Sample records for advanced reactors coupled

  1. Coupled reactors analysis: New needs and advances using Monte Carlo methodology

    DOE PAGES

    Aufiero, M.; Palmiotti, G.; Salvatores, M.; ...

    2016-08-20

    Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery theory that allows a physics understanding of the main features of these systems. However, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. This implies a MC calculation of the coupling parameters defined by Avery and of the sensitivity coefficients that allow further detailed physics analysis. The results presented in this paper show that the MC code SERPENT has been successfully modifed tomore » meet the required capabilities.« less

  2. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less

  3. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  4. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  5. EBT reactor systems analysis and cost code: description and users guide (Version 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoro, R.T.; Uckan, N.A.; Barnes, J.M.

    1984-06-01

    An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operatingmore » range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.« less

  6. Coupling the System Analysis Module with SAS4A/SASSYS-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanning, T. H.; Hu, R.

    2016-09-30

    SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated events as well as design basis and beyond design basis accidents for advanced reactors, with an emphasis on sodium fast reactors. SAS4A/SASSYS-1 has been under development and in active use for nearly forty-five years, and is currently maintained by the U.S. Department of Energy under the Office of Advanced Reactor Technology. Although SAS4A/SASSYS-1 contains a very capable primary and intermediate system modeling component, PRIMAR-4, it also has some shortcomings: outdated data management and code structure makes extension of the PRIMAR-4 module somewhat difficult. The user input format formore » PRIMAR-4 also limits the number of volumes and segments that can be used to describe a given system. The System Analysis Module (SAM) is a fairly new code development effort being carried out under the U.S. DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM is being developed with advanced physical models, numerical methods, and software engineering practices; however, it is currently somewhat limited in the system components and phenomena that can be represented. For example, component models for electromagnetic pumps and multi-layer stratified volumes have not yet been developed. Nor is there support for a balance of plant model. Similarly, system-level phenomena such as control-rod driveline expansion and vessel elongation are not represented. This report documents fiscal year 2016 work that was carried out to couple the transient safety analysis capabilities of SAS4A/SASSYS-1 with the system modeling capabilities of SAM under the joint support of the ART and NEAMS programs. The coupling effort was successful and is demonstrated by evaluating an unprotected loss of flow transient for the Advanced Burner Test Reactor (ABTR) design. There are differences between the stand-alone SAS4A/SASSYS-1 simulations and the coupled SAS/SAM simulations, but these are mainly attributed to the limited maturity of the SAM development effort. The severe accident modeling capabilities in SAS4A/SASSYS-1 (sodium boiling, fuel melting and relocation) will continue to play a vital role for a long time. Therefore, the SAS4A/SASSYS-1 modernization effort should remain a high priority task under the ART program to ensure continued participation in domestic and international SFR safety collaborations and design optimizations. On the other hand, SAM provides an advanced system analysis tool, with improved numerical solution schemes, data management, code flexibility, and accuracy. SAM is still in early stages of development and will require continued support from NEAMS to fulfill its potential and to mature into a production tool for advanced reactor safety analysis. The effort to couple SAS4A/SASSYS-1 and SAM is the first step on the integration of these modeling capabilities.« less

  7. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  8. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly casesmore » are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.« less

  9. Implicit time-integration method for simultaneous solution of a coupled non-linear system

    NASA Astrophysics Data System (ADS)

    Watson, Justin Kyle

    Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).

  10. Coupled field effects in BWR stability simulations using SIMULATE-3K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, J.; Smith, K.; Hagrman, D.

    1996-12-31

    The SIMULATE-3K code is the transient analysis version of the Studsvik advanced nodal reactor analysis code, SIMULATE-3. Recent developments have focused on further broadening the range of transient applications by refinement of core thermal-hydraulic models and on comparison with boiling water reactor (BWR) stability measurements performed at Ringhals unit 1, during the startups of cycles 14 through 17.

