Sample records for advanced rationally designed

  1. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents.

    PubMed

    Shah, Syed Shoaib Ahmad; Rivera, Gildardo; Ashfaq, Muhammad

    2013-01-01

    Now-a-days, cancer is becoming one of the major problems of public health in the world. Pharmacology treatment is a way to increase quality and long life. Predominantly, in last decade sulfonamide derivatives have been described as potential carbonic anhydrase inhibitors. In the present work, we describe recent advances during the last decade in medicinal chemistry of sulfonamides derivatives with some examples of rational design as anti-tumoral, antibacterial and anti-inflammatory agents. We show strategy design, structure-activity relationship, biological activity and advances of new sulfonamide compounds that have more health significance than some clinically used sulfonamides.

  2. Advances in drying: Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujumdar, A.S.

    1987-01-01

    Topics covered in this volume include recent thoughts in modeling of drying phenomena, use of computers in rational design of drying particulates, recent advances in drying of wood, and heat/mass transfer phenomena in drying of solids. As the readers will no doubt notice, special effort is made to ensure the truly international nature of the contents of this serial publication. As existing knowledge on drying and dryers becomes more widely and readily accessible, it is expected that more and more dryers will be designed rationally rather than built solely with the benefit of empiricism.

  3. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  4. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions.

    PubMed

    Diller, David J; Swanson, Jon; Bayden, Alexander S; Jarosinski, Mark; Audie, Joseph

    2015-01-01

    Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.

  5. Economic reasoning and artificial intelligence.

    PubMed

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. Copyright © 2015, American Association for the Advancement of Science.

  6. A decade of vaccines: Integrating immunology and vaccinology for rational vaccine design.

    PubMed

    D'Argenio, David A; Wilson, Christopher B

    2010-10-29

    Vaccination stands as one of the most successful public health measures of the last century. New approaches will be needed, however, to develop highly effective vaccines to prevent tuberculosis, HIV-AIDS, and malaria and to eradicate polio. Current advances in immunology and technology have set the stage for rational vaccine design to begin a "Decade of Vaccines." Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Transitioning Rationally Designed Catalytic Materials to Real 'Working' Catalysts Produced at Commercial Scale: Nanoparticle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.

    Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up ofmore » nano-structured materials are overcome.« less

  8. Vaccines: From Empirical Development to Rational Design

    PubMed Central

    Rueckert, Christine; Guzmán, Carlos A.

    2012-01-01

    Infectious diseases are responsible for an overwhelming number of deaths worldwide and their clinical management is often hampered by the emergence of multi-drug-resistant strains. Therefore, prevention through vaccination currently represents the best course of action to combat them. However, immune escape and evasion by pathogens often render vaccine development difficult. Furthermore, most currently available vaccines were empirically designed. In this review, we discuss why rational design of vaccines is not only desirable but also necessary. We introduce recent developments towards specifically tailored antigens, adjuvants, and delivery systems, and discuss the methodological gaps and lack of knowledge still hampering true rational vaccine design. Finally, we address the potential and limitations of different strategies and technologies for advancing vaccine development. PMID:23144616

  9. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  10. Computerized structural mechanics for 1990's: Advanced aircraft needs

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Backman, B. F.

    1989-01-01

    The needs for computerized structural mechanics (CSM) as seen from the standpoint of the aircraft industry are discussed. These needs are projected into the 1990's with special focus on the new advanced materials. Preliminary design/analysis, research, and detail design/analysis are identified as major areas. The role of local/global analyses in these different areas is discussed. The lessons learned in the past are used as a basis for the design of a CSM framework that could modify and consolidate existing technology and include future developments in a rational and useful way. A philosophy is stated, and a set of analyses needs driven by the emerging advanced composites is enumerated. The roles of NASA, the universities, and the industry are identified. Finally, a set of rational research targets is recommended based on both the new types of computers and the increased complexity the industry faces. Computerized structural mechanics should be more than new methods in structural mechanics and numerical analyses. It should be a set of engineering applications software products that combines innovations in structural mechanics, numerical analysis, data processing, search and display features, and recent hardware advances and is organized in a framework that directly supports the design process.

  11. Directed molecular evolution to design advanced red fluorescent proteins.

    PubMed

    Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2011-11-29

    Fluorescent proteins have become indispensable imaging tools for biomedical research. Continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications.

  12. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  13. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    PubMed

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Tri-Squared Mean Cross Comparative Analysis: An Advanced Post Hoc Qualitative and Quantitative Metric for a More In-Depth Examination of the Initial Research Outcomes of the Tri-Square Test

    ERIC Educational Resources Information Center

    Osler, James Edward

    2013-01-01

    This monograph provides an epistemological rational for the design of an advanced novel analysis metric. The metric is designed to analyze the outcomes of the Tri-Squared Test. This methodology is referred to as: "Tri-Squared Mean Cross Comparative Analysis" (given the acronym TSMCCA). Tri-Squared Mean Cross Comparative Analysis involves…

  15. Considerations for the rational design of a Chlamydia vaccine.

    PubMed

    Liang, Steven; Bulir, David; Kaushic, Charu; Mahony, James

    2017-04-03

    Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Remarkable progress in vaccine research over the past six decades has led to the advancement of novel C. trachomatis vaccine candidates into clinical trials. However, many questions regarding the role of specific cellular populations and molecular mechanisms in protective immunity against human C. trachomatis genital tract infections remain unanswered. Biomarkers of vaccine induced protective immunity are elusive in humans, while a cautionary message on the translatability of data obtained from current animal models has emanated from vaccine research and development efforts against other important human pathogens. In this commentary, we highlight recent advances in Chlamydia vaccine development and discuss their implications in the context of a rational approach to the design of a human C. trachomatis vaccine.

  16. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  17. Rational Design of Improved Pharmabiotics

    PubMed Central

    Sleator, Roy D.; Hill, Colin

    2009-01-01

    Herein we review the most recent advances in probiotic research and applications with particular emphasis on the novel concept of patho-biotechnology: the application of pathogen-derived (ex vivo and in vivo) stress survival strategies for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications. PMID:19753318

  18. Rational design of improved pharmabiotics.

    PubMed

    Sleator, Roy D; Hill, Colin

    2009-01-01

    Herein we review the most recent advances in probiotic research and applications with particular emphasis on the novel concept of patho-biotechnology: the application of pathogen-derived (ex vivo and in vivo) stress survival strategies for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications.

  19. Design of a small molecule against an oncogenic noncoding RNA

    PubMed Central

    Velagapudi, Sai Pradeep; Cameron, Michael D.; Haga, Christopher L.; Rosenberg, Laura H.; Lafitte, Marie; Duckett, Derek R.; Phinney, Donald G.; Disney, Matthew D.

    2016-01-01

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif–small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm. PMID:27170187

  20. Molecular Docking of Enzyme Inhibitors: A Computational Tool for Structure-Based Drug Design

    ERIC Educational Resources Information Center

    Rudnitskaya, Aleksandra; Torok, Bela; Torok, Marianna

    2010-01-01

    Molecular docking is a frequently used method in structure-based rational drug design. It is used for evaluating the complex formation of small ligands with large biomolecules, predicting the strength of the bonding forces and finding the best geometrical arrangements. The major goal of this advanced undergraduate biochemistry laboratory exercise…

  1. Biotrichotomy: The Neuroscientific and Neurobiological Systemology, Epistemology, and Methodology of the Tri-Squared Test and Tri-Center Analysis in Biostatistics

    ERIC Educational Resources Information Center

    Osler, James Edward

    2015-01-01

    This monograph provides a neuroscience-based systemological, epistemological, and methodological rational for the design of an advanced and novel parametric statistical analytics designed for the biological sciences referred to as "Biotrichotomy". The aim of this new arena of statistics is to provide dual metrics designed to analyze the…

  2. Computer Aided Enzyme Design and Catalytic Concepts

    PubMed Central

    Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh

    2014-01-01

    Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method. PMID:24814389

  3. Recent advances in rational approaches for enzyme engineering

    PubMed Central

    Steiner, Kerstin; Schwab, Helmut

    2012-01-01

    Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications. PMID:24688651

  4. Beyond directed evolution - semi-rational protein engineering and design

    PubMed Central

    Lutz, Stefan

    2010-01-01

    Over the last two decades, directed evolution has transformed the field of protein engineering. The advances in understanding protein structure and function, in no insignificant part a result of directed evolution studies, are increasingly empowering scientists and engineers to device more effective methods for manipulating and tailoring biocatalysts. Abandoning large combinatorial libraries, the focus has shifted to small, functionally-rich libraries and rational design. A critical component to the success of these emerging engineering strategies are computational tools for the evaluation of protein sequence datasets and the analysis of conformational variations of amino acids in proteins. Highlighting the opportunities and limitations of such approaches, this review focuses on recent engineering and design examples that require screening or selection of small libraries. PMID:20869867

  5. Engineering in complex systems.

    PubMed

    Bujara, Matthias; Panke, Sven

    2010-10-01

    The implementation of the engineering design cycle of measure, model, manipulate would drastically enhance the success rate of biotechnological designs. Recent progress for the three elements suggests that the scope of the traditional engineering paradigm in biotechnology is expanding. Substantial advances were made in dynamic in vivo analysis of metabolism, which is essential for the accurate prediction of metabolic pathway behavior. Novel methods that require variable degrees of system knowledge facilitate metabolic system manipulation. The combinatorial testing of pre-characterized parts is particularly promising, because it can profit from automation and limits the search space. Finally, conceptual advances in orthogonalizing cells should enhance the reliability of engineering designs in the future. Coupled to improved in silico models of metabolism, these advances should allow a more rational design of metabolic systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks

    DOE PAGES

    Barkholtz, Heather M.; Liu, Di -Jia

    2016-11-14

    Over the past several years, metal-organic framework (MOF)-derived platinum group metal free (PGM-free) electrocatalysts have gained considerable attention due to their high efficiency and low cost as potential replacement for platinum in catalyzing oxygen reduction reaction (ORR). In this review, we summarize the recent advancements in design, synthesis and characterization of MOF-derived ORR catalysts and their performances in acidic and alkaline media. As a result, we also discuss the key challenges such as durability and activity enhancement critical in moving forward this emerging electrocatalyst science.

  7. Vaccine technologies: From whole organisms to rationally designed protein assemblies.

    PubMed

    Karch, Christopher P; Burkhard, Peter

    2016-11-15

    Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice

    PubMed Central

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field. PMID:24564841

  9. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. AMOVA ["Accumulative Manifold Validation Analysis"]: An Advanced Statistical Methodology Designed to Measure and Test the Validity, Reliability, and Overall Efficacy of Inquiry-Based Psychometric Instruments

    ERIC Educational Resources Information Center

    Osler, James Edward, II

    2015-01-01

    This monograph provides an epistemological rational for the Accumulative Manifold Validation Analysis [also referred by the acronym "AMOVA"] statistical methodology designed to test psychometric instruments. This form of inquiry is a form of mathematical optimization in the discipline of linear stochastic modelling. AMOVA is an in-depth…

  11. Recent advances in the rational design and development of LIM kinase inhibitors are not enough to enter clinical trials.

    PubMed

    Manetti, Fabrizio

    2018-06-08

    LIM kinases are involved in various pathophysiological processes that depend on actin organization. Alteration of microtubule dynamics by LIMK dysregulation is in fact related to tumor progression and metastasis, viral infection, and ocular diseases, such as glaucoma. As a consequence, many efforts have been done in recent years to rationally design small molecules able to inhibit LIMK activity selectively, without affecting other kinases. As a result, compounds optimized in terms of binding affinity and pharmacokinetic parameters have been discovered, that however failed to access clinical trials. In this review, a comprehensive survey of recent LIMK inhibitors is reported, together with SAR considerations and optimization processes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    PubMed Central

    Junager, Nina P. L.; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  13. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielinski, Ashley R.; Boban, Mathew; He, Yang

    2017-01-24

    A method for tunable control of geometry in hyperbranched ZnO nanowire (NW) systems is reported, which enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angle for a variety ofmore » liquids, which is supported by mathematical models of structural superomniphobicity. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles, water: 172°/170°, hexadecane: 166°/156°, octane: 162°/145°, and heptane: 160°/130°. Low surface tension liquids were shown to bounce off the surface from a height of 7 cm without breaking through and wetting. This approach demonstrates the power of ALD as an enabling technique for hierarchical materials by design, spanning the macro, micro, and nano length scales.« less

  14. Recent Advances in the Synthesis, Characterization and Application of Zn+-containing Heterogeneous Catalysts.

    PubMed

    Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I N; Kang, Xiaofeng; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2016-07-01

    Monovalent Zn + (3d 10 4s 1 ) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn + -containing materials. By careful design, Zn + -related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO 2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X-ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn + species and their structure-performance relationships can be understood. Such advanced characterization tools guide the rational design of high-performance Zn + -containing catalysts for efficient energy conversion.

  15. Recent Advances in the Synthesis, Characterization and Application of Zn+‐containing Heterogeneous Catalysts

    PubMed Central

    Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I. N.; Kang, Xiaofeng; Wu, Li‐Zhu; Tung, Chen‐Ho

    2016-01-01

    Monovalent Zn+ (3d104s1) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn+‐containing materials. By careful design, Zn+‐related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X‐ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn+ species and their structure‐performance relationships can be understood. Such advanced characterization tools guide the rational design of high‐performance Zn+‐containing catalysts for efficient energy conversion. PMID:27818902

  16. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  17. Design flood hydrograph estimation procedure for small and fully-ungauged basins

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Petroselli, A.

    2013-12-01

    The Rational Formula is the most applied equation in practical hydrology due to its simplicity and the effective compromise between theory and data availability. Although the Rational Formula is affected by several drawbacks, it is reliable and surprisingly accurate considering the paucity of input information. However, after more than a century, the recent computational, theoretical, and large-scale monitoring progresses compel us to try to suggest a more advanced yet still empirical procedure for estimating peak discharge in small and ungauged basins. In this contribution an alternative empirical procedure (named EBA4SUB - Event Based Approach for Small and Ungauged Basins) based on the common modelling steps: design hyetograph, rainfall excess, and rainfall-runoff transformation, is described. The proposed approach, accurately adapted for the fully-ungauged basin condition, provides a potentially better estimation of the peak discharge, a design hydrograph shape, and, most importantly, reduces the subjectivity of the hydrologist in its application.

  18. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    NASA Astrophysics Data System (ADS)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  19. Advancing cancer drug discovery towards more agile development of targeted combination therapies.

    PubMed

    Carragher, Neil O; Unciti-Broceta, Asier; Cameron, David A

    2012-01-01

    Current drug-discovery strategies are typically 'target-centric' and are based upon high-throughput screening of large chemical libraries against nominated targets and a selection of lead compounds with optimized 'on-target' potency and selectivity profiles. However, high attrition of targeted agents in clinical development suggest that combinations of targeted agents will be most effective in treating solid tumors if the biological networks that permit cancer cells to subvert monotherapies are identified and retargeted. Conventional drug-discovery and development strategies are suboptimal for the rational design and development of novel drug combinations. In this article, we highlight a series of emerging technologies supporting a less reductionist, more agile, drug-discovery and development approach for the rational design, validation, prioritization and clinical development of novel drug combinations.

  20. Immunological mechanisms of vaccination

    PubMed Central

    Pulendran, Bali; Ahmed, Rafi

    2011-01-01

    Vaccines represent one of the greatest triumphs of modern medicine. Despite the common origins of vaccinology and immunology more than 200 years ago, the two disciplines have evolved along such different trajectories that most of the highly successful vaccines have been made empirically, with little or no immunological insight. Recent advances in innate immunity have offered new insights about the mechanisms of vaccine-induced immunity and have facilitated a more rational approach to vaccine design. Here we will discuss these advances and emerging themes on the immunology of vaccination. PMID:21739679

  1. Advances in nanosized zeolites

    NASA Astrophysics Data System (ADS)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  2. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration

    PubMed Central

    Ma, Bing; Xie, Jingwei; Jiang, Jiang; Shuler, Franklin D; Bartlett, David E

    2013-01-01

    This article reviews recent significant advances in the design of nanofiber scaffolds for orthopedic tissue repair and regeneration. It begins with a brief introduction on the limitations of current approaches for orthopedic tissue repair and regeneration. It then illustrates that rationally designed scaffolds made up of electrospun nanofibers could be a promising solution to overcome the problems that current approaches encounter. The article also discusses the intriguing properties of electrospun nanofibers, including control of composition, structures, orders, alignments and mechanical properties, use as carriers for topical drug and/or gene sustained delivery, and serving as substrates for the regulation of cell behaviors, which could benefit musculoskeletal tissue repair and regeneration. It further highlights a few of the many recent applications of electrospun nanofiber scaffolds in repairing and regenerating various orthopedic tissues. Finally, the article concludes with perspectives on the challenges and future directions for better design, fabrication and utilization of nanofiber scaffolds for orthopedic tissue engineering. PMID:23987110

  3. [Influenza A from the rational choice theory: proposals for decision making in prevention policies].

    PubMed

    Peña, Francisco Garrido; Fernández, Luís Andrés López; García, Eugenia Gil

    2009-01-01

    This article is a reflection on the social uncertainty caused by Influenza A and on the consequences that it can have on decision making in health promotion policies. We use concepts and metaphors of the Rational Choice Theory, among them, the "in gratitude effect" or the "distrust effect", as we analyse how these can become obstacles for the efficiency of prevention policies. Then, we focus on the information asymmetry of the principal-agent relationship, and we propose measures to diminish the "moral risk" that they cause. We finish by advancing some proposals for designing lines and strategies of action in health promotion policies.

  4. The Triangulation Algorithmic: A Transformative Function for Designing and Deploying Effective Educational Technology Assessment Instruments

    ERIC Educational Resources Information Center

    Osler, James Edward

    2013-01-01

    This paper discusses the implementation of the Tri-Squared Test as an advanced statistical measure used to verify and validate the research outcomes of Educational Technology software. A mathematical and epistemological rational is provided for the transformative process of qualitative data into quantitative outcomes through the Tri-Squared Test…

  5. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    PubMed

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  6. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-07-25

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  7. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials

    PubMed Central

    Zadpoor, Amir A.

    2017-01-01

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes. PMID:28757572

  8. Modeling Tumor Clonal Evolution for Drug Combinations Design.

    PubMed

    Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A

    2016-03-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs.

  9. Structure and Computation in Immunoreagent Design: From Diagnostics to Vaccines.

    PubMed

    Gourlay, Louise; Peri, Claudio; Bolognesi, Martino; Colombo, Giorgio

    2017-12-01

    Novel immunological tools for efficient diagnosis and treatment of emerging infections are urgently required. Advances in the diagnostic and vaccine development fields are continuously progressing, with reverse vaccinology and structural vaccinology (SV) methods for antigen identification and structure-based antigen (re)design playing increasingly relevant roles. SV, in particular, is predicted to be the front-runner in the future development of diagnostics and vaccines targeting challenging diseases such as AIDS and cancer. We review state-of-the-art methodologies for structure-based epitope identification and antigen design, with specific applicative examples. We highlight the implications of such methods for the engineering of biomolecules with improved immunological properties, potential diagnostic and/or therapeutic uses, and discuss the perspectives of structure-based rational design for the production of advanced immunoreagents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  11. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses.

    PubMed

    Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A

    2010-04-01

    Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Rational design of metal nitride redox materials for solar-driven ammonia synthesis.

    PubMed

    Michalsky, Ronald; Pfromm, Peter H; Steinfeld, Aldo

    2015-06-06

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700-1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia.

  13. Rational design of metal nitride redox materials for solar-driven ammonia synthesis

    PubMed Central

    Michalsky, Ronald; Pfromm, Peter H.; Steinfeld, Aldo

    2015-01-01

    Fixed nitrogen is an essential chemical building block for plant and animal protein, which makes ammonia (NH3) a central component of synthetic fertilizer for the global production of food and biofuels. A global project on artificial photosynthesis may foster the development of production technologies for renewable NH3 fertilizer, hydrogen carrier and combustion fuel. This article presents an alternative path for the production of NH3 from nitrogen, water and solar energy. The process is based on a thermochemical redox cycle driven by concentrated solar process heat at 700–1200°C that yields NH3 via the oxidation of a metal nitride with water. The metal nitride is recycled via solar-driven reduction of the oxidized redox material with nitrogen at atmospheric pressure. We employ electronic structure theory for the rational high-throughput design of novel metal nitride redox materials and to show how transition-metal doping controls the formation and consumption of nitrogen vacancies in metal nitrides. We confirm experimentally that iron doping of manganese nitride increases the concentration of nitrogen vacancies compared with no doping. The experiments are rationalized through the average energy of the dopant d-states, a descriptor for the theory-based design of advanced metal nitride redox materials to produce sustainable solar thermochemical ammonia. PMID:26052421

  14. Combinatorial and high-throughput screening of materials libraries: review of state of the art.

    PubMed

    Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus; Takeuchi, Ichiro; Chisholm, Bret; Lam, Hubert

    2011-11-14

    Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.

  15. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  16. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    PubMed Central

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  17. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design.

    PubMed

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Jiang, Hao; Li, Chunzhong; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2018-01-01

    Tremendous efforts have been dedicated into the development of high-performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery-like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery-like behavior are discussed. Furthermore, guidelines for material selection, the state-of-the-art materials, and the electrode design rules to advanced electrode are proposed.

  18. Principles underlying rational design of live attenuated influenza vaccines

    PubMed Central

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  19. Successful implementation of a guideline program for the rational use of lipid-lowering drugs.

    PubMed

    Stuart, M E; Handley, M A; Chamberlain, M A; Wallach, R W; Penna, P M; Stergachis, A

    1991-01-01

    Following the National Cholesterol Educational Program's (NCEP) 1988 screening and treatment recommendations, an educational and behavior-change program at Group Health Cooperative of Puget Sound (GHC) was developed to guide the use of lipid-lowering drugs within the larger context of cardiac risk reduction. The program has been successful in advancing a rational program to enhance care and manage costs of the use of lipid-lowering agents at GHC. Cost savings have been significant over the past two years. The educational design of the program includes training and ongoing education of a core group of "lipid gurus," who educate colleagues in area medical centers in a rational approach to hyperlipidemia. Patient education and patient participation in decision-making was emphasized. Program evaluation has demonstrated that physicians and patients are satisfied with the program, and inappropriate drug expenditures have been prevented. Key elements of the program include a critical review of outcome studies in the medical literature, use of information systems, algorithms and written materials organized into a well-designed, ongoing educational program, and development of a core group of physicians and pharmacists to administer the program at the clinic level.

  20. Modeling Tumor Clonal Evolution for Drug Combinations Design

    PubMed Central

    Zhao, Boyang; Hemann, Michael T.; Lauffenburger, Douglas A.

    2016-01-01

    Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs. PMID:28435907

  1. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    PubMed

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  2. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    NASA Astrophysics Data System (ADS)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  3. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    PubMed

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  4. Working Memory Strategies during Rational Number Magnitude Processing

    ERIC Educational Resources Information Center

    Hurst, Michelle; Cordes, Sara

    2017-01-01

    Rational number understanding is a critical building block for success in more advanced mathematics; however, how rational number magnitudes are conceptualized is not fully understood. In the current study, we used a dual-task working memory (WM) interference paradigm to investigate the dominant type of strategy (i.e., requiring verbal WM…

  5. Noncovalent assembly. A rational strategy for the realization of chain-growth supramolecular polymerization.

    PubMed

    Kang, Jiheong; Miyajima, Daigo; Mori, Tadashi; Inoue, Yoshihisa; Itoh, Yoshimitsu; Aida, Takuzo

    2015-02-06

    Over the past decade, major progress in supramolecular polymerization has had a substantial effect on the design of functional soft materials. However, despite recent advances, most studies are still based on a preconceived notion that supramolecular polymerization follows a step-growth mechanism, which precludes control over chain length, sequence, and stereochemical structure. Here we report the realization of chain-growth polymerization by designing metastable monomers with a shape-promoted intramolecular hydrogen-bonding network. The monomers are conformationally restricted from spontaneous polymerization at ambient temperatures but begin to polymerize with characteristics typical of a living mechanism upon mixing with tailored initiators. The chain growth occurs stereoselectively and therefore enables optical resolution of a racemic monomer. Copyright © 2015, American Association for the Advancement of Science.

  6. Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    NASA Astrophysics Data System (ADS)

    Ulery, Bret D.; Petersen, Latrisha K.; Phanse, Yashdeep; Kong, Chang Sun; Broderick, Scott R.; Kumar, Devender; Ramer-Tait, Amanda E.; Carrillo-Conde, Brenda; Rajan, Krishna; Wannemuehler, Michael J.; Bellaire, Bryan H.; Metzger, Dennis W.; Narasimhan, Balaji

    2011-12-01

    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens.

  7. Rational desires and the limitation of life-sustaining treatment.

    PubMed

    Savulescu, Julian

    1994-07-01

    It is accepted that treatment of previously competent, now incompetent patients can be limited if that is what the patient would desire, if she were now competent. Expressed past preferences or an advance directive are often taken to constitute sufficient evidence of what a patient would now desire. I distinguish between desires and rational desires. I argue that for a desire to be an expression of a person's autonomy, it must be or satisfy that person's rational desires. A person rationally desires a course of action if that person desires it while being in possession of all available relevant facts, without committing relevant error of logic, and "vividly imagining" what its consequences would be like for her. I argue that some competent, expressed desires obstruct autonomy. I show that several psychological mechanisms operate to prevent a person rationally evaluating what future life in a disabled state would be like. Rational evaluation is difficult. However, treatment limitation, if it is to respect autonomy, must be in accord with a patient's rational desires, and not merely her expressed desires. I illustrate the implications of these arguments for the use of advance directives and for the treatment of competent patients.

  8. Development of quantitative structure-activity relationships and its application in rational drug design.

    PubMed

    Yang, Guang-Fu; Huang, Xiaoqin

    2006-01-01

    Over forty years have elapsed since Hansch and Fujita published their pioneering work of quantitative structure-activity relationships (QSAR). Following the introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer in 1998, other three-dimensional QSAR methods have been developed. Currently, combination of classical QSAR and other computational techniques at three-dimensional level is of greatest interest and generally used in the process of modern drug discovery and design. During the last several decades, a number of different mythologies incorporating a range of molecular descriptors and different statistical regression ways have been proposed and successfully applied in developing of new drugs, thus QSAR method has been proven to be indispensable in not only the reliable prediction of specific properties of new compounds, but also the help to elucidate the possible molecular mechanism of the receptor-ligand interactions. Here, we review the recent developments in QSAR and their applications in rational drug design, focusing on the reasonable selection of novel molecular descriptors and the construction of predictive QSAR models by the help of advanced computational techniques.

  9. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.

    2014-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life. PMID:24741694

  10. Semiconductor nanowires: A platform for nanoscience and nanotechnology

    PubMed Central

    Lieber, Charles M.

    2012-01-01

    Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems. PMID:22707850

  11. Combined electron beam imaging and ab initio modeling of T1 precipitates in Al-Li-Cu alloys

    NASA Astrophysics Data System (ADS)

    Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.

    2011-05-01

    Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T1 precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T1 structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.

  12. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  13. Rational design of adjuvants targeting the C-type lectin Mincle.

    PubMed

    Decout, Alexiane; Silva-Gomes, Sandro; Drocourt, Daniel; Barbe, Sophie; André, Isabelle; Cueto, Francisco J; Lioux, Thierry; Sancho, David; Pérouzel, Eric; Vercellone, Alain; Prandi, Jacques; Gilleron, Martine; Tiraby, Gérard; Nigou, Jérôme

    2017-03-07

    The advances in subunit vaccines development have intensified the search for potent adjuvants, particularly adjuvants inducing cell-mediated immune responses. Identification of the C-type lectin Mincle as one of the receptors underlying the remarkable immunogenicity of the mycobacterial cell wall, via recognition of trehalose-6,6'-dimycolate (TDM), has opened avenues for the rational design of such molecules. Using a combination of chemical synthesis, biological evaluation, molecular dynamics simulations, and protein mutagenesis, we gained insight into the molecular bases of glycolipid recognition by Mincle. Unexpectedly, the fine structure of the fatty acids was found to play a key role in the binding of a glycolipid to the carbohydrate recognition domain of the lectin. Glucose and mannose esterified at O -6 by a synthetic α-ramified 32-carbon fatty acid showed agonist activity similar to that of TDM, despite their much simpler structure. Moreover, they were seen to stimulate proinflammatory cytokine production in primary human and murine cells in a Mincle-dependent fashion. Finally, they were found to induce strong Th1 and Th17 immune responses in vivo in immunization experiments in mice and conferred protection in a murine model of Mycobacterium tuberculosis infection. Here we describe the rational development of new molecules with powerful adjuvant properties.

  14. Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

    DTIC Science & Technology

    2015-12-21

    SECURITY CLASSIFICATION OF: The overall goal of this project is to determine how electrode surface chemistry can be rationally designed to decrease...2015 Approved for Public Release; Distribution Unlimited Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for...ABSTRACT Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

  15. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.

    PubMed

    Hasunuma, Tomohisa; Ishii, Jun; Kondo, Akihiko

    2015-12-01

    Conferring biomass hydrolysis activity on yeast through genetic engineering has paved the way for the development of groundbreaking processes for producing liquid fuels and commodity chemicals from lignocellulosic biomass. However, the overproduction and misfolding of heterologous and endogenous proteins can trigger cellular stress, increasing the metabolic burden and retarding growth. Improving the efficiency of lignocellulosic breakdown requires engineering of yeast secretory pathway based on system-wide metabolic analysis as well as DNA constructs for enhanced cellulase gene expression with advanced molecular biology tools. Also, yeast is subjected to severe stress due to toxic compounds generated during lignocellulose pretreatment in consolidated saccharification and fermentation processes. The prospect for development of robust yeast strains makes combining evolutionary and rational engineering strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The development of bis(hydroxymethyl)pyrrole analogs as bifunctional DNA cross-linking agents and their chemotherapeutic potential.

    PubMed

    Su, Tsann-Long; Lee, Te-Chang; Kakadiya, Rajesh

    2013-11-01

    Bifunctional DNA cross-linking agents are widely used as chemotherapeutic agents in clinics. The advance in the development of these agents as potential antitumor agents has generated various types of bis(hydroxymethyl)pyrrole analogs. In order to develop highly effective anticancer agents, it is necessary to understand the chemophysical properties, structure-activity relationships, therapeutic potency, toxicity/safety, and pharmacokinetics of these DNA cross-linking agents. This review presents an overview of the recent advances in developing various types of bis(hydroxymethyl)pyrrole analogs with potential antitumor activity to provide more information for future drug design and strategies for combination chemotherapy. The rational drug design, chemical syntheses, antitumor activity, mechanism of action, and development of combined chemotherapy regimens, including a DNA repair inhibitor, are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors.

    PubMed

    Wang, Houyu; He, Yao

    2017-02-03

    During the past decades, owing to silicon nanomaterials' unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors.

  18. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors

    PubMed Central

    Wang, Houyu; He, Yao

    2017-01-01

    During the past decades, owing to silicon nanomaterials’ unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors. PMID:28165357

  19. On acquiring decision making skills for endovascular interventions.

    PubMed

    Lanzer, Peter; Prechelt, Lutz

    2008-11-01

    To improve interventional training we propose a staged rational approach for decision making and skill acquisition. Education and training for endovascular interventions should start to develop the learners' decision-making skills by learning from explicit representations of master interventionist's tacit decision-making knowledge through implementation of the notions of generic interventional modules, interventional strategic and tactical designs. We hope that these suggestions will encourage action, stimulate dialogue and advance the precision of our learning, procedures, practice and patient care.

  20. Design of selective nuclear receptor modulators: RAR and RXR as a case study.

    PubMed

    de Lera, Angel R; Bourguet, William; Altucci, Lucia; Gronemeyer, Hinrich

    2007-10-01

    Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) are members of the nuclear receptor superfamily whose effects on cell growth and survival can be modulated therapeutically by small-molecule ligands. Although compounds that target these receptors are powerful anticancer drugs, their use is limited by toxicity. An improved understanding of the structural biology of RXRs and RARs and recent advances in the chemical synthesis of modified retinoid and rexinoid ligands should enable the rational design of more selective agents that might overcome such problems. Here, we review structural data for RXRs and RARs, discuss strategies in the design of selective RXR and RAR modulators, and consider lessons that can be learned for the design of selective nuclear-receptor modulators in general.

  1. Genome scale engineering techniques for metabolic engineering.

    PubMed

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Geology and Design: Formal and Rational Connections

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  3. Inhibition of Rac GTPases in the Therapy of Chronic Myelogenous Leukemia

    DTIC Science & Technology

    2009-04-01

    procedure is approximately 65%, however, the procedure is only available to a minority of CML patients due to a lack of compatible donors and age [8...apoptosis of BCR/ABL-positive cells [12-14], it provides an effective treatment in CML and has rejuvenated the field of rationalized drug design. The...of CML, most patients lack suitable donors or are not eligible for transplant due to advanced age .3–6 The development of imatinib mesylate, a

  4. Constraint-based modeling in microbial food biotechnology

    PubMed Central

    Rau, Martin H.

    2018-01-01

    Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM. PMID:29588387

  5. Mechanism Design for Incentivizing Social Media Contributions

    NASA Astrophysics Data System (ADS)

    Singh, Vivek K.; Jain, Ramesh; Kankanhalli, Mohan

    Despite recent advancements in user-driven social media platforms, tools for studying user behavior patterns and motivations remain primitive. We highlight the voluntary nature of user contributions and that users can choose when (and when not) to contribute to the common media pool. A Game theoretic framework is proposed to study the dynamics of social media networks where contribution costs are individual but gains are common. We model users as rational selfish agents, and consider domain attributes like voluntary participation, virtual reward structure, network effect, and public-sharing to model the dynamics of this interaction. The created model describes the most appropriate contribution strategy from each user's perspective and also highlights issues like 'free-rider' problem and individual rationality leading to irrational (i.e. sub-optimal) group behavior. We also consider the perspective of the system designer who is interested in finding the best incentive mechanisms to influence the selfish end-users so that the overall system utility is maximized. We propose and compare multiple mechanisms (based on optimal bonus payment, social incentive leveraging, and second price auction) to study how a system designer can exploit the selfishness of its users, to design incentive mechanisms which improve the overall task-completion probability and system performance, while possibly still benefiting the individual users.

