the widespread use of computed tomography. Early diagnosis led to an enthusiastic surgical approach to these lesions, but this has been tempered by the realization that even in the best of hands, blindness followed such surgery with distressing frequency. Optic nerve sheath meningiomas may be divided into primary, secondary, and multiple meningioma groups. Five patients with primary optic nerve sheath meningiomas treated with irradiation therapy are presented in this report. Improvement in visual acuity, stabilization to increase in the visual field, and decrease in size to total regression of optociliary veins, have been documented following irradiation therapy of the posterior orbital and intracanalicular portions of the optic nerve in some of these cases. Although each patient must be carefully individualized, there is no question that visual palliation can be achieved in some cases of optic nerve sheath meningioma. Further investigation of this therapeutic modality in selected cases in advised.

  20. Factors influencing radiation therapy student clinical placement satisfaction

    SciTech Connect

    Bridge, Pete; Carmichael, Mary-Ann

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  1. Radiation therapy in the management of patients with mesothelioma

    SciTech Connect

    Gordon, W. Jr.; Antman, K.H.; Greenberger, J.S.; Weichselbaum, R.R.; Chaffey, J.T.

    1982-01-01

    The results of radiation therapy in the management of 27 patients with malignant mesothelioma were reviewed. Eight patients were treated with a curative intent combining attempted surgical excision of tumor (thoracic in 6 and peritoneal in 2), aggressive radiation therapy, and combination chemotherapy using an adriamycin-containing regimen. One patient achieved a 2-year disease-free inteval followed by recurrence of tumor above the thoracic irradiation field. This patient was retreated with localized irradiation and is disease-free after 5 years of initial diagnosis. One patient has persistent abdominal disease at 18 months; the other 6 patients suffered local recurrence within 8-13 months of initiation of treatment. Radiation therapy was used in 19 other patients who received 29 courses for palliation of dyspnea, superior vena cava syndrome, dysphagia, or neurological symptoms of brain metastasis. A palliation index was used to determine the effectiveness of irradiation and revealed that relief of symptoms was complete or substantial in 5 treatment courses, moderately effective in 6 courses and inadequate in 18 treatment courses. Adequate palliation strongly correlated with a dose at or above 4,000 rad in 4 weeks. The management of patients with mesothelioma requires new and innovative approaches to increase the effectiveness of radiation therapy and minimize the significant potential combined toxicity of pulmonary irradiation and adriamycin.

  2. Pregnancy after radiation therapy for carcinoma of the cervix.

    PubMed

    Browde, S; Friedman, M; Nissenbaum, M

    1986-01-01

    A successful pregnancy after intracavitary radiation therapy for carcinoma of the cervix is described. An additional 13 similar cases from the literature are reviewed. The possible reasons for the occurrence of these pregnancies despite irradiation to the ovaries, cervical canal and endometrium are discussed. The fact is emphasized that no genetic damage to the child was expected.

  3. Acute parotitis and hyperamylasemia following whole-brain radiation therapy

    SciTech Connect

    Cairncross, J.G.; Salmon, J.; Kim, J.H.; Posner, J.B.

    1980-04-01

    Parotitis, an infrequent, previously unreported complication of whole-brain radiation therapy, was observed in 4 patients. The acute symptoms, which include fever, dry mouth, pain, swelling, and tenderness, are accompanied by hyperamylasemia. Among 10 patients receiving whole-brain irradiation, 8 had serum amylase elevations without symptoms. Both acute parotitis and asymptomatic hyperamylasemia result from irradiation of the parotid glands.

  4. Conventional chemotherapy and emerging targeted therapy for advanced adrenocortical carcinoma.

    PubMed

    Xu, Yun-Ze; Zhu, Yu

    2013-02-01

    Adrenocortical carcinoma (ACC) is a rare but typically aggressive malignancy. Radical surgery remains the potentially curative option. However, about one third of patients initially present with distant metastases. Regarding to chemotherapy, mitotane alone or in combination with cytotoxic drugs should be the first selection. Meanwhile, a phase lll clinical trial of etoposide, doxorubicin, cisplatin plus mitotane or streptozotocin plus mitotane is currently undergoing worldwide. The study on molecular pathogenesis of ACC is progressing. A lot of targeted therapies are also enrolled in preclinical investigations and clinical trials, including small-molecule tyrosine kinase inhibitors, antiangiogenic compounds. This article introduced the conventional chemotherapy, newly developed targeted therapy for advanced ACC.

  5. Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry.

    PubMed

    Jang, Kyoung Won; Yoo, Wook Jae; Shin, Sang Hun; Shin, Dongho; Lee, Bongsoo

    2012-06-18

    In proton therapy dosimetry, a fiber-optic radiation sensor incorporating a scintillator must undergo complicated correction processes due to the quenching effect of the scintillator. To overcome the drawbacks of the fiber-optic radiation sensor, we proposed an innovative method using the Cerenkov radiation generated in plastic optical fibers. In this study, we fabricated a fiber-optic Cerenkov radiation sensor without an organic scintillator to measure Cerenkov radiation induced by therapeutic proton beams. Bragg peaks and spread-out Bragg peaks of proton beams were measured using the fiber-optic Cerenkov radiation sensor and the results were compared with those of an ionization chamber and a fiber-optic radiation sensor incorporating an organic scintillator. From the results, we could obtain the Bragg peak and the spread-out Bragg peak of proton beams without quenching effects induced by the scintillator, and these results were in good agreement with those of the ionization chamber. We also measured the Cerenkov radiation generated from the fiber-optic Cerenkov radiation sensor as a function of the dose rate of the proton beam.

  6. [Cutaneous radiation syndrome: clinical features, diagnosis and therapy].

    PubMed

    Gottlöber, P; Krähn, G; Peter, R U

    2000-08-01

    Accidental exposure to ionizing radiation may occur during such catastrophic events as the Chernobyl accident in 1986 or over days to weeks as in Goiania in 1987 and in the military camp during the training of soldiers in Lilo/Georgia in 1997, as well as in medical institutions. The cutaneous symptoms after radiation exposure are based on a combination of inflammatory processes and alteration of cellular proliferation as a result of a specific pattern of transcriptionally activated proinflammatory cytokines and growth factors. They follow a time course consisting of prodromal erythema, latency period, acute stage, chronic stage and late stage. The entire complex is referred to as cutaneous radiation syndrome. The time course depends on several factors such as the radiation dose, radiation quality, individual radiation sensitivity, the extent of contamination and absorption and amount of skin exposed. For the diagnosis of the cutaneous radiation syndrome the following procedures are used: 7.5 MHz to 20 MHz-B-scan sonography, thermography, capillary microscopy, profilometry, nuclear magnetic resonance imaging, bone scintigraphy and histology. Based on the results of experimental and clinical research, today treatment may include topical or systemic corticosteroids, gamma-interferon, pentoxifylline, vitamin E and superoxide dismutase. The treatment depends on the stage of the cutaneous radiation syndrome. Due to the complexity of the clinical manifestations of radiation disease, most patients require interdisciplinary treatment in specialized centres. Dermatologists are essential partners in the life-long follow-up and therapy of such patients.

  7. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    SciTech Connect

    Kan, Charlene; Zhang, Junran

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  8. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    PubMed

    Kan, Charlene; Zhang, Junran

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations. PMID:26383678

  9. Treatment-related toxicities with Fluosol-DA 20% infusion during radiation in advanced head and neck malignancies

    SciTech Connect

    Campbell, B.H.; Janjan, N.A.; Byhardt, R.W.; Toohill, R.J. )

    1990-03-01

    Fluosol-DA 20%, a synthetic perfluorocarbon emulsion first developed as a blood substitute, is currently being investigated as a radiation sensitizer. Theoretically, an oxygen-carrying perfluorocarbon emulsion combined with oxygen inhalation might be able to increase tumor response by decreasing the relative proportion of hypoxic tumor cells. Twenty-one patients with advanced head and neck malignancies receiving primary radiation therapy were evaluated for treatment-related toxicity. Mucosal reactions and weight loss during treatment in the group of patients who received the perfluorocarbon emulsion and the group who did not were comparable. Late sequelae appeared comparable. No patient in either group who completed radiation therapy required an interruption of the treatment course. We conclude that Fluosol-DA 20% is a tolerated adjunct to primary radiation therapy. Further study is needed to determine whether the agent will improve local/regional tumor control.