  11. A multi-physics analysis for the actuation of the SSS in opal reactor

    NASA Astrophysics Data System (ADS)

    Ferraro, Diego; Alberto, Patricio; Villarino, Eduardo; Doval, Alicia

    2018-05-01

    OPAL is a 20 MWth multi-purpose open-pool type Research Reactor located at Lucas Heights, Australia. It was designed, built and commissioned by INVAP between 2000 and 2006 and it has been operated by the Australia Nuclear Science and Technology Organization (ANSTO) showing a very good overall performance. On November 2016, OPAL reached 10 years of continuous operation, becoming one of the most reliable and available in its kind worldwide, with an unbeaten record of being fully operational 307 days a year. One of the enhanced safety features present in this state-of-art reactor is the availability of an independent, diverse and redundant Second Shutdown System (SSS), which consists in the drainage of the heavy water reflector contained in the Reflector Vessel. As far as high quality experimental data is available from reactor commissioning and operation stages and even from early component design validation stages, several models both regarding neutronic and thermo-hydraulic approaches have been developed during recent years using advanced calculations tools and the novel capabilities to couple them. These advanced models were developed in order to assess the capability of such codes to simulate and predict complex behaviours and develop highly detail analysis. In this framework, INVAP developed a three-dimensional CFD model that represents the detailed hydraulic behaviour of the Second Shutdown System for an actuation scenario, where the heavy water drainage 3D temporal profiles inside the Reflector Vessel can be obtained. This model was validated, comparing the computational results with experimental measurements performed in a real-size physical model built by INVAP during early OPAL design engineering stages. Furthermore, detailed 3D Serpent Monte Carlo models are also available, which have been already validated with experimental data from reactor commissioning and operating cycles. In the present work the neutronic and thermohydraulic models, available for OPAL reactor, are coupled by means of a shared unstructured mesh geometry definition of relevant zones inside the Reflector Vessel. Several scenarios, both regarding coupled and uncoupled neutronic & thermohydraulic behavior, are presented and analyzed, showing the capabilities to develop and manage advanced modelling that allows to predict multi-physics variables observed when an in-depth performance analysis of a Research Reactor like OPAL is carried out.

  12. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.M. McEligot; K. G. Condie; G. E. McCreery

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less

  13. An approach for coupled-code multiphysics core simulations from a common input

    DOE PAGES

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; ...

    2014-12-10

    This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which ismore » built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.« less

  14. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, Carlos N; Caro, J A; Lebensohn, R A

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less

  15. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less

  16. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES to absorb the decay heat of the reactor fuel while cooling the PAHTR after an emergency shutdown. The simulated reactivity insertion accident assessment determined the maximum allowable reactivity insertion to the PAHTR as a function of shutdown response times.

  17. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A., E-mail: turnerja@ornl.gov; Clarno, Kevin; Sieger, Matt

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goalsmore » and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.« less

  18. Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.; Slattery, Stuart; Billings, Jay Jay

    The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Department of Energy's Office of Nuclear Energy provides a robust toolkit for the modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines: two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line and the Reactor Product line provide advanced computational technologies that serve each respective field well, however, their current lack of integration presents a major impediment to future improvements of simulation solution fidelity. Theremore » is a desire for the capability to mix and match tools across Product Lines in an effort to utilize the best from both to improve NEAMS modeling and simulation technologies. This report details a new effort to provide this Product Line interoperability through the development of a new application called Warthog. This application couples the BISON Fuel Performance application from the Fuels Product Line and the PROTEUS Core Neutronics application from the Reactors Product Line in an effort to utilize the best from all parts of the NEAMS toolkit and improve overall solution fidelity of nuclear fuel simulations. To achieve this, Warthog leverages as much prior work from the NEAMS program as possible, and in doing so, enables interoperability between the disparate MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. This report describes this work in full. We begin with a detailed look at the individual NEAMS framework technologies used and developed in the various Product Lines, and the current status of their interoperability. We then introduce the Warthog application: its overall architecture and the ways it leverages the best existing tools from across the NEAMS toolkit to enable BISON-PROTEUS integration. Furthermore, we show how Warthog leverages a tool known as DataTransferKit to seamlessly enable the transfer for solution data between disparate frameworks and mesh formats. To end, we demonstrate tests for the direct software coupling of BISON and PROTEUS using Warthog, and discuss current impediments and solutions to the construction of physically realistic input models for this coupled BISON-PROTEUS system.« less