  6. Biomimicry in metal-organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, MW; Gu, ZY; Bosch, M

    2015-06-15

    Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic MOMs is still at its embryonic stage, considerable progress has been made in the past few years. In this critical review, we will highlight the recent advances in the design, development and application of biomimetic MOMs, and illustrate how the incorporation of biological components into MOMs could further enrich their structural and functional diversity. More importantly, this review will provide a systematic overview of different methods for rational design of MOMs with biomimeticmore » features. Published by Elsevier B.V.« less

  7. Advanced electrolyte/additive for lithium-ion batteries with silicon anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuo; He, Meinan; Su, Chi-Cheung

    State-of-the-art lithium-ion batteries (LIBs) are based on a lithium transition metal oxide cathode, a graphite anode and a nonaqueous carbonate electrolyte. To further increase the energy and power density of LIBs, silicon anodes have been intensively explored due to their high theoretical capacity, low operation potential, and low cost. However, the main challenges for Si anode are the large volume change during lithiation/delithiation process and the instability of the solid-electrolyte-interphase associated with this process. Recently, significant progress has been achieved via advanced material fabrication technologies and rational electrolyte design in terms of improving the Coulombic efficiency and capacity retention. Inmore » this paper, new developments in advanced electrolyte and additive for LIBs with Si anode were systematically reviewed, and perspectives over future research were suggested.« less

  8. Systems Vaccinology: Enabling rational vaccine design with systems biological approaches

    PubMed Central

    Hagan, Thomas; Nakaya, Helder I.; Subramaniam, Shankar; Pulendran, Bali

    2015-01-01

    Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines. PMID:25858860

  9. Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding

    NASA Astrophysics Data System (ADS)

    Bush, Derek B.; Knotts, Thomas A.

    2017-04-01

    Antibody microarrays have the potential to revolutionize molecular detection for many applications, but their current use is limited by poor reliability, and efforts to change this have not yielded fruitful results. One difficulty which limits the rational engineering of next-generation devices is that little is known, at the molecular level, about the antibody-antigen binding process near solid surfaces. Atomic-level structural information is scant because typical experimental techniques (X-ray crystallography and NMR) cannot be used to image proteins bound to surfaces. To overcome this limitation, this study uses molecular simulation and an advanced, experimentally validated, coarse-grain, protein-surface model to compare fab-lysozyme binding in bulk solution and when the fab is tethered to hydrophobic and hydrophilic surfaces. The results show that the tether site in the fab, as well as the surface hydrophobicity, significantly impacts the binding process and suggests that the optimal design involves tethering fabs upright on a hydrophilic surface. The results offer an unprecedented, molecular-level picture of the binding process and give hope that the rational design of protein-microarrays is possible.

  10. Selective host molecules obtained by dynamic adaptive chemistry.

    PubMed

    Matache, Mihaela; Bogdan, Elena; Hădade, Niculina D

    2014-02-17

    Up till 20 years ago, in order to endow molecules with function there were two mainstream lines of thought. One was to rationally design the positioning of chemical functionalities within candidate molecules, followed by an iterative synthesis-optimization process. The second was the use of a "brutal force" approach of combinatorial chemistry coupled with advanced screening for function. Although both methods provided important results, "rational design" often resulted in time-consuming efforts of modeling and synthesis only to find that the candidate molecule was not performing the designed job. "Combinatorial chemistry" suffered from a fundamental limitation related to the focusing of the libraries employed, often using lead compounds that limit its scope. Dynamic constitutional chemistry has developed as a combination of the two approaches above. Through the rational use of reversible chemical bonds together with a large plethora of precursor libraries, one is now able to build functional structures, ranging from quite simple molecules up to large polymeric structures. Thus, by introduction of the dynamic component within the molecular recognition processes, a new perspective of deciphering the world of the molecular events has aroused together with a new field of chemistry. Since its birth dynamic constitutional chemistry has continuously gained attention, in particular due to its ability to easily create from scratch outstanding molecular structures as well as the addition of adaptive features. The fundamental concepts defining the dynamic constitutional chemistry have been continuously extended to currently place it at the intersection between the supramolecular chemistry and newly defined adaptive chemistry, a pivotal feature towards evolutive chemistry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Aerodynamic Design Study of Advanced Multistage Axial Compressor

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Wood, Jerry R.; Hathaway, Michael D.; Medd, Adam J.; Dang, Thong Q.

    2002-01-01

    As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.

  12. Simulation technology - A key to effective man-machine integration for future combat rotorcraft systems

    NASA Technical Reports Server (NTRS)

    Kerr, Andrew W.

    1990-01-01

    The utilization of advanced simulation technology in the development of the non-real-time MANPRINT design tools in the Army/NASA Aircrew-Aircraft Integration (A3I) program is described. A description is then given of the Crew Station Research and Development Facilities, the primary tool for the application of MANPRINT principles. The purpose of the A3I program is to develop a rational, predictive methodology for helicopter cockpit system design that integrates human factors engineering with other principles at an early stage in the development process, avoiding the high cost of previous system design methods. Enabling technologies such as the MIDAS work station are examined, and the potential of low-cost parallel-processing systems is indicated.

  13. Rational Design Methodology.

    DTIC Science & Technology

    1978-09-01

    This report describes an effort to specify a software design methodology applicable to the Air Force software environment . Available methodologies...of techniques for proof of correctness, design specification, and performance assessment of static designs. The rational methodology selected is a

  14. Effect of processing on Polymer/Composite structure and properties

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.

  15. Ecology and Equity: Toward the Rational Reenchantment of Schools and Society.

    ERIC Educational Resources Information Center

    Kurth-Schai, Ruthanne

    1992-01-01

    Discusses the advancement of social and environmental justice through schooling, noting philosophical barriers to equity. The article recommends a moral and conceptual vision where differences causing exploitation and alienation change into relationships fostering equity and reciprocity. Rational reenchantment can promote social and environmental…

  16. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens

    PubMed Central

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease. PMID:26526043

  17. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens.

    PubMed

    Liljeroos, Lassi; Malito, Enrico; Ferlenghi, Ilaria; Bottomley, Matthew James

    2015-01-01

    Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10-20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.

  18. Laccase engineering: from rational design to directed evolution.

    PubMed

    Mate, Diana M; Alcalde, Miguel

    2015-01-01

    Laccases are multicopper oxidoreductases considered by many in the biotechonology field as the ultimate "green catalysts". This is mainly due to their broad substrate specificity and relative autonomy (they use molecular oxygen from air as an electron acceptor and they only produce water as by-product), making them suitable for a wide array of applications: biofuel production, bioremediation, organic synthesis, pulp biobleaching, textiles, the beverage and food industries, biosensor and biofuel cell development. Since the beginning of the 21st century, specific features of bacterial and fungal laccases have been exhaustively adapted in order to reach the industrial demands for high catalytic activity and stability in conjunction with reduced production cost. Among the goals established for laccase engineering, heterologous functional expression, improved activity and thermostability, tolerance to non-natural media (organic solvents, ionic liquids, physiological fluids) and resistance to different types of inhibitors are all challenges that have been met, while obtaining a more comprehensive understanding of laccase structure-function relationships. In this review we examine the most significant advances in this exciting research area in which rational, semi-rational and directed evolution approaches have been employed to ultimately convert laccases into high value-added biocatalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  20. Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries

    PubMed Central

    Lu, Wei; Liang, Longwei; Sun, Xuan; Sun, Xiaofei; Wu, Chen; Hou, Linrui; Sun, Jinfeng

    2017-01-01

    Electrode materials and electrolytes play a vital role in device-level performance of rechargeable Li-ion batteries (LIBs). However, electrode structure/component degeneration and electrode-electrolyte sur-/interface evolution are identified as the most crucial obstacles in practical applications. Thanks to its congenital advantages, atomic layer deposition (ALD) methodology has attracted enormous attention in advanced LIBs. This review mainly focuses upon the up-to-date progress and development of the ALD in high-performance LIBs. The significant roles of the ALD in rational design and fabrication of multi-dimensional nanostructured electrode materials, and finely tailoring electrode-electrolyte sur-/interfaces are comprehensively highlighted. Furthermore, we clearly envision that this contribution will motivate more extensive and insightful studies in the ALD to considerably improve Li-storage behaviors. Future trends and prospects to further develop advanced ALD nanotechnology in next-generation LIBs were also presented. PMID:29036916

  1. Autonomy and the Curriculum: An Exploration of Three Views.

    ERIC Educational Resources Information Center

    Wesson, Anthony J.

    1986-01-01

    The nature of autonomy and the relevance of education to its development is explored through a discussion of three theories--progressive, liberal-rational, and social class--of the curriculum. Reasons are advanced for preference for a "collaborative" over a "negotiated" curriculum. Defends the liberal-rational theory.…

  2. In the Net of Economic Rationalism: Adult Education in Aotearoa/New Zealand.

    ERIC Educational Resources Information Center

    Zepke, Nick

    2001-01-01

    In the last decade, consensus around equality and efficiency in New Zealand adult education shifted to a focus on autonomy and accountability, economic rationalism, and vocational skills. Adult educators seeking change should emphasize participative democracy, connectedness, and valuing and advancing groups with diverse identities and interests.…

  3. Metal vinylidenes and allenylidenes in catalysis: applications in anti-Markovnikov additions to terminal alkynes and alkene metathesis.

    PubMed

    Bruneau, Christian; Dixneuf, Pierre H

    2006-03-27

    The involvement of a catalytic metal vinylidene species was proposed for the first time in 1986 to explain the regioselective formation of vinyl carbamates directly from terminal alkynes, carbon dioxide, and amines. Since this initial report, various metal vinylidenes and allenylidenes, which are key activation intermediates, have proved extremely useful for many alkyne transformations. They have contributed to the rational design of new catalytic reactions. This 20th anniversary is a suitable occasion to present the advancement of organometallic vinylidenes and allenylidenes in catalysis.

  4. Total Brain Death and the Integration of the Body Required of a Human Being

    PubMed Central

    Lee, Patrick

    2016-01-01

    I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change—the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. PMID:27097647

  5. Developing and Testing Rational Models of Message Design.

    ERIC Educational Resources Information Center

    O'Keefe, Barbara J.

    1992-01-01

    Responds to an article in the same issue regarding research methods for conversational cognition. Argues for a noncognitive view of rational models in communication research. Sets out an analysis of the kinds of claims made by rational models of message design. Discusses the implications of this analysis for studies of the cognitive processes…

  6. [Computational chemistry in structure-based drug design].

    PubMed

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  7. Challenges and Advances in Validating Enzyme Design Proposals: The Case of the Kemp Eliminase Catalysis†

    PubMed Central

    Frushicheva, Maria P.; Cao, Jie; Warshel, Arieh

    2011-01-01

    One of the fundamental challenges in biotechnology and biochemistry is the ability to design effective enzymes. Despite recent progress, most of the advances on this front have been made by placing the reacting fragments in the proper places, rather than by optimizing the preorganization of the environment, which is the key factor in enzyme catalysis. Thus, rational improvement of the preorganization would require approaches capable of evaluating reliably the actual catalytic effect. This work considers the catalytic effects in different Kemp eliminases as a benchmark for a computer aided enzyme design. It is shown that the empirical valence bond provides a powerful screening tool, with significant advantage over current alternative strategies. The insights provided by the empirical valence bond calculations are discussed emphasizing the ability to analyze the difference between the linear free energy relationships obtained in solution to those found in the enzymes. We also point out the trade off between reliability and speed of the calculations and try to determine what it takes to obtain reliable computer aided screening. PMID:21443179

  8. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.

    PubMed

    Frushicheva, Maria P; Cao, Jie; Warshel, Arieh

    2011-05-10

    One of the fundamental challenges in biotechnology and biochemistry is the ability to design effective enzymes. Despite recent progress, most of the advances on this front have been made by placing the reacting fragments in the proper places, rather than by optimizing the preorganization of the environment, which is the key factor in enzyme catalysis. Thus, rational improvement of the preorganization would require approaches capable of evaluating reliably the actual catalytic effect. This work considers the catalytic effects in different Kemp eliminases as a benchmark for a computer-aided enzyme design. It is shown that the empirical valence bond provides a powerful screening tool, with significant advantages over current alternative strategies. The insights provided by the empirical valence bond calculations are discussed with an emphasis on the ability to analyze the difference between the linear free energy relationships obtained in solution and those found in the enzymes. We also point out the trade-off between the reliability and speed of the calculations and try to determine what it takes to realize reliable computer-aided screening.

  9. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    PubMed

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The implementation and use of Ada on distributed systems with high reliability requirements

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    Performance analysis was begin on the Ada implementations. The goal is to supply the system designer with tools that will allow a rational decision to be made about whether a particular implementation can support a given application early in the design cycle. Primary activities were: analysis of the original approach to recovery in distributed Ada programs using the Advanced Transport Operating System (ATOPS) example; review and assessment of the original approach which was found to be capable of improvement; preparation and presentation of a paper at the 1987 Washington DC Ada Symposium; development of a refined approach to recovery that is presently being applied to the ATOPS example; and design and development of a performance assessment scheme for Ada programs based on a flexible user-driven benchmarking system.

  11. Rational engineering of nanoporous anodic alumina optical bandpass filters

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical bandpass filters based on glass and plastic.Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical bandpass filters based on glass and plastic. Electronic supplementary information (ESI) available: An example demonstrating the effect of pore widening on the position and width of the transmission band of a NAA-BPF and a comprehensive table summarising the position and FWHM of the different bands of the NAA-BPFs produced in this study. See DOI: 10.1039/c6nr03490j

  12. Technological Innovations from NASA

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.

    2006-01-01

    The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.

  13. Engineering hybrid exosomes by membrane fusion with liposomes.

    PubMed

    Sato, Yuko T; Umezaki, Kaori; Sawada, Shinichi; Mukai, Sada-atsu; Sasaki, Yoshihiro; Harada, Naozumi; Shiku, Hiroshi; Akiyoshi, Kazunari

    2016-02-25

    Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze-thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.

  14. Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives.

    PubMed

    He, Guangwei; Li, Zhen; Zhao, Jing; Wang, Shaofei; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi

    2015-09-23

    Polymer-based materials with tunable nanoscale structures and associated microenvironments hold great promise as next-generation ion-exchange membranes (IEMs) for acid or alkaline fuel cells. Understanding the relationships between nanostructure, physical and chemical microenvironment, and ion-transport properties are critical to the rational design and development of IEMs. These matters are addressed here by discussing representative and important advances since 2011, with particular emphasis on aromatic-polymer-based nanostructured IEMs, which are broadly divided into nanostructured polymer membranes and nanostructured polymer-filler composite membranes. For each category of membrane, the core factors that influence the physical and chemical microenvironments of the ion nanochannels are summarized. In addition, a brief perspective on the possible future directions of nanostructured IEMs is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A review of nanostructured lithium ion battery materials via low temperature synthesis.

    PubMed

    Chen, Jiajun

    2013-01-01

    Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.

  16. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology

    PubMed Central

    Re, Angela

    2017-01-01

    Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery. PMID:28894736

  17. Vascular stents with submicrometer-scale surface patterning realized via titanium deep reactive ion etching

    NASA Astrophysics Data System (ADS)

    Gott, Shannon C.; Jabola, Benjamin A.; Rao, Masaru P.

    2015-08-01

    Herein, we report progress towards realization of vascular stents that will eventually provide opportunity for evaluating cellular response to rationally-designed, submicrometer-scale surface patterning in physiologically-relevant contexts, i.e. those that provide exposure to the complex multicellular milieu, flow-induced shear, and tissue-device interactions present in vivo. Specifically, using our novel titanium deep reactive ion etching technique (Ti DRIE), we discuss recent advances that have enabled: (a) fabrication of precisely-defined, grating-based surface patterns on planar Ti foils with minimum feature sizes as small as 0.15 μm (b) creation of cylindrical stents from micromachined planar Ti foils; and (c) integration of these processes to produce the first submicrometer-scale surface-patterned Ti stents that are compatible with conventional balloon catheter deployment techniques. We also discuss results from elastoplastic finite element simulations and preliminary mechanical testing of these devices to assess their mechanical performance. These efforts represent key steps towards our long-term goal of developing a new paradigm in stenting, where rationally-designed surface patterning provides a physical means for facilitating healing, and thus, improving outcomes in vascular intervention applications.

  18. Targeted therapy in advanced gastric carcinoma: the future is beginning.

    PubMed

    Schinzari, G; Cassano, A; Orlandi, A; Basso, M; Barone, C

    2014-01-01

    Gastric cancer represents one of the most common cancer worldwide. Unfortunately, the majority of patients present in advanced stage and outcome still remains poor with high mortality rate despite decreasing incidence and new diagnostic and therapeutic strategies. Although utility of classical chemotherapy agents has been widely explored, advances have been slow and the efficacy of these agents has reached a plateau of median overall survival not higher than 12 months. Therefore, researchers focused their attention on better understanding molecular biology of carcinogenesis and deeper knowledge of the cancer cell phenotype, as well on development of rationally designed drugs that would target specific molecular aberrancies in signal transduction pathways. These targets include cell surface receptors, circulating growth and angiogenic factors and other molecules involved in downstream intracellular signaling pathways, including receptor tyrosine kinases. However, therapeutic advances in gastric cancer are not so encouraging when compared to other solid organ malignancies such as breast and colorectal cancer. This article reviews the role of targeted agents in gastric cancer as single-agent therapy or in combination regimens, including their rational and emerging mechanism of action, current and emerging data. We focused our attention mainly on published phase III studies, therefore cornerstone clinical trials with trastuzumab and bevacizumab have been largely discussed. Phase III studies presented in important international meetings are also reviewed as well phase II published studies and promising new therapies investigated in preclinical or phase I studies. Today, in first-line treatment only trastuzumab has shown significantly increased survival in combination with chemotherapy, whereas ramucirumab as single agent resulted effective in progressing patients, but - despite several disappointing results - these are the proof of principle that targeting the proper molecular aberration is the best way for implementing outcome of therapy.

  19. Putting the psychology back into psychological models: mechanistic versus rational approaches.

    PubMed

    Sakamoto, Yasuaki; Jones, Mattr; Love, Bradley C

    2008-09-01

    Two basic approaches to explaining the nature of the mind are the rational and the mechanistic approaches. Rational analyses attempt to characterize the environment and the behavioral outcomes that humans seek to optimize, whereas mechanistic models attempt to simulate human behavior using processes and representations analogous to those used by humans. We compared these approaches with regard to their accounts of how humans learn the variability of categories. The mechanistic model departs in subtle ways from rational principles. In particular, the mechanistic model incrementally updates its estimates of category means and variances through error-driven learning, based on discrepancies between new category members and the current representation of each category. The model yields a prediction, which we verify, regarding the effects of order manipulations that the rational approach does not anticipate. Although both rational and mechanistic models can successfully postdict known findings, we suggest that psychological advances are driven primarily by consideration of process and representation and that rational accounts trail these breakthroughs.

  20. Log D versus HPLC derived hydrophobicity: The development of predictive tools to aid in the rational design of bioactive peptoids

    DOE PAGES

    Bolt, H. L.; Williams, C. E. J.; Brooks, R. V.; ...

    2017-01-13

    Hydrophobicity has proven to be an extremely useful parameter in small molecule drug discovery programmes given that it can be used as a predictive tool to enable rational design. For larger molecules, including peptoids, where folding is possible, the situation is more complicated and the average hydrophobicity (as determined by RP-HPLC retention time) may not always provide an effective predictive tool for rational design. Herein, we report the first ever application of partitioning experiments to determine the log D values for a series of peptoids. By comparing log D and average hydrophobicities we highlight the potential advantage of employing themore » former as a predictive tool in the rational design of biologically active peptoids.« less

  1. Log D versus HPLC derived hydrophobicity: The development of predictive tools to aid in the rational design of bioactive peptoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolt, H. L.; Williams, C. E. J.; Brooks, R. V.

    Hydrophobicity has proven to be an extremely useful parameter in small molecule drug discovery programmes given that it can be used as a predictive tool to enable rational design. For larger molecules, including peptoids, where folding is possible, the situation is more complicated and the average hydrophobicity (as determined by RP-HPLC retention time) may not always provide an effective predictive tool for rational design. Herein, we report the first ever application of partitioning experiments to determine the log D values for a series of peptoids. By comparing log D and average hydrophobicities we highlight the potential advantage of employing themore » former as a predictive tool in the rational design of biologically active peptoids.« less

  2. Li4 Ti5 O12 Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices.

    PubMed

    Chen, Zhijie; Li, Honsen; Wu, Langyuan; Lu, Xiaoxia; Zhang, Xiaogang

    2018-03-01

    Spinel Li 4 Ti 5 O 12 , known as a zero-strain material, is capable to be a competent anode material for promising applications in state-of-art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li 4 Ti 5 O 12 offers a high operating potential of ∼1.55 V vs Li/Li + , negligible volume expansion during Li + intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li 4 Ti 5 O 12 been presented, there still remains the issue of Li 4 Ti 5 O 12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li 4 Ti 5 O 12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self-supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li 4 Ti 5 O 12 -based energy storage device and deliver a deep inspiration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rational management of epilepsy.

    PubMed

    Viswanathan, Venkataraman

    2014-09-01

    Management of epilepsies in children has improved considerably over the last decade, all over the world due to the advances seen in the understanding of the patho-physiology of epileptogenesis, availability of both structural and functional imaging studies along with better quality EEG/video-EEG recordings and the availability of a plethora of newer anti-epileptic drugs which are tailormade to act on specific pathways. In spite of this, there is still a long way to go before one is able to be absolutely rational about which drug to use for which type of epilepsy. There have been a lot of advances in the area of epilepsy surgery and is certainly gaining ground for specific cases. Better understanding of the genetic basis of epilepsies will hopefully lead to a more rational treatment plan in the future. Also, a lot of work needs to be done to dispel various misunderstandings and myths about epilepsy which still exists in our country.

  4. Medicinal cannabis: rational guidelines for dosing.

    PubMed

    Carter, Gregory T; Weydt, Patrick; Kyashna-Tocha, Muraco; Abrams, Donald I

    2004-05-01

    The medicinal value of cannabis (marijuana) is well documented in the medical literature. Cannabinoids, the active ingredients in cannabis, have many distinct pharmacological properties. These include analgesic, anti-emetic, anti-oxidative, neuroprotective and anti-inflammatory activity, as well as modulation of glial cells and tumor growth regulation. Concurrent with all these advances in the understanding of the physiological and pharmacological mechanisms of cannabis, there is a strong need for developing rational guidelines for dosing. This paper will review the known chemistry and pharmacology of cannabis and, on that basis, discuss rational guidelines for dosing.

  5. Tuning and predicting the wetting of nanoengineered material surface

    NASA Astrophysics Data System (ADS)

    Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.

    2016-02-01

    The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability. Electronic supplementary information (ESI) available: Detailed characterization of the nanorough substrates and model derivation. See DOI: 10.1039/c5nr08329j

  6. Research advances in polymer emulsion based on "core-shell" structure particle design.

    PubMed

    Ma, Jian-zhong; Liu, Yi-hong; Bao, Yan; Liu, Jun-li; Zhang, Jing

    2013-09-01

    In recent years, quite many studies on polymer emulsions with unique core-shell structure have emerged at the frontier between material chemistry and many other fields because of their singular morphology, properties and wide range of potential applications. Organic substance as a coating material onto either inorganic or organic internal core materials promises an unparalleled opportunity for enhancement of final functions through rational designs. This contribution provides a brief overview of recent progress in the synthesis, characterization, and applications of both inorganic-organic and organic-organic polymer emulsions with core-shell structure. In addition, future research trends in polymer composites with core-shell structure are also discussed in this review. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds

    PubMed Central

    Bonkowski, Michael S.; Sinclair, David A.

    2016-01-01

    The sirtuins (SIRT1–7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans. PMID:27552971

  8. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  9. Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}.

    PubMed

    Ruan, Lingyan; Ramezani-Dakhel, Hadi; Chiu, Chin-Yi; Zhu, Enbo; Li, Yujing; Heinz, Hendrik; Huang, Yu

    2013-02-13

    Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.

  10. Rational emotive behavior therapy versus cognitive therapy versus pharmacotherapy in the treatment of major depressive disorder: Mechanisms of change analysis.

    PubMed

    Szentagotai, Aurora; David, Daniel; Lupu, Viorel; Cosman, Doina

    2008-12-01

    Cognitive-behavioral psychotherapies (CBT) are among the first-line interventions for major depressive disorder (MDD), and a significant number of studies indicate their efficacy in the treatment of this disorder. However, differential effects of various forms of CBT have seldom been analyzed in the same experimental design. On the basis of data collected in a randomized clinical trial comparing the efficacy of rational-emotive behavior therapy (REBT), cognitive therapy (CT), and pharmacotherapy (SSRI) in the treatment of MDD, the present article investigates the theory of change advanced by REBT and CT. Measures included to test the two theories of change assess three classes of cognitions: (a) automatic thoughts, (b) dysfunctional attitudes, and (c) irrational beliefs. The results indicate that REBT and CT (and also pharmacotherapy) indiscriminately affect the three classes of cognitions. On the long term (follow-up), a change in implicit demandingness seems more strongly associated with reduced depression and relapse prevention. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  11. System analysis in rotorcraft design: The past decade

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.

    1988-01-01

    Rapid advances in the technology of electronic digital computers and the need for an integrated synthesis approach in developing future rotorcraft programs has led to increased emphasis on system analysis techniques in rotorcraft design. The task in systems analysis is to deal with complex, interdependent, and conflicting requirements in a structured manner so rational and objective decisions can be made. Whether the results are wisdom or rubbish depends upon the validity and sometimes more importantly, the consistency of the inputs, the correctness of the analysis, and a sensible choice of measures of effectiveness to draw conclusions. In rotorcraft design this means combining design requirements, technology assessment, sensitivity analysis and reviews techniques currently in use by NASA and Army organizations in developing research programs and vehicle specifications for rotorcraft. These procedures span simple graphical approaches to comprehensive analysis on large mainframe computers. Examples of recent applications to military and civil missions are highlighted.

  12. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  13. Rational design of reconfigurable prismatic architected materials

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia; Overvelde, Johannes; Hoberman, Chuck; Weaver, James

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. While most of these materials are characterized by a fixed geometry,an intriguing avenue is to incorporate internal mechanisms capable of recon_guring their spatial architecture, therefore enabling tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami-technique, here we introduce a robust design strategy based on space-filling polyhedra to create 3D reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively di_erent deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to design the next generation of reconfigurable structures and materials, ranging from transformable meter-scale architectures to nanoscale tunable photonic systems..

  14. Computational approaches in the design of synthetic receptors - A review.

    PubMed

    Cowen, Todd; Karim, Kal; Piletsky, Sergey

    2016-09-14

    The rational design of molecularly imprinted polymers (MIPs) has been a major contributor to their reputation as "plastic antibodies" - high affinity robust synthetic receptors which can be optimally designed, and produced for a much reduced cost than their biological equivalents. Computational design has become a routine procedure in the production of MIPs, and has led to major advances in functional monomer screening, selection of cross-linker and solvent, optimisation of monomer(s)-template ratio and selectivity analysis. In this review the various computational methods will be discussed with reference to all the published relevant literature since the end of 2013, with each article described by the target molecule, the computational approach applied (whether molecular mechanics/molecular dynamics, semi-empirical quantum mechanics, ab initio quantum mechanics (Hartree-Fock, Møller-Plesset, etc.) or DFT) and the purpose for which they were used. Detailed analysis is given to novel techniques including analysis of polymer binding sites, the use of novel screening programs and simulations of MIP polymerisation reaction. The further advances in molecular modelling and computational design of synthetic receptors in particular will have serious impact on the future of nanotechnology and biotechnology, permitting the further translation of MIPs into the realms of analytics and medical technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. STEEP STREAMS - Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS

    NASA Astrophysics Data System (ADS)

    Armanini, Aronne; Cardoso, Antonio H.; Di Baldassarre, Giuliano; Bellin, Alberto; Breinl, Korbinian; Canelas, Ricardo B.; Larcher, Michele; Majone, Bruno; Matos, Jorges; Meninno, Sabrina; Nucci, Elena; Rigon, Riccardo; Rosatti, Giorgio; Zardi, Dino

    2017-04-01

    The STEEP STREAMS (Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS) project consists of a collaboration among the Universities of Trento, Uppsala and Lisbon, who joined in a consortium within the ERANET Water JPI call WaterWorks2014. The aim of the project is to produce new rational criteria for the design of protection works against debris flows, a phenomenon consisting in hyper-concentrated flows of water and sediments, classified as catastrophic events typical of small mountainous basins (area <10 km2) and triggered by intense rainstorms. Such events are non-stationary phenomena that arise in a very short time, and their recurrence is rather difficult to determine. Compared to flash floods, they are more difficult to anticipate, mostly since they are triggered by convective precipitation events, posing a higher risk of damage and even loss of human lives. These extreme events occur almost annually across Europe, though the formal return period in an exposed site is much larger. Recently, an increase in intensity and frequency of small-scale storm events, leading to extreme solid transport in steep channels, are recognized as one of the effects of climate change. In this context, one of the key challenges of this project is the use of comparatively coarse RCM projections to the small catchments examined in STEEP STREAMS. Given these changes, conventional protection works and their design criteria may not suffice to provide adequate levels of protection to human life and urban settlements. These structures create a storage area upstream the alluvial fans and the settlements, thereby reducing the need of channelization in areas often constrained by urban regulations. To optimize the lamination, and in particular to reduce the peak of solid mass flux, it is necessary that the deposition basin is controlled by a slit check dam, capable of inducing a controlled sedimentation of the solid mas flux. In order to achieve that, reliable design tools are needed. Driftwood represents another important factor increasing the risk, as clogging induced by the vegetal material represents a major problem for the operational reliability of slit check dams. Current procedures in compiling hazardous maps do not account for such effects. The STEEPS STREAMS project aims at developing structural innovative solutions and design criteria reliable to mitigate the impacts of flash floods and debris flows especially in presence of intense woody material transport, typical of mountain catchments.

  16. 14 CFR 29.427 - Unsymmetrical loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conditions. (b) To meet the design criteria of paragraph (a) of this section, in the absence of more rational... selected so that the maximum design loads are obtained on each surface. In the absence of more rational...

  17. 14 CFR 27.427 - Unsymmetrical loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conditions. (b) To meet the design criteria of paragraph (a) of this section, in the absence of more rational... selected so the maximum design loads are obtained on each surface. In the absence of more rational data...

  18. Spontaneous Focusing on Quantitative Relations as a Predictor of the Development of Rational Number Conceptual Knowledge

    ERIC Educational Resources Information Center

    McMullen, Jake; Hannula-Sormunen, Minna M.; Laakkonen, Eero; Lehtinen, Erno

    2016-01-01

    Many people have serious difficulties in understanding rational numbers, limiting their ability to interpret and make use of them in modern daily life. This also leads to later difficulties in learning more advanced mathematical content. In this study, novel tasks are used to measure 263 late primary school students' spontaneous focusing on…

  19. SURVIAC Bulletin, Issue 1

    DTIC Science & Technology

    2013-01-01

    settings that cover the range of environmental conditions in which the rations are expected to function. These vitally important state-of-the- art ...and the Joint Culinary Center of Excellence on nutritional issues impacting the Warfighter, supports the Surgeon General’s responsibilities as the...Advanced Food Processing Laboratory and Food Pilot Plant for production and testing of food to facilitate state-of-the- art ration development. The

  20. Analytics and Action in Afghanistan

    DTIC Science & Technology

    2010-09-01

    rests on rational technology , and ultimately on scientific knowledge. No country could be modern without being eco- nomically advanced or...backwardness to enlight - ened modernity. Underdeveloped countries had failed to progress to what Max Weber called rational legalism because of the grip...Douglas Pike, Viet Cong: The Organization and Techniques of the National Liberation Front of South Vietnam (Boston: Massachusetts Institute of Technology

  1. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  2. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics.

    PubMed

    Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng

    2015-09-01

    A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Total Brain Death and the Integration of the Body Required of a Human Being.

    PubMed

    Lee, Patrick

    2016-06-01

    I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change-the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. From bricolage to BioBricks™: Synthetic biology and rational design.

    PubMed

    Lewens, Tim

    2013-12-01

    Synthetic biology is often described as a project that applies rational design methods to the organic world. Although humans have influenced organic lineages in many ways, it is nonetheless reasonable to place synthetic biology towards one end of a continuum between purely 'blind' processes of organic modification at one extreme, and wholly rational, design-led processes at the other. An example from evolutionary electronics illustrates some of the constraints imposed by the rational design methodology itself. These constraints reinforce the limitations of the synthetic biology ideal, limitations that are often freely acknowledged by synthetic biology's own practitioners. The synthetic biology methodology reflects a series of constraints imposed on finite human designers who wish, as far as is practicable, to communicate with each other and to intervene in nature in reasonably targeted and well-understood ways. This is better understood as indicative of an underlying awareness of human limitations, rather than as expressive of an objectionable impulse to mastery over nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A new rational-based optimal design strategy of ship structure based on multi-level analysis and super-element modeling method

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Deyu

    2011-09-01

    A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore, the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship, suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.

  6. Systemic therapy for unresectable and metastatic transitional cell carcinoma of the urothelium: first-line and beyond.

    PubMed

    Cheng, Tina

    2008-09-01

    The review aims to provide an overview of recent advances and future research direction in the management of patients with advanced transitional cell carcinoma. Early data of the randomized phase III study comparing paclitaxel, cisplatin, and gemcitabine with gemcitabine plus cisplatin for advanced urothelial cancer detected no survival difference. A phase II study investigated the safety and efficacy of trastuzumab, carboplatin, gemcitabine, and paclitaxel in human epidermal growth factor receptor-2/neu-positive advanced urothelial carcinoma and reported promising results. Renal-sparing regimens are under active development. A nonrandomized comparison of the 3-week with the 4-week schedule for gemcitabine and cisplatin showed that the 3-week schedule had less hematological toxicity and better dose intensity. Potential molecular markers such as excision repair cross-complementation group 1, emmprin, and survivin for survival and/or platinum resistance in patients with transitional cell carcinoma showed promise. Recent data do not support change in the current standard of care for advanced transitional cell carcinoma. Clinical testing of emerging anticancer therapies using new agents, new combinations, and new approaches is under active investigation. Rational combination and new strategy in clinical trial design are critical for new drug development for transitional cell carcinoma.

  7. Adolescent rationality.

    PubMed

    Moshman, David

    2013-01-01

    Adolescents are commonly seen as irrational, a position supported to varying degrees by many developmentalists, who often appeal to recent research on adolescent brains. Careful review of relevant evidence, however, shows that (1) adults are less rational than is generally assumed, (2) adolescents (and adults) are categorically different from children with respect to the attainment of advanced levels of rationality and psychological functioning, and (3) adolescents and adults do not differ categorically from each other with respect to any rational competencies, irrational tendencies, brain structures, or neurological functioning. Development often continues in adolescence and beyond but categorical claims about adolescents as distinct from adults cannot be justified. A review of U.S. Supreme Court decisions concerning intellectual freedom, reproductive freedom, and criminal responsibility shows ongoing ambivalence and confusion about the rationality of adolescents. Developmental theory and research suggest that adolescents should be conceptualized as young adults, not immature brains, with important implications for their roles, rights, and responsibilities.