  10. Stereotactic Body Radiation Therapy for Recurrent Head and Neck Cancer.

    PubMed

    Ling, Diane C; Vargo, John A; Heron, Dwight E

    2016-01-01

    Stereotactic body radiation therapy (SBRT) offers a promising opportunity for cure and/or palliation to patients with recurrent head and neck cancer whose comorbidities, performance status, and history of prior treatment may preclude many other salvage options. Stereotactic body radiation therapy appears to have a favorable response and toxicity profile compared with other nonoperative salvage options for recurrent head and neck cancer. However, the risk of severe toxicity remains, with carotid blowout syndrome a unique concern, although the incidence of this complication may be minimized with alternating-day fractionation. The short overall treatment time and low rates of acute toxicity make SBRT an optimal vehicle to integrate with novel systemic therapies, and several phase II studies have used concurrent cetuximab as a radiosensitizer with SBRT with promising results. Ongoing studies aim to evaluate the potential synergistic effect of SBRT with immune checkpoint inhibitors in recurrent head and neck cancer. PMID:27441751

  11. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  12. The influence of radiation therapy on dental implantology.

    PubMed

    Anderson, Lauren; Meraw, Stephen; Al-Hezaimi, Khalid; Wang, Hom-Lay

    2013-02-01

    Patients with a history of head and neck cancer resection require extensive prosthodontic rehabilitation following cancer treatment. The oral anatomy drastically changes from ablative therapy, and the oral tissue response becomes altered as a consequence of radiation and chemotherapy. Successful restoration of oral function in this specific patient population was increasingly difficult before the widespread use of dental implants. Implant-borne prosthetics are now often used. However, surgical guidelines remain unclear with regard to oncology-related parameters. In this article, guidelines are introduced for implant therapy in the cancer patients according to radiation dosage and timing. Indications for hyperbaric oxygen treatment are highlighted along with risk assessment associated with implant placement. These guidelines are intended to augment knowledge obtained through oncology consultation; moreover, provide a rationale for implant therapy within the course of cancer treatment.

  13. Research Findings on Radiation Hormesis and Radon Therapy

    SciTech Connect

    Hattori, Sadao

    1999-06-06

    Radiation hormesis research in Japan to determine the validity of Luckey's claims has revealed information on the health effects of low-level radiation. The scientific data of animal tests we obtained and successful results actually brought by radon therapy on human patients show us a clearer understanding of the health effects of low-level radiation. We obtained many animal test results and epidemiological survey data through our research activities cooperating with more than ten universities in Japan, categorized as follows: 1. suppression of cancer by enhancement of the immune system based on gene activation; 2. rejuvenation and suppression of aging by increasing cell membrane permeability and enzyme syntheses; 3. adaptive response by activation of gene expression on DNA repair and cell apoptosis; 4. pain relief and stress moderation by hormone formation in the brain and central nervous system; 5. avoidance and therapy of obstinate diseases by enhancing damage control systems and form one formation.

  14. [Stereotactic body radiation therapy for spinal metastases].

    PubMed

    Pasquier, D; Martinage, G; Mirabel, X; Lacornerie, T; Makhloufi, S; Faivre, J-C; Thureau, S; Lartigau, É

    2016-10-01

    After the liver and lungs, bones are the third most common sites of cancer metastasis. Palliative radiotherapy for secondary bone tumours helps relieve pain, improve the quality of life and reduce the risk of fractures. Stereotactic body radiotherapy can deliver high radiation doses with very tight margins, which has significant advantages when treating tumours close to the spinal cord. Strict quality control is essential as dose gradient at the edge of the spinal cord is important. Optimal schedule is not defined. A range of dose-fractionation schedules have been used. Pain relief and local control are seen in over 80%. Toxicity rates are low, although vertebral fracture may occur. Ongoing prospective studies will help clarify its role in the management of oligometastatic patients.

  15. [Stereotactic body radiation therapy for spinal metastases].

    PubMed

    Pasquier, D; Martinage, G; Mirabel, X; Lacornerie, T; Makhloufi, S; Faivre, J-C; Thureau, S; Lartigau, É

    2016-10-01

    After the liver and lungs, bones are the third most common sites of cancer metastasis. Palliative radiotherapy for secondary bone tumours helps relieve pain, improve the quality of life and reduce the risk of fractures. Stereotactic body radiotherapy can deliver high radiation doses with very tight margins, which has significant advantages when treating tumours close to the spinal cord. Strict quality control is essential as dose gradient at the edge of the spinal cord is important. Optimal schedule is not defined. A range of dose-fractionation schedules have been used. Pain relief and local control are seen in over 80%. Toxicity rates are low, although vertebral fracture may occur. Ongoing prospective studies will help clarify its role in the management of oligometastatic patients. PMID:27614511

  16. Stereotactic Body Radiation Therapy in Spinal Metastases

    SciTech Connect

    Ahmed, Kamran A.; Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J.; Rose, Peter S.; Olivier, Kenneth R.; Brown, Paul D.; Brinkmann, Debra H.; Laack, Nadia N.

    2012-04-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 {+-} 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10-40 Gy) in a median of three fractions (range, 1-5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18-30 Gy) in a median of three fractions (range, 1-5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  17. The Use of Lattice Radiation Therapy (LRT) in the Treatment of Bulky Tumors: A Case Report of a Large Metastatic Mixed Mullerian Ovarian Tumor.

    PubMed

    Blanco Suarez, Jesus Manuel; Amendola, Beatriz E; Perez, Naipy; Amendola, Marco; Wu, Xiaodong

    2015-01-01

    The objective of this teaching case is to report the excellent results of using lattice radiation therapy (LTR) for the treatment of a large metastasis from ovarian carcinosarcoma. This new technical concept extrapolates the traditional spatially fractionated radiation therapy (GRID) technique to advanced three-dimensional (3D) high-dose radiation therapy using modern instrumentation in radiation oncology. We report a case of a 61-year-old female with a large metastatic mass from ovarian carcinosarcoma treated by this procedure with excellent clinical and image-based follow-up results for more than four years. PMID:26719832

  18. Stereotactic Body Radiation Therapy for Patients With Lung Cancer Previously Treated With Thoracic Radiation

    SciTech Connect

    Kelly, Patrick; Balter, Peter A.; Rebueno, Neal; Sharp, Hadley J.; Liao Zhongxing; Komaki, Ritsuko; Chang, Joe Y.

    2010-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) provides excellent local control with acceptable toxicity for patients with early-stage non-small cell lung cancer. However, the efficacy and safety of SBRT for patients previously given thoracic radiation therapy is not known. In this study, we retrospectively reviewed outcomes after SBRT for recurrent disease among patients previously given radiation therapy to the chest. Materials and Methods: A search of medical records for patients treated with SBRT to the thorax after prior fractionated radiation therapy to the chest at The University of Texas M. D. Anderson Cancer Center revealed 36 such cases. The median follow-up time after SBRT was 15 months. The endpoints analyzed were overall survival, local control, and the incidence and severity of treatment-related toxicity. Results: SBRT provided in-field local control for 92% of patients; at 2 years, the actuarial overall survival rate was 59%, and the actuarial progression-free survival rate was 26%, with the primary site of failure being intrathoracic relapse. Fifty percent of patients experienced worsening of dyspnea after SBRT, with 19% requiring oxygen supplementation; 30% of patients experienced chest wall pain and 8% Grade 3 esophagitis. No Grade 4 or 5 toxic effects were noted. Conclusions: SBRT can provide excellent in-field tumor control in patients who have received prior radiation therapy. Toxicity was significant but manageable. The high rate of intrathoracic failure indicates the need for further study to identify patients who would derive the most benefit from SBRT for this purpose.

  19. [Economic perspectives of the research on advanced therapies].