  19. A nuclear driven metallic vapor MHD coupled with MPD thrusters

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim; Kumar, Ratan

    1991-01-01

    Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.

  20. SHARP Multiphysics Tutorials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y. Q.; Shemon, E. R.; Mahadevan, Vijay S.

    SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three physics modules currently including neutronics, thermal hydraulics, and structural mechanics. SHARP empowers designers to produce accurate results for modeling physical phenomena that have been identified as important for nuclear reactor analysis. SHARP can use existing physics codes and take advantage of existing infrastructure capabilities in the MOAB framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the widely used, scalable PETSc library. This report aims at identifying the coupled-physicsmore » simulation capability of SHARP by introducing the demonstration example called sahex in advance of the SHARP release expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer duct wall that encloses all the other components. This example is carefully chosen to demonstrate the proof of concept for solving more complex demonstration examples such as EBR II assembly and ABTR full core. The workflow of preparing the input files, running the case and analyzing the results is demonstrated in this report. Moreover, an extension of the sahex model called sahex_core, which adds six homogenized neighboring assemblies to the full heterogeneous sahex model, is presented to test homogenization capabilities in both Nek5000 and PROTEUS. Some primary information on the configuration and build aspects for the SHARP toolkit, which includes capability to auto-download dependencies and configure/install with optimal flags in an architecture-aware fashion, is also covered by this report. A step-by-step instruction is provided to help users to create their cases. Details on these processes will be provided in the SHARP user manual that will accompany the first release.« less

  1. Shift Verification and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, Tara M.; Evans, Thomas M.; Davidson, Gregory G

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over amore » burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.« less

  2. Preliminary design studies on a nuclear seawater desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibisono, A. F.; Jung, Y. H.; Choi, J.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less

  3. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    PubMed

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  4. Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, George; Back, Christina

    2015-10-30

    As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called themore » endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.« less

  5. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A.; Clarno, Kevin; Sieger, Matt

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less

  6. The Virtual Environment for Reactor Applications (VERA): Design and architecture

    DOE PAGES

    Turner, John A.; Clarno, Kevin; Sieger, Matt; ...

    2016-09-08

    VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less

  7. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Yuan, Haomin; Kraus, A.

    The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less

  9. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less

  10. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  11. Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    2015-01-01

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less

  12. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  13. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Shemon, E. R.; Yu, Y. Q.

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models ofmore » a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.« less

  14. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek, E-mail: vivek.agarwal@inl.gov; Tawfik, Magdy S., E-mail: magdy.tawfik@inl.gov; Smith, James A., E-mail: james.smith@inl.gov

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failuremore » modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.« less

  15. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MFmore » coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.« less