  8. An improved method for precise automatic co-registration of moderate and high-resolution spacecraft imagery

    NASA Technical Reports Server (NTRS)

    Bryant, Nevin A.; Logan, Thomas L.; Zobrist, Albert L.

    2006-01-01

    Improvements to the automated co-registration and change detection software package, AFIDS (Automatic Fusion of Image Data System) has recently completed development for and validation by NGA/GIAT. The improvements involve the integration of the AFIDS ultra-fine gridding technique for horizontal displacement compensation with the recently evolved use of Rational Polynomial Functions/ Coefficients (RPFs/RPCs) for image raster pixel position to Latitude/Longitude indexing. Mapping and orthorectification (correction for elevation effects) of satellite imagery defies exact projective solutions because the data are not obtained from a single point (like a camera), but as a continuous process from the orbital path. Standard image processing techniques can apply approximate solutions, but advances in the state-of-the-art had to be made for precision change-detection and time-series applications where relief offsets become a controlling factor. The earlier AFIDS procedure required the availability of a camera model and knowledge of the satellite platform ephemeredes. The recent design advances connect the spacecraft sensor Rational Polynomial Function, a deductively developed model, with the AFIDS ultrafine grid, an inductively developed representation of the relationship raster pixel position to latitude /longitude. As a result, RPCs can be updated by AFIDS, a situation often necessary due to the accuracy limits of spacecraft navigation systems. An example of precision change detection will be presented from Quickbird.

  9. Building an experimental model of the human body with non-physiological parameters.

    PubMed

    Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi

    2017-03-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.

  10. Building an experimental model of the human body with non-physiological parameters

    PubMed Central

    Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi

    2017-01-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851

  11. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors.

    PubMed

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith; Lei, Yong

    2017-10-01

    Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self-supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors towards high energy storage capability. Self-supported homogeneous and heterogeneous nanoelectrodes in the forms of one-dimensional (1D) nanoarrays, two-dimensional (2D) nanoarrays, and three-dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed.

  12. Machine learning in the rational design of antimicrobial peptides.

    PubMed

    Rondón-Villarreal, Paola; Sierra, Daniel A; Torres, Rodrigo

    2014-01-01

    One of the most important public health issues is the microbial and bacterial resistance to conventional antibiotics by pathogen microorganisms. In recent years, many researches have been focused on the development of new antibiotics. Among these, antimicrobial peptides (AMPs) have raised as a promising alternative to combat antibioticresistant microorganisms. For this reason, many theoretical efforts have been done in the development of new computational tools for the rational design of both better and effective AMPs. In this review, we present an overview of the rational design of AMPs using machine learning techniques and new research fields.

  13. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Li, Changwen; Yang, Huachao; Ostrikov, Kostya; Yan, Jianhua; Cen, Kefa

    2018-06-01

    Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode-electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.[Figure not available: see fulltext.

  14. Principles of Protein Stability and Their Application in Computational Design.

    PubMed

    Goldenzweig, Adi; Fleishman, Sarel

    2018-01-26

    Proteins are increasingly used in basic and applied biomedical research.Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    This paper is intended to facilitate the development of deployable, optical instruments by providing a rational approach for the design, testing, and qualification of high-precision (i.e., low-hysteresis) deployment mechanisms for these instruments. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are, therefore, neither newly developed guidelines, nor are they uniquely applicable to the design of high-precision deployment mechanisms. This paper is to be regarded as a guide to design and not a set of NASA requirements, except as may be defined in formal project specifications. Furthermore, due to the rapid pace of advancement in the field of precision deployment, this paper should be regarded as a preliminary set of guidelines. However, it is expected that this paper, with revisions as experience may indicate to be desirable, might eventually form the basis for a set of uniform design requirements for high-precision deployment mechanisms on future NASA space-based science instruments.

  16. Rational design of reconfigurable prismatic architected materials.

    PubMed

    Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia

    2017-01-18

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  17. Rational design of reconfigurable prismatic architected materials

    NASA Astrophysics Data System (ADS)

    Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia

    2017-01-01

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  18. Rational Emotive Education

    ERIC Educational Resources Information Center

    Knaus, William

    1977-01-01

    Rational Emotive Education--an outgrowth of theories developed by Albert Ellis--is a teaching design of mental health concepts and problem-solving activities designed to help students to approach and cope with their problems through experiential learning, via a structured, thematic sequence of emotive education lessons. (MJB)

  19. Space power system design and development from an economic point of view

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1977-01-01

    The concept of a satellite solar power system offers a feasible, but unproven, long-range energy alternative. While the basic physics of these systems is understood, many developments are necessary in order to reduce the system cost to the point of being cost-competitive with alternative energy sources. Thus, a substantial technology advancement and verification program, plus test and demonstration satellite programs are necessary before a full-scale satellite can be designed and built. It is important to properly identify those elements of the technology that should be subject to development efforts, the goals of the corresponding development programs and the appropriate funding levels and schedules. Systems studies and designs play a major role in rationally formulating a development program. This paper uses an economic approach to place these studies into a framework for formulating a viable satellite solar power system development plan.

  20. Computationally guided discovery of thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Stevanović, Vladan; Toberer, Eric S.

    The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materialsmore » subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.« less

  1. Computationally guided discovery of thermoelectric materials

    DOE PAGES

    Gorai, Prashun; Stevanović, Vladan; Toberer, Eric S.

    2017-08-22

    The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materialsmore » subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.« less

  2. Porphyrin-Based Nanostructures for Photocatalytic Applications

    PubMed Central

    Chen, Yingzhi; Li, Aoxiang; Huang, Zheng-Hong; Wang, Lu-Ning; Kang, Feiyu

    2016-01-01

    Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed. PMID:28344308

  3. Computing organic stereoselectivity - from concepts to quantitative calculations and predictions.

    PubMed

    Peng, Qian; Duarte, Fernanda; Paton, Robert S

    2016-11-07

    Advances in theory and processing power have established computation as a valuable interpretative and predictive tool in the discovery of new asymmetric catalysts. This tutorial review outlines the theory and practice of modeling stereoselective reactions. Recent examples illustrate how an understanding of the fundamental principles and the application of state-of-the-art computational methods may be used to gain mechanistic insight into organic and organometallic reactions. We highlight the emerging potential of this computational tool-box in providing meaningful predictions for the rational design of asymmetric catalysts. We present an accessible account of the field to encourage future synergy between computation and experiment.

  4. Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons.

    PubMed

    Quareshy, Mussa; Uzunova, Veselina; Prusinska, Justyna M; Napier, Richard M

    2017-01-01

    The identification of TIR1 as an auxin receptor combined with advanced biophysical instrumentation has led to the development of real-time activity assays for auxins. Traditionally, molecules have been assessed for auxinic activity using bioassays, and agrochemical compound discovery continues to be based on "spray and pray" technologies. Here, we describe the methodology behind an SPR-based assay that uses TIR1 and related F-box proteins with surface plasmon resonance spectrometry for rapid compound screening. In addition, methods for collecting kinetic binding data and data processing are given so that they may support programs for rational design of novel auxin ligands.

  5. Elastin-like polypeptides: the power of design for smart cell encapsulation.

    PubMed

    Bandiera, Antonella

    2017-01-01

    Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.

  6. Abnormality, rationality, and sanity.

    PubMed

    Hertwig, Ralph; Volz, Kirsten G

    2013-11-01

    A growing body of studies suggests that neurological and mental abnormalities foster conformity to norms of rationality that are widely endorsed in economics and psychology, whereas normality stands in the way of rationality thus defined. Here, we outline the main findings of these studies, discuss their implications for experimental design, and consider how 'sane' some benchmarks of rationality really are. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The nanomaterial toolkit for neuroengineering

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas

    2016-10-01

    There is a growing interest in developing effective tools to better probe the central nervous system (CNS), to understand how it works and to treat neural diseases, injuries and cancer. The intrinsic complexity of the CNS has made this a challenging task for decades. Yet, with the extraordinary recent advances in nanotechnology and nanoscience, there is a general consensus on the immense value and potential of nanoscale tools for engineering neural systems. In this review, an overview of specialized nanomaterials which have proven to be the most effective tools in neuroscience is provided. After a brief background on the prominent challenges in the field, a variety of organic and inorganic-based nanomaterials are described, with particular emphasis on the distinctive properties that make them versatile and highly suitable in the context of the CNS. Building on this robust nano-inspired foundation, the rational design and application of nanomaterials can enable the generation of new methodologies to greatly advance the neuroscience frontier.

  8. Oral enzyme therapy for celiac sprue

    PubMed Central

    Bethune, Michael T; Khosla, Chaitan

    2012-01-01

    Celiac sprue is an inflammatory disease of the small intestine caused by dietary gluten and treated by adherence to a lifelong gluten-free diet. The recent identification of immunodominant gluten peptides, the discovery of their cogent properties, and the elucidation of the mechanisms by which they engender immunopathology in genetically-susceptible individuals have advanced our understanding of the molecular pathogenesis of this complex disease, enabling the rational design of new therapeutic strategies. The most clinically advanced of these is oral enzyme therapy, in which enzymes capable of proteolyzing gluten (i.e. glutenases) are delivered to the alimentary tract of a celiac sprue patient to detoxify ingested gluten in situ. In this chapter, we discuss the key challenges for discovery and preclinical development of oral enzyme therapies for celiac sprue. Methods for lead identification, assay development, gram-scale production and formulation, and lead optimization for next-generation proteases are described and critically assessed. PMID:22208988

  9. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.

    PubMed

    Gu, Yang; Xu, Xianhao; Wu, Yaokang; Niu, Tengfei; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Liu, Long

    2018-05-15

    Bacillus subtilis is the most characterized gram-positive bacterium that has significant attributes, such as growing well on cheap carbon sources, possessing clear inherited backgrounds, having mature genetic manipulation methods, and exhibiting robustness in large-scale fermentations. Till date, B. subtilis has been identified as attractive hosts for the production of recombinant proteins and chemicals. By applying various systems and synthetic biology tools, the productivity features of B. subtilis can be thoroughly analyzed and further optimized via metabolic engineering. In the present review, we discussed why B. subtilis is the primary organisms used for metabolic engineering and industrial applications. Additionally, we summarized the recent advances in systems and synthetic biology, engineering strategies for improving cellular performances, and metabolic engineering applications of B. subtilis. In particular, we proposed emerging opportunities and essential strategies to enable the successful development of B. subtilis as microbial cell factories. Copyright © 2018. Published by Elsevier Inc.

  10. A 2020 vision for vaccines against HIV, tuberculosis and malaria.

    PubMed

    Rappuoli, Rino; Aderem, Alan

    2011-05-26

    Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.

  11. Engineering charge transport by heterostructuring solution-processed semiconductors

    NASA Astrophysics Data System (ADS)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  12. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.

    PubMed

    Bhat, Swetha S M; Jang, Ho Won

    2017-08-10

    In recent years, bismuth-based nanomaterials have drawn considerable interest as potential candidates for photoelectrochemical (PEC) water splitting owing to their narrow band gaps, nontoxicity, and low costs. The unique electronic structure of bismuth-based materials with a well-dispersed valence band comprising Bi 6s and O 2p orbitals offers a suitable band gap to harvest visible light. This Review presents significant advancements in exploiting bismuth-based nanomaterials for solar water splitting. An overview of the different strategies employed and the new ideas adopted to improve the PEC performance of bismuth-based nanomaterials are discussed. Morphology control, the construction of heterojunctions, doping, and co-catalyst loading are several approaches that are implemented to improve the efficiency of solar water splitting. Key issues are identified and guidelines are suggested to rationalize the design of efficient bismuth-based materials for sunlight-driven water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhancedmore » approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines.« less

  14. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: linking systems biology with vaccine development.

    PubMed

    Adams, L Garry; Khare, Sangeeta; Lawhon, Sara D; Rossetti, Carlos A; Lewin, Harris A; Lipton, Mary S; Turse, Joshua E; Wylie, Dennis C; Bai, Yu; Drake, Kenneth L

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host-pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host-pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Curriculum for the Twenty-First Century: Recent Advances in Economic Theory and Undergraduate Economics

    ERIC Educational Resources Information Center

    Ferguson, William D.

    2011-01-01

    Undergraduate economics lags behind cutting-edge economic theory. The author briefly reviews six related advances that profoundly extend and deepen economic analysis: game-theoretic modeling, collective-action problems, information economics and contracting, social preference theory, conceptualizing rationality, and institutional theory. He offers…

  16. The political economy of rationing health care in England and the US: the 'accidental logics' of political settlements.

    PubMed

    Bevan, Gwyn; Brown, Lawrence D

    2014-07-01

    This article considers how the 'accidental logics' of political settlements for the English National Health Service (NHS) and the Medicare and Medicaid programmes in the United States have resulted in different institutional arrangements and different implicit social contracts for rationing, which we define to be the denial of health care that is beneficial but is deemed to be too costly. This article argues that rationing is designed into the English NHS and designed out of US Medicare; and compares rationing for the elderly in the United States and in England for acute care, care at the end of life, and chronic care.

  17. A Proposal for the use of the Consortium Method in the Design-build system

    NASA Astrophysics Data System (ADS)

    Miyatake, Ichiro; Kudo, Masataka; Kawamata, Hiroyuki; Fueta, Toshiharu

    In view of the necessity for efficient implementation of public works projects, it is expected to utilize advanced technical skills of private firms, for the purpose of reducing project costs, improving performance and functions of construction objects, and reducing work periods, etc. The design-build system is a method to order design and construction as a single contract, including design of structural forms and main specifications of the construction object. This is a system in which high techniques of private firms can be utilized, as a means to ensure qualities of design and construction, rational design, and efficiency of the project. The objective of this study is to examine the use of a method to form a consortium of civil engineering consultants and construction companies, as it is an issue related to the implementation of the design-build method. Furthermore, by studying various forms of consortiums to be introduced in future, it proposes procedural items required to utilize this method, during the bid and after signing a contract, such as the estimate submission from the civil engineering consultants etc.

  18. Genomic markers for decision making: what is preventing us from using markers?

    PubMed

    Coyle, Vicky M; Johnston, Patrick G

    2010-02-01

    The advent of novel genomic technologies that enable the evaluation of genomic alterations on a genome-wide scale has significantly altered the field of genomic marker research in solid tumors. Researchers have moved away from the traditional model of identifying a particular genomic alteration and evaluating the association between this finding and a clinical outcome measure to a new approach involving the identification and measurement of multiple genomic markers simultaneously within clinical studies. This in turn has presented additional challenges in considering the use of genomic markers in oncology, such as clinical study design, reproducibility and interpretation and reporting of results. This Review will explore these challenges, focusing on microarray-based gene-expression profiling, and highlights some common failings in study design that have impacted on the use of putative genomic markers in the clinic. Despite these rapid technological advances there is still a paucity of genomic markers in routine clinical use at present. A rational and focused approach to the evaluation and validation of genomic markers is needed, whereby analytically validated markers are investigated in clinical studies that are adequately powered and have pre-defined patient populations and study endpoints. Furthermore, novel adaptive clinical trial designs, incorporating putative genomic markers into prospective clinical trials, will enable the evaluation of these markers in a rigorous and timely fashion. Such approaches have the potential to facilitate the implementation of such markers into routine clinical practice and consequently enable the rational and tailored use of cancer therapies for individual patients.

  19. Towards a whole-cell modeling approach for synthetic biology

    NASA Astrophysics Data System (ADS)

    Purcell, Oliver; Jain, Bonny; Karr, Jonathan R.; Covert, Markus W.; Lu, Timothy K.

    2013-06-01

    Despite rapid advances over the last decade, synthetic biology lacks the predictive tools needed to enable rational design. Unlike established engineering disciplines, the engineering of synthetic gene circuits still relies heavily on experimental trial-and-error, a time-consuming and inefficient process that slows down the biological design cycle. This reliance on experimental tuning is because current modeling approaches are unable to make reliable predictions about the in vivo behavior of synthetic circuits. A major reason for this lack of predictability is that current models view circuits in isolation, ignoring the vast number of complex cellular processes that impinge on the dynamics of the synthetic circuit and vice versa. To address this problem, we present a modeling approach for the design of synthetic circuits in the context of cellular networks. Using the recently published whole-cell model of Mycoplasma genitalium, we examined the effect of adding genes into the host genome. We also investigated how codon usage correlates with gene expression and find agreement with existing experimental results. Finally, we successfully implemented a synthetic Goodwin oscillator in the whole-cell model. We provide an updated software framework for the whole-cell model that lays the foundation for the integration of whole-cell models with synthetic gene circuit models. This software framework is made freely available to the community to enable future extensions. We envision that this approach will be critical to transforming the field of synthetic biology into a rational and predictive engineering discipline.

  20. A comparison of naïve and sophisticated subject behavior with game theoretic predictions

    PubMed Central

    McCabe, Kevin A.; Smith, Vernon L.

    2000-01-01

    We use an extensive form two-person game as the basis for two experiments designed to compare the behavior of two groups of subjects with each other and with the subgame perfect theoretical prediction in an anonymous interaction protocol. The two subject groups are undergraduates and advanced graduate students, the latter having studied economics and game theory. There is no difference in their choice behavior, and both groups depart substantially from game theoretic predictions. We also compare a subsample of the same graduate students with a typical undergraduate sample in an asset trading environment in which inexperienced undergraduates invariably produce substantial departures from the rational expectations prediction. In this way, we examine how robust are the results across two distinct anonymous interactive environments. In the constant sum trading game, the graduate students closely track the predictions of rational theory. Our interpretation is that the graduate student subjects' departure from subgame perfection to achieve cooperative outcomes in the two-person bargaining game is a consequence of a deliberate strategy and is not the result of error or inadequate learning. PMID:10725349

  1. Rational design of small molecules as vaccine adjuvants.

    PubMed

    Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M

    2014-11-19

    Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants. Copyright © 2014, American Association for the Advancement of Science.

  2. Measuring Resilience.

    PubMed

    Hoffman, Robert R; Hancock, P A

    2017-06-01

    As human factors and ergonomics (HF/E) moves to embrace a greater systems perspective concerning human-machine technologies, new and emergent properties, such as resilience, have arisen. Our objective here is to promote discussion as to how to measure this latter, complex phenomenon. Resilience is now a much-referenced goal for technology and work system design. It subsumes the new movement of resilience engineering. As part of a broader systems approach to HF/E, this concept requires both a definitive specification and an associated measurement methodology. Such an effort epitomizes our present work. Using rational analytic and synthetic methods, we offer an approach to the measurement of resilience capacity. We explicate how our proposed approach can be employed to compare resilience across multiple systems and domains, and emphasize avenues for its future development and validation. Emerging concerns for the promise and potential of resilience and associated concepts, such as adaptability, are highlighted. Arguments skeptical of these emerging dimensions must be met with quantitative answers; we advance one approach here. Robust and validated measures of resilience will enable coherent and rational discussions of complex emergent properties in macrocognitive system science.

  3. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    PubMed

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  4. Lattice engineering through nanoparticle–DNA frameworks

    DOE PAGES

    Tian, Ye; Zhang, Yugang; Wang, Tong; ...

    2016-02-22

    Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using themore » same particles can be assembled by introduction of the corresponding DNA polyhedral frames. As a result, this approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.« less

  5. Aerodynamic shape optimization of a HSCT type configuration with improved surface definition

    NASA Technical Reports Server (NTRS)

    Thomas, Almuttil M.; Tiwari, Surendra N.

    1994-01-01

    Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.

  6. Perovskites in catalysis and electrocatalysis.

    PubMed

    Hwang, Jonathan; Rao, Reshma R; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-10

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts. Copyright © 2017, American Association for the Advancement of Science.

  7. The new era of biotech insulin analogues.

    PubMed

    Brange, J

    1997-07-01

    Many of the structural properties of insulin have evolved in response to the requirements of biosynthesis, processing, transport and storage in the pancreatic beta cells, properties that are not necessary for the biological action of the hormone. It is therefore not surprising that wild-type insulin has far from optimal characteristics for replacement therapy. For example, native human insulin self-associates to hexameric units, which limits the possibilities for the absorption of the molecule by various routes. During the last decade new techniques of molecular design have emerged and recombinant DNA technology offers new and exciting opportunities for rational protein drug design. This review describes examples of recent advances in insulin engineering aimed at optimizing the hormone for therapy. Such approaches focus on improvements in the pharmacokinetic properties, storage stability, and feasibility for less intrusive routes of administration.

  8. Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects.

    PubMed

    Yang, Xiaoyan; Liu, Gongyuan; Shi, Yunhao; Huang, Wei; Shao, Jinjun; Dong, Xiaochen

    2018-06-01

    Black phosphorus (BP), emerging as a new member of two-dimensional nanomaterials, has attracted growing research interests for its amazing photoelectric properties and promising application in electronic devices. Recently, BP has been confirmed to be a desirable candidate for phototherapy against cancer, including photothermal therapy and photodynamic therapy. By regulating the number of layers, the bandgap of BP nanosheets (NSs) can be finely tuned to present near infrared light triggered phototherapeutic behaviors. Furthermore, the exfoliated nano-sized BP also exhibits excellent tumor-targeting property as a nanomedicine via the enhanced permeability and retention effect. With biodegradable nature and outstanding therapeutic performance, BP is highly expected to be developed as novel anti-cancer agents as well as a potential carrier for advanced cancer theranostics. In this review, on the basis of summarizing the recent advances of BP in biomedical applications, the size and layer effects of BP on its targeting effect and phototherapeutic performance are discussed. Then, the rationally designed multifunctional nanoplatforms based on BP are introduced. And, the remaining challenges and prospects of nano-BP for clinic applications against cancer are discussed and outlooked.

  9. Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyan; Liu, Gongyuan; Shi, Yunhao; Huang, Wei; Shao, Jinjun; Dong, Xiaochen

    2018-06-01

    Black phosphorus (BP), emerging as a new member of two-dimensional nanomaterials, has attracted growing research interests for its amazing photoelectric properties and promising application in electronic devices. Recently, BP has been confirmed to be a desirable candidate for phototherapy against cancer, including photothermal therapy and photodynamic therapy. By regulating the number of layers, the bandgap of BP nanosheets (NSs) can be finely tuned to present near infrared light triggered phototherapeutic behaviors. Furthermore, the exfoliated nano-sized BP also exhibits excellent tumor-targeting property as a nanomedicine via the enhanced permeability and retention effect. With biodegradable nature and outstanding therapeutic performance, BP is highly expected to be developed as novel anti-cancer agents as well as a potential carrier for advanced cancer theranostics. In this review, on the basis of summarizing the recent advances of BP in biomedical applications, the size and layer effects of BP on its targeting effect and phototherapeutic performance are discussed. Then, the rationally designed multifunctional nanoplatforms based on BP are introduced. And, the remaining challenges and prospects of nano-BP for clinic applications against cancer are discussed and outlooked.

  10. Rational Design of Na(Li1/3 Mn2/3 )O2 Operated by Anionic Redox Reactions for Advanced Sodium-Ion Batteries.

    PubMed

    Kim, Duho; Cho, Maenghyo; Cho, Kyeongjae

    2017-09-01

    In an effort to develop high-energy-density cathodes for sodium-ion batteries (SIBs), low-cost, high capacity Na(Li 1/3 Mn 2/3 )O 2 is discovered, which utilizes the labile O 2p-electron for charge compensation during the intercalation process, inspired by Li 2 MnO 3 redox reactions. Na(Li 1/3 Mn 2/3 )O 2 is systematically designed by first-principles calculations considering the Li/Na mixing enthalpy based on the site preference of Na in the Li sites of Li 2 MnO 3 . Using the anionic redox reaction (O 2- /O - ), this Mn-oxide is predicted to show high redox potentials (≈4.2 V vs Na/Na + ) with high charge capacity (190 mAh g -1 ). Predicted cathode performance is validated by experimental synthesis, characterization, and cyclic performance studies. Through a fundamental understanding of the redox reaction mechanism in Li 2 MnO 3 , Na(Li 1/3 Mn 2/3 )O 2 is designed as an example of a new class of promising cathode materials, Na(Li 1/3 M 2/3 )O 2 (M: transition metals featuring stabilized M 4+ ), for further advances in SIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recent Advances in Designing and Fabricating Self‐Supported Nanoelectrodes for Supercapacitors

    PubMed Central

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith

    2017-01-01

    Abstract Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self‐supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors towards high energy storage capability. Self‐supported homogeneous and heterogeneous nanoelectrodes in the forms of one‐dimensional (1D) nanoarrays, two‐dimensional (2D) nanoarrays, and three‐dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:29051862

  12. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications.

    PubMed

    Svechkarev, Denis; Mohs, Aaron M

    2018-02-25

    Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral property tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical, and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Probabilistic design of fibre concrete structures

    NASA Astrophysics Data System (ADS)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented methodology is illustrated on results from two probabilistic studies with different types of concrete structures related to practical applications and made from various materials (with the parameters obtained from real material tests).

  14. Generation and development of RNA ligase ribozymes with modular architecture through "design and selection".

    PubMed

    Fujita, Yuki; Ishikawa, Junya; Furuta, Hiroyuki; Ikawa, Yoshiya

    2010-08-26

    In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed "design and selection," new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.

  15. Nuclear Testing and National Security,

    DTIC Science & Technology

    1981-01-01

    ests, even though we have promised for years to begin nuclear dis- armament in the particular way represented by a CTB. More rational is the proposition...when Harold Stassen was Eisenhower’s selection to head a special White House group to formulate US dis- armament policy, we have been wrapped up in a...desired "personal incentive not to deny" their negotiated agreements Is perhaps the most ration - al explanation yet advanced. isi .. .. . n mI The

  16. Milk Production, Physiological Condition and Performance of Etawa Crossbreed Goats Feed by Ration Supplemented with Mangosteen Peel Flour

    NASA Astrophysics Data System (ADS)

    Dzarnisa; Rachmadi, D.; Azhar, A.; Fakhrur Riza, R.; Hidayati, A.

    2018-02-01

    Study on the effect of the addition of mangosteen (Garcinia mangostana L.) peel flour on physiological condition and performance of Etawa crossbreed goats was done. This was to grant the use of mangosteen peel flour that rich of antioxidants and has variety good benefits for health as feed additive for cattle. This study used a Complete Randomized Block Design consisting of 4 treatment groups and 4 replications each. Subjects were 16 female Etawa crossbreed goats randomly designed into treatments group based on lactation periods. Subjects were feed with traditional rations (control, A), traditional rations and 2.5% mangosteen peel flour (B), tradition rations and 5% mangosteen peel flour (C), and traditional rations and 7,5 % mangosteen peel flour (D). Data on performance (milk production) and physiological condition (respiratory frequency, rectal temperature, and heart rate) obtained were analyzed using analysis of variance (ANOVA). The results showed that the addition of mangosteen peel flour as food additive in the rations resulted in variations in the milk production, physiological condition (rectal temperature, heart rate and respiration frequency) and performances (daily weigh gain, food consumption, ration conversion and breast volume) of Etawa crossbreed goats, but significant effect was only observed in the respiration frequency. The addition of 2.5% mangosteen peel flour in the ration caused the best, expected effects on milk production physiological condition and performance of Etawa crossbreed goats.

  17. Functional Nanomaterials for Environmental Applications and Bioassemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Michelle Anne

    The rational design of nanomaterials has yielded new technologies that have revolutionized numerous diverse fields. The work detailed herein first describes the application of photocatalytic nanomaterials towards the environmental remediation of harmful toxins. Specifically, a low-temperature solution-phase synthetic route for size-controlled Cu2O octahedra particles was developed, and these materials were evaluated as catalysts for the photocatalytic degradation of aromatic organic compounds. Moreover, cubic Cu2O/Pd composite structures were fabricated and demonstrated to be effective photocatalysts for the generation of H2 and the reductive dehalogenation of polychlorinated biphenyls, well-known carcinogens present at many contaminated sites around the world. This photocatalytic approach to environmental remediation exemplifies the adaptation of light-driven technologies and sustainable practices to energy-intensive catalytic systems. In addition, this work also investigates the organic/inorganic interface of peptide-mediated Au nanoparticles as a means to identify rational design principles for materials binding peptide sequences for the advancement of stimuli-responsive bionanoassemblies. Factors inherent to peptide sequences that can promote strong materials-binding affinity and/or effective nanoparticle stabilization capability were identified in order to progress biomimetic technologies. These findings were elucidated using a combinational approach of peptide binding experiments to Au in partnership with molecular dynamics simulations. Overall, this work demonstrates the growing applications of nanomaterials in remediation technologies and aids in the understanding of the origins of peptide material affinity and nanoparticle stabilization.

  18. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    NASA Astrophysics Data System (ADS)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  19. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    PubMed Central

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary for dry powder inhalation, as quantified by Karl Fisher coulometric titration. Conclusively, advanced spray-drying particle engineering design from organic solution in closed mode was successfully used to design and optimize solid-state particles in the respirable size range necessary for targeted pulmonary delivery, particularly for the deep lung. These particles were dry, stable, and had optimal properties for dry powder inhalation as a novel pulmonary nanomedicine. PMID:23403805

  20. Environmental risk, precaution, and scientific rationality in the context of WTO/NAFTA trade rules.

    PubMed

    Crawford-Brown, Douglas; Pauwelyn, Joost; Smith, Kelly

    2004-04-01

    This article considers the role of scientific rationality in understanding statements of risk produced by a scientific community. An argument is advanced that, while scientific rationality does impose constraints on valid scientific justifications for restrictions on products and practices, it also provides flexibility in the judgments needed to both develop and apply characterizations of risk. The implications of this flexibility for the understanding of risk estimates in WTO and NAFTA deliberations are explored, with the goal of finding an intermediate ground between the view that science unambiguously justifies or rejects a policy, and the view that science is yet another cultural tool that can be manipulated in support of any decision. The result is a proposal for a dialogical view of scientific rationality in which risk estimates are depicted as confidence distributions that follow from a structured dialogue of scientific panels focused on judgments of evidence, evidential reasoning, and epistemic analysis.

  1. The use of artificially intelligent agents with bounded rationality in the study of economic markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, V.; Slagle, J.R.

    The concepts of {open_quote}knowledge{close_quote} and {open_quote}rationality{close_quote} are of central importance to fields of science that are interested in human behavior and learning, such as artificial intelligence, economics, and psychology. The similarity between artificial intelligence and economics - both are concerned with intelligent thought, rational behavior, and the use and acquisition of knowledge - has led to the use of economic models as a paradigm for solving problems in distributed artificial intelligence (DAI) and multi agent systems (MAS). What we propose is the opposite; the use of artificial intelligence in the study of economic markets. Over the centuries various theories ofmore » market behavior have been advanced. The prevailing theory holds that an asset`s current price converges to the risk adjusted value of the rationally expected dividend stream. While this rational expectations model holds in equilibrium or near-equilibrium conditions, it does not sufficiently explain conditions of market disequilibrium. An example of market disequilibrium is the phenomenon of a speculative bubble. We present an example of using artificially intelligent agents with bounded rationality in the study of speculative bubbles.« less

  2. Nutritional Criteria for Military Rations and Effects of Prolonged Feeding on Acceptability

    NASA Technical Reports Server (NTRS)

    Schnakenberg, D.

    1985-01-01

    Broad nutritional policies for operational rations are designed to insure that the nutritional content of the rations served will sustain combat effectiveness. Concern exists that these rations, although nutritionally complete, would become monotonous because of limited variety causing nutrient intake to decrease and body weight losses to occur with adverse effects on morale and combat effectiveness. Whenever possible, troops are now fed one or two hot meals per day containing fresh foods and a much greater variety of foods than are available in packaged rations. A laboratory test was conducted with student volunteers and the results are discussed.

  3. Advances in chemical labeling of proteins in living cells.

    PubMed

    Yan, Qi; Bruchez, Marcel P

    2015-04-01

    The pursuit of quantitative biological information via imaging requires robust labeling approaches that can be used in multiple applications and with a variety of detectable colors and properties. In addition to conventional fluorescent proteins, chemists and biologists have come together to provide a range of approaches that combine dye chemistry with the convenience of genetic targeting. This hybrid-tagging approach amalgamates the rational design of properties available through synthetic dye chemistry with the robust biological targeting available with genetic encoding. In this review, we discuss the current range of approaches that have been exploited for dye targeting or for targeting and activation and some of the recent applications that are uniquely permitted by these hybrid-tagging approaches.

  4. [The conceptual bases for an entrepreneurial management of local health systems].

    PubMed

    Yepes, F J; Durán-Arenas, L

    1994-01-01

    Health management has become a fashion and it is now common to talk about strategic or service management, or of total quality management applied to health systems. However, all these elements of business management are being translated to health systems without a previous analysis on the implicit health model and the rationality of the prevalent production functions, which can lead to a higher level of efficiency but with an inadequate use of resources. This paper suggests the importance of integrating the advances in management and health sciences and proposes what are considered to be the conceptual basis for the design of a management tool geared to conduct local health systems with effectiveness, efficiency, quality and equity.

  5. Size matters: gold nanoparticles in targeted cancer drug delivery

    PubMed Central

    Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A

    2013-01-01

    Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward. PMID:22834077

  6. Advances in Mycobacterium tuberculosis therapeutics discovery utlizing structural biology

    PubMed Central

    Chim, Nicholas; Owens, Cedric P.; Contreras, Heidi; Goulding, Celia W.

    2013-01-01

    In 2012, tuberculosis (TB) remains a global health threat and is exacerbated both by the emergence of drug resistant Mycobacterium tuberculosis strains and its synergy with HIV infection. The waning effectiveness of current treatment regimens necessitates the development of new or repurposed anti-TB therapeutics for improved combination therapies against the disease. Exploiting atomic resolution structural information of proteins in complex with their substrates and/or inhibitors can facilitate structure-based rational drug design. Since our last review in 2009, there has been a wealth of new M. tuberculosis protein structural information. Once again, we have compiled the most promising structures with regards to potential anti-TB drug development and present them in this updated review. PMID:23167715

  7. Antibodies against viruses: passive and active immunization

    PubMed Central

    Law, Mansun; Hangartner, Lars

    2008-01-01

    Summary of recent advances Antibodies, through passive or active immunization, play a central role in prophylaxis against many infectious agents. While neutralization is a primary function of antibodies in protection against most viruses, the relative contribution of Fc-dependent and complement-dependent antiviral activities of antibodies was found to vary between different viruses in recent studies. The multiple hit model explains how antibodies neutralize viruses and recent data on the stoichiometry of antibody neutralization suggest that the organization of viral surface proteins on viruses, in addition to virus size, influences the level of antibody occupancy required for neutralization. These new findings will improve our strategies in therapeutic antibody engineering and rational vaccine design. PMID:18577455

  8. An advanced kinetic theory for morphing continuum with inner structures

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-12-01

    Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

  9. Rational Behavior Training: A Seven Lesson Sequence for Teaching Rational Behavior Skills to Students with Social and Emotional Disabilities.