    PubMed

    Pamo Larrauri, Jose María

    2014-11-03

    Since a new advanced therapy medicinal product is discovered until finally allowed its sale in the domestic market, it has to overcome a series of stages. Biomedical research is the first phase, currently its situation is encouraging to the increase in the number of clinical trials in Spain and in the rest of the world, despite the economic situation and the various difficulties that have faced the pharmaceutical laboratories. The next phase consists in obtaining the authorization of marketing of the European Medicines Agency. After authorization, will attempt to set a fair and moderate price for inclusion in the list of health provision of Social Security. A price for a drug that provides added value to health and society, a price that is generated profits for the pharmaceutical companies that hope to make up for the years of work and investment. Commitment to advanced therapy must be clear and forceful, to fund ongoing research projects and encouraging their creation with economic aid.

  20. Major Changes in Systemic Therapy for Advanced Melanoma.

    PubMed

    Thompson, John A

    2016-05-01

    Over the past 5 years, a host of new agents have radically changed the therapeutic landscape in advanced melanoma; gone are the days when the only active agents were interferon and dacarbazine. Nearly 25 years ago, few patients with stage IV melanoma reached 2-year survival; today, these survival curves have risen substantially. At the NCCN 21st Annual Conference, John A. Thompson, MD, discussed updates with longer duration of patient follow-up for immune checkpoint therapies. He also reviewed some of the newer approvals in advanced melanoma, including the combination of ipilimumab and nivolumab, high-dose ipilimumab, the oncolytic virus therapy talimogene laherparepvec, and the molecularly targeted combination of the BRAF and MEK inhibitors vemurafenib and cobimetinib. PMID:27226502

  1. [Advanced therapy: from European regulatory framework to national regulatory framework].

    PubMed

    Lucas-Samuel, S

    2013-05-01

    The European regulation n(o) 1394/2007/CE published on the 13th of November 2007 defined and harmonized the European regulatory framework for advanced therapy medicinal products. It creates a specialized committee located at the European Medicine Agency, in charge of the assessment of these medicinal products. The consequences of this regulation are introduced in the French regulation by the law n(o) 2011-302 published on the 22nd of March 2011. It detailed notably the possibility for public establishments (except health establishments) and nonprofit organisms to create pharmaceutical establishments. This law defined also a specific category of advanced therapy medicinal products, which fall under the "hospital exemption" framework. The rules regarding the authorizations of the establishments able to prepare these types of medicinal products and the authorization of the products are defined by the n(o) 2012-1236 decree published on the 6th of November 2012.

  2. In-room CT techniques for image-guided radiation therapy

    SciTech Connect

    Ma, C.-M. Charlie . E-mail: charlie.ma@fccc.edu; Paskalev, Kamen M.S.

    2006-04-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments.

  3. Radiation therapy in the treatment of aggressive fibromatoses (desmoid tumors).

    PubMed

    Kiel, K D; Suit, H D

    1984-11-15

    Twenty-five patients with aggressive fibromatoses (desmoid tumors) have been treated or followed in the Department of Radiation Medicine at the Massachusetts General Hospital between 1972 and 1982. Seventeen patients were treated by radiation, 4 for primary and 13 for recurrent disease. Seven patients were treated in conjunction with surgery. Partial or complete regression was achieved in 76%, and 59% are without evidence of disease (NED) at 9 to 94 months follow-up. Eight of ten patients treated primarily with radiation have achieved complete response without an attempt at resection (five) or have achieved stabilization (three) of their disease after some regression. Consistent complete control was seen with doses above 60 Gy. Periods to 27 months were required to observe complete responses. Only three failures within the radiation field were observed, two after low doses (22 and 24 Gy, respectively). Eight patients were seen after resection but with uncertain or histologically minimum positive margins, and were followed regularly and not treated. One patient has failed to date and is NED after resection. Radiation therapy is recommended in those situations where wide-field resection without significant morbidity is not possible for gross local disease. If minimally positive margins exist after resection in a patient who may be followed carefully, frequent follow-up and prompt treatment at recurrence may be an effective alternative to immediate radiation therapy.

  4. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  5. Some computer graphical user interfaces in radiation therapy.

    PubMed

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  6. Some computer graphical user interfaces in radiation therapy

    PubMed Central

    Chow, James C L

    2016-01-01

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  7. [Low-energy wideband electromagnetic radiation and manual therapy in the treatment of neurological manifestations of spinal osteochondrosis].

    PubMed

    Afoshin, S A; Gerasimenko, M Iu

    2006-01-01

    It is shown that the advanced technique of low-energy wideband electromagnetic radiation improves vascular tonicity and peripheral circulation while a modified technique of manual therapy facilitates movements in the affected part of the spine and reduces tonicity of the muscles involved in the pathological process.

  8. Current external beam radiation therapy quality assurance guidance: does it meet the challenges of emerging image-guided technologies?

    PubMed

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this "one-size-fits-all" prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes.

  9. Expanding the therapeutic index of radiation therapy by combining in situ gene therapy in the treatment of prostate cancer.

    PubMed

    Tetzlaff, Michael T; Teh, Bin S; Timme, Terry L; Fujita, Tetsuo; Satoh, Takefumi; Tabata, Ken-Ichi; Mai, Wei-Yuan; Vlachaki, Maria T; Amato, Robert J; Kadmon, Dov; Miles, Brian J; Ayala, Gustavo; Wheeler, Thomas M; Aguilar-Cordova, Estuardo; Thompson, Timothy C; Butler, E Brian

    2006-02-01

    The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity. PMID:16417399

  10. [Hormonal therapy of advanced or relapsed ovarian granulosa cell tumor].

    PubMed

    Sun, H; Bai, P

    2016-07-01

    Ovarian granulosa cell tumor is a rare gynecologic malignancy with hormonal activity. Surgical excision is the standard treatment for this disease. Most patients present excellent short term prognosis, however, late relapse often occurs, even after many years. Viable treatments of advanced or relapsed granulosa cell tumor are still limited, and the optimal therapy method has not been established. Compared with chemotherapy and radiotherapy, hormonal therapy is a well-tolerated treatment which can be administrated over a long period of time without serious side effects, and the combined application of hormones may achieve a better outcome. Therefore, hormonal therapy has been suggested as a potential treatment option for patients with advanced or relapsed granulosa cell tumor, and to extend the tumor-free interval and attenuate the disease progression. Future researches should be focused on the identification of the hormonal therapy which may provide the greatest clinical benefit, comparing and analyzing the effects of different combined therapeutic regimens of hormone drugs, and on the synthesis of drugs highly activating estrogen receptor β expressed in the granulosa cell tumor cells. PMID:27531259

  11. Hepatocellular Carcinoma Radiation Therapy: Review of Evidence and Future Opportunities

    SciTech Connect

    Klein, Jonathan

    2013-09-01

    Hepatocellular carcinoma (HCC) is a leading cause of global cancer death. Curative therapy is not an option for most patients, often because of underlying liver disease. Experience in radiation therapy (RT) for HCC is rapidly increasing. Conformal RT can deliver tumoricidal doses to focal HCC with low rates of toxicity and sustained local control in HCC unsuitable for other locoregional treatments. Stereotactic body RT and particle therapy have been used with long-term control in early HCC or as a bridge to liver transplant. RT has also been effective in treating HCC with portal venous thrombosis. Patients with impaired liver function and extensive disease are at increased risk of toxicity and recurrence. More research on how to combine RT with other standard and novel therapies is warranted. Randomized trials are also needed before RT will be generally accepted as a treatment option for HCC. This review discusses the current state of the literature and opportunities for future research.

  12. RADIATION THERAPY IN DISEASES OF THE EYE

    PubMed Central

    Sherman, Robert S.; Hogan, Michael J.