  16. Warthog: Progress on Coupling BISON and PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Shane W.D.

    The Nuclear Energy Advanced Modeling and Simulation (NEAMS) program from the Office of Nuclear Energy at the Department of Energy (DOE) provides a robust toolkit for modeling and simulation of current and future advanced nuclear reactor designs. This toolkit provides these technologies organized across product lines, with two divisions targeted at fuels and end-to-end reactor modeling, and a third for integration, coupling, and high-level workflow management. The Fuels Product Line (FPL) and the Reactor Product Line (RPL) provide advanced computational technologies that serve each respective field effectively. There is currently a lack of integration between the product lines, impeding futuremore » improvements of simulation solution fidelity. In order to mix and match tools across the product lines, a new application called Warthog was produced. Warthog is built on the Multi-physics Object-Oriented Simulation Environment (MOOSE) framework developed at Idaho National Laboratory (INL). This report details the continuing efforts to provide the Integration Product Line (IPL) with interoperability using the Warthog code. Currently, this application strives to couple the BISON fuel performance application from the FPL using the PROTEUS Core Neutronics application from the RPL. Warthog leverages as much prior work from the NEAMS program as possible, enabling interoperability between the independently developed MOOSE and SHARP frameworks, and the libMesh and MOAB mesh data formats. Previous work performed on Warthog allowed it to couple a pin cell between the two codes. However, as the temperature changed due to the BISON calculation, the cross sections were not recalculated, leading to errors as the temperature got further away from the initial conditions. XSProc from the SCALE code suite was used to calculate the cross sections as needed. The remainder of this report discusses the changes to Warthog to allow for the implementation of XSProc as an external code. It also discusses the changes made to Warthog to allow it to fit more cleanly into the MultiApp syntax of the MOOSE framework. The capabilities, design, and limitations of Warthog will be described, in addition to some of the test cases that were used to demonstrate the code. Future plans for Warthog will be discussed, including continuation of the modifications to the input and coupling to other SHARP codes such as Nek5000.« less

  17. High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin

    2014-06-01

    Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.

  18. Coupling UV-H2O2 to accelerate dimethyl phthalate (DMP) biodegradation and oxidation.

    PubMed

    Chen, Bin; Song, Jiaxiu; Yang, Lihui; Bai, Qi; Li, Rongjie; Zhang, Yongming; Rittmann, Bruce E

    2015-11-01

    Dimethyl phthalate (DMP), an important industrial raw material, is an endocrine disruptor of concern for human and environmental health. DMP exhibits slow biodegradation, and its coupled treatment by means of advanced oxidation may enhance its biotransformation and mineralization. We evaluated two ways of coupling UV-H2O2 advanced oxidation to biodegradation: sequential coupling and intimate coupling in an internal circulation baffled biofilm reactor (ICBBR). During sequential coupling, UV-H2O2 pretreatment generated carboxylic acids that depressed the pH, and subsequent biodegradation generated phthalic acid; both factors inhibited DMP biodegradation. During intimately coupled UV-H2O2 with biodegradation, carboxylic acids and phthalic acid (PA) did not accumulate, and the biodegradation rate was 13 % faster than with biodegradation alone and 78 % faster than with biodegradation after UV-H2O2 pretreatment. Similarly, DMP oxidation with intimate coupling increased by 5 and 39 %, respectively, compared with biodegradation alone and sequential coupling. The enhancement effects during intimate coupling can be attributed to the rapid catabolism of carboxylic acids, which generated intracellular electron carriers that directly accelerated di-oxygenation of PA and relieved the inhibition effect of PA and low pH. Thus, intimate coupling optimized the impacts of energy input from UV irradiation used together with biodegradation.

  19. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures.more » The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.« less

  20. Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization.

    PubMed

    Jimenez, Julie; Gonidec, Estelle; Cacho Rivero, Jesús Andrés; Latrille, Eric; Vedrenne, Fabien; Steyer, Jean-Philippe

    2014-03-01

    Advanced dynamic anaerobic digestion models, such as ADM1, require both detailed organic matter characterisation and intimate knowledge of the involved metabolic pathways. In the current study, a methodology for municipal sludge characterization is investigated to describe two key parameters: biodegradability and bioaccessibility of organic matter. The methodology is based on coupling sequential chemical extractions with 3D fluorescence spectroscopy. The use of increasingly strong solvents reveals different levels of organic matter accessibility and the spectroscopy measurement leads to a detailed characterisation of the organic matter. The results obtained from testing 52 municipal sludge samples (primary, secondary, digested and thermally treated) showed a successful correlation with sludge biodegradability and bioaccessibility. The two parameters, traditionally obtained through the biochemical methane potential (BMP) lab tests, are now obtain in only 5 days compared to the 30-60 days usually required. Experimental data, obtained from two different laboratory scale reactors, were used to validate the ADM1 model. The proposed approach showed a strong application potential for reactor design and advanced control of anaerobic digestion processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environmentmore » and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less

  2. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  3. Autonomous Control of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less

  4. Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor

    NASA Astrophysics Data System (ADS)

    Bess, John Darrell

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.