    ERIC Educational Resources Information Center

    Patton, Patricia Lucey

    This seven lesson curriculum sequence is designed to help teachers teach principles of Rational Behavior Training (RBT) which targets thinking behaviors, feeling behaviors, and behavioral responses to the environment. The program is appropriate for students with social and emotional disabilities and also develops reading, writing, spelling,…

  10. Rational design of new electrolyte materials for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  11. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  12. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  13. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  14. Dramatic pressure-sensitive ion conduction in conical nanopores.

    PubMed

    Jubin, Laetitia; Poggioli, Anthony; Siria, Alessandro; Bocquet, Lydéric

    2018-04-17

    Ion transporters in Nature exhibit a wealth of complex transport properties such as voltage gating, activation, and mechanosensitive behavior. When combined, such processes result in advanced ionic machines achieving active ion transport, high selectivity, or signal processing. On the artificial side, there has been much recent progress in the design and study of transport in ionic channels, but mimicking the advanced functionalities of ion transporters remains as yet out of reach. A prerequisite is the development of ionic responses sensitive to external stimuli. In the present work, we report a counterintuitive and highly nonlinear coupling between electric and pressure-driven transport in a conical nanopore, manifesting as a strong pressure dependence of the ionic conductance. This result is at odds with standard linear response theory and is akin to a mechanical transistor functionality. We fully rationalize this behavior on the basis of the coupled electrohydrodynamics in the conical pore by extending the Poisson-Nernst-Planck-Stokes framework. The model is shown to capture the subtle mechanical balance occurring within an extended spatially charged zone in the nanopore. The pronounced sensitivity to mechanical forcing offers leads in tuning ion transport by mechanical stimuli. The results presented here provide a promising avenue for the design of tailored membrane functionalities.

  15. Cellular processing and destinies of artificial DNA nanostructures.

    PubMed

    Lee, Di Sheng; Qian, Hang; Tay, Chor Yong; Leong, David Tai

    2016-08-07

    Since many bionanotechnologies are targeted at cells, understanding how and where their interactions occur and the subsequent results of these interactions is important. Changing the intrinsic properties of DNA nanostructures and linking them with interactions presents a holistic and powerful strategy for understanding dual nanostructure-biological systems. With the recent advances in DNA nanotechnology, DNA nanostructures present a great opportunity to understand the often convoluted mass of information pertaining to nanoparticle-biological interactions due to the more precise control over their chemistry, sizes, and shapes. Coupling just some of these designs with an understanding of biological processes is both a challenge and a source of opportunities. Despite continuous advances in the field of DNA nanotechnology, the intracellular fate of DNA nanostructures has remained unclear and controversial. Because understanding its cellular processing and destiny is a necessary prelude to any rational design of exciting and innovative bionanotechnology, in this review, we will discuss and provide a comprehensive picture relevant to the intracellular processing and the fate of various DNA nanostructures which have been remained elusive for some time. We will also link the unique capabilities of DNA to some novel ideas for developing next-generation bionanotechnologies.

  16. A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803

    DOE PAGES

    Wang, Bo; Eckert, Carrie; Maness, Pin -Ching; ...

    2017-12-12

    Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E.more » coli σ 70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. Furthermore, these systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.« less

  17. A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Eckert, Carrie; Maness, Pin -Ching

    Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E.more » coli σ 70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. Furthermore, these systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.« less

  18. Engagement of the medical-technology sector with society.

    PubMed

    Williams, David; Edelman, Elazer R; Radisic, Milica; Laurencin, Cato; Untereker, Darrel

    2017-04-12

    The medical-technology sector must educate society in an unbiased rational way about the successes and benefits of biotechnology innovation. Copyright © 2017, American Association for the Advancement of Science.

  19. Soft matter assemblies as nanomedicine platforms for cancer chemotherapy: a journey from market products towards novel approaches.

    PubMed

    Jäger, Eliézer; Giacomelli, Fernando C

    2015-01-01

    The current review aims to outline the likely medical applications of nanotechnology and the potential of the emerging field of nanomedicine. Nanomedicine can be defined as the investigation area encompassing the design of diagnostics and therapeutics at the nanoscale, including nanobots, nanobiosensors, nanoparticles and other nanodevices, for the remediation, prevention and diagnosis of a variety of illnesses. The ultimate goal of nanomedicine is to improve patient quality-of-life. Because nanomedicine includes the rational design of an enormous number of nanotechnology-based products focused on miscellaneous diseases, a variety of nanomaterials can be employed. Therefore, this review will focus on recent advances in the manufacture of soft matterbased nanomedicines specifically designed to improve diagnostics and cancer chemotherapy efficacy. It will be particularly highlighted liposomes, polymer-drug conjugates, drug-loaded block copolymer micelles and biodegradable polymeric nanoparticles, emphasizing the current investigations and potential novel approaches towards overcoming the remaining challenges in the field as well as formulations that are in clinical trials and marketed products.

  20. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    PubMed

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    NASA Astrophysics Data System (ADS)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  2. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    PubMed

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based onmore » these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.« less

  4. RNA structures as mediators of neurological diseases and as drug targets

    PubMed Central

    Bernat, Viachaslau; Disney, Matthew D.

    2015-01-01

    RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics. PMID:26139368

  5. Design of virus-based nanomaterials for medicine, biotechnology, and energy.

    PubMed

    Wen, Amy M; Steinmetz, Nicole F

    2016-07-25

    This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.

  6. Nanostructured electrocatalysts with tunable activity and selectivity

    NASA Astrophysics Data System (ADS)

    Mistry, Hemma; Varela, Ana Sofia; Kühl, Stefanie; Strasser, Peter; Cuenya, Beatriz Roldan

    2016-04-01

    The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted.

  7. Using implementation science as the core of the doctor of nursing practice inquiry project.

    PubMed

    Riner, Mary E

    2015-01-01

    New knowledge in health care needs to be implemented for continuous practice improvement. Doctor of nursing practice (DNP) programs are designed to increase clinical practice knowledge and leadership skills of graduates. This article describes an implementation science course developed in a DNP program focused on advancing graduates' capacity for health systems leadership. Curriculum and course development are presented, and the course is mapped to depict how the course objectives and assignments were aligned with DNP Essentials. Course modules with rational are described, and examples of how students implemented assignments are provided. The challenges of integrating this course into the life of the school are discussed as well as steps taken to develop faculty for this capstone learning experience. This article describes a model of using implementation science to provide DNP students an experience in designing and managing an evidence-based practice change project. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms.

    PubMed

    Latif, Haythem; Zeidan, Ahmad A; Nielsen, Alex T; Zengler, Karsten

    2014-06-01

    Fermentation of syngas is a means through which unutilized organic waste streams can be converted biologically into biofuels and commodity chemicals. Despite recent advances, several issues remain which limit implementation of industrial-scale syngas fermentation processes. At the cellular level, the energy conservation mechanism of syngas fermenting microorganisms has not yet been entirely elucidated. Furthermore, there was a lack of genetic tools to study and ultimately enhance their metabolic capabilities. Recently, substantial progress has been made in understanding the intricate energy conservation mechanisms of these microorganisms. Given the complex relationship between energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic manipulation tools have also been developed, paving the way for the use of metabolic engineering and systems biology approaches. Rational strain designs can now be deployed resulting in desirable phenotypic traits for large-scale production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation.

    PubMed

    Lachaine, Rémi; Boutopoulos, Christos; Lajoie, Pierre-Yves; Boulais, Étienne; Meunier, Michel

    2016-05-11

    Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment. The methodology developed here thus provides a general strategy for the systematic design of nanoparticles for nanomedical applications and should be broadly applicable to bioimaging and cell nanosurgery.

  10. Rational Design of an Ultrasensitive Quorum-Sensing Switch.

    PubMed

    Zeng, Weiqian; Du, Pei; Lou, Qiuli; Wu, Lili; Zhang, Haoqian M; Lou, Chunbo; Wang, Hongli; Ouyang, Qi

    2017-08-18

    One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.

  11. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  12. Advances in the production of freeform optical surfaces

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  13. Design, analysis, operation, and advanced control of hybrid renewable energy systems

    NASA Astrophysics Data System (ADS)

    Whiteman, Zachary S.

    Because using non-renewable energy systems (e.g., coal-powered co-generation power plants) to generate electricity is an unsustainable, environmentally hazardous practice, it is important to develop cost-effective and reliable renewable energy systems, such as photovoltaics (PVs), wind turbines (WTs), and fuel cells (FCs). Non-renewable energy systems, however, are currently less expensive than individual renewable energy systems (IRESs). Furthermore, IRESs based on intermittent natural resources (e.g., solar irradiance and wind) are incapable of meeting continuous energy demands. Such shortcomings can be mitigated by judiciously combining two or more complementary IRESs to form a hybrid renewable energy system (HRES). Although previous research efforts focused on the design, operation, and control of HRESs has proven useful, no prior HRES research endeavor has taken a systematic and comprehensive approach towards establishing guidelines by which HRESs should be designed, operated, and controlled. The overall goal of this dissertation, therefore, is to establish the principles governing the design, operation, and control of HRESs resulting in cost-effective and reliable energy solutions for stationary and mobile applications. To achieve this goal, we developed and demonstrated four separate HRES principles. Rational selection of HRES type: HRES components and their sizes should be rationally selected using knowledge of component costs, availability of renewable energy resources, and expected power demands of the application. HRES design: by default, the components of a HRES should be arranged in parallel for increased efficiency and reliability. However, a series HRES design may be preferred depending on the operational considerations of the HRES components. HRES control strategy selection: the choice of HRES control strategy depends on the dynamics of HRES components, their operational considerations, and the practical limitations of the HRES end-use. HRES data-driven control: information-rich data should be used to assist in the intelligent coordination of HRES components in meeting its operating objectives when additional computation can be afforded and significant benefits can be realized.

  14. Aggression, science, and law: The origins framework. Introduction.

    PubMed

    Victoroff, Jeff

    2009-01-01

    Human societies have formalized instincts for compliance with reciprocal altruism in laws that sanction some aggression and not other aggression. Neuroscience makes steady advances toward measurements of various aspects of brain function pertinent to the aggressive behaviors that laws are designed to regulate. Consciousness, free will, rationality, intent, reality testing, empathy, moral reasoning, and capacity for self-control are somewhat subject to empirical assessment. The question becomes: how should law accommodate the wealth of information regarding these elements of mind that the science of aggression increasingly makes available? This essay discusses the evolutionary purpose of aggression, the evolutionary purpose of law, the problematic assumptions of the mens rea doctrine, and the prospects for applying the neuroscience of aggression toward the goal of equal justice for unequal minds. Nine other essays are introduced, demonstrating how each of them fits into the framework of the permanent debate about neuroscience and justice. It is concluded that advances in the science of human aggression will have vital, but biologically limited, impact on the provision of justice.

  15. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries.

    PubMed

    Wang, Nana; Yue, Jie; Chen, Liang; Qian, Yitai; Yang, Jian

    2015-05-20

    Rational design and delicate control on the component, structure, and surface of electrodes in lithium ion batteries are highly important to their performances in practical applications. Compared with various components and structures for electrodes, the choices for their surface are quite limited. The most widespread surface for numerous electrodes, a carbon shell, has its own issues, which stimulates the desire to find another alternative surface. Here, hydrogenated TiO2 is exemplified as an appealing surface for advanced anodes by the growth of ultrathin hydrogenated TiO2 branches on Mn3O4 nanorods. High theoretical capacity of Mn3O4 is well matched with low volume variation (∼4%), enhanced electrical conductivity, good cycling stability, and rate capability of hydrogenated TiO2, as demonstrated in their electrochemical performances. The proof-of-concept reveals the promising potential of hydrogenated TiO2 as a next-generation material for the surface in high-performance hybrid electrodes.

  16. Game theory in models of pedestrian room evacuation

    NASA Astrophysics Data System (ADS)

    Bouzat, S.; Kuperman, M. N.

    2014-03-01

    We analyze the pedestrian evacuation of a rectangular room with a single door considering a lattice gas scheme with the addition of behavioral aspects of the pedestrians. The movement of the individuals is based on random and rational choices and is affected by conflicts between two or more agents that want to advance to the same position. Such conflicts are solved according to certain rules closely related to the concept of strategies in game theory, cooperation and defection. We consider game rules analogous to those from the Prisoner's Dilemma and Stag Hunt games, with payoffs associated to the probabilities of the individuals to advance to the selected site. We find that, even when defecting is the rational choice for any agent, under certain conditions, cooperators can take advantage from mutual cooperation and leave the room more rapidly than defectors.

  17. Game theory in models of pedestrian room evacuation.

    PubMed

    Bouzat, S; Kuperman, M N

    2014-03-01

    We analyze the pedestrian evacuation of a rectangular room with a single door considering a lattice gas scheme with the addition of behavioral aspects of the pedestrians. The movement of the individuals is based on random and rational choices and is affected by conflicts between two or more agents that want to advance to the same position. Such conflicts are solved according to certain rules closely related to the concept of strategies in game theory, cooperation and defection. We consider game rules analogous to those from the Prisoner's Dilemma and Stag Hunt games, with payoffs associated to the probabilities of the individuals to advance to the selected site. We find that, even when defecting is the rational choice for any agent, under certain conditions, cooperators can take advantage from mutual cooperation and leave the room more rapidly than defectors.

  18. Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design.

    PubMed

    Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Milan, Luis Aparecido; Stockton, Amanda M; Carrilho, Emanuel

    2017-05-02

    Paper-based devices are a portable, user-friendly, and affordable technology that is one of the best analytical tools for inexpensive diagnostic devices. Three-dimensional microfluidic paper-based analytical devices (3D-μPADs) are an evolution of single layer devices and they permit effective sample dispersion, individual layer treatment, and multiplex analytical assays. Here, we present the rational design of a wax-printed 3D-μPAD that enables more homogeneous permeation of fluids along the cellulose matrix than other existing designs in the literature. Moreover, we show the importance of the rational design of channels on these devices using glucose oxidase, peroxidase, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) reactions. We present an alternative method for layer stacking using a magnetic apparatus, which facilitates fluidic dispersion and improves the reproducibility of tests performed on 3D-μPADs. We also provide the optimized designs for printing, facilitating further studies using 3D-μPADs.

  19. The Next Generation of Synthetic Biology Chassis: Moving Synthetic Biology from the Laboratory to the Field.

    PubMed

    Adams, Bryn L

    2016-12-16

    Escherichia coli (E. coli) has played a pivotal role in the development of genetics and molecular biology as scientific fields. It is therefore not surprising that synthetic biology (SB) was built upon E. coli and continues to dominate the field. However, scientific capabilities have advanced from simple gene mutations to the insertion of rationally designed, complex synthetic circuits and creation of entirely synthetic genomes. The point is rapidly approaching where E. coli is no longer an adequate host for the increasingly sophisticated genetic designs of SB. It is time to develop the next generation of SB chassis; robust organisms that can provide the advanced physiology novel synthetic circuits will require to move SB from the laboratory into fieldable technologies. This can be accomplished by developing chassis-specific genetic toolkits that are as extensive as those for E. coli. However, the holy grail of SB would be the development of a universal toolkit that can be ported into any chassis. This viewpoint article underscores the need for new bacterial chassis, as well as discusses some of the important considerations in their selection. It also highlights a few examples of robust, tractable bacterial species that can meet the demands of tomorrow's state-of-the-art in SB. Significant advances have been made in the first 15 years since this field has emerged. However, the advances over the next 15 years will occur not in laboratory organisms, but in fieldable species where the potential of SB can be fully realized in game changing technology.

  20. Program Synthesizes UML Sequence Diagrams

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  1. The target invites a foe: antibody-drug conjugates in gynecologic oncology.

    PubMed

    Campos, Maira P; Konecny, Gottfried E

    2018-02-01

    Antibody-drug conjugates (ADCs) represent a promising new class of cancer therapeutics. Currently more than 60 ADCs are in clinical development, however, only very few trials focus on gynecologic malignancies. In this review, we summarize the most recent advances in ADC drug development with an emphasis on how this progress relates to patients diagnosed with gynecologic malignancies and breast cancer. The cytotoxic payloads of the majority of the ADCs that are currently in clinical trials for gynecologic malignancies or breast cancer are auristatins (MMAE, MMAF), maytansinoids (DM1, DM4), calicheamicin, pyrrolobenzodiazepines and SN-38. Both cleavable and noncleavable linkers are currently being investigated in clinical trials. A number of novel target antigens are currently being validated in ongoing clinical trials including folate receptor alpha, mesothelin, CA-125, NaPi2b, NOTCH3, protein tyrosine kinase-like 7, ephrin-A4, TROP2, CEACAM5, and LAMP1. For most ADCs currently in clinical development, dose-limiting toxicities appear to be unrelated to the targeted antigen but more tightly associated with the payload. Rational drug design involving optimization of the antibody, the linker and the conjugation chemistry is aimed at improving the therapeutic index of new ADCs. Antibody-drug conjugates can increase the efficacy and decrease the toxicity of their payloads in comparison with traditional cyctotoxic agents. A better and quicker translation of recent scientific advances in the field of ADCs into rational clinical trials for patients diagnosed with ovarian, endometrial or cervical cancer could create real improvements in tumor response, survival and quality of life for our patients.

  2. On the configuration of supercapacitors for maximizing electrochemical performance.

    PubMed

    Zhang, Jintao; Zhao, X S

    2012-05-01

    Supercapacitors, which are attracting rapidly growing interest from both academia and industry, are important energy-storage devices for acquiring sustainable energy. Recent years have seen a number of significant breakthroughs in the research and development of supercapacitors. The emergence of innovative electrode materials (e.g., graphene) has clearly provided great opportunities for advancing the science in the field of electrochemical energy storage. Conversely, smart configurations of electrode materials and new designs of supercapacitor devices have, in many cases, boosted the electrochemical performance of the materials. We attempt to summarize recent research progress towards the design and configuration of electrode materials to maximize supercapacitor performance in terms of energy density, power density, and cycle stability. With a brief description of the structure, energy-storage mechanism, and electrode configuration of supercapacitor devices, the design and configuration of symmetric supercapacitors are discussed, followed by that of asymmetric and hybrid supercapacitors. Emphasis is placed on the rational design and configuration of supercapacitor electrodes to maximize the electrochemical performance of the device. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab.

    PubMed

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.

  4. Rational design of carbon and TiO2 assembly materials: covered or strewn, which is better for photocatalysis?

    PubMed

    Cui, Guan-wei; Wang, Wei-liang; Ma, Ming-yue; Zhang, Ming; Xia, Xin-yuan; Han, Feng-yun; Shi, Xi-feng; Zhao, Ying-qiang; Dong, Yu-bin; Tang, Bo

    2013-07-21

    The rational design of carbonaceous hybrid nanostructures is very important for obtaining high photoactivity. TiO2 particles strewn with an optimal quantity of carbon nanodots have a much higher photoactivity than that of TiO2 covered with a carbon layer, showing the importance of carbon morphology in the photocatalysis of carbonaceous hybrid nanostructures.

  5. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    PubMed Central

    Gould, Nathan; Hendy, Oliver; Papamichail, Dimitris

    2014-01-01

    Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations. PMID:25340050

  6. Transition Metal Carbides and Nitrides in Energy Storage and Conversion

    PubMed Central

    Zhong, Yu; Shi, Fan; Zhan, Jiye; Tu, Jiangping

    2016-01-01

    High‐performance electrode materials are the key to advances in the areas of energy conversion and storage (e.g., fuel cells and batteries). In this Review, recent progress in the synthesis and electrochemical application of transition metal carbides (TMCs) and nitrides (TMNs) for energy storage and conversion is summarized. Their electrochemical properties in Li‐ion and Na‐ion batteries as well as in supercapacitors, and electrocatalytic reactions (oxygen evolution and reduction reactions, and hydrogen evolution reaction) are discussed in association with their crystal structure/morphology/composition. Advantages and benefits of nanostructuring (e.g., 2D MXenes) are highlighted. Prospects of future research trends in rational design of high‐performance TMCs and TMNs electrodes are provided at the end. PMID:27812464

  7. Bioinformatics-based tools in drug discovery: the cartography from single gene to integrative biological networks.

    PubMed

    Ramharack, Pritika; Soliman, Mahmoud E S

    2018-06-01

    Originally developed for the analysis of biological sequences, bioinformatics has advanced into one of the most widely recognized domains in the scientific community. Despite this technological evolution, there is still an urgent need for nontoxic and efficient drugs. The onus now falls on the 'omics domain to meet this need by implementing bioinformatics techniques that will allow for the introduction of pioneering approaches in the rational drug design process. Here, we categorize an updated list of informatics tools and explore the capabilities of integrative bioinformatics in disease control. We believe that our review will serve as a comprehensive guide toward bioinformatics-oriented disease and drug discovery research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Probiotics: properties, examples, and specific applications.

    PubMed

    Behnsen, Judith; Deriu, Elisa; Sassone-Corsi, Martina; Raffatellu, Manuela

    2013-03-01

    Probiotics are beneficial components of the microbiota that have been used for centuries because of the health benefits they confer to the host. Only recently, however, has the contribution of probiotics to modulation of immunological, respiratory, and gastrointestinal functions started to be fully appreciated and scientifically evaluated. Probiotics such as Escherichia coli Nissle 1917 and lactic acid bacteria are currently used to, or have been evaluated for use to, prevent or treat a range of intestinal maladies including inflammatory bowel disease, constipation, and colon cancer. Engineering these natural probiotics to produce immunomodulatory molecules may help to further increase the benefit to the host. In this article, we will discuss some of the mechanisms of action of probiotics as well as advances in the rational design of probiotics.

  9. Metabolic immune restraints: implications for anticancer vaccines.

    PubMed

    Mocellin, Simone

    2010-01-01

    Metabolic immune restraints belong to a highly complex network of molecular mechanisms underlying the failure of naturally occurring and therapeutically induced immune responses against cancer. In the light of the disappointing results yielded so far with anticancer vaccines in the clinical setting, the dissection of the cascade of molecular events leading to tumor immune escape appears the most promising way to develop more effective immunotherapeutic strategies. Here we review the significant advances recently made in the understanding of the tumor-specific metabolic features that contribute to keep malignant cells from being recognized and destroyed by immune effectors. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits and thus to enhance the effectiveness of anticancer vaccines.

  10. Combat Ration Advanced Manufacturing Technology Demonstration (CRAMTD). ’Generic Inspection-Statistical Process Control System for a Combat Ration Manufacturing Facility’. Short Term Project (STP) Number 3.

    DTIC Science & Technology

    1996-01-01

    failure as due to an adhesive layer between the foil and inner polypropylene layers. "* Under subcontract, NFPA provided HACCP draft manuals for the...parameters of the production process and to ensure that they are within their target values. In addition, a HACCP program was used to assure product...played an important part in implementing Hazard Analysis Critical Control Points ( HACCP ) as part of the Process and Quality Control manual. The National

  11. Study on Amortization Time and Rationality in Real Estate Investment

    NASA Astrophysics Data System (ADS)

    Li, Yancang; Zhou, Shujing; Suo, Juanjuan

    Amortization time and rationality has been discussed a lot in real estate investment research. As the price of real estate is driven by Geometric Brown Motion (GBM), whether the mortgagors should amortize in advance has become a key issue in amortization time research. This paper presents a new method to solve the problem by using the optimal stopping time theory and option pricing theory models. We discuss the option value in amortizing decision based on this model. A simulation method is used to test this method.

  12. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.

    PubMed

    Hadd, Andrew; Perona, John J

    2014-12-19

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl-tRNA pairing specificities of bacterial glutaminyl-tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNA(Gln) by over 10(5)-fold compared to the wild-type enzyme. Better optimized designs of the protein-RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl-tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology.

  13. Refolding of proteins from inclusion bodies: rational design and recipes.

    PubMed

    Basu, Anindya; Li, Xiang; Leong, Susanna Su Jan

    2011-10-01

    The need to develop protein biomanufacturing platforms that can deliver proteins quickly and cost-effectively is ever more pressing. The rapid rate at which genomes can now be sequenced demands efficient protein production platforms for gene function identification. There is a continued need for the biotech industry to deliver new and more effective protein-based drugs to address new diseases. Bacterial production platforms have the advantage of high expression yields, but insoluble expression of many proteins necessitates the development of diverse and optimised refolding-based processes. Strategies employed to eliminate insoluble expression are reviewed, where it is concluded that inclusion bodies are difficult to eliminate for various reasons. Rational design of refolding systems and recipes are therefore needed to expedite production of recombinant proteins. This review article discusses efforts towards rational design of refolding systems and recipes, which can be guided by the development of refolding screening platforms that yield both qualitative and quantitative information on the progression of a given refolding process. The new opportunities presented by light scattering technologies for developing rational protein refolding buffer systems which in turn can be used to develop new process designs armed with better monitoring and controlling functionalities are discussed. The coupling of dynamic and static light scattering methodologies for incorporation into future bioprocess designs to ensure delivery of high-quality refolded proteins at faster rates is also discussed.

  14. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    PubMed Central

    Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M

    2013-01-01

    Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved. PMID:23355776

  15. Modeling the probability distribution of peak discharge for infiltrating hillslopes

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio; Singh, Vijay P.

    2017-07-01

    Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecedent soil moisture condition (ASMC) significantly affects the rate of infiltration, its effect on the probability distribution of peak discharge is investigated. Application to a watershed in Sicily, Italy, shows that with the increase of probability, the expected effect of ASMC to increase the maximum discharge diminishes. Only for low values of probability, the critical duration of rainfall is influenced by ASMC, whereas its effect on the peak discharge seems to be less for any probability. For a set of parameters, the derived probability distribution of peak discharge seems to be fitted by the gamma distribution well. Finally, an application to a small watershed, with the aim to test the possibility to arrange in advance the rational runoff coefficient tables to be used for the rational method, and a comparison between peak discharges obtained by the GABS model with those measured in an experimental flume for a loamy-sand soil were carried out.

  16. Rational Design of Self-Supported Ni3S2 Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density.

    PubMed

    Chen, Jun Song; Guan, Cao; Gui, Yang; Blackwood, Daniel John

    2017-01-11

    We report a rationally designed two-step method to fabricate self-supported Ni 3 S 2 nanosheet arrays. We first used 2-methylimidazole (2-MI), an organic molecule commonly served as organic linkers in metal-organic frameworks (MOFs), to synthesize an α-Ni(OH) 2 nanosheet array as a precursor, followed by its hydrothermal sulfidization into Ni 3 S 2 . The resulting Ni 3 S 2 nanosheet array demonstrated superior supercapacitance properties, with a very high capacitance of about 1,000 F g -1 being delivered at a high current density of 50 A g -1 for 20,000 charge-discharge cycles. This performance is unparalleled by other reported nickel sulfide-based supercapacitors and is also advantageous compared to other nickel-based materials such as NiO and Ni(OH) 2 . An asymmetric supercapacitor was then established, exhibiting a very stable capacitance of about 200 F g -1 at a high current density of 10 A g -1 for 10,000 cycles and a surprisingly high energy density of 202 W h kg -1 . This value is comparable to that of the lithium-ion batteries, i.e., 180 W h kg -1 . The potential of the material for practical applications was evaluated by building a quasi-solid-state asymmetric supercapacitor which showed good flexibility and power output, and two of these devices connected in series were able to power up 18 green light-emitting diodes.

  17. Rational assembly of nanoparticle superlattices with designed lattice symmetries

    DOEpatents

    Gang, Oleg; Lu, Fang; Tagawa, Miho

    2017-09-05

    A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated "patchy" particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.

  18. Rational design of aerobic digestion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, L.G.

    1987-06-01

    Deficiencies are identified in state-of-the-art procedures used in the design of systems for the aerobic digestion of waste-activated sludge solids. A procedure for the design of such systems on a rational basis is presented. Such a procedure not only includes a well-defined stabilization objective, but takes into account the stabilization that occurs in the activated sludge process. Related methods are discussed by which coefficients used in the design procedure can be evaluated. A design example is given. Further research and performance data derived from systems designed by the procedure are needed to better evaluate the parameters used and to testmore » the assumptions made in applying the procedure.« less

  19. Rational design of aerobic digestion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, L.G.

    1987-06-01

    Deficiencies are identified in state-of-the-art procedures used in the design of systems for the aerobic digestion of waste-activated sludge solids. A procedure for the design of such systems on a rational basis is presented. Such a procedure not only includes a well-defined stabilization objective, but takes into account the stabilization that occurs in the activated sludge process. Related methods are discussed by which coefficients used in the design procedure can be evaluated. A design example is given. Further research and performance data derived from systems designed by the procedure are needed to better evaluate the parameters used and to testmore » the assumptions made in applying the procedure. (Refs. 28).« less

  20. Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function.

    PubMed

    Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M

    2017-12-19

    The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.

  1. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.

    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, asmore » well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies.In vivoresults in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.« less

  2. Monotonicity preserving splines using rational cubic Timmer interpolation

    NASA Astrophysics Data System (ADS)

    Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md

    2017-08-01

    In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.

  3. Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes-A Review.

    PubMed

    Rajput, Nav Nidhi; Seguin, Trevor J; Wood, Brandon M; Qu, Xiaohui; Persson, Kristin A

    2018-04-26

    Fundamental molecular-level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applications. In particular, exhaustive knowledge of solvation structure, stability, and transport properties is critical for developing stable electrolytes for fast-charging and high-energy-density next-generation energy storage systems. Accordingly, there is growing interest in the rational design of electrolytes for beyond lithium-ion systems by tuning the molecular-level interactions of solvate species present in the electrolytes. Here we present a review of the solvation structure of multivalent electrolytes and its impact on the electrochemical performance of these batteries. A direct correlation between solvate species present in the solution and macroscopic properties of electrolytes is sparse for multivalent electrolytes and contradictory results have been reported in the literature. This review aims to illustrate the current understanding, compare results, and highlight future needs and directions to enable the deep understanding needed for the rational design of improved multivalent electrolytes.

  4. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    PubMed

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery

    PubMed Central

    Williams, Charles H.; Hong, Charles C.

    2011-01-01

    In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET) properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design. PMID:21731440

  6. Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator.

    PubMed

    Sutar, Papri; Suresh, Venkata M; Maji, Tapas Kumar

    2015-06-18

    Rational design and synthesis of a new low molecular weight gelator (LMWG) having 9,10-diphenylanthracene core and terminal terpyridine is reported. Tb(III) and Eu(III) ion coordination to a LMWG results in green and pink emissive coordination polymer gels, respectively, with coiled nanofiber morphology. Further, control over stoichiometry of LMWG:Tb(III):Eu(III) leads to yellow and white light emitting bimetallic gels.

  7. Schumpeter's picture of economic and political institutions in the light of a cognitive approach to human behavior.

    PubMed

    Egidi, Massimo

    2017-01-01

    Schumpeter's theory of democracy can be read through the lens of the cognitive approach to rationality. Schumpeter himself constructed his theory on the basis of his (neglected) conception of conscious rationality , which considers the process of thinking as composed of conscious/deliberate and unconscious/automatic components. The prevalence of the deliberate over the automatic component can occur in different degrees; as a consequence, individuals exhibit different levels of conscious rationality. Schumpeter makes clear that an essential attribute of democracy is its being a system of government capable of working notwithstanding a low degree of conscious rationality among its citizens. Given this condition, the process of political communication and persuasion can lead to two very different outcomes: a fair social construction of the democratic institutions, in which the struggle for the vote is achieved through a critical debate among leaders and citizens; and an unfair construction, based on the prevalence of emotive forces of persuasion over rationality and on cheating of the leaders at the expense of their citizens. Schumpeter suggests that the main element that fosters a fair construction is the effectiveness of competition, which can advance the rational elements in the political debate and the self-determination of the citizens' will: a slow process that - he warns - may be effective only in the long run, and does not preserve democracy from the risk of decline.

  8. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology

    PubMed Central

    Ciceri, Pietro; Müller, Susanne; O’Mahony, Alison; Fedorov, Oleg; Filippakopoulos, Panagis; Hunt, Jeremy P.; Lasater, Elisabeth A.; Pallares, Gabriel; Picaud, Sarah; Wells, Christopher; Martin, Sarah; Wodicka, Lisa M.; Shah, Neil P.; Treiber, Daniel K.; Knapp, Stefan

    2014-01-01

    Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multi-target profile has, however, necessitated the application of combination therapies, which can pose significant clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as novel targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase/bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, clinical PLK1 and JAK2/FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a novel strategy for rational single agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase/bromodomain inhibitors. PMID:24584101

  9. TRO-2D - A code for rational transonic aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  10. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort.

    PubMed

    Jeschek, Markus; Gerngross, Daniel; Panke, Sven

    2016-03-31

    Rational flux design in metabolic engineering approaches remains difficult since important pathway information is frequently not available. Therefore empirical methods are applied that randomly change absolute and relative pathway enzyme levels and subsequently screen for variants with improved performance. However, screening is often limited on the analytical side, generating a strong incentive to construct small but smart libraries. Here we introduce RedLibs (Reduced Libraries), an algorithm that allows for the rational design of smart combinatorial libraries for pathway optimization thereby minimizing the use of experimental resources. We demonstrate the utility of RedLibs for the design of ribosome-binding site libraries by in silico and in vivo screening with fluorescent proteins and perform a simple two-step optimization of the product selectivity in the branched multistep pathway for violacein biosynthesis, indicating a general applicability for the algorithm and the proposed heuristics. We expect that RedLibs will substantially simplify the refactoring of synthetic metabolic pathways.

  11. Rational-Emotive Therapy versus Systematic Desensitization: A Comment on Moleski and Tosi.

    ERIC Educational Resources Information Center

    Atkinson, Leslie

    1983-01-01

    Questioned the statistical analyses of the Moleski and Tosi investigation of rational-emotive therapy versus systematic desensitization. Suggested means for lowering the error rate through a more efficient experimental design. Recommended a reanalysis of the original data. (LLL)

  12. Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li-S batteries

    NASA Astrophysics Data System (ADS)

    Xia, Yang; Zhong, Haoyue; Fang, Ruyi; Liang, Chu; Xiao, Zhen; Huang, Hui; Gan, Yongping; Zhang, Jun; Tao, Xinyong; Zhang, Wenkui

    2018-02-01

    The rational design and controllable synthesis of sulfur cathode with high sulfur content, superior structural stability and fascinating electrochemical properties is a vital step to realize the large-scale application of rechargeable lithium-sulfur (Li-S) batteries. However, the electric insulation of elemental sulfur and the high solubility of lithium polysulfides are two intractable obstacles to hinder the success of Li-S batteries. In order to overcome aforementioned issues, a novel strategy combined supercritical CO2 fluid technology and biotemplating method is developed to fabricate Ni(OH)2 modified porous carbon microspheres as sulfur hosts to ameliorate the electronic conductive of sulfur and enhance simultaneously the physical and chemical absorptions of polysulfides. This elaborately designed Ni(OH)2@PYC/S composite cathode exhibits high reversible discharge capacity (1335 mAh g-1 at 0.1 C), remarkable cyclic stability (602 mAh g-1 after 200 cycles at 0.2 C) and superior rate capability, which is much better than its PYC/S counterpart. These results clearly demonstrate that the advanced porous carbon with good conductivity and the polar Ni(OH)2 coating layer with strong trapping ability of polysulfides are responsible for the enhanced electrochemical performance.