    1954-01-01

    Because of the wide variety of x-rays now available, selectivity is possible and important in treatment of diseases of the eye. By the use of short-range radiation, newly developed eye shields and the insulation of the eyelid itself, and by careful angulation of the beam, the desired irradiation can be given where it is needed without injury to surrounding tissues. The authors have found the 50 kv x-ray unit to be the most reliable and adaptable for most circumstances. The skin of the eyelid reacts to irradiation more sensitively than other tissues. The cornea reacts with keratitis and sometimes intractable ulceration. The iris, uveal tract and retina are less seriously affected. At the University of California Hospital irradiation has been found satisfactory for treatment of corneal ulcer, keratitis, pterygium, certain types of conjunctivitis, episcleritis, corneal vascularization, iritis, uveitis, and hemangioma. Irradiation may be of great benefit in absolute glaucoma with pain and blindness. Of 42 patients with carcinoma of the eyelid treated between 1935 and 1946, 27 had no recurrence in five years, 5 had recurrence, 7 died of other causes and follow-up was incomplete on 3. Good cosmetic result was usually achieved. No recurrence has been observed in 22 patients treated since 1946. Irradiation has been used with success in other kinds of cancer of the eye structures. PMID:13126810

  13. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for Intensity-modulated Radiation Therapy (IMRT).

    PubMed

    Hartford, Alan C; Galvin, James M; Beyer, David C; Eichler, Thomas J; Ibbott, Geoffrey S; Kavanagh, Brian; Schultz, Christopher J; Rosenthal, Seth A

    2012-12-01

    Intensity-modulated radiation therapy (IMRT) is a complex technique for the delivery of radiation therapy preferentially to target structures while minimizing doses to adjacent normal critical structures. It is widely utilized in the treatment of a variety of clinical indications in radiation oncology, including tumors of the central nervous system, head and neck, breast, prostate, gastrointestinal tract, and gynecologic organs, as well as in situations where previous radiation therapy has been delivered, and has allowed for significant therapeutic advances in many clinical areas. IMRT treatment planning and delivery is a complex process. Safe and reliable delivery of IMRT requires appropriate process design and adherence to quality assurance (QA) standards. A collaborative effort of the American College of Radiology and American Society for Therapeutic Radiation Oncology has produced a practice guideline for IMRT. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist, dosimetrist, and radiation therapist. Factors with respect to the QA of the treatment planning system, treatment-planning process, and treatment-delivery process are discussed, as are issues related to the utilization of volumetric modulated arc therapy. Patient-specific QA procedures are presented. Successful IMRT programs involve integration of many processes: patient selection, patient positioning/immobilization, target definition, treatment plan development, and accurate treatment delivery. Appropriate QA procedures, including patient-specific QA procedures, are essential to ensure quality in an IMRT program and to assure patient safety.

  14. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for Intensity-modulated Radiation Therapy (IMRT).

    PubMed

    Hartford, Alan C; Galvin, James M; Beyer, David C; Eichler, Thomas J; Ibbott, Geoffrey S; Kavanagh, Brian; Schultz, Christopher J; Rosenthal, Seth A

    2012-12-01

    Intensity-modulated radiation therapy (IMRT) is a complex technique for the delivery of radiation therapy preferentially to target structures while minimizing doses to adjacent normal critical structures. It is widely utilized in the treatment of a variety of clinical indications in radiation oncology, including tumors of the central nervous system, head and neck, breast, prostate, gastrointestinal tract, and gynecologic organs, as well as in situations where previous radiation therapy has been delivered, and has allowed for significant therapeutic advances in many clinical areas. IMRT treatment planning and delivery is a complex process. Safe and reliable delivery of IMRT requires appropriate process design and adherence to quality assurance (QA) standards. A collaborative effort of the American College of Radiology and American Society for Therapeutic Radiation Oncology has produced a practice guideline for IMRT. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist, dosimetrist, and radiation therapist. Factors with respect to the QA of the treatment planning system, treatment-planning process, and treatment-delivery process are discussed, as are issues related to the utilization of volumetric modulated arc therapy. Patient-specific QA procedures are presented. Successful IMRT programs involve integration of many processes: patient selection, patient positioning/immobilization, target definition, treatment plan development, and accurate treatment delivery. Appropriate QA procedures, including patient-specific QA procedures, are essential to ensure quality in an IMRT program and to assure patient safety. PMID:23165357

  15. Strategies for combining immunotherapy with radiation for anticancer therapy.

    PubMed

    Seyedin, Steven N; Schoenhals, Jonathan E; Lee, Dean A; Cortez, Maria A; Wang, Xiaohong; Niknam, Sharareh; Tang, Chad; Hong, David S; Naing, Aung; Sharma, Padmanee; Allison, James P; Chang, Joe Y; Gomez, Daniel R; Heymach, John V; Komaki, Ritsuko U; Cooper, Laurence J; Welsh, James W

    2015-01-01

    Radiation therapy controls local disease but also prompts the release of tumor-associated antigens and stress-related danger signals that primes T cells to promote tumor regression at unirradiated sites known as the abscopal effect. This may be enhanced by blocking inhibitory immune signals that modulate immune activity through a variety of mechanisms. Indeed, abscopal responses have occurred in patients with lung cancer or melanoma when given anti-CTLA4 antibody and radiation. Other approaches involve expanding and reinfusing T or NK cells or engineered T cells to express receptors that target specific tumor peptides. These approaches may be useful for immunocompromised patients receiving radiation. Preclinical and clinical studies are testing both immune checkpoint-based strategies and adoptive immunotherapies with radiation. PMID:26310908

  16. Targeted Therapies in Breast Cancer: Implications for Advanced Oncology Practice

    PubMed Central

    Bourdeanu, Laura; Luu, Thehan

    2014-01-01

    The systemic therapeutic management of breast cancer has undergone significant transformation in the past decade. Without targeted therapies, conventional treatment with cytotoxic agents has reached the limit of its potential in terms of patient survival for most types of cancer. Enhanced understanding of the pathogenesis of tumor cell growth and metastasis has led to the identification of signaling growth pathways as targets for these directed therapies. Novel therapies targeted to HER2/neu, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), poly(ADP ribose) polymerase (PARP), mammalian target of rapamycin (mTOR), histone deacetylase (HDAC), the heat shock protein, and cyclin-dependent kinase (CDK) inhibitors have been developed and have demonstrated some efficacy in breast cancer. Recognition and management of the toxicities associated with targeted therapies is imperative. This review will describe the clinical development and utilization of targeted therapies currently in use or in clinical trials, with a focus on considerations for the oncology advanced practitioner. PMID:26110069

  17. Recent advances in gene therapy for lysosomal storage disorders

    PubMed Central

    Rastall, David PW; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme’s substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. PMID:26170711

  18. Evolving molecularly targeted therapies for advanced-stage thyroid cancers.

    PubMed

    Bible, Keith C; Ryder, Mabel

    2016-07-01

    Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research. PMID:26925962

  19. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    NASA Astrophysics Data System (ADS)

    Cooper, Daniel; Bekah, Devesh; Nadeau, Jay

    2014-10-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  20. Gold nanoparticles and their alternatives for radiation therapy enhancement

    PubMed Central

    Cooper, Daniel R.; Bekah, Devesh; Nadeau, Jay L.

    2014-01-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions. PMID:25353018

  1. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  2. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  3. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  4. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  5. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  6. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  7. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  8. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  9. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  10. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  11. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  12. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  13. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  14. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  15. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  16. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  17. Radiation therapy in the treatment of metastatic renal cell carcinoma

    SciTech Connect

    Onufrey, V.; Mohiuddin, M.

    1985-11-01

    Adenocarcinoma of the kidney is an unusual tumor, both in its biological behavior and in its response to radiation treatment. Historically, these tumors have been considered to be radioresistant, and the role of radiation therapy remains questionable in the primary management of this disease. However, radiation treatment is routinely used in the palliation of metastatic lesions for relief of symptoms. Therefore, we have undertaken a review of our experience in the treatment of this disease to determine the effectiveness of radiation in its palliation. From 1956 to 1981, 125 patients with metastatic lesions from hypernephroma have been treated in the Department of Radiation Therapy at Thomas Jefferson University Hospital. Most patients were referred for relief of bone pain (86), brain metastasis (12), spinal cord compression (9), and soft tissue masses (18). Total doses varied from 2000 rad to a maximum of 6000 rad. Response to treatment was evaluated on the basis of relief of symptoms, either complete, partial or no change. Our results indicate a significantly higher response rate of 65% for total doses equal to or greater than a TDF of 70, as compared to 25% for doses lower than a TDF of 70. No difference in response was observed either for bone or soft tissue metastasis or visceral disease. This leads us to believe that metastatic lesions from adenocarcinomas of the kidney should be treated to higher doses to obtain maximum response rates. Analysis of these results are presented in detail.