  5. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  6. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  7. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less

  8. Status Report on NEAMS System Analysis Module Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, R.; Fanning, T. H.; Sumner, T.

    2015-12-01

    Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This reportmore » provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.« less

  9. Scanning tunneling microscope assembly, reactor, and system

    DOEpatents

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  10. Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, E. R.; Yu, Y.; Kim, T. K.

    The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The effortsmore » in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the STAR-CCM+ calculations. The HCFs of the peak temperatures at cladding outer surface, cladding inner wall surface, and fuel centerline induced by cladding manufacturing tolerance and uncertainties on the cladding, coolant, and fuel properties were evaluated for the AFR-100. Some assessment on the effect of wire wrap configuration and size of the bundle shows that it is practical to use the 7-pin bare rod bundle to calculate the HCFs. The resulting HCFs obtained from the high-fidelity SHARP calculations are generally smaller than those developed for the earlier SFRs because the most uncertainties involved in the modeling and simulations were disappeared. For completeness, additional investigations are planned in FY 2018, which will use random sampling techniques.« less

  11. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...

  12. A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.

    1975-01-01

    An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.

  13. Simulation models and designs for advanced Fischer-Tropsch technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, G.N.; Kramer, S.J.; Tam, S.S.

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for themore » products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.« less

  14. Redwing: A MOOSE application for coupling MPACT and BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick N. Gleicher; Michael Rose; Tom Downar

    Fuel performance and whole core neutron transport programs are often used to analyze fuel behavior as it is depleted in a reactor. For fuel performance programs, internal models provide the local intra-pin power density, fast neutron flux, burnup, and fission rate density, which are needed for a fuel performance analysis. The fuel performance internal models have a number of limitations. These include effects on the intra-pin power distribution by nearby assembly elements, such as water channels and control rods, and the further limitation of applicability to a specified fuel type such as low enriched UO2. In addition, whole core neutronmore » transport codes need an accurate intra-pin temperature distribution in order to calculate neutron cross sections. Fuel performance simulations are able to model the intra-pin fuel displacement as the fuel expands and densifies. These displacements must be accurately modeled in order to capture the eventual mechanical contact of the fuel and the clad; the correct radial gap width is needed for an accurate calculation of the temperature distribution of the fuel rod. Redwing is a MOOSE-based application that enables coupling between MPACT and BISON for transport and fuel performance coupling. MPACT is a 3D neutron transport and reactor core simulator based on the method of characteristics (MOC). The development of MPACT began at the University of Michigan (UM) and now is under the joint development of ORNL and UM as part of the DOE CASL Simulation Hub. MPACT is able to model the effects of local assembly elements and is able calculate intra-pin quantities such as the local power density on a volumetric mesh for any fuel type. BISON is a fuel performance application of Multi-physics Object Oriented Simulation Environment (MOOSE), which is under development at Idaho National Laboratory. BISON is able to solve the nonlinearly coupled mechanical deformation and heat transfer finite element equations that model a fuel element as it is depleted in a nuclear reactor. Redwing couples BISON and MPACT in a single application. Redwing maps and transfers the individual intra-pin quantities such as fission rate density, power density, and fast neutron flux from the MPACT volumetric mesh to the individual BISON finite element meshes. For a two-way coupling Redwing maps and transfers the individual pin temperature field and axially dependent coolant densities from the BISON mesh to the MPACT volumetric mesh. Details of the mapping are given. Redwing advances the simulation with the MPACT solution for each depletion time step and then advances the multiple BISON simulations for fuel performance calculations. Sub-cycle advancement can be applied to the individual BISON simulations and allows multiple time steps to be applied to the fuel performance simulations. Currently, only loose coupling where data from a previous time step is applied to the current time step is performed.« less

  15. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    DTIC Science & Technology

    2011-03-01

    protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of...conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to...protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader

  16. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less

  17. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less

  18. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Committee on Reactor Safeguards. [FR Doc. 2013-08131 Filed 4-5-13; 8:45 am] BILLING CODE 7590-01-P ...