  13. The evolving landscape of therapeutic drug development for hepatocellular carcinoma.

    PubMed

    Chong, Dawn Qingqing; Tan, Iain Beehuat; Choo, Su-Pin; Toh, Han Chong

    2013-11-01

    Currently, only one drug, sorafenib, is FDA approved for the treatment of advanced hepatocellular carcinoma (HCC), achieving modest objective response rates while still conferring an overall survival benefit. Unlike other solid tumors, no oncogenic addiction loops have been validated as clinically actionable targets in HCC. Outcomes of HCC could potentially be improved if critical molecular subclasses with distinct therapeutic vulnerabilities can be identified, biomarkers that predict recurrence or progression early can be determined and key epigenetic, genetic or microenvironment drivers that determine best response to a specific targeting treatment can be uncovered. Our group and others have examined the molecular heterogeneity of hepatocellular carcinoma. We have developed a panel of patient derived xenograft models to enable focused pre-clinical drug development of rationally designed therapies in specific molecular subgroups. We observed unique patterns, including synergies, of drug activity across our molecularly diverse HCC xenografts, pointing to specific therapeutic vulnerabilities for individual tumors. These efforts inform clinical trial designs and catalyze therapeutic development. It also argues for efficient strategic allocation of patients into appropriate enriched clinical trials. Here, we will discuss some of the recent important therapeutic studies in advanced HCC and also some of the potential strategies to optimize clinical therapeutic development moving forward. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab

    PubMed Central

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions. PMID:26514585

  15. SEXUAL SELECTION. Irrationality in mate choice revealed by túngara frogs.

    PubMed

    Lea, Amanda M; Ryan, Michael J

    2015-08-28

    Mate choice models derive from traditional microeconomic decision theory and assume that individuals maximize their Darwinian fitness by making economically rational decisions. Rational choices exhibit regularity, whereby the relative strength of preferences between options remains stable when additional options are presented. We tested female frogs with three simulated males who differed in relative call attractiveness and call rate. In binary choice tests, females' preferences favored stimulus caller B over caller A; however, with the addition of an inferior "decoy" C, females reversed their preferences and chose A over B. These results show that the relative valuation of mates is not independent of inferior alternatives in the choice set and therefore cannot be explained with the rational choice models currently used in sexual selection theory. Copyright © 2015, American Association for the Advancement of Science.

  16. Options as information: rational reversals of evaluation and preference.

    PubMed

    Sher, Shlomi; McKenzie, Craig R M

    2014-06-01

    This article develops a rational analysis of an important class of apparent preference reversals-joint-separate reversals traditionally explained by the evaluability hypothesis. The "options-as-information" model considers a hypothetical rational actor with limited knowledge about the market distribution of a stimulus attribute. The actor's evaluations are formed via a 2-stage process-an inferential stage in which beliefs are updated on the basis of the sample of options received, followed by an assessment stage in which options are evaluated in light of these updated beliefs. This process generates joint-separate reversals in standard experimental designs. The normative model explains why the evaluability hypothesis works when it does, identifies boundary conditions for the hypothesis, and clarifies some common misconceptions about these effects. In particular, it implies that joint-separate reversals are not irrational; in fact, they are not preference reversals. However, in expanded designs where more than 2 options are jointly evaluated, the model predicts that genuine (and rational) preference reversals will sometimes emerge. Results of 3 experiments suggest an excellent fit between the rational actor model and the judgments of human actors in joint-separate experiments. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design

    PubMed Central

    Cozza, Giorgio

    2017-01-01

    Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial and error testing”. In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising. PMID:28230762

  18. RNA design rules from a massive open laboratory

    PubMed Central

    Lee, Jeehyung; Kladwang, Wipapat; Lee, Minjae; Cantu, Daniel; Azizyan, Martin; Kim, Hanjoo; Limpaecher, Alex; Gaikwad, Snehal; Yoon, Sungroh; Treuille, Adrien; Das, Rhiju

    2014-01-01

    Self-assembling RNA molecules present compelling substrates for the rational interrogation and control of living systems. However, imperfect in silico models—even at the secondary structure level—hinder the design of new RNAs that function properly when synthesized. Here, we present a unique and potentially general approach to such empirical problems: the Massive Open Laboratory. The EteRNA project connects 37,000 enthusiasts to RNA design puzzles through an online interface. Uniquely, EteRNA participants not only manipulate simulated molecules but also control a remote experimental pipeline for high-throughput RNA synthesis and structure mapping. We show herein that the EteRNA community leveraged dozens of cycles of continuous wet laboratory feedback to learn strategies for solving in vitro RNA design problems on which automated methods fail. The top strategies—including several previously unrecognized negative design rules—were distilled by machine learning into an algorithm, EteRNABot. Over a rigorous 1-y testing phase, both the EteRNA community and EteRNABot significantly outperformed prior algorithms in a dozen RNA secondary structure design tests, including the creation of dendrimer-like structures and scaffolds for small molecule sensors. These results show that an online community can carry out large-scale experiments, hypothesis generation, and algorithm design to create practical advances in empirical science. PMID:24469816

  19. Nutrition for Health and Performance, 2000: Nutritional Guidance for Military Operations in Temperate and Extreme Environments.

    DTIC Science & Technology

    1999-12-01

    processed , high-salt foods (read food labels). • If You Drink Alcoholic Beverages, Do So in Moderation - Alcoholic beverages supply calories but...military. Rations are made from "real foods" (commercially grown and processed ). Commercial brand name foods and military ration items are often...designed to simplify and streamline the process of providing group meals in the field by integrating components of A-Rations, and Heat & Serve (H & S

  20. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design

    PubMed Central

    Kong, Leopold; Sattentau, Quentin J

    2012-01-01

    Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445

  1. Depressive symptoms and occupational stress among Chinese female nurses: the mediating effects of social support and rational coping.

    PubMed

    Wu, Hui; Ge, Cui Xia; Sun, Wei; Wang, Jia Na; Wang, Lie

    2011-10-01

    The study reported here was designed to investigate the relationship between depressive symptoms and occupational stress in female nurses in China during the period June-July 2008. The hypothesis tested was that social support and rational coping would mediate the effects of occupational stress on depressive symptoms. Our structural equation modeling revealed that social support and rational coping were negatively correlated with depressive symptoms. Social support and rational coping mediated the effects of occupational stress on depressive symptoms. Role overload, role insufficiency, and role boundary were predictive of depressive symptoms. These results indicated that lessening occupational stress and strengthening social support and rational coping could decrease depressive symptoms among Chinese female nurses. Copyright © 2011 Wiley Periodicals, Inc.

  2. [Antiseptics and disinfectants: aiming at rational use. Recommendations of the Advisory Committee on Healthcare Associated Infections. Sociedad Chilena de Infectología].

    PubMed

    Diomedi, Alexis; Chacón, Eiiana; Delpiano, Luis; Hervé, Beatrice; Jemenao, M Irene; Medel, Myriam; Quintanilla, Marcela; Riedel, Gisela; Tinoco, Javier; Cifuentes, Marcela

    2017-04-01

    Proper use of antiseptics and disinfectants, is an essential tool to prevent the spread of infectious agents and to control of healthcare-associated infections (HAI). Given the increasing importance of environmental aspects, as well as several advances and updates in the field of its proper use at local and intemational level, the SOCHINF HAI Advisory Committee considers that it is necessary to develop a guide for the rational use of antiseptics and disinfectants, which it will provide consistent scientific basis with that purpose.

  3. Selected approaches for rational drug design and high throughput screening to identify anti-cancer molecules.

    PubMed

    Hedvat, Michael; Emdad, Luni; Das, Swadesh K; Kim, Keetae; Dasgupta, Santanu; Thomas, Shibu; Hu, Bin; Zhu, Shan; Dash, Rupesh; Quinn, Bridget A; Oyesanya, Regina A; Kegelman, Timothy P; Sokhi, Upneet K; Sarkar, Siddik; Erdogan, Eda; Menezes, Mitchell E; Bhoopathi, Praveen; Wang, Xiang-Yang; Pomper, Martin G; Wei, Jun; Wu, Bainan; Stebbins, John L; Diaz, Paul W; Reed, John C; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B

    2012-11-01

    Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.

  4. Do Students Use Contextual Protective Behaviors to Reduce Alcohol-Related Sexual Risk? Examination of a Dual-Process Decision-Making Model

    PubMed Central

    Scaglione, Nichole M.; Hultgren, Brittney A.; Reavy, Racheal; Mallett, Kimberly A.; Turrisi, Rob; Cleveland, Michael J.; Sell, Nichole M.

    2015-01-01

    Objective Recent studies suggest drinking protective behaviors (DPBs) and contextual protective behaviors (CPBs) can uniquely reduce alcohol-related sexual risk in college students. Few studies have examined CPBs independently, and even fewer have utilized theory to examine modifiable psychosocial predictors of students’ decisions to use CPBs. The current study used a prospective design to examine 1) rational and reactive pathways and psychosocial constructs predictive of CPB use, and 2) how gender might moderate these influences in a sample of college students. Method Students (n = 508) completed web-based baseline (mid-spring semester) and 1- and 6-month follow-up assessments of CPB use; psychosocial constructs (expectancies, normative beliefs, attitudes, and self-concept); and rational and reactive pathways (intentions and willingness). Regression was used to examine rational and reactive influences as proximal predictors of CPB use at the 6-month follow-up. Subsequent path analyses examined the effects of psychosocial constructs, as distal predictors of CPB use, mediated through the rational and reactive pathways. Results Both rational (intentions to use CPB) and reactive (willingness to use CPB) influences were significantly associated with increased CPB use. The examined distal predictors were found to effect CPB use differentially through the rational and reactive pathways. Gender did not significantly moderate any relationships within in the model. Discussion Findings suggest potential entry points for increasing CPB use that include both rational and reactive pathways. Overall, this study demonstrates the mechanisms underlying how to increase the use of CPBs in programs designed to reduce alcohol-related sexual consequences and victimization. PMID:26415062

  5. Do students use contextual protective behaviors to reduce alcohol-related sexual risk? Examination of a dual-process decision-making model.

    PubMed

    Scaglione, Nichole M; Hultgren, Brittney A; Reavy, Racheal; Mallett, Kimberly A; Turrisi, Rob; Cleveland, Michael J; Sell, Nichole M

    2015-09-01

    Recent studies suggest drinking protective behaviors (DPBs) and contextual protective behaviors (CPBs) can uniquely reduce alcohol-related sexual risk in college students. Few studies have examined CPBs independently, and even fewer have utilized theory to examine modifiable psychosocial predictors of students' decisions to use CPBs. The current study used a prospective design to examine (a) rational and reactive pathways and psychosocial constructs predictive of CPB use and (b) how gender might moderate these influences in a sample of college students. Students (n = 508) completed Web-based baseline (mid-Spring semester) and 1- and 6-month follow-up assessments of CPB use; psychosocial constructs (expectancies, normative beliefs, attitudes, and self-concept); and rational and reactive pathways (intentions and willingness). Regression was used to examine rational and reactive influences as proximal predictors of CPB use at the 6-month follow-up. Subsequent path analyses examined the effects of psychosocial constructs, as distal predictors of CPB use, mediated through the rational and reactive pathways. Both rational (intentions to use CPB) and reactive (willingness to use CPB) influences were significantly associated with increased CPB use. The examined distal predictors were found to effect CPB use differentially through the rational and reactive pathways. Gender did not significantly moderate any relationships within in the model. Findings suggest potential entry points for increasing CPB use that include both rational and reactive pathways. Overall, this study demonstrates the mechanisms underlying how to increase the use of CPBs in programs designed to reduce alcohol-related sexual consequences and victimization. (c) 2015 APA, all rights reserved).

  6. Synthetic biology: insights into biological computation.

    PubMed

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and biotechnological applications, but also affords a greater understanding of biological systems.

  7. Nanobio interfaces: charge control of enzyme/inorganic interfaces for advanced biocatalysis.

    PubMed

    Deshapriya, Inoka K; Kumar, Challa V

    2013-11-19

    Specific approaches to the rational design of nanobio interfaces for enzyme and protein binding to nanomaterials are vital for engineering advanced, functional nanobiomaterials for biocatalysis, sensing, and biomedical applications. This feature article presents an overview of our recent discoveries on structural, functional, and mechanistic details of how enzymes interact with inorganic nanomaterials and how they can be controlled in a systematic manner using α-Zr(IV)phosphate (α-ZrP) as a model system. The interactions of a number of enzymes having a wide array of surface charges, sizes, and functional groups are investigated. Interactions are carefully controlled to screen unfavorable repulsions and enhance favorable interactions for high affinity, structure retention, and activity preservation. In specific cases, catalytic activities and substrate selectivities are improved over those of the pristine enzymes, and two examples of high activity near the boiling point of water have been demonstrated. Isothermal titration calorimetric studies indicated that enzyme binding is coupled to ion sequestration or release to or from the nanobio interface, and binding is controlled in a rational manner. We learned that (1) bound enzyme stabilities are improved by lowering the entropy of the denatured state; (2) maximal loadings are obtained by matching charge footprints of the enzyme and the nanomaterial surface; (3) binding affinities are improved by ion sequestration at the nanobio interface; and (4) maximal enzyme structure retention is obtained by biophilizing the nanobio interface with protein glues. The chemical and physical manipulations of the nanobio interface are significant not only for understanding the complex behaviors of enzymes at biological interfaces but also for desiging better functional nanobiomaterials for a wide variety of practical applications.

  8. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    PubMed

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  9. Comparative multi-goal tradeoffs in systems engineering of microbial metabolism

    PubMed Central

    2012-01-01

    Background Metabolic engineering design methodology has evolved from using pathway-centric, random and empirical-based methods to using systems-wide, rational and integrated computational and experimental approaches. Persistent during these advances has been the desire to develop design strategies that address multiple simultaneous engineering goals, such as maximizing productivity, while minimizing raw material costs. Results Here, we use constraint-based modeling to systematically design multiple combinations of medium compositions and gene-deletion strains for three microorganisms (Escherichia coli, Saccharomyces cerevisiae, and Shewanella oneidensis) and six industrially important byproducts (acetate, D-lactate, hydrogen, ethanol, formate, and succinate). We evaluated over 435 million simulated conditions and 36 engineering metabolic traits, including product rates, costs, yields and purity. Conclusions The resulting metabolic phenotypes can be classified into dominant clusters (meta-phenotypes) for each organism. These meta-phenotypes illustrate global phenotypic variation and sensitivities, trade-offs associated with multiple engineering goals, and fundamental differences in organism-specific capabilities. Given the increasing number of sequenced genomes and corresponding stoichiometric models, we envisage that the proposed strategy could be extended to address a growing range of biological questions and engineering applications. PMID:23009214

  10. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.

    PubMed

    McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen

    2009-06-01

    There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations.

  11. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

    PubMed

    Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-04-21

    A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

  12. Design principles for electrolytes and interfaces for stable lithium-metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikekar, Mukul D.; Choudhury, Snehashis; Tu, Zhengyuan

    2016-09-08

    The future of electrochemical energy storage hinges on the advancement of science and technology that enables rechargeable batteries that utilize reactive metals as anodes. With specific capacity more than ten times that of the LiC6 anode used in present-day lithium-ion batteries, cells based on Li-metal anodes are of particular interest. Effective strategies for stabilizing the anode in such cells are now understood to be a requirement for progress on exceptional storage technologies, including Li–S and Li–O2 batteries. Multiple challenges—parasitic reactions of Li-metal with liquid electrolytes, unstable and dendritic electrodeposition, and dendrite-induced short circuits—derailed early efforts to commercialize such lithium-metal batteries.more » Here we consider approaches for rationally designing electrolytes and Li-metal/electrolyte interfaces for stable, dendrite-free operation of lithium-metal batteries. On the basis of fundamental understanding of the failure modes of reactive metal anodes, we discuss the key variables that govern the stability of electrodeposition at the Li anode and propose a universal framework for designing stable electrolytes and interfaces for lithium-metal batteries.« less

  13. Design principles for electrolytes and interfaces for stable lithium-metal batteries

    NASA Astrophysics Data System (ADS)

    Tikekar, Mukul D.; Choudhury, Snehashis; Tu, Zhengyuan; Archer, Lynden A.

    2016-09-01

    The future of electrochemical energy storage hinges on the advancement of science and technology that enables rechargeable batteries that utilize reactive metals as anodes. With specific capacity more than ten times that of the LiC6 anode used in present-day lithium-ion batteries, cells based on Li-metal anodes are of particular interest. Effective strategies for stabilizing the anode in such cells are now understood to be a requirement for progress on exceptional storage technologies, including Li-S and Li-O2 batteries. Multiple challenges—parasitic reactions of Li-metal with liquid electrolytes, unstable and dendritic electrodeposition, and dendrite-induced short circuits—derailed early efforts to commercialize such lithium-metal batteries. Here we consider approaches for rationally designing electrolytes and Li-metal/electrolyte interfaces for stable, dendrite-free operation of lithium-metal batteries. On the basis of fundamental understanding of the failure modes of reactive metal anodes, we discuss the key variables that govern the stability of electrodeposition at the Li anode and propose a universal framework for designing stable electrolytes and interfaces for lithium-metal batteries.

  14. Cannabidiol--recent advances.

    PubMed

    Mechoulam, Raphael; Peters, Maximilian; Murillo-Rodriguez, Eric; Hanus, Lumír O

    2007-08-01

    The aim of this review is to present some of the recent publications on cannabidiol (CBD; 2), a major non-psychoactive constituent of Cannabis, and to give a general overview. Special emphasis is laid on biochemical and pharmacological advances, and on novel mechanisms recently put forward, to shed light on some of the pharmacological effects that can possibly be rationalized through these mechanisms. The plethora of positive pharmacological effects observed with CBD make this compound a highly attractive therapeutic entity.

  15. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    DOE PAGES

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan; ...

    2017-08-28

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less

  16. Thwarting the Diseased Will: Ulysses Contracts, the Self and Addiction.

    PubMed

    Bell, Kirsten

    2015-09-01

    Ulysses contracts are a particular type of advance directive that has been advocated for use in mental health settings and addictions treatment. Taking their name from the legend of Ulysses, such contracts are distinctive insofar as they are designed to thwart certain anticipated future wishes rather than realize them. In this paper, I consider what Ulysses contracts reveal about contemporary conceptions of addiction and the self. Drawing on discussions of Ulysses contracts in the psychiatric and addictions literature, as well as historical and contemporary examples of such, I show that Ulysses contracts are premised on a split between the present 'rational' self and the future 'irrational' self, thereby reproducing a very particular notion of addiction--one that serves to naturalize certain ways of thinking about freedom, choice, coercion, and the self.

  17. Obesity Pharmacotherapy: Current Perspectives and Future Directions

    PubMed Central

    Misra, Monika

    2013-01-01

    The rising tide of obesity and its related disorders is one of the most pressing health concerns worldwide, yet existing medicines to combat the problem are disappointingly limited in number and effectiveness. Recent advances in mechanistic insights into the neuroendocrine regulation of body weight have revealed an expanding list of molecular targets for novel, rationally designed antiobesity pharmaceutical agents. Antiobesity drugs act via any of four mechanisms: 1) decreasing energy intake, 2) increasing energy expenditure or modulating lipid metabolism, 3) modulating fat stores or adipocyte differentiation, and 4) mimicking caloric restriction. Various novel drug candidates and targets directed against obesity are currently being explored. A few of them are also in the later phases of clinical trials. This review discusses the development of novel antiobesity drugs based on current understanding of energy homeostasis PMID:23092275

  18. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    PubMed Central

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  19. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less

  20. Prevalence and Determinants of Physician Bedside Rationing

    PubMed Central

    Hurst, Samia A; Slowther, Anne-Marie; Forde, Reidun; Pegoraro, Renzo; Reiter-Theil, Stella; Perrier, Arnaud; Garrett-Mayer, Elizabeth; Danis, Marion

    2006-01-01

    BACKGROUND Bedside rationing by physicians is controversial. The debate, however, is clouded by lack of information regarding the extent and character of bedside rationing. DESIGN, SETTING, AND PARTICIPANTS We developed a survey instrument to examine the frequency, criteria, and strategies used for bedside rationing. Content validity was assessed through expert assessment and scales were tested for internal consistency. The questionnaire was translated and administered to General Internists in Norway, Switzerland, Italy, and the United Kingdom. Logistic regression was used to identify the variables associated with reported rationing. RESULTS Survey respondents (N =656, response rate 43%) ranged in age from 28 to 82, and averaged 25 years in practice. Most respondents (82.3%) showed some degree of agreement with rationing, and 56.3% reported that they did ration interventions. The most frequently mentioned criteria for rationing were a small expected benefit (82.3%), low chances of success (79.8%), an intervention intended to prolong life when quality of life is low (70.6%), and a patient over 85 years of age (70%). The frequency of rationing by clinicians was positively correlated with perceived scarcity of resources (odds ratio [OR]=1.11, 95% confidence interval [CI] 1.06 to 1.16), perceived pressure to ration (OR=2.14, 95% CI 1.52 to 3.01), and agreement with rationing (OR=1.13, 95% CI 1.05 to 1.23). CONCLUSION Bedside rationing is prevalent in all surveyed European countries and varies with physician attitudes and resource availability. The prevalence of physician bedside rationing, which presents physicians with difficult moral dilemmas, highlights the importance of discussions regarding how to ration care in the most ethically justifiable manner. PMID:16836629

  1. Optimal design of piezoelectric transformers: a rational approach based on an analytical model and a deterministic global optimization.

    PubMed

    Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand

    2007-07-01

    This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.

  2. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes.

    PubMed

    Yuan, Ruoxin; Kang, Wenbin; Zhang, Chuhong

    2018-06-02

    In an effort to explore the use of organic high-performance lithium ion battery cathodes as an alternative to resolve the current bottleneck hampering the development of their inorganic counterparts, a rational strategy focusing on the optimal composition of covalent triazine-based frameworks (CTFs) with carbon-based materials of varied dimensionalities is delineated. Two-dimensional reduced graphene oxide (rGO) with a compatible structural conformation with the layered CTF is the most suitable scaffold for the tailored mesopores in the polymeric framework, providing outstanding energy storage ability. Through facile ionothermal synthesis and structure engineering, the obtained CTF-rGO composite possesses a high specific surface area of 1357.27 m²/g, and when used as a lithium ion battery cathode it delivers a large capacity of 235 mAh/g in 80 cycles at 0.1 A/g along with a stable capacity of 127 mAh/g over 2500 cycles at 5 A/g. The composite with modified pore structure shows drastically improved performance compared to a pristine CTF, especially at large discharge currents. The CTF-rGO composite with excellent capacity, stability, and rate performance shows great promise as an emerging high-performance cathode that could revolutionize the conventional lithium-ion battery industry.

  3. The eXperience Induction Machine: A New Paradigm for Mixed-Reality Interaction Design and Psychological Experimentation

    NASA Astrophysics Data System (ADS)

    Bernardet, Ulysses; Bermúdez I Badia, Sergi; Duff, Armin; Inderbitzin, Martin; Le Groux, Sylvain; Manzolli, Jônatas; Mathews, Zenon; Mura, Anna; Väljamäe, Aleksander; Verschure, Paul F. M. J.

    The eXperience Induction Machine (XIM) is one of the most advanced mixed-reality spaces available today. XIM is an immersive space that consists of physical sensors and effectors and which is conceptualized as a general-purpose infrastructure for research in the field of psychology and human-artifact interaction. In this chapter, we set out the epistemological rational behind XIM by putting the installation in the context of psychological research. The design and implementation of XIM are based on principles and technologies of neuromorphic control. We give a detailed description of the hardware infrastructure and software architecture, including the logic of the overall behavioral control. To illustrate the approach toward psychological experimentation, we discuss a number of practical applications of XIM. These include the so-called, persistent virtual community, the application in the research of the relationship between human experience and multi-modal stimulation, and an investigation of a mixed-reality social interaction paradigm.

  4. Design of virus-based nanomaterials for medicine, biotechnology, and energy

    PubMed Central

    Wen, Amy M.; Steinmetz, Nicole F.

    2016-01-01

    Virus-based nanomaterials are versatile materials that naturally self-assemble and have relevance for a broad range of applications including medicine, biotechnology, and energy. This review provides an overview of recent developments in “chemical virology.” Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials. PMID:27152673

  5. Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.

    PubMed

    Li, Feng; Zhou, Zhen

    2018-02-01

    High-efficiency energy storage technologies and devices have received considerable attention due to their ever-increasing demand. Na-related energy storage systems, sodium ion batteries (SIBs) and sodium ion capacitors (SICs), are regarded as promising candidates for large-scale energy storage because of the abundant sources and low cost of sodium. In the last decade, many efforts, including structural and compositional optimization, effective modification of available materials, and design and exploration of new materials, have been made to promote the development of Na-related energy storage systems. In this Review, the latest developments of micro/nanostructured electrode materials for advanced SIBs and SICs, especially the rational design of unique composites with high thermodynamic stabilities and fast kinetics during charge/discharge, are summarized. In addition to the recent achievements, the remaining challenges with respect to fundamental investigations and commercialized applications are discussed in detail. Finally, the prospects of sodium-based energy storage systems are also described. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.

    PubMed

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2014-06-18

    Energy storage devices such as electrochemical supercapacitors, with high power and energy densities are required to address the colossal energy requirements against the backdrop of global warming and the looming energy crisis. Nanocarbon, particularly two-dimensional graphene and graphene-based conducting polymer composites are promising electrode materials for such energy storage devices. Owing to their environmental stability, the low cost of polymers with high electroactivity and pseudocapacitance, such composite hybrids are expected to have wide implications in next generation clean and efficient energy systems. In this feature article, an overview of current research and important advances over the past four years on the development of conducting polyaniline (PANI)-graphene based composite electrodes for electrochemical supercapacitors are highlighted. Particular emphasis is made on the design, fabrication and assembly of nanostructured electrode architectures comprising PANI and graphene along with metal oxides/hydroxides and carbon nanotubes. Comments on the challenges and perspectives towards rational design and synthesis of graphene-based conducting polymer composites for energy storage are discussed.

  7. RNA Structures as Mediators of Neurological Diseases and as Drug Targets.

    PubMed

    Bernat, Viachaslau; Disney, Matthew D

    2015-07-01

    RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design.

    PubMed

    Ebalunode, Jerry O; Zheng, Weifan; Tropsha, Alexander

    2011-01-01

    Optimization of chemical library composition affords more efficient identification of hits from biological screening experiments. The optimization could be achieved through rational selection of reagents used in combinatorial library synthesis. However, with a rapid advent of parallel synthesis methods and availability of millions of compounds synthesized by many vendors, it may be more efficient to design targeted libraries by means of virtual screening of commercial compound collections. This chapter reviews the application of advanced cheminformatics approaches such as quantitative structure-activity relationships (QSAR) and pharmacophore modeling (both ligand and structure based) for virtual screening. Both approaches rely on empirical SAR data to build models; thus, the emphasis is placed on achieving models of the highest rigor and external predictive power. We present several examples of successful applications of both approaches for virtual screening to illustrate their utility. We suggest that the expert use of both QSAR and pharmacophore models, either independently or in combination, enables users to achieve targeted libraries enriched with experimentally confirmed hit compounds.

  9. Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials.

    PubMed

    Rinaldi, Antonio

    2011-04-01

    Traditional fiber bundles models (FBMs) have been an effective tool to understand brittle heterogeneous systems. However, fiber bundles in modern nano- and bioapplications demand a new generation of FBM capturing more complex deformation processes in addition to damage. In the context of loose bundle systems and with reference to time-independent plasticity and soft biomaterials, we formulate a generalized statistical model for ductile fracture and nonlinear elastic problems capable of handling more simultaneous deformation mechanisms by means of two order parameters (as opposed to one). As the first rational FBM for coupled damage problems, it may be the cornerstone for advanced statistical models of heterogeneous systems in nanoscience and materials design, especially to explore hierarchical and bio-inspired concepts in the arena of nanobiotechnology. Applicative examples are provided for illustrative purposes at last, discussing issues in inverse analysis (i.e., nonlinear elastic polymer fiber and ductile Cu submicron bars arrays) and direct design (i.e., strength prediction).

  10. Toward a patient-specific tissue engineered vascular graft

    PubMed Central

    Best, Cameron; Strouse, Robert; Hor, Kan; Pepper, Victoria; Tipton, Amy; Kelly, John; Shinoka, Toshiharu; Breuer, Christopher

    2018-01-01

    Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application. PMID:29568478

  11. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT(1) angiotensin II receptor antagonist: reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies.

    PubMed

    Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John

    2010-09-01

    A new 1,5 disubstituted imidazole AT(1) Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity (V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT(1) receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.

  12. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    PubMed Central

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  13. Designed cell consortia as fragrance-programmable analog-to-digital converters.

    PubMed

    Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin

    2017-03-01

    Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.

  14. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT1 Angiotensin II receptor antagonist: reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies

    NASA Astrophysics Data System (ADS)

    Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John

    2010-09-01

    A new 1,5 disubstituted imidazole AT1 Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity ( V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT1 receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.

  15. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less

  16. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    PubMed Central

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  17. The food additive vanillic acid controls transgene expression in mammalian cells and mice.

    PubMed

    Gitzinger, Marc; Kemmer, Christian; Fluri, David A; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin

    2012-03-01

    Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.

  18. Novel Concepts for HIV Vaccine Vector Design.

    PubMed

    Alayo, Quazim A; Provine, Nicholas M; Penaloza-MacMaster, Pablo

    2017-01-01

    The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.

  19. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology.

    PubMed

    Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2012-01-01

    The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  20. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology

    PubMed Central

    Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios

    2013-01-01

    The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals. PMID:24688682

  1. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    DOE PAGES

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; ...

    2016-10-19

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. But, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. We show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O 2 batteries. The heme’s oxygen binding capability facilitates battery recharge by accepting and releasingmore » dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. Our study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.« less

  2. Personal Autonomy and Rational Suicide.

    ERIC Educational Resources Information Center

    Webber, May A.; Shulman, Ernest

    That certain suicides (which can be designated as rational) ought not to be interfered with is closely tied to the notion of the "right to autonomy." Specifically it is because the individual in question has this right that interference is prohibited. A proper understanding of the right to autonomy, while essential to understanding why…

  3. The Feminist Supervision Scale: A Rational/Theoretical Approach

    ERIC Educational Resources Information Center

    Szymanski, Dawn M.

    2003-01-01

    This article reports the development and psychometric properties of the Feminist Supervision Scale (FSS), a new scale designed to assess feminist supervision practices in clinical supervision. This 32-item measure was developed using a rational/theoretical approach of test construction and includes four subscales: (a) collaborative relationships,…

  4. Designing and developing suppository formulations for anti-HIV drug delivery.

    PubMed

    Ham, Anthony S; Buckheit, Robert W

    2017-08-01

    Despite a long history of use for rectal and vaginal drug delivery, the current worldwide market for suppositories is limited primarily due to a lack of user acceptability. Therefore, virtually no rational pharmaceutical development of antiviral suppositories has been performed. However, suppositories offer several advantages over other antiviral dosage forms. Current suppository designs have integrated active pharmaceutical ingredients into existing formulation designs without optimization. As such, emerging suppository development has been focused on improving upon the existing classical design to enhance drug delivery and is poised to open suppository drug delivery to a broader range of drugs, including antiretroviral products. Thus, with continuing research into rational suppository design and development, there is significant potential for antiretroviral suppository drug delivery.

  5. Versatile synthesis and rational design of caged morpholinos.

    PubMed

    Ouyang, Xiaohu; Shestopalov, Ilya A; Sinha, Surajit; Zheng, Genhua; Pitt, Cameron L W; Li, Wen-Hong; Olson, Andrew J; Chen, James K

    2009-09-23

    Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies.

  6. Versatile Synthesis and Rational Design of Caged Morpholinos

    PubMed Central

    2009-01-01

    Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies. PMID:19708646

  7. CO2 capture in amine solutions: modelling and simulations with non-empirical methods

    NASA Astrophysics Data System (ADS)

    Andreoni, Wanda; Pietrucci, Fabio

    2016-12-01

    Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.

  8. Critical advancements in achieving high power and stable nonprecious metal catalyst–based MEAs for real-world proton exchange membrane fuel cell applications

    PubMed Central

    Zhou, Yingjie; Bai, Kyoung

    2018-01-01

    Despite great progress in the development of nonprecious metal catalysts (NPMCs) over the past several decades, the performance and stability of these promising catalysts have not yet achieved commercial readiness for proton exchange membrane fuel cells (PEMFCs). Through rational design of the cathode catalyst layer (CCL), we demonstrate the highest reported performance for an NPMC-based membrane electrode assembly (MEA), achieving a peak power of 570 mW/cm2 under air. This record performance is achieved using a precommercial catalyst for which nearly all pores are <3 nm in diameter, challenging previous beliefs regarding the need for larger catalyst pores to achieve high current densities. This advance is achieved at industrially relevant scales (50 cm2 MEA) using a precommercial NPMC. In situ electrochemical analysis of the CCLs is also used to help gain insight into the degradation mechanism observed during galvanostatic testing. Overall, the performance of this NPMC-based MEA has achieved commercial readiness and will be introduced into an NPMC-based product for portable power applications. PMID:29582018

  9. Multitarget drug discovery projects in CNS diseases: quantitative systems pharmacology as a possible path forward.

    PubMed

    Geerts, Hugo; Kennis, Ludo

    2014-01-01

    Clinical development in brain diseases has one of the lowest success rates in the pharmaceutical industry, and many promising rationally designed single-target R&D projects fail in expensive Phase III trials. By contrast, successful older CNS drugs do have a rich pharmacology. This article will provide arguments suggesting that highly selective single-target drugs are not sufficiently powerful to restore complex neuronal circuit homeostasis. A rationally designed multitarget project can be derisked by dialing in an additional symptomatic treatment effect on top of a disease modification target. Alternatively, we expand upon a hypothetical workflow example using a humanized computer-based quantitative systems pharmacology platform. The hope is that incorporating rationally multipharmacology drug discovery could potentially lead to more impactful polypharmacy drugs.

  10. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli

    PubMed Central

    Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki

    2008-01-01

    The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177

  11. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  12. Relationship between Student Pharmacist Decision Making Preferences and Experiential Learning.