  18. Implementation of contemporary radiation therapy planning concepts for pediatric Hodgkin lymphoma: Guidelines from the International Lymphoma Radiation Oncology Group.

    PubMed

    Hodgson, David C; Dieckmann, Karin; Terezakis, Stephanie; Constine, Louis

    2015-01-01

    The optimal management of children with Hodgkin lymphoma (HL) should limit the risk of treatment-related toxicity without compromising disease control. Consequently, increasing effort is being directed to retaining the demonstrated efficacy of radiation therapy (RT) in maximizing the cure of HL while reducing the radiation exposure of normal tissues. Historically, guidelines for RT volume definition used in pediatric HL trials have referenced 2-dimensional imaging and bony landmarks to define classical involved field RT. With recognition of the efficacy of chemotherapy, the data on the adverse late effects of radiation, and the evolution of advanced imaging techniques that reveal the location of both tumor and normal tissues, it is necessary that radiation techniques for children and adolescents be refined. The concepts described by the International Commission on Radiation Units provide a common approach for field definition using 3-dimensional computed tomographic--based RT planning and volumetric image guidance. Here we describe the application of these concepts in the planning of RT for pediatric HL. This will be increasingly important as current and upcoming pediatric HL trials will employ these concepts to deliver RT.

  19. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  20. Role of radiation therapy in the treatment of olfactory neuroblastoma

    SciTech Connect

    Ahmad, K.; Fayos, J.V.

    1980-03-01

    Nine patients with olfactory neuroblastoma were treated at the Radiation Therapy Service of the University of Michigan Medical Center (UMMC); their case histories are presented. There was a slight female predominance and the peak age distribution was between 60 to 69 years (4 patients). One patient developed sudden visual loss in one eye and partial loss in the other resulting from a hematoma at the optic chiasmal region. We have ascribed it to radiation damage. Our results show that this tumor is radiocontrollable; control at primary site occurs in 66.6% of patients. We recommend postoperative irradiation in all tumors that are extensive initially.

  1. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  2. Recent advances in the management of radiation colitis

    PubMed Central

    Kountouras, Jannis; Zavos, Christos

    2008-01-01

    Radiation colitis, an insidious, progressive disease of increasing frequency, develops 6 mo to 5 years after regional radiotherapy for malignancy, owing to the deleterious effects of the latter on the colon and the small intestine. When dealing with radiation colitis and its complications, the most conservative modality should be employed because the areas of intestinal injury do not tend to heal. Acute radiation colitis is mostly self-limited, and usually, only supportive management is required. Chronic radiation colitis, a poorly predictable progressive disease, is considered as a precancerous lesion; radiation-associated malignancy has a tendency to be diagnosed at an advanced stage and to bear a dismal prognosis. Therefore, management of chronic radiation colitis remains a major challenge owing to the progressive evolution of the disease, including development of fibrosis, endarteritis, edema, fragility, perforation, partial obstruction, and cancer. Patients are commonly managed conservatively. Surgical intervention is difficult to perform because of the extension of fibrosis and alterations in the gut and mesentery, and should be reserved for intestinal obstruction, perforation, fistulas, and severe bleeding. Owing to the difficulty in managing the complications of acute and chronic radiation colitis, particular attention should be focused onto the prevention strategies. Uncovering the fibrosis mechanisms and the molecular events underlying radiation bowel disease could lead to the introduction of new therapeutic and/or preventive approaches. A variety of novel, mostly experimental, agents have been used mainly as a prophylaxis, and improvements have been made in radiotherapy delivery, including techniques to reduce the amount of exposed intestine in the radiation field, as a critical strategy for prevention. PMID:19109862

  3. Impact of dose calculation algorithm on radiation therapy

    PubMed Central

    Chen, Wen-Zhou; Xiao, Ying; Li, Jun

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy. PMID:25431642

  4. Stereotactic body radiation therapy for metastasis to the adrenal glands.

    PubMed

    Shiue, Kevin; Song, Andrew; Teh, Bin S; Ellis, Rodney J; Yao, Min; Mayr, Nina A; Huang, Zhibin; Sohn, Jason; Machtay, Mitchell; Lo, Simon S

    2012-12-01

    Many primary cancers can metastasize to the adrenal glands. Adrenalectomy via an open or laparoscopic approach is the current definitive treatment, but not all patients are eligible or wish to undergo surgery. There are only limited studies on the use of conventional radiation therapy for palliation of symptoms from adrenal metastasis. However, the advent of stereotactic body radiation therapy (SBRT) - also named stereotactic ablative radiotherapy for primary lung cancer, metastases to the lung, and metastases to the liver - have prompted some investigators to consider the use of SBRT for metastases to the adrenal glands. This review focuses on the emerging data on SBRT of metastasis to the adrenal glands, while also providing a brief discussion of the overall management of adrenal metastasis.

  5. Approaching Oxygen-Guided Intensity-Modulated Radiation Therapy.

    PubMed

    Epel, Boris; Redler, Gage; Pelizzari, Charles; Tormyshev, Victor M; Halpern, Howard J

    2016-01-01

    The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered.

  6. Adaptive radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Wen, Ning

    standard deviation of markers after rigid registration in L-R direction was 0 and 1 mm. But the mean was 2--4 mm in the A-P and S-I direction and standard deviation was about 2 mm. After DIR, the mean in all three directions became 0 and standard deviation was within sub millimeter. UE images were generated for each CT set and carefully reviewed in the prostate region. DIR provided accurate transformation matrix to be used for dose reconstruction. The delivered dose was evaluated with radiobiological models. TCP for the CTV was calculated to evaluate tumor control in different margin settings. TCP calculated from the reconstructed dose agreed within 5% of the value in the plan for all patients with three different margins. EUD and NTCP were calculated to evaluate reaction of rectum to radiation. Similar biological evaluation was performed for bladder. EUD of actual dose was 3%--9% higher than that of planned dose of patient 1--3, 11%--20% higher of patient 4--5. Smaller margins could not reduce late GU toxicity effectively since bladder complication was directly related to Dmax which was at the same magnitude in the bladder no matter which margin was applied. Re-optimization was performed at the 10th, 20th , 30th, and 40th fraction to evaluate the effectiveness to limit OAR dose while maintaining the target coverage. Reconstructed dose was added to dose from remaining fractions after optimization to show the total dose patient would receive. It showed that if the plan was re-optimized at 10th or 20th fraction, total dose to rectum and bladder were very similar to planned dose with minor deviations. If the plan was re-optimized at the 30th fraction, since there was a large deviation between reconstructed dose and planned dose to OAR, optimization could not limit the OAR dose to the original plan with only 12 fractions left. If the re-optimization was done at the 40th fraction, it was impossible to compensate in the last 2 fractions. Large deviations of total dose to bladder

  7. Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy

    SciTech Connect

    Lingos, T.I.; Recht, A.; Vicini, F.; Abner, A.; Silver, B.; Harris, J.R. )

    1991-07-01

    The likelihood of radiation pneumonitis and factors associated with its development in breast cancer patients treated with conservative surgery and radiation therapy have not been well established. To assess these, the authors retrospectively reviewed 1624 patients treated between 1968 and 1985. Median follow-up for patients without local or distant failure was 77 months. Patients were treated with either tangential fields alone (n = 508) or tangents with a third field to the supraclavicular (SC) or SC-axillary (AX) region (n = 1116). Lung volume treated in the tangential fields was generally limited by keeping the perpendicular distance (demagnified) at the isocenter from the deep field edges to the posterior chest wall (CLD) to 3 cm or less. Seventeen patients with radiation pneumonitis were identified (1.0%). Radiation pneumonitis was diagnosed when patients presented with cough (15/17, 88%), fever (9/17, 53%), and/or dyspnea (6/17, 35%) and radiographic changes (17/17) following completion of RT. Radiographic infiltrates corresponded to treatment portals in all patients, and in 12 of the 17 patients, returned to baseline within 1-12 months. Five patients had permanent scarring on chest X ray. No patient had late or persistent pulmonary symptoms. The incidence of radiation pneumonitis was correlated with the combined use of chemotherapy (CT) and a third field. Three percent (11/328) of patients treated with a 3-field technique who received chemotherapy developed radiation pneumonitis compared to 0.5% (6 of 1296) for all other patients (p = 0.0001). When patients treated with a 3-field technique received chemotherapy concurrently with radiation therapy, the incidence of radiation pneumonitis was 8.8% (8/92) compared with 1.3% (3/236) for those who received sequential chemotherapy and radiation therapy (p = 0.002).