  19. Burn Control Mechanisms in Tokamaks

    NASA Astrophysics Data System (ADS)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  20. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less

  1. Integrated, Reactor Relevant Solutions for Lower Hybrid Range of Frequencies Actuators

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Bonoli, P. T.; Lin, Y.; Wallace, G. M.; Wukitch, S. J.

    2017-10-01

    RF (radiofrequency) actuators with high system efficiency (wall-plug to plasma) and ability for continuous operation have long be recognized as essential tools for realizing a steady state tokamak. A number of physics and technological challenges to utilization remain including current drive efficiency and location, efficient coupling, and impurity contamination. In a reactor environment, plasma material interaction (PMI) issues associated with coupling structures are similar to the first wall and have been identified as a potential show-stopper. High field side (HFS) launch of LHRF power represents an integrated solution that both improves core wave physics and mitigates PMI/coupling issues. For HFS LHRF, wave penetration is vastly improves because wave accessibility scales as 1/B allowing for launching the wave at lower n|| (parallel refractive index). The lower n|| penetrate to higher electron temperature resulting in higher current drive efficiency (1/n||2). HFS RF launch also provides for a means to dramatically improve launcher robustness in a reactor environment. On the HFS, the SOL is quiescent; local density profile is steep and controlled through magnetic shape; fast particle, neutron, turbulent heat and particle fluxes are eliminated or minim Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and US DoE Contract No. DE-FC02-01ER54648 under a Scientific Discovery through Advanced Computing Initiative.

  2. 78 FR 46621 - Status of the Office of New Reactors' Implementation of Electronic Distribution of Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... of Electronic Distribution of Advanced Reactor Correspondence AGENCY: Nuclear Regulatory Commission. ACTION: Implementation of electronic distribution of advanced reactor correspondence; issuance. SUMMARY... public that, in the future, publicly available correspondence originating from the Division of Advanced...

  3. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  4. 77 FR 76089 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on January 16, 2013, Room T-2B3, 11545 Rockville Pike...

  5. 76 FR 5218 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on February 8, 2011, 11545 Rockville Pike, Rockville, MD...

  6. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2017-12-21

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored.

  7. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  8. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2008-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  9. 77 FR 59678 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on October 2, 2012, Room T-2B1, 11545 Rockville Pike, Rockville...

  10. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on June 21, 2011, Room T-2B1, 11545 Rockville Pike, Rockville...

  11. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...

  12. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...

  13. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.

    PubMed

    Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-08-06

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.

  14. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    PubMed Central

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  15. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  16. TUNABLE IRRADIATION TESTBED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Asner, David M.

    PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less

  17. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  18. 78 FR 66968 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on November 22, 2013, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The meeting will be...

  19. 78 FR 37595 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on July 9, 2013, Room T-2B3, 11545 Rockville Pike, Rockville, Maryland. The meeting will be open to...

  20. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichman, K.; Tsao, J.; Mayfield, M.