    PubMed

    Williams, Charlene R; McLaughlin, Jacqueline E; Cox, Wendy C; Shepherd, Greene

    2016-09-25

    Objective. To determine if student pharmacists' preferences towards experiential and rational thinking are associated with performance on advanced pharmacy practice experiences (APPEs) and whether thinking style preference changes following APPEs. Methods. The Rational Experiential Inventory (REI), a validated survey of thinking style, was administered to student pharmacists before starting APPEs and re-administered after completing APPEs. APPE grades were compared to initial REI scores. Results. Rational Experiential Inventory scores remained consistent before and after APPEs. Overall, APPE grades were independent of REI scores. In a regression model, the REI experiential score was a significant negative predictor of hospital APPE grades. Conclusion. These findings suggest that overall APPE performance is independent of decision-making preference, and decision-making style does not change following immersion into APPEs. Instead of targeting teaching strategies towards a specific decision-making style, preceptors may use pedagogical approaches that promote sound clinical decision-making skills through critical thinking and reflection.

  13. Relationship between Student Pharmacist Decision Making Preferences and Experiential Learning

    PubMed Central

    McLaughlin, Jacqueline E.; Cox, Wendy C.; Shepherd, Greene

    2016-01-01

    Objective. To determine if student pharmacists’ preferences towards experiential and rational thinking are associated with performance on advanced pharmacy practice experiences (APPEs) and whether thinking style preference changes following APPEs. Methods. The Rational Experiential Inventory (REI), a validated survey of thinking style, was administered to student pharmacists before starting APPEs and re-administered after completing APPEs. APPE grades were compared to initial REI scores. Results. Rational Experiential Inventory scores remained consistent before and after APPEs. Overall, APPE grades were independent of REI scores. In a regression model, the REI experiential score was a significant negative predictor of hospital APPE grades. Conclusion. These findings suggest that overall APPE performance is independent of decision-making preference, and decision-making style does not change following immersion into APPEs. Instead of targeting teaching strategies towards a specific decision-making style, preceptors may use pedagogical approaches that promote sound clinical decision-making skills through critical thinking and reflection. PMID:27756927

  14. Fundamental understanding and rational design of high energy structural microbatteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel

    Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights inmore » designing the structural microbatteries for emerging technologies.« less

  15. Designing Inhibitors of Anthrax Toxin

    PubMed Central

    Nestorovich, Ekaterina M.; Bezrukov, Sergey M.

    2014-01-01

    Introduction Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates, and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded “for the development of multiscale models for complex chemical systems” once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial and error approach to a minimum. The “rational drug design” term is rather comprehensive as it includes all contemporary methods of drug discovery where serendipity and screening are substituted by the information-guided search for new and existing compounds. Successful implementation of these innovative drug discovery approaches is inevitably preceded by learning the physics, chemistry, and physiology of functioning of biological structures under normal and pathological conditions. Areas covered This article provides an overview of the recent rational drug design approaches to discover inhibitors of anthrax toxin. Some of the examples include small-molecule and peptide-based post-exposure therapeutic agents as well as several polyvalent compounds. The review also directs the reader to the vast literature on the recognized advances and future possibilities in the field. Expert opinion Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (PA-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, in our view, the situation is still insecure. The FDA’s animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Besides, unlike PA, which is known to be unstable, LF remains active in cells and in animal tissues for days. Therefore, the effectiveness of the post-exposure treatment of the individuals with anti-PA therapeutics can be time-dependent, requiring coordinated use of membrane permeable small-molecule inhibitors, which block the LF and EF enzymatic activity intracellularly. The desperate search for an ideal anthrax antitoxin allowed researchers to gain important knowledge of the basic principles of small-molecule interactions with their protein targets that could be easily transferred to other systems. At the same time, better identification and validation of anthrax toxin therapeutic targets at the molecular level, which include understanding of the physical forces underlying the target/drug interaction, as well as elucidation of the parameters determining the corresponding therapeutic windows, require further examination. PMID:24447197

  16. Advancing the understanding of autism disease mechanisms through genetics

    PubMed Central

    de la Torre-Ubieta, Luis; Won, Hyejung; Stein, Jason L; Geschwind, Daniel H

    2016-01-01

    Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies. PMID:27050589

  17. Residualization Rates of Near Infrared Dyes for the Rational Design of Molecular Imaging Agents

    PubMed Central

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M.

    2016-01-01

    Purpose Near infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. Procedures In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, BODIPY, and oxazine/thiazine/carbopyronin). Results We identify residualizing (half-life > 24 hrs) and non-residualizing dyes (half-life < 24 hrs) in both the far red (~650-680 nm) and near infrared (~740-800 nm) regions. Conclusions This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design. PMID:25869081

  18. Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents.

    PubMed

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M

    2015-12-01

    Near-infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, boron-dipyrromethene (BODIPY), and oxazine/thiazine/carbopyronin). We identify residualizing (half-life >24 h) and non-residualizing (half-life <24 h) dyes in both the far-red (~650-680 nm) and near-infrared (~740-800 nm) regions. This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design.

  19. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    PubMed Central

    Van Regenmortel, Marc H. V.

    2018-01-01

    Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066

  20. A supermolecular building approach for the design and construction of metal-organic frameworks.

    PubMed

    Guillerm, Vincent; Kim, Dongwook; Eubank, Jarrod F; Luebke, Ryan; Liu, Xinfang; Adil, Karim; Lah, Myoung Soo; Eddaoudi, Mohamed

    2014-08-21

    In this review, we describe two recently implemented conceptual approaches facilitating the design and deliberate construction of metal–organic frameworks (MOFs), namely supermolecular building block (SBB) and supermolecular building layer (SBL) approaches. Our main objective is to offer an appropriate means to assist/aid chemists and material designers alike to rationally construct desired functional MOF materials, made-to-order MOFs. We introduce the concept of net-coded building units (net-cBUs), where precise embedded geometrical information codes uniquely and matchlessly a selected net, as a compelling route for the rational design of MOFs. This concept is based on employing pre-selected 0-periodic metal–organic polyhedra or 2-periodic metal–organic layers, SBBs or SBLs respectively, as a pathway to access the requisite net-cBUs. In this review, inspired by our success with the original rht-MOF, we extrapolated our strategy to other known MOFs via their deconstruction into more elaborate building units (namely polyhedra or layers) to (i) elucidate the unique relationship between edge-transitive polyhedra or layers and minimal edge-transitive 3-periodic nets, and (ii) illustrate the potential of the SBB and SBL approaches as a rational pathway for the design and construction of 3-periodic MOFs. Using this design strategy, we have also identified several new hypothetical MOFs which are synthetically targetable.

  1. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information. Electronic supplementary information (ESI) available: Further details about anodisation profiles, SEM cross-section images, digital pictures, transmission spectra, photonic barcodes and ASCII codes of the different NAA photonic crystals fabricated and analysed in our study. See DOI: 10.1039/c6nr01068g

  2. Effect of duration of fasting and a short-term high-roughage ration on the concentration of Escherichia coli biotype 1 in cattle feces.

    PubMed

    Jordan, D; McEwen, S A

    1998-05-01

    A field trial using cattle from a commercial feedlot was conducted to quantify the effect of duration of fasting and a temporary change in ration on the concentration of Escherichia coli biotype 1 in feces. A nested hierarchical design with repeated measures through time was used. Two groups of 20 British x European breed beef steers having reached slaughter weight (mean live weight 685 kg; SD 50 kg) were fed entirely on a high-energy ration typical of that used in the Ontario beef finishing industry or were switched for 4 days onto a high-roughage ration. This was followed by a period of fasting and water deprivation to mimic that which occurs prior to slaughter. Fecal samples were collected at 0, 24, and 48 h of fasting, and for each sample the total presumptive E. coli (biotype 1) CFU/g of feces was enumerated by spiral plating. Estimates of effect for the design factors were obtained by restricted maximum likelihood, and these were compared to robust counterparts obtained from generalized estimating equations. Results indicated that the ration, the duration of fasting, and their interaction had significant effects on total log E. coli concentration in feces. Cattle on the high-roughage ration for four days had a significantly lower initial log E. coli CFU/g of feces compared to cattle on the normal ration, but after 48 h of fasting they had a significantly higher concentration. It is concluded that while a temporary change in ration and duration of fasting does affect E. coli concentration in feces, these changes do not seem large enough to deliver a drastic improvement in beef carcass hygiene should they be incorporated in hazard analysis and critical control point (HACCP) plans for the preslaughter period of beef production.

  3. Refusals and Rejections: Designing Messages to Serve Multiple Goals.

    ERIC Educational Resources Information Center

    Saeki, Mimako; O'Keefe, Barbara J.

    1994-01-01

    Tests a rational model of the elaboration of themes found in rejection messages, using Japanese and American participants. Finds partial support for the initial rational model but notes two key revisions: identifies two new themes in rejection messages and suggests substantial differences in the way Americans and Japanese elaborate themes to serve…

  4. Decision-Making: Are Plants More Rational than Animals?

    PubMed

    Schmid, Bernhard

    2016-07-25

    A new study presents a novel experimental design and allows a test of risk sensitivity in plants. Faced with a choice between constant and variable resource supply, they make a rational decision for the option that maximizes fitness, a fact rarely observed in animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Joint Tactics, Techniques, and Procedures for Joint Special Operations Task Force Operations

    DTIC Science & Technology

    2001-12-19

    phase? Is a ration cycle proposed? •• Are fresh eggs, fresh fruits and vegetables, fresh meats, juices, milk , and canned soft-drink supplements to ration...measures designed to mislead the enemy by manipulation, distortion, or falsification of evidence to induce the enemy to react in a manner prejudicial to

  6. Calibration of the live load factor in LRFD design guidelines.

    DOT National Transportation Integrated Search

    2010-09-01

    The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...

  7. Calibration of the live load factor in LRFD design guidelines : [revised].

    DOT National Transportation Integrated Search

    2011-07-01

    The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is : more rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD : Specification ...

  8. Inventing and improving ribozyme function: rational design versus iterative selection methods

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    Two major strategies for generating novel biological catalysts exist. One relies on our knowledge of biopolymer structure and function to aid in the 'rational design' of new enzymes. The other, often called 'irrational design', aims to generate new catalysts, in the absence of detailed physicochemical knowledge, by using selection methods to search a library of molecules for functional variants. Both strategies have been applied, with considerable success, to the remodeling of existing ribozymes and the development of ribozymes with novel catalytic function. The two strategies are by no means mutually exclusive, and are best applied in a complementary fashion to obtain ribozymes with the desired catalytic properties.

  9. Rational design of new materials using recombinant structural proteins: Current state and future challenges.

    PubMed

    Sutherland, Tara D; Huson, Mickey G; Rapson, Trevor D

    2018-01-01

    Sequence-definable polymers are seen as a prerequisite for design of future materials, with many polymer scientists regarding such polymers as the holy grail of polymer science. Recombinant proteins are sequence-defined polymers. Proteins are dictated by DNA templates and therefore the sequence of amino acids in a protein is defined, and molecular biology provides tools that allow redesign of the DNA as required. Despite this advantage, proteins are underrepresented in materials science. In this publication we investigate the advantages and limitations of using proteins as templates for rational design of new materials. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  10. Sexual harassment in healthcare: classification of harassers and rationalizations of sex-based harassment behavior.

    PubMed

    Madison, J; Minichiello, V

    2001-11-01

    This study identified how 16 Australian registered nurses classified sex-based harassers and explained their own behavior and the behavior of the harasser. A qualitative research design, relying on in-depth interviews, was used to collect the data. The study found that harassment is linked to gender roles and that the harassed are reluctant to blame the harasser--the harassed had "sound" rationalizations for harassment. Awareness of the interactional dynamics of self-blame and these rationalizations will help nurse executives ensure a harassment-free workplace.

  11. Development of a Value Inquiry Model in Biology Education.

    ERIC Educational Resources Information Center

    Jeong, Eun-Young; Kim, Young-Soo

    2000-01-01

    Points out the rapid advances in biology, increasing bioethical issues, and how students need to make rational decisions. Introduces a value inquiry model development that includes identifying and clarifying value problems; understanding biological knowledge related to conflict situations; considering, selecting, and evaluating each alternative;…

  12. Why and How to Advance Technical Copywriting.

    ERIC Educational Resources Information Center

    Henson, Leigh

    1996-01-01

    States that promotional writing for industrial/high-tech products, or technical copywriting, is gaining more attention in technical communication, although it is neglected in higher education. Testifies to the significance of technical copywriting. Suggests that dialogical audience analysis and an emphasis on rational appeal will contribute to…

  13. Fundamental understanding and rational design of high energy structural microbatteries

    DOE PAGES

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; ...

    2017-11-21

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less

  14. Fundamental understanding and rational design of high energy structural microbatteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less

  15. When is rational to order a diagnostic test, or prescribe treatment: the threshold model as an explanation of practice variation.

    PubMed

    Djulbegovic, Benjamin; van den Ende, Jef; Hamm, Robert M; Mayrhofer, Thomas; Hozo, Iztok; Pauker, Stephen G

    2015-05-01

    The threshold model represents an important advance in the field of medical decision-making. It is a linchpin between evidence (which exists on the continuum of credibility) and decision-making (which is a categorical exercise - we decide to act or not act). The threshold concept is closely related to the question of rational decision-making. When should the physician act, that is order a diagnostic test, or prescribe treatment? The threshold model embodies the decision theoretic rationality that says the most rational decision is to prescribe treatment when the expected treatment benefit outweighs its expected harms. However, the well-documented large variation in the way physicians order diagnostic tests or decide to administer treatments is consistent with a notion that physicians' individual action thresholds vary. We present a narrative review summarizing the existing literature on physicians' use of a threshold strategy for decision-making. We found that the observed variation in decision action thresholds is partially due to the way people integrate benefits and harms. That is, explanation of variation in clinical practice can be reduced to a consideration of thresholds. Limited evidence suggests that non-expected utility threshold (non-EUT) models, such as regret-based and dual-processing models, may explain current medical practice better. However, inclusion of costs and recognition of risk attitudes towards uncertain treatment effects and comorbidities may improve the explanatory and predictive value of the EUT-based threshold models. The decision when to act is closely related to the question of rational choice. We conclude that the medical community has not yet fully defined criteria for rational clinical decision-making. The traditional notion of rationality rooted in EUT may need to be supplemented by reflective rationality, which strives to integrate all aspects of medical practice - medical, humanistic and socio-economic - within a coherent reasoning system. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  16. Pathway Profiling and Rational Trial Design for Studies in Advanced Stage Cervical Carcinoma: A Review and a Perspective

    PubMed Central

    Scholl, Susy M. E.; Kenter, Gemma; Kurzeder, Christian; Beuzeboc, Philippe

    2011-01-01

    Multiple genetic abnormalities will have occurred in advanced cervical cancer and multiple targeting is likely to be needed to control tumor growth. To date, dominant therapeutic targets under scrutiny for cervical cancer treatment have been EGFR pathway and angiogenesis inhibition as well as anti-HPV vaccines. The potentially most effective targets to be blocked may be downstream from the membrane receptor or at the level of the nucleus. Alterations of the pathways involved in DNA repair and in checkpoint activations, as well as the specific site of HPV genome integration, appear worth assessing. For genetic mutational analysis, complete exon sequencing may become the norm in the future but at this stage frequent mutations (that matter) can be verified by PCR analysis. A precise documentation of relevant alterations of a large spectrum of protein biomarkers can be carried out by reverse phase protein array (RPPA) or by multiplex analysis. Clinical decision-making on the drug(s) of choice as a function of the biological alteration will need input from bio-informatics platforms as well as novel statistical designs. Endpoints are yet to be defined such as the loss (or reappearance) of a predictive biomarker. Single or dual targeting needs to be explored first in relevant preclinical animal and in xenograft models prior to clinical deployment. PMID:22091418

  17. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells.

    PubMed

    Ramachandran, Mohanraj; Dimberg, Anna; Essand, Magnus

    2017-08-01

    Cell therapy is an advanced form of cancer immunotherapy that has had remarkable clinical progress in the past decade in the search for cure of cancer. Most success has been achieved for chimeric antigen receptor (CAR) T-cells where CAR T-cells targeting CD19 show very high complete response rates for patients with refractory acute B-cell acute lymphoblastic leukemia (ALL) and are close to approval for this indication. CD19 CAR T-cells are also effective against B-cell chronic lymphoblastic leukemia (CLL) and B-cell lymphomas. Although encouraging, CAR T-cells have not yet proven clinically effective for solid tumors. This is mainly due to the lack of specific and homogenously expressed targets to direct the T-cells against and a hostile immunosuppressive tumor microenvironment in solid tumors. Cancer vaccines based on dendritic cells (DC) are also making progress although clinical efficacy is still lacking. The likelihood of success is however increasing now when individual tumors can be sequences and patient-specific neoepitopes identified. Neoepitopes and/or neoantigens can then be included in patient-based DC vaccines. This review discusses recent advancements of DC vaccines and CAR T-cells with emphasis on the cancer-immunity cycle, and current efforts to design novel cell therapies. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  19. Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications.

    PubMed

    Camorani, Simona; Crescenzi, Elvira; Fedele, Monica; Cerchia, Laura

    2018-04-01

    Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The physical chemistry and materials science behind sinter-resistant catalysts.

    PubMed

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  1. Rational Protein Engineering Guided by Deep Mutational Scanning

    PubMed Central

    Shin, HyeonSeok; Cho, Byung-Kwan

    2015-01-01

    Sequence–function relationship in a protein is commonly determined by the three-dimensional protein structure followed by various biochemical experiments. However, with the explosive increase in the number of genome sequences, facilitated by recent advances in sequencing technology, the gap between protein sequences available and three-dimensional structures is rapidly widening. A recently developed method termed deep mutational scanning explores the functional phenotype of thousands of mutants via massive sequencing. Coupled with a highly efficient screening system, this approach assesses the phenotypic changes made by the substitution of each amino acid sequence that constitutes a protein. Such an informational resource provides the functional role of each amino acid sequence, thereby providing sufficient rationale for selecting target residues for protein engineering. Here, we discuss the current applications of deep mutational scanning and consider experimental design. PMID:26404267

  2. A chemical reduction approach to the synthesis of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Khan, Ayesha; Rashid, Audil; Younas, Rafia; Chong, Ren

    2016-11-01

    Development of improved methods for the synthesis of copper nanoparticles is of high priority for the advancement of material science and technology. Herein, starch-protected zero-valent copper (Cu) nanoparticles have been successfully synthesized by a novel facile route. The method is based on the chemical reduction in aqueous copper salt using ascorbic acid as reducing agent at low temperature (80 °C). X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements were taken to investigate the size, structure and composition of synthesized Cu nanocrystals, respectively. Average crystallite size of Cu nanocrystals calculated from the major diffraction peaks using the Scherrer formula is about 28.73 nm. It is expected that the outcomes of the study take us a step closer toward designing rational strategies for the synthesis of nascent Cu nanoparticles without inert gas protection.

  3. Vertically Aligned Co9 S8 Nanotube Arrays onto Graphene Papers as High-Performance Flexible Electrodes for Supercapacitors.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Li, Jianwei; Han, Yan; Li, Dejun

    2018-02-16

    Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co 9 S 8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co 9 S 8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g -1 at 10 A g -1 ). These results demonstrate that the new nanostructured Co 9 S 8 /GPs can be potentially applied in high performance flexible supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rationally designed mineralization for selective recovery of the rare earth elements

    NASA Astrophysics Data System (ADS)

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ~6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  5. Rationally designed mineralization for selective recovery of the rare earth elements

    PubMed Central

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-01-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input. PMID:28548098

  6. Rationally designed mineralization for selective recovery of the rare earth elements.

    PubMed

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-26

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ∼6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  7. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing

    PubMed Central

    Bodelón, Gustavo; Montes-García, Verónica; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel

    2018-01-01

    Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field. PMID:29868499

  8. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.

    PubMed

    Wiedman, Gregory; Wimley, William C; Hristova, Kalina

    2015-04-01

    In this work, we sought to rationally design membrane-active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane-active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6, by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macromolecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH sensitivity into its sequence. We conclude that the properties of pHlip, GALA, and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane-active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Knowledge Utilization Strategies in the Design and Implementation of New Schools--Symbolic Functions.

    ERIC Educational Resources Information Center

    Sieber, Sam D.

    An examination of case studies suggests that rational processes were not entirely at work in the planning and conception of new, innovative schools. The rational model that serves as the foundation of our information systems assumes that a compelling professional need triggers a search for solutions; and, therefore, school personnel are eager to…

  10. Reliability-based evaluation of bridge components for consistent safety margins.

    DOT National Transportation Integrated Search

    2010-10-01

    The Load and Resistant Factor Design (LRFD) approach is based on the concept of structural reliability. The approach is more : rational than the former design approaches such as Load Factor Design or Allowable Stress Design. The LRFD Specification fo...

  11. Research, Teaching and Performance Evaluation in Academia: The Salience of Quality

    ERIC Educational Resources Information Center

    Cadez, Simon; Dimovski, Vlado; Zaman Groff, Maja

    2017-01-01

    The workload of most academics involves two main activities: research and teaching. Despite the dual nature of the work, career advancement usually chiefly depends on research performance. Since academics are rational actors, warnings are beginning to emerge that current predominantly research-based performance evaluation systems may be…

  12. Reuniting Virtue and Knowledge

    ERIC Educational Resources Information Center

    Culham, Tom

    2015-01-01

    Einstein held that intuition is more important than rational inquiry as a source of discovery. Further, he explicitly and implicitly linked the heart, the sacred, devotion and intuitive knowledge. The raison d'être of universities is the advance of knowledge; however, they have primarily focused on developing student's skills in working with…

  13. Stochastic game theory: for playing games, not just for doing theory.

    PubMed

    Goeree, J K; Holt, C A

    1999-09-14

    Recent theoretical advances have dramatically increased the relevance of game theory for predicting human behavior in interactive situations. By relaxing the classical assumptions of perfect rationality and perfect foresight, we obtain much improved explanations of initial decisions, dynamic patterns of learning and adjustment, and equilibrium steady-state distributions.

  14. Institutional Conflict.

    ERIC Educational Resources Information Center

    Ostar, Allan W.

    1995-01-01

    One way universities have served society since the Middle Ages is by providing an environment giving students and faculty freedom to explore new ideas without fear of retribution. Properly used, conflict can be the catalyst for advancing wisdom. However, the university is at risk when rational discourse is replaced by conflict as the means of…

  15. Revisiting Jürgen Habermas's Notion of Communicative Action and Its Relevance for South African School Governance: Can It Succeed?

    ERIC Educational Resources Information Center

    Mabovula, Nonceba

    2010-01-01

    I apply as theoretical framework the Habermassian principles of "communicative action" and "consensus" through deliberation and reasoning. In particular, I focus on "rational" and "argumentative" communication through which school governance stakeholders could advance arguments and counter-arguments. I…

  16. Rational Number and Proportional Reasoning in Early Secondary School: Towards Principled Improvement in Mathematics

    ERIC Educational Resources Information Center

    Howe, Christine; Luthman, Stefanie; Ruthven, Kenneth; Mercer, Neil; Hofmann, Riikka; Ilie, Sonia; Guardia, Paula

    2015-01-01

    Reflecting concerns about student attainment and participation in mathematics and science, the Effecting Principled Improvement in STEM Education ("epiSTEMe") project attempted to support pedagogical advancement in these two disciplines. Using principles identified as effective in the research literature (and combining these in a novel…

  17. Unesco's General Information Programme for the 80s.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.

    Developing countries are becoming increasingly aware of the fact that specialized information is essential to their economic and social development, and that it is an indispensable factor in the rational use of natural resources, the development of human resources, scientific and technological advancement, and progress in agriculture, industry,…

  18. The genome editing toolbox: a spectrum of approaches for targeted modification.

    PubMed

    Cheng, Joseph K; Alper, Hal S

    2014-12-01

    The increase in quality, quantity, and complexity of recombinant products heavily drives the need to predictably engineer model and complex (mammalian) cell systems. However, until recently, limited tools offered the ability to precisely manipulate their genomes, thus impeding the full potential of rational cell line development processes. Targeted genome editing can combine the advances in synthetic and systems biology with current cellular hosts to further push productivity and expand the product repertoire. This review highlights recent advances in targeted genome editing techniques, discussing some of their capabilities and limitations and their potential to aid advances in pharmaceutical biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Shape optimization using a NURBS-based interface-enriched generalized FEM

    DOE PAGES

    Najafi, Ahmad R.; Safdari, Masoud; Tortorelli, Daniel A.; ...

    2016-11-26

    This study presents a gradient-based shape optimization over a fixed mesh using a non-uniform rational B-splines-based interface-enriched generalized finite element method, applicable to multi-material structures. In the proposed method, non-uniform rational B-splines are used to parameterize the design geometry precisely and compactly by a small number of design variables. An analytical shape sensitivity analysis is developed to compute derivatives of the objective and constraint functions with respect to the design variables. Subtle but important new terms involve the sensitivity of shape functions and their spatial derivatives. As a result, verification and illustrative problems are solved to demonstrate the precision andmore » capability of the method.« less

  20. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  1. Towards the rational design of the Py5-ligand framework for ruthenium-based water oxidation catalysts.

    PubMed

    Schilling, Mauro; Böhler, Michael; Luber, Sandra

    2018-05-21

    In order to rationally design water oxidation catalysts (WOCs), an in-depth understanding of the reaction mechanism is essential. In this study we showcase the complexity of catalytic water oxidation, by elucidating how modifications of the pentapyridyl (Py5) ligand-framework influence the thermodynamics and kinetics of the process. In the reaction mechanism the pyridine-water exchange was identified as a key reaction which appears to determine the reactivity of the Py5-WOCs. Exploring the capabilities of in silico design we show which modifications of the ligand framework appear promising when attempting to improve the catalytic performance of WOCs derived from Py5.

  2. Cofactor specificity switch in Shikimate dehydrogenase by rational design and consensus engineering.

    PubMed

    García-Guevara, Fernando; Bravo, Iris; Martínez-Anaya, Claudia; Segovia, Lorenzo

    2017-08-01

    Consensus engineering has been used to design more stable variants using the most frequent amino acid at each site of a multiple sequence alignment; sometimes consensus engineering modifies function, but efforts have mainly been focused on studying stability. Here we constructed a consensus Rossmann domain for the Shikimate dehydrogenase enzyme; separately we decided to switch the cofactor specificity through rational design in the Escherichia coli Shikimate dehydrogenase enzyme and then analyzed the effect of consensus mutations on top of our design. We found that consensus mutations closest to the 2' adenine moiety increased the activity in our design. Consensus engineering has been shown to result in more stable proteins and our findings suggest it could also be used as a complementary tool for increasing or modifying enzyme activity during design. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Rationality and drug use: an experimental approach.

    PubMed

    Blondel, Serge; Lohéac, Youenn; Rinaudo, Stéphane

    2007-05-01

    In rational addiction theory, higher discount rates encourage drug use. We test this hypothesis in the general framework of rationality and behaviour under risk. We do so using an experimental design with real monetary incentives. The decisions of 34 drug addicts are compared with those of a control group. The decisions of drug users (DU) are not any less consistent with standard theories of behaviour over time and under risk. Further, there is no difference in the estimated discount rate between drug users and the control group, but the former do appear to be more risk-seeking.

  4. Rational tuning of high-energy visible light absorption for panchromatic small molecules by a two-dimensional conjugation approach

    DOE PAGES

    He, B.; Zherebetskyy, D.; Wang, H.; ...

    2016-02-29

    We have demonstrated a rational two-dimensional (2D) conjugation approach towards achieving panchromatic absorption of small molecules. Furthermore, by extending the conjugation on two orthogonal axes of an electron acceptor, namely, bay-annulated indigo (BAI), the optical absorptions could be tuned independently in both high- and low-energy regions. The unconventional modulation of the high-energy absorption is rationalized by density functional theory (DFT) calculations. Finally, we determine that a 2D tuning strategy provides novel guidelines for the design of molecular materials with tailored optoelectronic properties.

  5. Toward a rational, value-based drug benefit for Medicare.

    PubMed

    Lopert, Ruth; Moon, Marilyn

    2007-01-01

    A major challenge facing Congress is what changes, if any, to make to Medicare Part D. With the apparent failure of the Democrats' attempt to remove the prohibition on government intervention in drug price negotiations, the party's next steps are unclear. One suggested option is a plan administered by the Centers for Medicare and Medicaid Services (CMS), to compete with private plans and facilitate a transition to a more rational structure. We discuss issues surrounding the design of such a mechanism and how it might provide a transition toward a more rational and sustainable drug benefit in the longer term.

  6. Promoter and Terminator Discovery and Engineering.

    PubMed

    Deaner, Matthew; Alper, Hal S

    Control of gene expression is crucial to optimize metabolic pathways and synthetic gene networks. Promoters and terminators are stretches of DNA upstream and downstream (respectively) of genes that control both the rate at which the gene is transcribed and the rate at which mRNA is degraded. As a result, both of these elements control net protein expression from a synthetic construct. Thus, it is highly important to discover and engineer promoters and terminators with desired characteristics. This chapter highlights various approaches taken to catalogue these important synthetic elements. Specifically, early strategies have focused largely on semi-rational techniques such as saturation mutagenesis to diversify native promoters and terminators. Next, in an effort to reduce the length of the synthetic biology design cycle, efforts in the field have turned towards the rational design of synthetic promoters and terminators. In this vein, we cover recently developed methods such as hybrid engineering, high throughput characterization, and thermodynamic modeling which allow finer control in the rational design of novel promoters and terminators. Emphasis is placed on the methodologies used and this chapter showcases the utility of these methods across multiple host organisms.

  7. Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies

    PubMed Central

    Hudson, Lauren E.; Anderson, Sarah E.; Corbett, Anita H.

    2016-01-01

    SUMMARY Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases. PMID:27856521

  8. Virtual screening and rational drug design method using structure generation system based on 3D-QSAR and docking.

    PubMed

    Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T

    2003-08-01

    An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.

  9. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification.

    PubMed

    Hu, Weixiong; Liu, Xiaoyun; Li, Yufeng; Liu, Daling; Kuang, Zhihe; Qian, Chuiwen; Yao, Dongsheng

    2017-02-01

    β-Mannanase has been widely used in industries such as food and feed processing and thus has been a target enzyme for biotechnological development. In this study, we sought to improve the stability and protease resistance of a recombinant β-mannanase, MAN47 from Armillariella tabescens, through rationally designed N-glycosylation. Based on homology modeling, molecular docking, secondary structure analysis and glycosylation feasibility analysis, an enhanced aromatic sequon sequence was introduced into specific MAN47 loop regions to facilitate N-glycosylation. The mutant enzymes were expressed in Pichia pastoris SMD1168, and their thermal stability, pH stability, trypsin resistance and pepsin resistance were determined. Two mutant MAN47 enzymes, g-123 and g-347, were glycosylated as expected when expressed in yeast, and their thermal stability, pH stability, and protease resistance were significantly improved compared to the wild-type enzyme. An enzyme with multiple stability characterizations has broad prospects in practical applications, and the rational design N-glycosylation strategy may have applications in simultaneously improving several properties of other biotechnological targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling.

    PubMed

    Konstorum, Anna; Vella, Anthony T; Adler, Adam J; Laubenbacher, Reinhard C

    2017-06-01

    The goal of cancer immunotherapy is to boost a patient's immune response to a tumour. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumour microenvironment, immune-modulating effects of conventional treatments and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modelling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumour classification, optimal treatment scheduling and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modellers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumour-immune biology. We conclude the review with recommendations for modellers both with respect to methodology and biological direction that might help keep modellers at the forefront of cancer immunotherapy development. © 2017 The Author(s).

  11. Programmable single-cell mammalian biocomputers.

    PubMed

    Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin

    2012-07-05

    Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.

  12. Cosmetics-triggered percutaneous remote control of transgene expression in mice.

    PubMed

    Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin

    2015-08-18

    Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Cosmetics-triggered percutaneous remote control of transgene expression in mice

    PubMed Central

    Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin

    2015-01-01

    Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. PMID:25943548

  14. Systems metabolic engineering design: Fatty acid production as an emerging case study

    PubMed Central

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-01-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660

  15. Systems metabolic engineering design: fatty acid production as an emerging case study.

    PubMed

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  16. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. APPLICATION OF STEEL PIPE PILE LOADING TESTS TO DESIGN VERIFICATION OF FOUNDATION OF THE TOKYO GATE BRIDGE

    NASA Astrophysics Data System (ADS)

    Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji

    Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.

  18. New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities.

    PubMed

    Abou Zahr, Abdallah; Bernabe Ramirez, Carolina; Wozney, Jocelyn; Prebet, Thomas; Zeidan, Amer M

    2016-01-01

    Myelodysplastic syndromes (MDS) include a heterogeneous group of acquired hematopoietic malignancies characterized by ineffective hematopoiesis, peripheral cytopenias, and a varying propensity for progression to acute myeloid leukemia. The clinical heterogeneity in MDS is a reflection of its molecular heterogeneity. Better understanding of aberrant epigenetics, dysregulation of immune responses, and del(5q) MDS has provided the rationale for well-established treatments in MDS. Further understanding of abnormal signal transduction and aberrant apoptosis pathways has led to development of new rational therapies that are in advanced phases of clinical translation. This review seeks to describe recent developments in our understanding of the pathogenesis of MDS and the potential therapeutic implications of these observations.

  19. Advance directives outside the USA: are they the best solution everywhere?

    PubMed

    Sanchez-Gonzalez, M A

    1997-09-01

    This article evaluates the potential role of advance directives outside of their original North American context. In order to do this, the article first analyses the historical process which has promoted advance directives in recent years. Next, it brings to light certain presuppositions which have given them force: atomistic individualism, contractualism, consumerism and entrepreneurialism, pluralism, proceduralism, and "American moralism." The article next studies certain European cultural peculiarities which could affect advance directives: the importance of virtue versus rights, stoicism versus consumerist utilitarianism, rationalism verus empiricism, statism versus citizens' initiative, and justice versus autonomy. The article concludes by recognising that autonomy has a transcultural value, although it must be balanced with other principles. Advance Directives can have a function in certain cases. But it does not seem adequate to delegate to advance directives more and more medical decisions, and to make them more binding everyday. It is indispensable to develop other decision-making criteria.

  20. Regret and rationalization among smokers in Thailand and Malaysia: findings from the International Tobacco Control Southeast Asia Survey.

    PubMed

    Lee, Wonkyong B; Fong, Geoffrey T; Zanna, Mark P; Omar, Maizurah; Sirirassamee, Buppha; Borland, Ron

    2009-07-01

    To test whether differences of history and strength in tobacco control policies will influence social norms, which, in turn, will influence quit intentions, by influencing smokers' regret and rationalization. The data were from the International Tobacco Control (ITC) Policy Evaluation Southeast Asia Survey, a cohort survey of representative samples of adult smokers in Thailand (N = 2,000) and Malaysia (N = 2,006). The survey used a stratified multistage sampling design. Measures included regret, rationalization, social norms, and quit intention. Thai smokers were more likely to have quit intentions than Malaysian smokers. This difference in quit intentions was, in part, explained by the country differences in social norms, regret, and rationalization. Reflecting Thailand's history of stronger tobacco control policies, Thai smokers, compared with Malaysian smokers, perceived more negative social norms toward smoking, were more likely to regret, and less likely to rationalize smoking. Mediational analyses revealed that these differences in social norms, accounted, in part, for the country-quit intention relation and that regret and rationalization accounted, in part, for the social norm-quit intention relation. The results suggest that social norms toward smoking, which are shaped by tobacco control policies, and smokers' regret and rationalization influence quit intentions.