  8. Urethral strictures after radiation therapy for prostate cancer

    PubMed Central

    Dal Pra, Alan; Furrer, Marc; Thalmann, George; Spahn, Martin

    2016-01-01

    Urethral stricture after radiation therapy for localized prostate cancer is a delicate problem as the decreased availability of tissue healing and the close relation to the sphincter complicates any surgical approach. We here review the pathophysiology, dosimetry, and the disease specific aspects of urethral strictures after radiotherapy. Moreover we discuss different treatment option such as direct vision internal urethrotomy as well as techniques for open reconstruction with and without tissue transfer.

  9. Sick sinus syndrome as a complication of mediastinal radiation therapy

    SciTech Connect

    Pohjola-Sintonen, S.; Toetterman, K.J.K.; Kupari, M. )

    1990-06-01

    A 33-year-old man who had received mediastinal radiation therapy for Hodgkin's disease 12 years earlier developed a symptomatic sick sinus syndrome requiring the implantation of a permanent pacemaker. The sick sinus syndrome and a finding of an occult constrictive pericarditis were considered to be due to the previous mediastinal irradiation. A ventricular pacemaker was chosen because mediastinal radiotherapy also increases the risk of developing atrioventricular conduction defects.

  10. Radiation therapy of lymphoblastic renal masses - benefit or hazard

    SciTech Connect

    Saarinen, U.M.

    1985-05-01

    A child with non-Hodgkin lymphoma and massively enlarged kidneys received a single dose of 300 rad (3 Gy) to the right kidney before initiation of chemotherapy. Measurement of the split renal function with 99m-Tc-DTPA four days postirradiation revealed that the function of the right kidney had substantially deteriorated, suggesting that hazards may be involved with the use of radiation therapy for lymphoblastic renal masses.

  11. Wound healing after radiation therapy: Review of the literature

    PubMed Central

    2012-01-01

    Radiation therapy is an established modality in the treatment of head and neck cancer patients. Compromised wound healing in irradiated tissues is a common and challenging clinical problem. The pathophysiology and underlying cellular mechanisms including the complex interaction of cytokines and growth factors are still not understood completely. In this review, the current state of research regarding the pathomechanisms of compromised wound healing in irradiated tissues is presented. Current and possible future treatment strategies are critically reviewed. PMID:23006548

  12. Massive osteolysis of the right clavicle developing after radiation therapy

    SciTech Connect

    Skinner, W.L.; Buzdar, A.U.; Libshitz, H.I.

    1988-07-15

    This report describes an unusual case of clavicular osteolysis, a late complication of radiation therapy for breast cancer, and demonstrates the diagnostic implications that radiotherapy changes can pose. Radiotherapy to the chest wall produces a spectrum of alterations in bone over time, ranging from early roentgenographic findings of osteoporosis and trabecular thickening to spontaneous fractures and changes that may be confused with metastatic disease or postirradiation sarcoma.

  13. Urethral strictures after radiation therapy for prostate cancer

    PubMed Central

    Dal Pra, Alan; Furrer, Marc; Thalmann, George; Spahn, Martin

    2016-01-01

    Urethral stricture after radiation therapy for localized prostate cancer is a delicate problem as the decreased availability of tissue healing and the close relation to the sphincter complicates any surgical approach. We here review the pathophysiology, dosimetry, and the disease specific aspects of urethral strictures after radiotherapy. Moreover we discuss different treatment option such as direct vision internal urethrotomy as well as techniques for open reconstruction with and without tissue transfer. PMID:27617311

  14. Urethral strictures after radiation therapy for prostate cancer.

    PubMed

    Moltzahn, Felix; Dal Pra, Alan; Furrer, Marc; Thalmann, George; Spahn, Martin

    2016-09-01

    Urethral stricture after radiation therapy for localized prostate cancer is a delicate problem as the decreased availability of tissue healing and the close relation to the sphincter complicates any surgical approach. We here review the pathophysiology, dosimetry, and the disease specific aspects of urethral strictures after radiotherapy. Moreover we discuss different treatment option such as direct vision internal urethrotomy as well as techniques for open reconstruction with and without tissue transfer. PMID:27617311

  15. Advances in stimuli responsive nanobiomaterials for cancer therapy.

    PubMed

    Sampathkumar, Kaarunya; Arulkumar, Shylaja; Ramalingam, Murugan

    2014-03-01

    Cancer has become one of the major reasons for disease mortality with drastic increase of death rate in recent years. The reason for most of these deaths is due to the inefficacy and failure of the current methods of treatments or due to the unavailability of treatment options. Even after extensive research that has been carried out in the field, there is no gold standard in cancer therapy. With the advancement of the field of nanomedicine and materials science, many research works are being aimed at developing micro and nanocarriers for site-specific delivery of anticancer drugs. As a further advancement in the field, smart carriers, based on nanobiomaterials, which respond to various external and internal stimuli and act locally are being developed to improve the efficacy of current treatments. These smart nanobiomaterials act as carriers for not only anticancer drugs but also for gene and other biomolecules. Keeping the importance and advancement of smart carrier anticancer drug delivery system (AcDDS) in view, this review focuses on stimuli responsive nanobiomaterials that are currently being studied for cancer therapy. PMID:24730233

  16. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  17. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    SciTech Connect

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  18. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance.

    PubMed

    Western, Craig; Hristov, Dimitre; Schlosser, Jeffrey

    2015-06-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included.

  19. Analytical probabilistic modeling for radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bangert, Mark; Hennig, Philipp; Oelfke, Uwe

    2013-08-01

    This paper introduces the concept of analytical probabilistic modeling (APM) to quantify uncertainties in quality indicators of radiation therapy treatment plans. Assuming Gaussian probability densities over the input parameters of the treatment plan quality indicators, APM enables the calculation of the moments of the induced probability density over the treatment plan quality indicators by analytical integration. This paper focuses on analytical probabilistic dose calculation algorithms and the implications of APM regarding treatment planning. We derive closed-form expressions for the expectation value and the (co)variance of (1) intensity-modulated photon and proton dose distributions based on a pencil beam algorithm and (2) the standard quadratic objective function used in inverse planning. Complex correlation models of high dimensional uncertain input parameters and the different nature of random and systematic uncertainties in fractionated radiation therapy are explicitly incorporated into APM. APM variance calculations on phantom data sets show that the correlation assumptions and the difference of random and systematic uncertainties of the input parameters have a crucial impact on the uncertainty of the resulting dose. The derivations regarding the quadratic objective function show that APM has the potential to enable robust planning at almost the same computational cost like conventional inverse planning after a single probabilistic dose calculation. Beneficial applications of APM in the context of radiation therapy treatment planning are feasible.