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less

  2. A study of increasing radical density and etch rate using remote plasma generator system

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G; Powers, Jeffrey J; Clarno, Kevin T

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity, multiphysics simulations of light water reactors (LWRs) by coupling a variety of codes within the Virtual Environment for Reactor Analysis (VERA). One of the primary goals of CASL is to predict local cladding failure through pellet-clad interaction (PCI). This capability is currently being pursued through several different approaches, such as with Tiamat, which is a simulation tool within VERA that more tightly couples the MPACT neutron transport solver, the CTF thermal hydraulics solver, and the MOOSE-based Bison-CASL fuel performance code. However, the process in this papermore » focuses on running fuel performance calculations with Bison-CASL to predict PCI using the multicycle output data from coupled neutron transport/thermal hydraulics simulations. In recent work within CASL, Watts Bar Unit 1 has been simulated over 12 cycles using the VERA core simulator capability based on MPACT and CTF. Using the output from these simulations, Bison-CASL results can be obtained without rerunning all 12 cycles, while providing some insight into PCI indicators. Multi-cycle Bison-CASL results are presented and compared against results from the FRAPCON fuel performance code. There are several quantities of interest in considering PCI and subsequent fuel rod failures, such as the clad hoop stress and maximum centerline fuel temperature, particularly as a function of time. Bison-CASL performs single-rod simulations using representative power and temperature distributions, providing high-resolution results for these and a number of other quantities. This will assist in identifying fuels rods as potential failure locations for use in further analyses.« less

  4. Down-selection of candidate alloys for further testing of advanced replacement materials for LWR core internals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Leonard, Keith J.; Tan, Lizhen

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superiormore » degradation resistance in light water reactor (LWR)-relevant environments by 2024.« less

  5. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  6. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  7. Oxidative coupling of methane using inorganic membrane reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gasmore » phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.« less

  8. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  9. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  10. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    DOE PAGES

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...

    2014-06-30

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less

  11. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  12. Staged depressurization system

    DOEpatents

    Schulz, T.L.

    1993-11-02

    A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump. 4 figures.

  13. Staged depressurization system

    DOEpatents

    Schulz, Terry L.

    1993-01-01

    A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump.

  14. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Univ. of Wisconsin, Madison, WI; Miller, Brandon D.

    Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes which migrate to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs where low energy structures have suppressed RIS responses. This relationship between local GB structure and RIS has been demonstrated primarily in ion-irradiated specimens. A 9 wt.% Cr model alloymore » steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of a neutron radiation environment on the RIS response at different GB structures. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy.« less

  16. Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system.

    PubMed

    Rodríguez-Nava, Odín; Ramírez-Saad, Hugo; Loera, Octavio; González, Ignacio

    2016-12-01

    Pharmaceutical degradation in conventional wastewater treatment plants (WWTP) represents a challenge since municipal wastewater and hospital effluents contain pharmaceuticals in low concentrations (recalcitrant and persistent in WWTP) and biodegradable organic matter (BOM) is the main pollutant. This work shows the feasibility of coupling electro-oxidation with a biological system for the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole (BGIS)) and BOM from wastewater. High removal efficiencies were attained without affecting the performance of activated sludge. BGIS degradation was performed by advanced electrochemical oxidation and the activated sludge process for BOM degradation in a continuous reactor. The selected electrochemical parameters from microelectrolysis tests (1.2 L s(-1) and 1.56 mA cm(-2)) were maintained to operate a filter press laboratory reactor FM01-LC using boron-doped diamond as the anode. The low current density was chosen in order to remove drugs without decreasing BOM and chlorine concentration control, so as to avoid bulking formation in the biological process. The wastewater previously treated by FM01-LC was fed directly (without chemical modification) to the activated sludge reactor to remove 100% of BGIS and 83% of BOM; conversely, the BGIS contained in wastewater without electrochemical pre-treatment were persistent in the biological process and promoted bulking formation.

  17. Advanced Demonstration and Test Reactor Options Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petti, David Andrew; Hill, R.; Gehin, J.

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercializationmore » of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy”. Advanced reactors are defined in this study as reactors that use coolants other than water. Advanced reactor technologies have the potential to expand the energy applications, enhance the competitiveness, and improve the sustainability of nuclear energy.« less

  18. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochau, Gary E.

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  19. Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.