  1. Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard.

    PubMed

    Yuan, Huwei; Niu, Shihui; El-Kassaby, Yousry A; Li, Yue; Li, Wei

    2016-01-01

    Chinese pine seed orchards are in a period of transition from first-generation to advanced-generations. How to effectively select populations for second-generation seed orchards and significantly increase genetic gain through rational deployment have become major issues. In this study, we examined open- and control-pollinated progeny of the first-generation Chinese pine seed orchards in Zhengning (Gansu Province, China) and Xixian (Shanxi Province, China) to address issues related to phenotypic selection for high volume growth, genetic diversity analysis and genetic distance-based phylogenetic analysis of the selections by simple sequence repeats (SSRs), and phylogenetic relationship-based field deployment for advanced-generation orchards. In total, 40, 28, 20, and 13 superior individuals were selected from the large-scale no-pedigree open-pollinated progeny of Zhengning (ZN-NP), open-pollinated families of Zhengning (ZN-OP), open-pollinated families of Xixian (XX-OP), and control-pollinated families of Xixian, with mean volume dominance ratios of 0.83, 0.15, 0.25, and 0.20, respectively. Phylogenetic relationship analysis of the ZN-NP and XX-OP populations showed that the 40 superior individuals in the ZN-NP selected population belonged to 23 families and could be further divided into five phylogenetic groups, and that families in the same group were closely related. Similarly, 20 families in the XX-OP population were related to varying degrees. Based on these results, we found that second-generation Chinese pine seed orchards in Zhengning and Xixian should adopt a grouped, unbalanced, complete, fixed block design and an unbalanced, incomplete, fixed block design, respectively. This study will provide practical references for applying molecular markers to establishing advanced-generation seed orchards.

  2. Oligoalanine helical callipers for cell penetration.

    PubMed

    Pazo, Marta; Juanes, Marisa; Lostalé-Seijo, Irene; Montenegro, Javier

    2018-06-04

    Even for short peptides that are enriched in basic amino acids, the large chemical space that can be spanned by combinations of natural amino acids hinders the rational design of cell penetrating peptides. We here report on short oligoalanine scaffolds for the fine-tuning of peptide helicity in different media and the study of cell penetrating properties. This strategy allowed the extraction of the structure/activity features required for maximal membrane interaction and cellular penetration at minimal toxicity. These results confirmed oligoalanine helical callipers as optimal scaffolds for the rational design and the identification of cell penetrating peptides.

  3. Experiential versus rational training: a comparison of student attitudes toward homosexuality.

    PubMed

    Guth, Lorraine J; Lopez, David F; Rojas, Julio; Clements, Kimberly D; Tyler, J Michael

    2004-01-01

    Based on Epstein's (1994a) cognitive-experiential self-theory, two new training interventions were designed to teach students about gay, lesbian and bisexual issues. The efficacy of these theoretically based interventions was assessed in a short-term (7-week, three occasion) longitudinal study. Fifty undergraduate psychology students were randomly assigned to one of three treatment groups: Rational Training, Experiential Training, or Control Group. A residualized change score procedure was used to analyze change in levels of sexual prejudice and affect across the three types of measurement (pre-test, post-test, and follow-up). A 3 (Rational Training, Experiential Training, Control Group) x 2 (Low Sexual Prejudice, High Sexual Prejudice) MANOVA revealed that after the training, participants in the Experiential Group (affective training) had more accepting attitudes toward homosexuality compared to the Control Group. In addition, participants in the Experiential Group experienced more positive affect compared to the Rational and Control Groups and experienced more negative affect compared to the Rational Group. Findings are discussed and suggestions for future research are provided.

  4. Linking patient satisfaction with nursing care: the case of care rationing - a correlational study.

    PubMed

    Papastavrou, Evridiki; Andreou, Panayiota; Tsangari, Haritini; Merkouris, Anastasios

    2014-01-01

    Implicit rationing of nursing care is the withholding of or failure to carry out all necessary nursing measures due to lack of resources. There is evidence supporting a link between rationing of nursing care, nurses' perceptions of their professional environment, negative patient outcomes, and placing patient safety at risk. The aims of the study were: a) To explore whether patient satisfaction is linked to nurse-reported rationing of nursing care and to nurses' perceptions of their practice environment while adjusting for patient and nurse characteristics. b) To identify the threshold score of rationing by comparing the level of patient satisfaction factors across rationing levels. A descriptive, correlational design was employed. Participants in this study included 352 patients and 318 nurses from ten medical and surgical units of five general hospitals. Three measurement instruments were used: the BERNCA scale for rationing of care, the RPPE scale to explore nurses' perceptions of their work environment and the Patient Satisfaction scale to assess the level of patient satisfaction with nursing care. The statistical analysis included the use of Kendall's correlation coefficient to explore a possible relationship between the variables and multiple regression analysis to assess the effects of implicit rationing of nursing care together with organizational characteristics on patient satisfaction. The mean score of implicit rationing of nursing care was 0.83 (SD = 0.52, range = 0-3), the overall mean of RPPE was 2.76 (SD = 0.32, range = 1.28 - 3.69) and the two scales were significantly correlated (τ = -0.234, p < 0.001). The regression analysis showed that care rationing and work environment were related to patient satisfaction, even after controlling for nurse and patient characteristics. The results from the adjusted regression models showed that even at the lowest level of rationing (i.e. 0.5) patients indicated low satisfaction. The results support the relationships between organizational and environmental variables, care rationing and patient satisfaction. The identification of thresholds at which rationing starts to influence patient outcomes in a negative way may allow nurse managers to introduce interventions so as to keep rationing at a level at which patient safety is not jeopardized.

  5. Photocatalytic water splitting—The untamed dream: A review of recent advances

    DOE PAGES

    Jafari, Tahereh; Moharreri, Ehsan; Amin, Alireza Shirazi; ...

    2016-07-09

    Here, photocatalytic water splitting using sunlight is a promising technology capable of providing high energy yield without pollutant byproducts. Herein, we review various aspects of this technology including chemical reactions, physiochemical conditions and photocatalyst types such as metal oxides, sulfides, nitrides, nanocomposites, and doped materials followed by recent advances in computational modeling of photoactive materials. As the best-known catalyst for photocatalytic hydrogen and oxygen evolution, TiO 2 is discussed in a separate section, along with its challenges such as the wide band gap, large overpotential for hydrogen evolution, and rapid recombination of produced electron-hole pairs. Various approaches are addressed tomore » overcome these shortcomings, such as doping with different elements, heterojunction catalysts, noble metal deposition, and surface modification. Development of a photocatalytic corrosion resistant, visible light absorbing, defect-tuned material with small particle size is the key to complete the sunlight to hydrogen cycle efficiently. Computational studies have opened new avenues to understand and predict the electronic density of states and band structure of advanced materials and could pave the way for the rational design of efficient photocatalysts for water splitting. Future directions are focused on developing innovative junction architectures, novel synthesis methods and optimizing the existing active materials to enhance charge transfer, visible light absorption, reducing the gas evolution overpotential and maintaining chemical and physical stability« less

  6. Membrane-spanning α-helical barrels as tractable protein-design targets.

    PubMed

    Niitsu, Ai; Heal, Jack W; Fauland, Kerstin; Thomson, Andrew R; Woolfson, Derek N

    2017-08-05

    The rational ( de novo ) design of membrane-spanning proteins lags behind that for water-soluble globular proteins. This is due to gaps in our knowledge of membrane-protein structure, and experimental difficulties in studying such proteins compared to water-soluble counterparts. One limiting factor is the small number of experimentally determined three-dimensional structures for transmembrane proteins. By contrast, many tens of thousands of globular protein structures provide a rich source of 'scaffolds' for protein design, and the means to garner sequence-to-structure relationships to guide the design process. The α-helical coiled coil is a protein-structure element found in both globular and membrane proteins, where it cements a variety of helix-helix interactions and helical bundles. Our deep understanding of coiled coils has enabled a large number of successful de novo designs. For one class, the α-helical barrels-that is, symmetric bundles of five or more helices with central accessible channels-there are both water-soluble and membrane-spanning examples. Recent computational designs of water-soluble α-helical barrels with five to seven helices have advanced the design field considerably. Here we identify and classify analogous and more complicated membrane-spanning α-helical barrels from the Protein Data Bank. These provide tantalizing but tractable targets for protein engineering and de novo protein design.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'. © 2017 The Author(s).

  7. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review

    NASA Astrophysics Data System (ADS)

    Lv, Weiqiang; He, Weidong; Wang, Xiaoning; Niu, Yinghua; Cao, Huanqi; Dickerson, James H.; Wang, Zhiguo

    2014-02-01

    Since Penn et al. first discovered the oriented attachment growth of crystals, the oriented attachment mechanism has now become a major research focus in the crystal field, and extensive efforts have been carried out over the past decade to systematically investigate the growth mechanism and the statistical kinetic models. However, most of the work mainly focuses on the experimental results on the oriented attachment growth. In contrast to the previous reviews, our review provides an overview of the recent theoretical advances in oriented attachment kinetics combined with experimental evidences. After a brief introduction to the van der Waals interaction and Coulombic interaction in a colloidal system, the correlation between the kinetic models of oriented attachment growth and the interactions is then our focus. The impact of in situ experimental observation techniques on the study of oriented attachment growth is examined with insightful examples. In addition, the advances in theoretical simulations mainly investigating the thermodynamic origin of these interactions at the atomic level are reviewed. This review seeks to understand the oriented attachment crystal growth from a kinetic point of view and provide a quantitative methodology to rationally design an oriented attachment system with pre-evaluated crystal growth parameters.

  8. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    PubMed

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  9. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    PubMed

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  10. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  11. Immunotherapy for Prostate Cancer Enters Its Golden Age

    PubMed Central

    Boikos, Sosipatros A.; Antonarakis, Emmanuel S.

    2012-01-01

    In the United States, prostate cancer is the most frequent malignancy in men and ranks second in terms of mortality. Although recurrent or metastatic disease can be managed initially with androgen ablation, most patients eventually develop castration-resistant disease within a number of years, for which conventional treatments (eg, chemotherapy) provide only modest benefits. In the last few years, immunotherapy has emerged as an exciting therapeutic modality for advanced prostate cancer, and this field is evolving rapidly. Encouragingly, the US Food and Drug Administration (FDA) has recently approved two novel immunotherapy agents for patients with advanced cancer: the antigen presenting cell-based product sipuleucel-T and the anti-CTLA4 (cytotoxic T-lymphocyte antigen 4) antibody ipilimumab, based on improvements in overall survival in patients with castration-resistant prostate cancer and metastatic melanoma, respectively. Currently, a number of trials are investigating the role of various immunological approaches for the treatment of prostate cancer, many of them with early indications of success. As immunotherapy for prostate cancer enters its golden age, the challenge of the future will be to design rational combinations of immunotherapy agents with each other or with other standard prostate cancer treatments in an effort to improve patient outcomes further. PMID:22844202

  12. Exploring the Common Ground of Rhetoric and Logic.

    ERIC Educational Resources Information Center

    Lamb, Catherine E.

    In teaching the principles of rational discourse in advanced expository writing, it is necessary to clarify the similarities and differences between the logic and rhetoric of Aristotle and to identify a common ground between the two. The study of logic within rhetoric focuses on the inductive standards used to support two kinds of argument: the…

  13. Monitoring Science and Technology Symposium: Unifying Knowledge for Sustainability in the Western Hemisphere

    Treesearch

    C. Aguirre-Bravo; Patrick J. Pellicane; Denver P. Burns; Sidney Draggan

    2006-01-01

    A rational approach to monitoring and assessment is prerequisite for sustainable management of ecosystem resources. This features innovative ways to advance the concept of monitoring ecosystem sustainability across spheres of environmental concern, natural and anthropogenic processes, and other hemispheric issues over a variety of spatial scales and resolution levels....

  14. Reaction to Excerpts from "The Learning Mystique: A Rational Appeal for Change."

    ERIC Educational Resources Information Center

    Sigmon, Scott B.

    1989-01-01

    In agreement with Coles (EC 220 146), the article presents: a sketch of how the learning disability field was born, the sociological reasons why the field inadvertently moved beyond its original intentions, and how Coles aims for advances in the theory and practice of diagnosing learning problems. (DB)

  15. Department of Defense Food service Program Needs Contracting and Management Improvements.

    DTIC Science & Technology

    1981-10-20

    in the ration, changes in consumer preferences , and advances in food technology, we believe composition changes could occur which would reduce the...accurately predict consumer preferences . The computer model which the DoD has developed to implement the proposed changes to Title 10 U.S.C. is based upon more

  16. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researchers in the Department of Bioengineering at Rice University are developing a new approach for fighting cancer, based on nanoshells that can both detect and destroy cancerous cells. The aim is to locate the cells, and be able to make a rational choice about whether they need to be destroyed and if possible they should immediately be sent for…

  17. Hard Lessons: Why Rational Number Arithmetic Is so Difficult for so Many People

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Lortie-Forgues, Hugues

    2017-01-01

    Fraction and decimal arithmetic pose large difficulties for many children and adults. This is a serious problem, because proficiency with these skills is crucial for learning more advanced mathematics and science and for success in many occupations. This review identifies two main classes of difficulties that underlie poor understanding of…

  18. The Top Five “Game Changers” in Vaccinology: Toward Rational and Directed Vaccine Development

    PubMed Central

    Kennedy, Richard B.

    2011-01-01

    Abstract Despite the tremendous success of the classical “isolate, inactivate, and inject” approach to vaccine development, new breakthroughs in vaccine research are increasingly reliant on novel approaches that incorporate cutting edge technology and advances in innate and adaptive immunology, microbiology, virology, pathogen biology, genetics, bioinformatics, and many other disciplines in order to: (1) deepen our understanding of the key biological processes that lead to protective immunity, (2) observe vaccine responses on a global, systems level, and (3) directly apply the new knowledge gained to the development of next-generation vaccines with improved safety profiles, enhanced efficacy, and even targeted utility in select populations. Here we highlight five key components foundational to vaccinomics efforts: applied immunogenomics, next generation sequencing and other cutting-edge “omics” technologies, advanced bioinformatics and analysis techniques, and finally, systems biology applied to immune profiling and vaccine responses. We believe these “game changers” will play a critical role in moving us toward the rational and directed development of new vaccines in the 21st century. PMID:21815811

  19. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    PubMed

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering platform to address this issue. In this article, we describe the fundamental problems encountered in this field and review recent progress in designing cell-hydrogel constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel composition, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation hydrogel/inorganic particle/stem cell hybrid composites with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing and bioengineering technologies (e.g. 3D bioprinting) for fabrication of hydrogel-based osteochondral and cartilage constructs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Three-dimensional carbon architectures for electrochemical capacitors.

    PubMed

    Song, Yu; Liu, Tianyu; Qian, Fang; Zhu, Cheng; Yao, Bin; Duoss, Eric; Spadaccini, Christopher; Worsley, Marcus; Li, Yat

    2018-01-01

    Three-dimensional (3D) carbon-based materials are emerging as promising electrode candidates for energy storage devices. In comparison to the 1D and 2D structures, 3D morphology offers new opportunities in rational design and synthesis of novel architectures tailor-made for promoting electrochemical performance. The capability of building hierarchical porous structures with 3D configuration can significantly advance the performance of energy storage devices by simultaneously enhancing the ion-accessible surface area and ion diffusion. This feature article presents an overview of recent progress in design, synthesis and implementation of 3D carbon-based materials as electrodes for electrochemical capacitors. Synthesis methodologies of four types of 3D carbon-based electrodes: 3D exfoliated carbon structures, 3D graphene scaffolds, 3D hierarchical porous carbon foams, as well as 3D architectures with periodic pores derived from direct ink writing, are thoroughly discussed and highlighted with selected experimental works. Finally, key opportunities and challenges in which different 3D carbons can significantly impact the energy storage and conversion communities will be provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    PubMed

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-05-01

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Man as the main component of the closed ecological system of the spacecraft or planetary station.

    PubMed

    Parin, V V; Adamovich, B A

    1968-01-01

    Current life-support systems of the spacecraft provide human requirements for food, water and oxygen only. Advanced life-support systems will involve man as their main component and will ensure completely his material and energy requirements. The design of individual components of such systems will assure their entire suitability and mutual control effects. Optimization of the performance of the crew and ecological system, on the basis of the information characterizing their function, demands efficient methods of collection and treatment of the information obtained through wireless recording of physiological parameters and their automatic treatment. Peculiarities of interplanetary missions and planetary stations make it necessary to conform the schedule of physiological recordings with the work-and-rest cycle of the space crew and inertness of components of the ecological system, especially of those responsible for oxygen regeneration. It is rational to model ecological systems and their components, taking into consideration the correction effect of the information on the health conditions and performance of the crewmen. Wide application of physiological data will allow the selection of optimal designs and sharply increase reliability of ecological systems.

  3. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes.

    PubMed

    Lan, Yingying; Zhao, Hongyang; Zong, Yan; Li, Xinghua; Sun, Yong; Feng, Juan; Wang, Yan; Zheng, Xinliang; Du, Yaping

    2018-05-01

    Binary transition metal phosphides hold immense potential as innovative electrode materials for constructing high-performance energy storage devices. Herein, porous binary nickel-cobalt phosphide (NiCoP) nanosheet arrays anchored on nickel foam (NF) were rationally designed as self-supported binder-free electrodes with high supercapacitance performance. Taking the combined advantages of compositional features and array architectures, the nickel foam supported NiCoP nanosheet array (NiCoP@NF) electrode possesses superior electrochemical performance in comparison with Ni-Co LDH@NF and NiCoO2@NF electrodes. The NiCoP@NF electrode shows an ultrahigh specific capacitance of 2143 F g-1 at 1 A g-1 and retained 1615 F g-1 even at 20 A g-1, showing excellent rate performance. Furthermore, a binder-free all-solid-state asymmetric supercapacitor device is designed, which exhibits a high energy density of 27 W h kg-1 at a power density of 647 W kg-1. The hierarchical binary nickel-cobalt phosphide nanosheet arrays hold great promise as advanced electrode materials for supercapacitors with high electrochemical performance.

  4. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions.

    PubMed

    Wen, Jin; Li, Wei; Chen, Shuang; Ma, Jing

    2016-08-17

    Surfaces modified with a functional molecular monolayer are essential for the fabrication of nano-scale electronics or machines with novel physical, chemical, and/or biological properties. Theoretical simulation based on advanced quantum chemical and classical models is at present a necessary tool in the development, design, and understanding of the interfacial nanostructure. The nanoscale surface morphology, growth processes, and functions are controlled by not only the electronic structures (molecular energy levels, dipole moments, polarizabilities, and optical properties) of building units but also the subtle balance between intermolecular and interfacial interactions. The switchable surfaces are also constructed by introducing stimuli-responsive units like azobenzene derivatives. To bridge the gap between experiments and theoretical models, opportunities and challenges for future development of modelling of ferroelectricity, entropy, and chemical reactions of surface-supported monolayers are also addressed. Theoretical simulations will allow us to obtain important and detailed information about the structure and dynamics of monolayer modified interfaces, which will guide the rational design and optimization of dynamic interfaces to meet challenges of controlling optical, electrical, and biological functions.

  5. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations

    NASA Astrophysics Data System (ADS)

    Liu, Gongping; Chernikova, Valeriya; Liu, Yang; Zhang, Kuang; Belmabkhout, Youssef; Shekhah, Osama; Zhang, Chen; Yi, Shouliang; Eddaoudi, Mohamed; Koros, William J.

    2018-03-01

    Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal-organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.

  6. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration.

    PubMed

    Loo, Yihua; Goktas, Melis; Tekinay, Ayse B; Guler, Mustafa O; Hauser, Charlotte A E; Mitraki, Anna

    2015-11-18

    Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Method for automation of tool preproduction

    NASA Astrophysics Data System (ADS)

    Rychkov, D. A.; Yanyushkin, A. S.; Lobanov, D. V.; Arkhipov, P. V.

    2018-03-01

    The primary objective of tool production is a creation or selection of such tool design which could make it possible to secure high process efficiency, tool availability as well as a quality of received surfaces with minimum means and resources spent on it. It takes much time of application people, being engaged in tool preparation, to make a correct selection of the appropriate tool among the set of variants. Program software has been developed to solve the problem, which helps to create, systematize and carry out a comparative analysis of tool design to identify the rational variant under given production conditions. The literature indicates that systematization and selection of the tool rational design has been carried out in accordance with the developed modeling technology and comparative design analysis. Software application makes it possible to reduce the period of design by 80....85% and obtain a significant annual saving.

  8. MIRATE: MIps RATional dEsign Science Gateway.

    PubMed

    Busato, Mirko; Distefano, Rosario; Bates, Ferdia; Karim, Kal; Bossi, Alessandra Maria; López Vilariño, José Manuel; Piletsky, Sergey; Bombieri, Nicola; Giorgetti, Alejandro

    2018-06-13

    Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.

  9. The fuzzy line between needs, coverage, and excess in the Mexican Formulary List: an example of qualitative market width analysis.

    PubMed

    Rico-Alba, Israel; Figueras, Albert

    2013-04-01

    To assess the rationality of the Mexican Formulary List (MEX-LIST). MEX-LIST was compared with the World Health Organization Essential Medicines List (WHO-LIST) to identify drugs classified as unmet needs. For the MEX-LIST rationality evaluation, the assessment of a non-sponsored, systematic and unbiased source (Prescrire Journal) was used for medicines not listed in WHO-LIST. The rating scale of Prescrire classifies medicines as Bravo, Real Advance, Offers an Advance, Possibly Helpful, Nothing New (NN), Judgment Reserved (JR), or Not Acceptable (NA) depending on their comparative therapeutic value. The NN, JR, and NA categories of medicines are further classified as non-added value. The MEX-LIST contains 771 medicines, which is 2.4-fold more than the WHO-LIST (n = 321). Up to 236 medicines in the MEX-LIST perfectly match the WHO-LIST medicines, 40 could be considered as reasonable substitutes, but 45 (14.0 %) present in the WHO-LIST are not present in the MEX-LIST, including an oversupply of 495 medicines. Rationality level could be analyzed for 353 of these: 43.1 % (n = 152) were classified as NN, 12.2 % (n = 43) as NA, and 6.2 % (n = 22) as JR due to limited available information. In summary, 61.5 % of the evaluated medicines present in the MEX-LIST but not included in the WHO-LIST (n = 217) can be considered drugs that do not add substantial therapeutic benefits, this accounts for 28.1 % of the medicines in the MEX-LIST. MEX-LIST is characterized by a twofold irrationality in that essential medicines to treat prevalent diseases are missing and medicines without any rational added value are in oversupply. This type of study can be easily applied to other countries with the aim of providing a forum for further discussion and improvement of the medicines offered by their national formularies.

  10. Management of NSAID-associated peptic ulcer disease.

    PubMed

    Melcarne, Luigi; García-Iglesias, Pilar; Calvet, Xavier

    2016-06-01

    Non-steroidal anti-inflammatory drug (NSAID) use increases the risk of gastrointestinal complications such as ulcers or bleeding. The presence of factors like advanced age, history of peptic ulcer, Helicobacter pylori infection and the use of anticoagulants or antiplatelet agents increase this risk further. COX-2 inhibitors and antisecretory drugs, particularly proton pump inhibitors, help to minimize the risk of gastrointestinal complications in high-risk patients. This review presents a practical approach to the prevention and treatment of NSAID-associated peptic ulcer disease and examines the new advances in the rational use of NSAIDs.

  11. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors.

    PubMed

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.

  12. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors

    PubMed Central

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples. PMID:28035082

  13. Nucleic acids for the rational design of reaction circuits.

    PubMed

    Padirac, Adrien; Fujii, Teruo; Rondelez, Yannick

    2013-08-01

    Nucleic acid-based circuits are rationally designed in vitro assemblies that can perform complex preencoded programs. They can be used to mimic in silico computations. Recent works emphasized the modularity and robustness of these circuits, which allow their scaling-up. Another new development has led to dynamic, time-responsive systems that can display emergent behaviors like oscillations. These are closely related to biological architectures and provide an in vitro model of in vivo information processing. Nucleic acid circuits have already been used to handle various processes for technological or biotechnological purposes. Future applications of these chemical smart systems will benefit from the rapidly growing ability to design, construct, and model nucleic acid circuits of increasing size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Modern Vaccines/Adjuvants Formulation Session 6: Vaccine &Adjuvant Formulation & Production 15-17 May 2013, Lausanne, Switzerland.

    PubMed

    Fox, Christopher B

    2013-09-01

    The Modern Vaccines/Adjuvants Formulation meeting aims to fill a critical gap in current vaccine development efforts by bringing together formulation scientists and immunologists to emphasize the importance of rational formulation design in order to optimize vaccine and adjuvant bioactivity, safety, and manufacturability. Session 6 on Vaccine and Adjuvant Formulation and Production provided three examples of this theme, with speakers emphasizing the need for extensive physicochemical characterization of adjuvant-antigen interactions, the rational formulation design of a CD8+ T cell-inducing adjuvant based on immunological principles, and the development and production of a rabies vaccine by a developing country manufacturer. Throughout the session, the practical importance of sound formulation and manufacturing design accompanied by analytical characterization was highlighted.

  15. Analytic Procedures For Designing and Evaluating Decision Aids.

    DTIC Science & Technology

    1980-04-01

    the taxonomy of decision charateristics . Chapter 5 applies the taxonomies to the information processing functions needed for AAW decisions, and...rationality emphasizes the extent to which organizations and other social institutions consist of individuals who pursue individual objectives by means of...adaptive rationality is always wrong or naive; most of us know persons that seem to be naturally good decision-makers. There is no logic that guarantees

  16. Effect of supplementing orchardgrass herbage with a total mixed ration or flaxseed fermentation profile and bacterial protein synthesis in continuous culture

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to evaluate the effects of herbage, a total mixed ration (TMR) and flaxseed on nutrient digestibility and microbial N synthesis. Treatments were randomly assigned to fermentors in a 4 x 4 Latin square design. Each fermentor was fed a to...

  17. A Rational Reconstruction of the Kinetic Molecular Theory of Gases Based on History and Philosophy of Science and Its Implications for Chemistry Textbooks.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2000-01-01

    Describes a study that was designed to develop a framework for examining the way in which chemistry textbooks describe the kinetic theory and related issues. The framework was developed by a rational reconstruction of the kinetic molecular theory of gases based on historians and philosophers of science. (Contains 102 references.)(Author/LRW)

  18. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  19. Rational Design Approach for Enhancing Higher-Mode Response of a Microcantilever in Vibro-Impacting Mode.

    PubMed

    Migliniene, Ieva; Ostasevicius, Vytautas; Gaidys, Rimvydas; Dauksevicius, Rolanas; Janusas, Giedrius; Jurenas, Vytautas; Krasauskas, Povilas

    2017-12-12

    This paper proposes an approach for designing an efficient vibration energy harvester based on a vibro-impacting piezoelectric microcantilever with a geometric shape that has been rationally modified in accordance with results of dynamic optimization. The design goal is to increase the amplitudes of higher-order vibration modes induced during the vibro-impact response of the piezoelectric transducer, thereby providing a means to improve the energy conversion efficiency and power output. A rational configuration of the energy harvester is proposed and it is demonstrated that the new design retains essential modal characteristics of the optimal microcantilever structures, further providing the added benefit of less costly fabrication. The effects of structural dynamics associated with advantageous exploitation of higher vibration modes are analyzed experimentally by means of laser vibrometry as well as numerically via transient simulations of microcantilever response to random excitation. Electrical characterization results indicate that the proposed harvester outperforms its conventional counterpart (based on the microcantilever of the constant cross-section) in terms of generated electrical output. Reported results may serve for the development of impact-type micropower generators with harvesting performance that is enhanced by virtue of self-excitation of large intensity higher-order mode responses when the piezoelectric transducer is subjected to relatively low-frequency excitation with strongly variable vibration magnitudes.

  20. Advanced understanding on electronic structure of molecular semiconductors and their interfaces

    NASA Astrophysics Data System (ADS)

    Akaike, Kouki

    2018-03-01

    Understanding the electronic structure of organic semiconductors and their interfaces is critical to optimizing functionalities for electronics applications, by rational chemical design and appropriate combination of device constituents. The unique electronic structure of a molecular solid is characterized as (i) anisotropic electrostatic fields that originate from molecular quadrupoles, (ii) interfacial energy-level lineup governed by simple electrostatics, and (iii) weak intermolecular interactions that make not only structural order but also energy distributions of the frontier orbitals sensitive to atmosphere and interface growth. This article shows an overview on these features with reference to the improved understanding of the orientation-dependent electronic structure, comprehensive mechanisms of molecular doping, and energy-level alignment. Furthermore, the engineering of ionization energy by the control of the electrostatic fields and work function of practical electrodes by contact-induced doping is briefly described for the purpose of highlighting how the electronic structure impacts the performance of organic devices.

  1. Microbial isoprenoid production: an example of green chemistry through metabolic engineering.

    PubMed

    Maury, Jérôme; Asadollahi, Mohammad A; Møller, Kasper; Clark, Anthony; Nielsen, Jens

    2005-01-01

    Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.

  2. Multiwavelength metasurfaces through spatial multiplexing

    DOE PAGES

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; ...

    2016-09-06

    Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scalemore » segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Furthermore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices.« less

  3. Challenges in translating vascular tissue engineering to the pediatric clinic.

    PubMed

    Duncan, Daniel R; Breuer, Christopher K

    2011-10-14

    The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.

  4. Tumor Angiogenesis as a Target for Dietary Cancer Prevention

    PubMed Central

    Li, William W.; Li, Vincent W.; Hutnik, Michelle; Chiou, Albert S.

    2012-01-01

    Between 2000 and 2050, the number of new cancer patients diagnosed annually is expected to double, with an accompanying increase in treatment costs of more than $80 billion over just the next decade. Efficacious strategies for cancer prevention will therefore be vital for improving patients' quality of life and reducing healthcare costs. Judah Folkman first proposed antiangiogenesis as a strategy for preventing dormant microtumors from progressing to invasive cancer. Although antiangiogenic drugs are now available for many advanced malignancies (colorectal, lung, breast, kidney, liver, brain, thyroid, neuroendocrine, multiple myeloma, myelodysplastic syndrome), cost and toxicity considerations preclude their broad use for cancer prevention. Potent antiangiogenic molecules have now been identified in dietary sources, suggesting that a rationally designed antiangiogenic diet could provide a safe, widely available, and novel strategy for preventing cancer. This paper presents the scientific, epidemiologic, and clinical evidence supporting the role of an antiangiogenic diet for cancer prevention. PMID:21977033

  5. Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami.

    PubMed

    Liu, Wenyan; Li, Ling; Yang, Shuo; Gao, Jie; Wang, Risheng

    2017-10-12

    Fabrication of plasmonic metamolecules (PMs) with rationally designed complexity is one of the major goals of nanotechnology. Most self-assembled PMs, however, have been constructed using single-component systems. The corresponding plasmonic assemblies still suffer from the lack of complexity, which is required to achieve a high degree of functionality. Here, we report a general applicable strategy that can realize a series of high-ordered hetero-PMs using bottom-up DNA self-assembly. DNA-functionalized differently shaped nanoparticles were deliberately arranged in prescribed positions on 3D triangular DNA origami frames to form various hetero-PMs. Importantly, we showed that the optical properties of assembled PMs could be facially tuned by selectively regulating the position of each component. This method provides a promising pathway for manufacturing more complex and advanced materials by integrating diverse nanocomponents with particular properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  7. Brittle to ductile transition in densified silica glass.

    PubMed

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  8. Brittle to Ductile Transition in Densified Silica Glass

    PubMed Central

    Yuan, Fenglin; Huang, Liping

    2014-01-01

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior. PMID:24849328

  9. Multi-scale computation methods: Their applications in lithium-ion battery research and development

    NASA Astrophysics Data System (ADS)

    Siqi, Shi; Jian, Gao; Yue, Liu; Yan, Zhao; Qu, Wu; Wangwei, Ju; Chuying, Ouyang; Ruijuan, Xiao

    2016-01-01

    Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372228 and 11234013), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and Shanghai Pujiang Program, China (Grant No. 14PJ1403900).

  10. Engineering structures and functions of mesenchymal stem cells by suspended large-area graphene nanopatterns

    NASA Astrophysics Data System (ADS)

    Kim, Jangho; Bae, Won-Gyu; Park, Subeom; Kim, Yeon Ju; Jo, Insu; Park, Sunho; Li Jeon, Noo; Kwak, Woori; Cho, Seoae; Park, Jooyeon; Kim, Hong Nam; Choi, Kyoung Soon; Seonwoo, Hoon; Choung, Yun-Hoon; Choung, Pill-Hoon; Hong, Byung Hee; Chung, Jong Hoon

    2016-09-01

    Inspired by the hierarchical nanofibrous and highly oriented structures of natural extracellular matrices, we report a rational design of chemical vapor deposition graphene-anchored scaffolds that provide both physical and chemical cues in a multilayered organization to control the adhesion and functions of cells for regenerative medicine. These hierarchical platforms are fabricated by transferring large graphene film onto nanogroove patterns. The top graphene layer exhibits planar morphology with slight roughness (∼20 nm between peaks) due to the underlying topography, which results in a suspended structure between the nanoridges. We demonstrate that the adhesion and differentiation of human mesenchymal stem cells were sensitively controlled and enhanced by the both the nanotopography and graphene cues in our scaffolds. Our results indicate that the layered physical and chemical cues can affect the apparent cell behaviors, and can synergistically enhance cell functionality. Therefore, these suspended graphene platforms may be used to advance regenerative medicine.

  11. First-principles engineering of charged defects for two-dimensional quantum technologies

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan

    2017-12-01

    Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.

  12. Current status and future prospects of yellow fever vaccines.

    PubMed

    Beck, Andrew S; Barrett, Alan D T

    2015-01-01

    Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized historically for its immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be lifelong. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease.

  13. Current Status and Future Prospects of Yellow Fever Vaccines

    PubMed Central

    Beck, Andrew S.; Barrett, Alan D.T.