  20. Intraoperative radiation therapy in malignant glioma: early clinical results.

    PubMed

    Ortiz de Urbina, D; Santos, M; Garcia-Berrocal, I; Bustos, J C; Samblas, J; Gutierrez-Diaz, J A; Delgado, J M; Donckaster, G; Calvo, F A

    1995-08-01

    Intraoperative radiation therapy (IORT) with high energy electron beams is a treatment modality that has been included in multimodal programs in oncology to improve local tumor control. From August 1991 to December 1993, 17 patients with primary (8) or recurrent (9) high grade malignant gliomas, anaplastic astrocytoma (4), anaplastic oligodendroglioma (6) and glioblastoma multiforme (7), underwent surgical resection and a single dose of 10-20 Gy intraoperative radiation therapy was delivered in tumor bed. Fourteen patients received either pre-operative (8) or post-operative (6) external beam radiation therapy. Primary gliomas: 18-months actuarial survival rate has been 56% (range: 1-21+ months) and the median survival time has not yet been achieved. Four patients developed tumor progression (median time to tumor progression: 9 months). Recurrent gliomas: 18-months actuarial survival rate and median survival time has been 47% and 13 months (range: 6-32+ months) respectively. The median time to tumor progression was 11 months. No IORT related mortality has been observed. IORT is an attractive, tolerable and feasible treatment modality as antitumoral intensification procedure in high grade malignant gliomas.

  1. CT evaluation of effects of cranial radiation therapy in children

    SciTech Connect

    Davis, P.C.; Hoffman, J.C. Jr.; Pearl, G.S.; Braun, I.F.

    1986-09-01

    A retrospective evaluation was completed of 49 children who received conventional cranial radiation therapy for primary central nervous system and/or skull-base neoplasia and who had follow-up CT studies. In these children, abnormalities in normal parenchyma away from the tumor itself were surprisingly frequent, with or without chemotherapy. Generalized volume loss or atrophy was the most frequent abnormality (51%), but in this population it may have resulted from a variety of causes. Calcification in nontumorous parenchyma was common (28%) with or without chemotherapy. The most frequent site of calcification was subcortical at the gray-white junction. Calcification was progressive over 1-2 years and correlated pathologically with mineralizing microangiopathy and dystrophic calcification with demyelination. White-matter abnormalities other than those associated with shunt malfunction and tumor edema occurred in 26% of the patients. Both white-matter abnormalities and calcification occurred predominantly in younger children, particularly those under 3 years old at the time of radiation therapy. Of the 21 children who received chemotherapy in this series, only two received methotrexate. White-matter abnormalities and calcifications occurred with similar frequency in children with and without chemotherapy; thus, radiation therapy is the most likely cause of these findings.

  2. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  3. Integrative and complementary therapies for patients with advanced cancer.

    PubMed

    Marchand, Lucille

    2014-07-01

    In integrative medicine, well-being is emphasized, and in palliative care, quality of life (QOL) is a similar concept or goal. Both can occur despite advanced cancer. Integrative medicine serves to combine the best of alternative, complementary and conventional therapies to optimize well-being and QOL, whether or not a person is at the end of their life. When integrative medicine is combined with palliative care modalities, the toolbox to provide symptom control and well-being or QOL is increased or broadened. Palliative care and integrative medicine are best provided early in the trajectory of illness such as cancer, and increase in amount as the illness progresses toward end of life. In cancer care, symptoms of the cancer, as well as symptoms produced by cancer therapies, are addressed with conventional and integrative therapies. Goals of care change as the disease progresses, and a patient's unique situation creates a different balance of integrative and conventional therapies. Integrative therapies such as music, aromatherapy, and massage might appeal to more patients than more specific, less common integrative therapies that might be more expensive, or seem more unusual such as Ayurvedic medicine and energy modalities. Each person may be drawn to different integrative modalities depending on factors such as cultural traditions, beliefs, lifestyle, internet information, advice from family and friends, books, etc. This review focuses on how integrative and complementary modalities can be included in comprehensive palliative care for patients with advanced malignancies. Nutrition and movement, often neglected in conventional treatment strategies, will also be included in the larger context of integrative and palliative modalities. Both conventional and integrative modalities in palliative care help patients live with empowerment, hope, and well-being no matter how long their lives last. A comprehensive review of all integrative and complementary therapies is

  4. Limited Stage Follicular Lymphoma: Current Role of Radiation Therapy.

    PubMed

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Ricardi, Umberto

    2016-01-01

    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of "cured" patients (without further relapses at 10-15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy. PMID:27648204

  5. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  6. Limited Stage Follicular Lymphoma: Current Role of Radiation Therapy

    PubMed Central

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Ricardi, Umberto

    2016-01-01

    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of “cured” patients (without further relapses at 10–15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy. PMID:27648204

  7. Limited Stage Follicular Lymphoma: Current Role of Radiation Therapy

    PubMed Central

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Ricardi, Umberto

    2016-01-01

    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of “cured” patients (without further relapses at 10–15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy.

  8. Advanced therapy medicinal products: current and future perspectives

    PubMed Central

    Hanna, Eve; Rémuzat, Cécile; Auquier, Pascal; Toumi, Mondher

    2016-01-01

    Background Advanced therapy medicinal products (ATMPs) are innovative therapies that encompass gene therapy, somatic cell therapy, and tissue-engineered products. These therapies are expected to bring important health benefits, but also to substantially impact the pharmaceuticals budget. Objective The aim of this study was to characterise the ATMPs in development and discuss future implications in terms of market access. Methods Clinical trials were searched in the following databases: EudraCT (EU Drug Regulating Authorities Clinical Trials), ClinicalTrials.gov, and ICTRP (International Clinical Trials Registry Platform of the World Health Organization). Trials were classified by category of ATMP as defined by European regulation EC No. 1394/2007, as well as by development phase and disease area. Results The database search identified 939 clinical trials investigating ATMPs (85% ongoing, 15% completed). The majority of trials were in the early stages (Phase I, I/II: 64.3%, Phase II, II/III: 27.9%, Phase 3: 6.9%). Per category of ATMP, we identified 53.6% of trials for somatic cell therapies, 22.8% for tissue-engineered products, 22.4% for gene therapies, and 1.2% for combined products (incorporating a medical device). Disease areas included cancer (24.8%), cardiovascular diseases (19.4%), musculoskeletal (10.5%), immune system and inflammation (11.5%), neurology (9.1%), and others. Of the trials, 47.2% enrolled fewer than 25 patients. Due to the complexity and specificity of ATMPs, new clinical trial methodologies are being considered (e.g., small sample size, non-randomised trials, single-arm trials, surrogate endpoints, integrated protocols, and adaptive designs). Evidence generation post-launch will become unavoidable to address payers’ expectations. Conclusion ATMPs represent a fast-growing field of interest. Although most of the products are in an early development phase, the combined trial phase and the potential to cure severe chronic conditions suggest

  9. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    SciTech Connect

    Valicenti, Richard K.; Thompson, Ian; Albertsen, Peter; Davis, Brian J.; Goldenberg, S. Larry; Wolf, J. Stuart; Sartor, Oliver; Klein, Eric; Hahn, Carol; Michalski, Jeff; Roach, Mack; Faraday, Martha M.

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  10. [Clinical studies and accepted therapies of advanced melanoma].

    PubMed

    Liszkay, Gabriella

    2016-03-01

    The objective of the work is presentation of the available therapeutic results of the clinical trials with anti CTLA-4 and anti PD-1 treatment, which are operating on the immune checkpoints registered in advanced melanoma, and the results of T-VEC vaccination (NCT00094653, NCT00324155, KEYNOTE-001, -002, -006, CheckMate-066, -037, -067, NCT00769704). With ipilimumab therapy, long-term survival can be achieved in the case of 20% of patients, with low (10%) therapeutic response, and grade 3-4 treatment related, predominantly autoimmune adverse events occurring in 10-15% of patients. Anti-PD-1 therapy proved more effective compared to ipilimumab, resulting in 21-40% therapeutic response, with 60-74% one-year survival rate and significantly less severe and frequent side effects. Progression-free survival achieved with ipilimumab/nivolumab combination was 11.5 months with grade 3-4 side effects occurring in 55% of patients. T-VEC therapy resulted in 26.4% objective response rate without a significant survival advantage. In the possession of the new immunotherapeutic possibilities, knowledge of the results of clinical studies is essential for the optimal complex therapy of melanoma. PMID:26934345

  11. Radiation therapy for neovascular age-related macular degeneration

    PubMed Central

    Petrarca, Robert; Jackson, Timothy L

    2011-01-01

    Antivascular endothelial growth factor (anti-VEGF) therapies represent the standard of care for most patients presenting with neovascular (wet) age-related macular degeneration (neovascular AMD). Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET). Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002), with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections. PMID:21311657

  12. Aesthetic results following partial mastectomy and radiation therapy

    SciTech Connect

    Matory, W.E. Jr.; Wertheimer, M.; Fitzgerald, T.J.; Walton, R.L.; Love, S.; Matory, W.E.