    2017-01-01

    Summary Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized for historically immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be life-long. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease. PMID:26366673

  14. Tailoring the thermostability and hydrogen storage capacity of Li decorated carbon materials by heteroatom doping

    NASA Astrophysics Data System (ADS)

    Long, Jun; Li, Jieyuan; Nan, Fang; Yin, Shi; Li, Jianjun; Cen, Wanglai

    2018-03-01

    Li decorated graphene is supposed to be a promising material for the hydrogen storage, which can be further improved by heteroatom doping. But a unified promoting mechanism for various doping types and species are still lacking, which hinders the rational design of advanced materials. The potential of N/B doped Li decorated graphene for hydrogen storage is investigated with DFT calculations. A covalent interaction between Li and the graphene substrates is identified to control the thermostability and hydrogen storage capacity (HSC) of the Li decorated substrate, which is in turn subject to the electronegativity of doping species and the doping types. Additionally, a conceptual descriptor is proposed to predict the HSC of Li decorated graphene. These results provide a unified explanation and prediction of the effects of heteroatom doping on Li decorated carbon materials for hydrogen storage.

  15. Implications of memory modulation for post-traumatic stress and fear disorders

    PubMed Central

    Parsons, Ryan G; Ressler, Kerry J

    2013-01-01

    Post-traumatic stress disorder, panic disorder and phobia manifest in ways that are consistent with an uncontrollable state of fear. Their development involves heredity, previous sensitizing experiences, association of aversive events with previous neutral stimuli, and inability to inhibit or extinguish fear after it is chronic and disabling. We highlight recent progress in fear learning and memory, differential susceptibility to disorders of fear, and how these findings are being applied to the understanding, treatment and possible prevention of fear disorders. Promising advances are being translated from basic science to the clinic, including approaches to distinguish risk versus resilience before trauma exposure, methods to interfere with fear development during memory consolidation after a trauma, and techniques to inhibit fear reconsolidation and to enhance extinction of chronic fear. It is hoped that this new knowledge will translate to more successful, neuroscientifically informed and rationally designed approaches to disorders of fear regulation. PMID:23354388

  16. Smart responsive phosphorescent materials for data recording and security protection.

    PubMed

    Sun, Huibin; Liu, Shujuan; Lin, Wenpeng; Zhang, Kenneth Yin; Lv, Wen; Huang, Xiao; Huo, Fengwei; Yang, Huiran; Jenkins, Gareth; Zhao, Qiang; Huang, Wei

    2014-04-07

    Smart luminescent materials that are responsive to external stimuli have received considerable interest. Here we report ionic iridium (III) complexes simultaneously exhibiting mechanochromic, vapochromic and electrochromic phosphorescence. These complexes share the same phosphorescent iridium (III) cation with a N-H moiety in the N^N ligand and contain different anions, including hexafluorophosphate, tetrafluoroborate, iodide, bromide and chloride. The anionic counterions cause a variation in the emission colours of the complexes from yellow to green by forming hydrogen bonds with the N-H proton. The electronic effect of the N-H moiety is sensitive towards mechanical grinding, solvent vapour and electric field, resulting in mechanochromic, vapochromic and electrochromic phosphorescence. On the basis of these findings, we construct a data-recording device and demonstrate data encryption and decryption via fluorescence lifetime imaging and time-gated luminescence imaging techniques. Our results suggest that rationally designed phosphorescent complexes may be promising candidates for advanced data recording and security protection.

  17. Genomic history of the seventh pandemic of cholera in Africa.

    PubMed

    Weill, François-Xavier; Domman, Daryl; Njamkepo, Elisabeth; Tarr, Cheryl; Rauzier, Jean; Fawal, Nizar; Keddy, Karen H; Salje, Henrik; Moore, Sandra; Mukhopadhyay, Asish K; Bercion, Raymond; Luquero, Francisco J; Ngandjio, Antoinette; Dosso, Mireille; Monakhova, Elena; Garin, Benoit; Bouchier, Christiane; Pazzani, Carlo; Mutreja, Ankur; Grunow, Roland; Sidikou, Fati; Bonte, Laurence; Breurec, Sébastien; Damian, Maria; Njanpop-Lafourcade, Berthe-Marie; Sapriel, Guillaume; Page, Anne-Laure; Hamze, Monzer; Henkens, Myriam; Chowdhury, Goutam; Mengel, Martin; Koeck, Jean-Louis; Fournier, Jean-Michel; Dougan, Gordon; Grimont, Patrick A D; Parkhill, Julian; Holt, Kathryn E; Piarroux, Renaud; Ramamurthy, Thandavarayan; Quilici, Marie-Laure; Thomson, Nicholas R

    2017-11-10

    The seventh cholera pandemic has heavily affected Africa, although the origin and continental spread of the disease remain undefined. We used genomic data from 1070 Vibrio cholerae O1 isolates, across 45 African countries and over a 49-year period, to show that past epidemics were attributable to a single expanded lineage. This lineage was introduced at least 11 times since 1970, into two main regions, West Africa and East/Southern Africa, causing epidemics that lasted up to 28 years. The last five introductions into Africa, all from Asia, involved multidrug-resistant sublineages that replaced antibiotic-susceptible sublineages after 2000. This phylogenetic framework describes the periodicity of lineage introduction and the stable routes of cholera spread, which should inform the rational design of control measures for cholera in Africa. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Towards predictive models of the human gut microbiome

    PubMed Central

    2014-01-01

    The intestinal microbiota is an ecosystem susceptible to external perturbations such as dietary changes and antibiotic therapies. Mathematical models of microbial communities could be of great value in the rational design of microbiota-tailoring diets and therapies. Here, we discuss how advances in another field, engineering of microbial communities for wastewater treatment bioreactors, could inspire development of mechanistic mathematical models of the gut microbiota. We review the current state-of-the-art in bioreactor modeling and current efforts in modeling the intestinal microbiota. Mathematical modeling could benefit greatly from the deluge of data emerging from metagenomic studies, but data-driven approaches such as network inference that aim to predict microbiome dynamics without explicit mechanistic knowledge seem better suited to model these data. Finally, we discuss how the integration of microbiome shotgun sequencing and metabolic modeling approaches such as flux balance analysis may fulfill the promise of a mechanistic model of the intestinal microbiota. PMID:24727124

  19. Whole-cell biocomputing

    NASA Technical Reports Server (NTRS)

    Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B.

    2001-01-01

    The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.

  20. The Behavioral Economics of Drunk Driving

    PubMed Central

    Sloan, Frank A.; Eldred, Lindsey; Xu, Yanzhi

    2014-01-01

    This study investigates whether drinker-drivers attributes are associated with imperfect rationality or irrationality. Using data from eight U.S. cities, we determine whether drinker-drivers differ from other drinkers in cognitive ability, ignorance of driving while intoxicated (DWI) laws, have higher rates of time preference, are time inconsistent, and lack self-control on other measures. We find that drinker-drivers are relatively knowledgeable about DWI laws and do not differ on two of three study measures of cognitive ability from other drinkers. Drinker-drivers are less prone to plan events involving drinking, e.g., selecting a designated driver in advance of drinking, and are more impulsive. Furthermore, we find evidence in support of hyperbolic discounting. In particular, relative to non-drinker-drivers, the difference between short- and long-term discount rates is much higher for drinker-drivers than for other drinkers. Implications of our findings for public policy, including incapacitation, treatment, and educational interventions, are discussed. PMID:24603444

  1. Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid.

    PubMed

    Gutsche, Irina; Desfosses, Ambroise; Effantin, Grégory; Ling, Wai Li; Haupt, Melina; Ruigrok, Rob W H; Sachse, Carsten; Schoehn, Guy

    2015-05-08

    Measles is a highly contagious human disease. We used cryo-electron microscopy and single particle-based helical image analysis to determine the structure of the helical nucleocapsid formed by the folded domain of the measles virus nucleoprotein encapsidating an RNA at a resolution of 4.3 angstroms. The resulting pseudoatomic model of the measles virus nucleocapsid offers important insights into the mechanism of the helical polymerization of nucleocapsids of negative-strand RNA viruses, in particular via the exchange subdomains of the nucleoprotein. The structure reveals the mode of the nucleoprotein-RNA interaction and explains why each nucleoprotein of measles virus binds six nucleotides, whereas the respiratory syncytial virus nucleoprotein binds seven. It provides a rational basis for further analysis of measles virus replication and transcription, and reveals potential targets for drug design. Copyright © 2015, American Association for the Advancement of Science.

  2. Estimation of parameters in rational reaction rates of molecular biological systems via weighted least squares

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Xiang; Mu, Lei; Shi, Zhong-Ke

    2010-01-01

    The models of gene regulatory networks are often derived from statistical thermodynamics principle or Michaelis-Menten kinetics equation. As a result, the models contain rational reaction rates which are nonlinear in both parameters and states. It is challenging to estimate parameters nonlinear in a model although there have been many traditional nonlinear parameter estimation methods such as Gauss-Newton iteration method and its variants. In this article, we develop a two-step method to estimate the parameters in rational reaction rates of gene regulatory networks via weighted linear least squares. This method takes the special structure of rational reaction rates into consideration. That is, in the rational reaction rates, the numerator and the denominator are linear in parameters. By designing a special weight matrix for the linear least squares, parameters in the numerator and the denominator can be estimated by solving two linear least squares problems. The main advantage of the developed method is that it can produce the analytical solutions to the estimation of parameters in rational reaction rates which originally is nonlinear parameter estimation problem. The developed method is applied to a couple of gene regulatory networks. The simulation results show the superior performance over Gauss-Newton method.

  3. Starlings uphold principles of economic rationality for delay and probability of reward.

    PubMed

    Monteiro, Tiago; Vasconcelos, Marco; Kacelnik, Alex

    2013-04-07

    Rationality principles are the bedrock of normative theories of decision-making in biology and microeconomics, but whereas in microeconomics, consistent choice underlies the notion of utility; in biology, the assumption of consistent selective pressures justifies modelling decision mechanisms as if they were designed to maximize fitness. In either case, violations of consistency contradict expectations and attract theoretical interest. Reported violations of rationality in non-humans include intransitivity (i.e. circular preferences) and lack of independence of irrelevant alternatives (changes in relative preference between options when embedded in different choice sets), but the extent to which these observations truly represent breaches of rationality is debatable. We tested both principles with starlings (Sturnus vulgaris), training subjects either with five options differing in food delay (exp. 1) or with six options differing in reward probability (exp. 2), before letting them choose repeatedly one option out of several binary and trinary sets of options. The starlings conformed to economic rationality on both tests, showing strong stochastic transitivity and no violation of the independence principle. These results endorse the rational choice and optimality approaches used in behavioural ecology, and highlight the need for functional and mechanistic enquiring when apparent violations of such principles are observed.

  4. Starlings uphold principles of economic rationality for delay and probability of reward

    PubMed Central

    Monteiro, Tiago; Vasconcelos, Marco; Kacelnik, Alex

    2013-01-01

    Rationality principles are the bedrock of normative theories of decision-making in biology and microeconomics, but whereas in microeconomics, consistent choice underlies the notion of utility; in biology, the assumption of consistent selective pressures justifies modelling decision mechanisms as if they were designed to maximize fitness. In either case, violations of consistency contradict expectations and attract theoretical interest. Reported violations of rationality in non-humans include intransitivity (i.e. circular preferences) and lack of independence of irrelevant alternatives (changes in relative preference between options when embedded in different choice sets), but the extent to which these observations truly represent breaches of rationality is debatable. We tested both principles with starlings (Sturnus vulgaris), training subjects either with five options differing in food delay (exp. 1) or with six options differing in reward probability (exp. 2), before letting them choose repeatedly one option out of several binary and trinary sets of options. The starlings conformed to economic rationality on both tests, showing strong stochastic transitivity and no violation of the independence principle. These results endorse the rational choice and optimality approaches used in behavioural ecology, and highlight the need for functional and mechanistic enquiring when apparent violations of such principles are observed. PMID:23390098

  5. Appendix G : end region design models.

    DOT National Transportation Integrated Search

    2013-03-01

    The 2007 AASHTO LRFD Bridge Design Specifications contain prescriptive : requirements for the quantity and placement of confinement reinforcement located in the bottom : flange of pretensioned concrete I-girders. This chapter proposes a rational mode...

  6. Design, Synthesis and Affinity Properties of Biologically Active Peptide and Protein Conjugates of Cotton Cellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J. V.; Goheen, Steven C.

    The formation of peptide and protein conjugates of cellulose on cotton fabrics provides promising leads for the development of wound healing, antibacterial, and decontaminating textiles. An approach to the design, synthesis, and analysis of bioconjugates containing cellulose peptide and protein conjugates includes: 1) computer graphic modeling for a rationally designed structure; 2) attachment of the peptide or protein to cotton cellulose through a linker amino acid, and 3) characterization of the resulting bioconjugate. Computer graphic simulation of protein and peptide cellulose conjugates gives a rationally designed biopolymer to target synthetic modifications to the cotton cellulose. Techniques for preparing these typesmore » of conjugates involve both sequential assembly of the peptide on the fabric and direct crosslinking of the peptide or protein as cellulose bound esters or carboxymethylcellulose amides.« less

  7. Supracolloidal fullerene-like cages: design principles and formation mechanisms.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-11-30

    How to create novel desired structures by rational design of building blocks represents a significant challenge in materials science. Here we report a conceptually new design principle for creating supracolloidal fullerene-like cages through the self-assembly of soft patchy particles interacting via directional nonbonded interactions by mimicking non-planar sp 2 hybridized carbon atoms in C 60 . Our numerical investigations demonstrate that the rational design of patch configuration, size, and interaction can drive soft three-patch particles to reversibly self-assemble into a vast collection of supracolloidal fullerene-like cages. We further elucidate the formation mechanisms of supracolloidal fullerene-like cages by analyzing the structural characteristics and the formation process. Our results provide conceptual and practical guidance towards the experimental realization of supracolloidal fullerene-like cages, as well as a new perspective on understanding the fullerene formation mechanisms.

  8. PROCESS DESIGN MANUAL: LAND TREATMENT OF MUNICIPAL WASTEWATER

    EPA Science Inventory

    The manual presents a rational procedure for the design of land treatment systems. Slow rate, rapid infiltration, and overland flow processes for the treatment of municipal wastewaters are discussed in detail, and the design concepts and criteria are presented. A two-phased plann...

  9. Strategy Revealing Phenotypic Differences among Synthetic Oscillator Designs

    PubMed Central

    2015-01-01

    Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested. PMID:25019938

  10. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    PubMed

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.

  11. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance

    PubMed Central

    Lewis, Adam J.; Mulvey, Matthew A.

    2017-01-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance. PMID:28632788

  12. Nutrient digestibility and energy value of sheep rations differing in protein level, main protein source and non-forage fibre source.

    PubMed

    Milis, Ch; Liamadis, D

    2008-02-01

    Two in vivo digestion trials were conducted to evaluate the effects of diet's crude protein (CP) level, N degradability, and non-forage fibre source (NFFS) on nutrient digestibility and energy value of sheep rations. In each trial, rams were fed four isocaloric and isofibrous rations, differing in main protein and/or NFFS source. At the first trial, mean CP/metabolizable energy (ME) ratio of the diets was 17 g/MJ ME and at the second trial, 13 g/MJ ME. At both trials, the first ration contained cotton seed cake (CSC) and wheat bran (WB), the second CSC and corn gluten feed (CGF), the third corn gluten meal (CGM) and WB and the fourth CGM and CGF. Data of both trials were analysed in common as 2 x 2 x 2 factorial experimental design. Low N degradability (CGM) had positive effect on CP, neutral detergent fibre (NDF) and acid detergent fibre (ADF) digestibility of the ration. Those results suggest that an increase in rumen undegradable protein (RUP) content does not negatively affect nutrient digestibility of sheep rations. Corn gluten feed significantly elevated crude fibre (CF) digestibility, in comparison with WB. Rations having high CP/ME ratio had higher digestibility of CP in comparison with those having low CP/ME ratio; the opposite was true for ether extract, CF, NDF and ADF digestibilities. CP level x N degradability interaction negatively affected energy value of the rations that had high CP level and high N degradability. Former suggest that when CP content is high then N degradability should be low otherwise ration's ME is negatively affected. CP digestibility and coefficient q of the rations containing WB and having high N degradability (N degradability x NFFS interaction) were the lowest suggesting that the combination of CSC and WB negatively affected CP digestibility and energy value of the ration. This could be explained by a reduced microbial CP synthesis, or lower RUP digestibility or both.

  13. Herbert A. Simon: Nobel Prize in Economic Sciences, 1978.

    PubMed

    Leahey, Thomas H

    2003-09-01

    In 1978, Herbert A. Simon won the Nobel Prize in Economic Sciences, the same Nobel won by Daniel Kahneman in 2002. Simon's work in fact paved the way for Kahneman's Nobel. Although trained in political science and economics rather than psychology, Simon applied psychological ideas to economic theorizing. Classical and neoclassical economic theories assume that people are perfectly rational and strive to optimize economic outcomes. Simon argued that human rationality is constrained, not perfect, and that people seek satisfactory rather than ideal outcomes. Despite his Nobel, Simon felt isolated in economics and ultimately moved into psychology. Nevertheless, his ideas percolated through the economic community, so that Kahneman, whose research advanced Simon's broad perspective, could be the psychologist who won the Nobel in economics.

  14. Betting on the outcomes of measurements: a Bayesian theory of quantum probability

    NASA Astrophysics Data System (ADS)

    Pitowsky, Itamar

    We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance, the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell's inequality among others. Quantum gambles are closely related to quantum logic and provide a new semantics for it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.

  15. [The rational application of Da Vinci surgical system in thyroidectomy].

    PubMed

    He, Q Q

    2017-08-01

    Da Vinci surgical system is the most advanced minimally invasive surgical platform in the world, and this system has been widely used in cardiac surgery, urology surgery, gynecologic surgery and general surgery. Although the application of this system was relatively late in thyroid surgery, the number of thyroidectomy with Da Vinci surgical system is increasing quickly. Having reviewed recent studies and summarized clinical experience, compared with traditional open operation, the robotic thyroidectomy has the same surgical safety and effectiveness in selective patients with thyroid cancer. In this paper, several aspects on this novel operation were demonstrated, including surgical indications and contraindications, the approaches, surgical procedures and postoperative complications, in order to promote the rational application of Da Vinci surgical system in thyroidectomy.

  16. Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators.

    PubMed

    Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred

    2007-10-01

    Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.

  17. Suggestions for Library Network Design.

    ERIC Educational Resources Information Center

    Salton, Gerald

    1979-01-01

    Various approaches to the design of automatic library systems are described, suggestions for the design of rational and effective automated library processes are posed, and an attempt is made to assess the importance and effect of library network systems on library operations and library effectiveness. (Author/CWM)

  18. The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makabe, Koki; Koide, Shohei

    2009-06-17

    Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success ofmore » the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.« less

  19. Research of Acoustic Properties of Materials with the Purpose of Their Use at Design of Special Noise Protective Clothes for Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Drofa, E. A.; Lipilina, E. Yu

    2018-01-01

    The article is devoted to the substantiation of the choice of a rational package of materials, which has the greatest noise-protective properties when designing special clothes with reference to the oil and gas industry. Studies were conducted to assess the factors that have the most significant effect on the noise-protective properties of clothing. Conclusions are made about the possibility of using the developed technique for studying the noise-protective properties of materials in selecting rational packages of materials for the production of special clothes with high noise-protective properties.

  20. Game among interdependent networks: The impact of rationality on system robustness

    NASA Astrophysics Data System (ADS)

    Fan, Yuhang; Cao, Gongze; He, Shibo; Chen, Jiming; Sun, Youxian

    2016-12-01

    Many real-world systems are composed of interdependent networks that rely on one another. Such networks are typically designed and operated by different entities, who aim at maximizing their own payoffs. There exists a game among these entities when designing their own networks. In this paper, we study the game investigating how the rational behaviors of entities impact the system robustness. We first introduce a mathematical model to quantify the interacting payoffs among varying entities. Then we study the Nash equilibrium of the game and compare it with the optimal social welfare. We reveal that the cooperation among different entities can be reached to maximize the social welfare in continuous game only when the average degree of each network is constant. Therefore, the huge gap between Nash equilibrium and optimal social welfare generally exists. The rationality of entities makes the system inherently deficient and even renders it extremely vulnerable in some cases. We analyze our model for two concrete systems with continuous strategy space and discrete strategy space, respectively. Furthermore, we uncover some factors (such as weakening coupled strength of interdependent networks, designing a suitable topology dependence of the system) that help reduce the gap and the system vulnerability.

  1. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.

    PubMed

    Wu, Junjun; Zhang, Xia; Zhu, Yingjie; Tan, Qinyu; He, Jiacheng; Dong, Mingsheng

    2017-05-03

    Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.

  2. Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances

    PubMed Central

    Lionta, Evanthia; Spyrou, George; Vassilatis, Demetrios K.; Cournia, Zoe

    2014-01-01

    Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and applications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the initial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of topscoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, induced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that enable the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional proteins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to inhibit the mutant H1047R PI3Kα kinase. Second, we discuss a strategy for the identification of selective binders for the RXRα nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein target through the SBVS process. PMID:25262799

  3. A Generalized Deduction of the Ideal-Solution Model

    ERIC Educational Resources Information Center

    Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.

    2006-01-01

    A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…

  4. Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization

    Treesearch

    Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu

    2015-01-01

    The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...

  5. Perturbing Practices: A Case Study of the Effects of Virtual Manipulatives as Novel Didactic Objects on Rational Function Instruction

    ERIC Educational Resources Information Center

    Pampel, Krysten

    2017-01-01

    The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors' abilities to teach…

  6. Space outside the market: implications of NTFP certification for subsistence use (US)

    Treesearch

    Marla R. Emery

    2002-01-01

    Non-timber forest product (NTFP) certification is a market mechanism that is advanced to attain the dual goals of protecting global forests and promoting economic development (Nepstad and Schwartzman, 1992; Pierce, 1999; Viana et al, 1996). Certification criteria and indicators emphasize the rationalization and control of each step of the NTFP process from forest to...

  7. Relation of knowledge and level of education to the rationality of self-medication on childhood diarrhea on the Code River banks in Jogoyudan, Jetis, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Dania, H.; Ihsan, M. N.

    2017-11-01

    Self-medication as an alternative is used to reduce the severity of diarrhea. Optimal treatment can be done by increasing the rationalization of self-medication on diarrhea. This can be achieved with good knowledge about self-medication, which is in turn influenced by level of education. The aim of this study was to determine the relationship of knowledge and education level to rationality of self-medication on childhood diarrhea around the Code River in Jogoyudan, Jetis, Yogyakarta. The study was conducted by cross-sectional analytical observational design. The subjects were mothers who had children aged 2-11 years who had experienced diarrhea and had self-medication. Questionnaires were used to assess the rationality of self-medication on children's diarrhea by the parents. The respondents were askeds to fill out about indications, right drugs, doses, time intervals and periods of drug administration. Data were analyzed using chi- square. It was showed that of 40 respondents, 14 respondents (35%) performed rational self-medication on children's diarrhea and 26 respondents (65%). did not rationalize the treatment. The results of a bivariate test obtained a chi-square value of 9.808 (> 3.841) and a p value of 0.002 (<0.05) on the relationship between education level and rationality of self-medication and a chi-square value of 19.476 (> 3.841) and a p value of 0.000 (<0.05) on relationship between knowledge and rationality of self- medication. The conclusion of this study is that there is a correlation between knowledge and level of education and rationality of self-medication on childhood diarrhea on the Code River banks in Jogoyudan, Jetis, Yogyakarta.

  8. Factors related to rational antibiotic prescriptions in community health centers in Depok City, Indonesia.

    PubMed

    Andrajati, Retnosari; Tilaqza, Andri; Supardi, Sudibyo

    Irrational antibiotic prescription is common in developing countries, including in Indonesia. The aims of this study were to evaluate antibiotic prescription patterns and the factors related to the rationale for antibiotic prescriptions in community health centers in Depok City, Indonesia. The study employed a cross-sectional design in eleven primary health centers in Depok City, Indonesia. The sample consisted of 28 physicians and 788 oral antibiotic prescriptions, 392 of which were evaluated for rationality according to local guidelines issued by the Ministry of Health Republic of Indonesia from October to December 2012. Data were analyzed with chi-square tests and logistic regression analysis. The most widely prescribed antibiotics were amoxicillin (73.5%) and co-trimoxazole (17.4%). The most frequent diseases were acute pharyngitis (40.2%) and non-specific respiratory infection (25.4%). Approximately 220 of the 392 prescriptions did not meet the criteria for rational antibiotic prescriptions with regard to antibiotic selection (22.7%), duration of administration (72.3%), frequency of administration (3.2%), or duration and frequency of administration (1.8%). Physicians who had attended training for rational drug use were 2.01 times more rational than physicians who had never attended training. Physicians with a short working period (i.e., <7 years) were 3.95 times more rational in prescribing antibiotics than physicians who had been working for longer periods (i.e., >7 years). Most antibiotics were prescribed irrationally. Training for rational drug use and length of practice were factors related to the rationality of antibiotic prescriptions. Suitable interventions are urgently required to encourage the rational prescription of antibiotics in the PHCs. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  9. Effect of Chicken Bone Meal as Phosphorus Supplement on Blood Metabolites in Fattening Lambs

    NASA Astrophysics Data System (ADS)

    Pujiastuti, A.; Muktiani, A.

    2018-02-01

    The aim of this study was to evaluate the effect of chicken bone meal (CBM) as phosphorus supplementon blood metabolites in fattening lambs. The experiment used 16 of 12 months old local male lambs with initial body weight 27.01 ± 1.51 kg. The experiment used a complete randomized design with 4 treatments and 4 replications. The treatments were T0 (basal ration = native grass + soybean curd waste), T1 (basal ration + 0.49% P Dicalcium phosphate), T2 (basal ration + 0.70% P CBM), T3 (basal ration + 1.39 % P CBM). The results indicated that CBM as phosphorus supplement was significantly different (P<0,05) on P intake, phosphorus and glucose serum and did not different significantly on dry matter intake and alkaline phosphatase activity. In conclusion, CBM is one of requirement organic phosphorus supplement which can be applied on ruminants.

  10. Rationality and antiemotionality as a risk factor for cancer: concept differentiation.

    PubMed

    van der Ploeg, H M; Kleijn, W C; Mook, J; van Donge, M; Pieters, A M; Leer, J W

    1989-01-01

    Control and repression of emotions may be coping styles or personality characteristics found more often in patients with cancer than in other patients and healthy subjects. Previous research indicated a possible relationship between high scores on a 'rationality and antiemotionality' scale and cancer. In the two studies reported, the psychometric properties of this scale and the meaning of the concept as a personality variable related to the control of emotions were investigated. It was found that the internal consistency of the scale could be improved by re-designing it into a personality inventory. Factor analysis repeatedly yielded more than one factor, indicating the complexity of the concept. 'Rationality and antiemotionality' seems related to the control, suppression or repression of anger. Our findings tentatively support the view that rationality and antiemotionality may be an important distinctive personality characteristic in patients with cancer.

  11. Critical aspects in the production of periodically ordered mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Soler-Illia, Galo J. A. A.; Angelomé, Paula C.; Fuertes, M. Cecilia; Grosso, David; Boissiere, Cedric

    2012-03-01

    Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems.Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems. Dedicated to Clément Sanchez, on the first anniversary of his appointment to the Hybrid Materials Chair of the Collège de France.

  12. Linking patient satisfaction with nursing care: the case of care rationing - a correlational study

    PubMed Central

    2014-01-01

    Background Implicit rationing of nursing care is the withholding of or failure to carry out all necessary nursing measures due to lack of resources. There is evidence supporting a link between rationing of nursing care, nurses’ perceptions of their professional environment, negative patient outcomes, and placing patient safety at risk. The aims of the study were: a) To explore whether patient satisfaction is linked to nurse-reported rationing of nursing care and to nurses’ perceptions of their practice environment while adjusting for patient and nurse characteristics. b) To identify the threshold score of rationing by comparing the level of patient satisfaction factors across rationing levels. Methods A descriptive, correlational design was employed. Participants in this study included 352 patients and 318 nurses from ten medical and surgical units of five general hospitals. Three measurement instruments were used: the BERNCA scale for rationing of care, the RPPE scale to explore nurses’ perceptions of their work environment and the Patient Satisfaction scale to assess the level of patient satisfaction with nursing care. The statistical analysis included the use of Kendall’s correlation coefficient to explore a possible relationship between the variables and multiple regression analysis to assess the effects of implicit rationing of nursing care together with organizational characteristics on patient satisfaction. Results The mean score of implicit rationing of nursing care was 0.83 (SD = 0.52, range = 0–3), the overall mean of RPPE was 2.76 (SD = 0.32, range = 1.28 – 3.69) and the two scales were significantly correlated (τ = −0.234, p < 0.001). The regression analysis showed that care rationing and work environment were related to patient satisfaction, even after controlling for nurse and patient characteristics. The results from the adjusted regression models showed that even at the lowest level of rationing (i.e. 0.5) patients indicated low satisfaction. Conclusions The results support the relationships between organizational and environmental variables, care rationing and patient satisfaction. The identification of thresholds at which rationing starts to influence patient outcomes in a negative way may allow nurse managers to introduce interventions so as to keep rationing at a level at which patient safety is not jeopardized. PMID:25285040

  13. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    NASA Astrophysics Data System (ADS)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure-property relationships and anion-order descriptors. The insights gained in this work advance the understanding of oxide-fluoride anion engineered materials and we anticipate that it will motivate novel experimental efforts and materials by design in the future.

  14. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution.

    PubMed

    Grimm, Dirk; Büning, Hildegard

    2017-11-01

    Recombinant gene delivery vectors derived from naturally occurring or genetically engineered adeno-associated viruses (AAV) have taken center stage in human gene therapy, fueled by rapidly accumulating and highly encouraging clinical data. Nonetheless, it has also become evident that the current generation of AAV vectors will require improvements in transduction potency, antibody evasion, and cell specificity in order to realize their full potential and to widen applicability in larger patient cohorts. Fortunately, in the recent past, the field has seen a flurry of exciting new developments that enhance our understanding of AAV vector biology, including virus-host interactions, and/or that expand our arsenal of technologies for AAV capsid design and evolution. This review highlights a collection of latest advances in these areas, which, in the authors' opinion, hold particular promise to propel the AAV vector field forward in the near future, especially when applied in combination. These include fundamental novel insights into the AAV life cycle, from an unexpected role of autophagy and interactions with other viruses to the (re-)discovery of a universal AAV receptor and the function of AAV-AAP for capsid assembly. Concurrently, recent successes in the rational design of next-generation synthetic AAV capsids are pointed out, exemplified by the structure-guided derivation of AAV mutants displaying robust in vivo immune evasion. Finally, a variety of new and innovative strategies for high-throughput generation and screening of AAV capsid libraries are briefly reviewed, including Cre recombinase-based selection, ancestral AAV capsid reconstruction, and DNA barcoding of AAV genomes. All of these examples showcase the present momentum in the AAV field and, together with work by many other academic or industrial entities, raise substantial optimism that the remaining hurdles for human gene therapy with AAV vectors will (soon) be overcome.

  15. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    PubMed

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  16. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    PubMed

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nonlinear machine learning and design of reconfigurable digital colloids.

    PubMed

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  18. Rational optimization of drug-target residence time: Insights from inhibitor binding to the S. aureus FabI enzyme-product complex

    PubMed Central

    Chang, Andrew; Schiebel, Johannes; Yu, Weixuan; Bommineni, Gopal R.; Pan, Pan; Baxter, Michael V.; Khanna, Avinash; Sotriffer, Christoph A.; Kisker, Caroline; Tonge, Peter J.

    2013-01-01

    Drug-target kinetics has recently emerged as an especially important facet of the drug discovery process. In particular, prolonged drug-target residence times may confer enhanced efficacy and selectivity in the open in vivo system. However, the lack of accurate kinetic and structural data for series of congeneric compounds hinders the rational design of inhibitors with decreased off-rates. Therefore, we chose the Staphylococcus aureus enoyl-ACP reductase (saFabI) - an important target for the development of new anti-staphylococcal drugs - as a model system to rationalize and optimize the drug-target residence time on a structural basis. Using our new, efficient and widely applicable mechanistically informed kinetic approach, we obtained a full characterization of saFabI inhibition by a series of 20 diphenyl ethers complemented by a collection of 9 saFabI-inhibitor crystal structures. We identified a strong correlation between the affinities of the investigated saFabI diphenyl ether inhibitors and their corresponding residence times, which can be rationalized on a structural basis. Due to its favorable interactions with the enzyme, the residence time of our most potent compound exceeds 10 hours. In addition, we found that affinity and residence time in this system can be significantly enhanced by modifications predictable by a careful consideration of catalysis. Our study provides a blueprint for investigating and prolonging drug-target kinetics and may aid in the rational design of long-residence-time inhibitors targeting the essential saFabI enzyme. PMID:23697754

  19. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; effect of food ration on sediment toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.W.; Dillon, T.M.

    1993-09-01

    This report is designed to address concerns regarding the effect of food ration on toxicity during chronic sublethal sediment bioassays. To this end, a contaminated San Francisco Bay sediment and a clean control sediment were evaluated in a chronic sublethal test under a series of different food rations, with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Animals were exposed from early juvenile stage through the onset of gametogenesis. Treatments were 2.OX, 1.OX, 0.5X, and 0.25X where X is the recommended food ration for laboratory cultures. Test end points were survival, growth, and reproduction. The contaminated sediment was a composite ofmore » several cores taken to project depth (38 ft (11.6 m) below mean low water mark) from an area in Oakland Inner Harbor known to be contaminated with polycyclic aromatic hydrocarbons and metals. Comparisons were made with a clean control sediment. The control sediment is used in the laboratory cultures of N. arenaceodentata and was collected from Sequim, WA. Mean percent survival of Neanthes was high (>90 percent) in both the contaminated and control sediment across all food ration treatments. Individual wet weights were significantly reduced with decreasing food ration in both contaminated and control sediments. Significant differences in wet weight between sediment types were observed at the 1.OX, 0.5X, and 0.25X rations. Reproduction (fecundity and emergent juvenile (EJ) production) was also Chronic sublethal, Neanthes, Dredged material, San Francisco Bay, Food ration, Sediment.« less

  20. Immunonutrition in septic patients: a philosophical view of the current situation.

    PubMed

    Bertolini, Guido; Luciani, Davide; Biolo, Gianni

    2007-02-01

    Two different ways of thinking pervaded the history of science: rationalism and empiricism. In theory, these two paradigms are not necessarily in conflict. In practice, there has always been tension between them. The coming of evidence-based medicine put empiricism in a privileged position, but empiricism without a rationalistic guide could even be usefulness. The aim of this work is to present the tension between the rational reasons to administer immunonutrients to patients with sepsis and the controversial empirical evidence stemming from clinical trials. We reviewed the literature on immunonutrition in sepsis from the rationalist and the empiricist perspectives. The large body of evidence for positive effects of immunonutrients in experimental models and the contradictory results from clinical trials make the discussion on immunonutrition in sepsis a typical example where the conflict between rationalism and empiricism hampered the advancement of knowledge and the implementation of new effective therapies into clinical practice. Future research projects involving immunonutrients should be based on robust knowledge of basic mechanisms of action to be properly addressed in clinical trials.

Top