    1990-05-01

    This study was undertaken to determine the aesthetic changes inherent in partial mastectomy followed by radiation therapy in the treatment of stage I and stage II breast cancer. A retrospective analysis of breast cancer patients treated according to the National Surgical Adjuvant Breast Project Protocol B-06 was undertaken in 57 patients from 1984 to the present. The size of mastectomy varied between 2 x 1 cm and 15 x 8 cm. Objective aesthetic outcome, as determined by physical and photographic examination, was influenced primarily by surgical technique as opposed to the effects of radiation. These technical factors included orientation of resections, breast size relative to size of resection, location of tumor, and extent and orientation of axillary dissection. Regarding cosmesis, 80 percent of patients treated in this study judged their result to be excellent or good, in comparison to 50 percent excellent or good as judged by the plastic surgeon. Only 10 percent would consider mastectomy with reconstruction for contralateral disease. Asymmetry and contour abnormalities are far more common than noted in the radiation therapy literature. Patients satisfaction with lumpectomy and radiation, however, is very high. This satisfaction is not necessarily based on objective criteria defining aesthetic parameters, but is strongly influenced by retainment of the breast as an original body part.

  13. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema

    Tijana Rajh

    2016-07-12

    Dr. Rajh will present a general talk on nanotechnology – an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  14. Vocal changes in patients undergoing radiation therapy for glottic carcinoma.

    PubMed

    Miller, S; Harrison, L B; Solomon, B; Sessions, R B

    1990-06-01

    A prospective evaluation of vocal changes in patients receiving radiation therapy for T1 and T2 (AJC) glottic carcinoma was undertaken in January 1987. Vocal analysis was performed prior to radiotherapy and at specific intervals throughout the radiation treatment program. The voicing ratio was extrapolated from a sustained vowel phonation using the Visipitch interfaced with the IBM-PC. Preliminary observations suggested three distinct patterns of vocal behavior: 1. reduced voicing ratio with precipitous improvement within the course of treatment, 2. high initial voicing ratio with reduction secondary to radiation induced edema, with rapid improvement in the voicing component after the edema subsided, and 3. fluctuating voicing ratio during and following treatment. Enrollment of new patients and a 2-year follow-up of current patients was undertaken. PMID:2348739

  15. Vocal changes in patients undergoing radiation therapy for glottic carcinoma

    SciTech Connect

    Miller, S.; Harrison, L.B.; Solomon, B.; Sessions, R.B. )

    1990-06-01

    A prospective evaluation of vocal changes in patients receiving radiation therapy for T1 and T2 (AJC) glottic carcinoma was undertaken in January 1987. Vocal analysis was performed prior to radiotherapy and at specific intervals throughout the radiation treatment program. The voicing ratio was extrapolated from a sustained vowel phonation using the Visipitch interfaced with the IBM-PC. Preliminary observations suggested three distinct patterns of vocal behavior: 1. reduced voicing ratio with precipitous improvement within the course of treatment, 2. high initial voicing ratio with reduction secondary to radiation induced edema, with rapid improvement in the voicing component after the edema subsided, and 3. fluctuating voicing ratio during and following treatment. Enrollment of new patients and a 2-year follow-up of current patients was undertaken.

  16. Intensity modulating and other radiation therapy devices for dose painting.

    PubMed

    Galvin, James M; De Neve, Wilfried

    2007-03-10

    The introduction of intensity-modulated radiation therapy (IMRT) in the early 1990s created the possibility of generating dramatically improved dose distributions that could be tailored to fit a complex geometric arrangement of targets that push against or even surround healthy critical structures. IMRT is a new treatment paradigm that goes beyond the capabilities of the earlier technology called three-dimensional radiation therapy (3DCRT). IMRT took the older approach of using fields that conformed to the silhouette of the target to deliver a relatively homogeneous intensity of radiation and separated the conformal fields into many subfields so that intensity could be varied to better control the final dose distribution. This technique makes it possible to generate radiation dose clouds that have indentations in their surface. Initially, this technology was mainly used to avoid and thus control the dose delivered to critical structures so that they are not seriously damaged in the process of irradiating nearby targets to an appropriately high dose. Avoidance of critical structures allowed homogeneous dose escalation that led to improved local control for small tumors. However, the normal tissue component of large tumors often prohibits homogeneous dose escalation. A newer concept of dose-painting IMRT is aimed at exploiting inhomogeneous dose distributions adapted to tumor heterogeneity. Tumor regions of increased radiation resistance receive escalated dose levels, whereas radiation-sensitive regions receive conventional or even de-escalated dose levels. Dose painting relies on biologic imaging such as positron emission tomography, functional magnetic resonance imaging, and magnetic resonance spectroscopy. This review will describe the competing techologies for dose painting with an emphasis on their commonalities.

  17. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  18. Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance

    PubMed Central

    Burke, Paul A.; Pun, Suzie H.; Reineke, Theresa M.

    2013-01-01

    Nucleic acid therapeutics are attracting renewed interest due to recent clinical advances and product approvals. Most leading programs use chemical conjugates, or viral vectors in the case of gene therapy, while several use no delivery system at all. Polymer systems, which have been at the periphery of this renaissance, often involve greater molecular complexity than competing approaches, which must be justified by their advantages. Advanced analytical methods, along with biological tools for characterizing biotransformation and intracellular trafficking, are increasingly being applied to nucleic acid delivery systems including those based on polymers. These frontiers of investigation create the opportunity for an era where highly defined polymer compositions are optimized based on mechanistic insights in a way that has not been previously possible, offering the prospect of greater differentiation from alternatives. This will require integrated collaboration between polymer scientists and those from other disciplines. PMID:24683504

  19. Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance.

    PubMed

    Burke, Paul A; Pun, Suzie H; Reineke, Theresa M

    2013-10-15

    Nucleic acid therapeutics are attracting renewed interest due to recent clinical advances and product approvals. Most leading programs use chemical conjugates, or viral vectors in the case of gene therapy, while several use no delivery system at all. Polymer systems, which have been at the periphery of this renaissance, often involve greater molecular complexity than competing approaches, which must be justified by their advantages. Advanced analytical methods, along with biological tools for characterizing biotransformation and intracellular trafficking, are increasingly being applied to nucleic acid delivery systems including those based on polymers. These frontiers of investigation create the opportunity for an era where highly defined polymer compositions are optimized based on mechanistic insights in a way that has not been previously possible, offering the prospect of greater differentiation from alternatives. This will require integrated collaboration between polymer scientists and those from other disciplines.

  20. Advancing polymeric delivery systems amidst a nucleic acid therapy renaissance.

    PubMed

    Burke, Paul A; Pun, Suzie H; Reineke, Theresa M

    2013-10-15

    Nucleic acid therapeutics are attracting renewed interest due to recent clinical advances and product approvals. Most leading programs use chemical conjugates, or viral vectors in the case of gene therapy, while several use no delivery system at all. Polymer systems, which have been at the periphery of this renaissance, often involve greater molecular complexity than competing approaches, which must be justified by their advantages. Advanced analytical methods, along with biological tools for characterizing biotransformation and intracellular trafficking, are increasingly being applied to nucleic acid delivery systems including those based on polymers. These frontiers of investigation create the opportunity for an era where highly defined polymer compositions are optimized based on mechanistic insights in a way that has not been previously possible, offering the prospect of greater differentiation from alternatives. This will require integrated collaboration between polymer scientists and those from other disciplines. PMID:24683504