    2017-10-01

    An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time stepmore » of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.« less

  1. Coupled IVPs to Investigate a Nuclear Reactor Poison Burn Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faghihi, F.

    2009-09-09

    A set of coupled IVPs that describe the change rate of an important poison, in a nuclear reactor, has been written herein. Specifically, in this article, we have focused on the samarium-149 (as a poison) burnup in a desired pressurized water nuclear reactor and its concentration are given using our MATLAB-linked 'solver'.

  2. Coupled IVPs to Investigate a Nuclear Reactor Poison Burn Up

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Saidi-Nezhad, M.

    2009-09-01

    A set of coupled IVPs that describe the change rate of an important poison, in a nuclear reactor, has been written herein. Specifically, in this article, we have focused on the samarium-149 (as a poison) burnup in a desired pressurized water nuclear reactor and its concentration are given using our MATLAB-linked "solver."

  3. Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang 'Apollo', Chen

    2006-07-01

    For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less

  4. Stability Estimation of ABWR on the Basis of Noise Analysis

    NASA Astrophysics Data System (ADS)

    Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun

    In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.

  5. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  6. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  8. RELAP-7 Development Updates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbin; Zhao, Haihua; Gleicher, Frederick Nathan

    RELAP-7 is a nuclear systems safety analysis code being developed at the Idaho National Laboratory, and is the next generation tool in the RELAP reactor safety/systems analysis application series. RELAP-7 development began in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway of the Light Water Reactor Sustainability (LWRS) program. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support nuclear power safety analysis. The code is beingmore » developed based on Idaho National Laboratory’s modern scientific software development framework – MOOSE (the Multi-Physics Object-Oriented Simulation Environment). The initial development goal of the RELAP-7 approach focused primarily on the development of an implicit algorithm capable of strong (nonlinear) coupling of the dependent hydrodynamic variables contained in the 1-D/2-D flow models with the various 0-D system reactor components that compose various boiling water reactor (BWR) and pressurized water reactor nuclear power plants (NPPs). During Fiscal Year (FY) 2015, the RELAP-7 code has been further improved with expanded capability to support boiling water reactor (BWR) and pressurized water reactor NPPs analysis. The accumulator model has been developed. The code has also been coupled with other MOOSE-based applications such as neutronics code RattleSnake and fuel performance code BISON to perform multiphysics analysis. A major design requirement for the implicit algorithm in RELAP-7 is that it is capable of second-order discretization accuracy in both space and time, which eliminates the traditional first-order approximation errors. The second-order temporal is achieved by a second-order backward temporal difference, and the one-dimensional second-order accurate spatial discretization is achieved with the Galerkin approximation of Lagrange finite elements. During FY-2015, we have done numerical verification work to verify that the RELAP-7 code indeed achieves 2nd-order accuracy in both time and space for single phase models at the system level.« less

  9. 75 FR 10840 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will... would result in major inconvenience. Dated: March 3, 2010. Antonio F. Dias, Chief, Reactor Safety Branch...

  10. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  11. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  13. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    NASA Astrophysics Data System (ADS)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  14. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  15. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  16. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)

    NASA Astrophysics Data System (ADS)

    Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2014-06-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.

  17. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...

  18. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...

  19. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szilard, Ronaldo Henriques

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  20. Parameter study of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.W.; Layton, J.P.

    1976-09-13

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The NUROC3A systems analysis code was designed to provide the user with performance characteristics of the dual-mode system. Volume 3 describes utilization of the NUROC3A code to produce a detailed parameter study of the system.

  1. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  2. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE PAGES

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  3. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  4. 77 FR 36581 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor (US-APWR) will hold a meeting on July 9-10, 2012, Room T-2B3, 11545...

  5. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  6. Testimony of Fred R. Mynatt before the Energy Research and Development Subcommittee of the Committee on Science, Space, and Technology, US House of Representatives. [Advanced fuel technology, gas-cooled reactor technology, and liquid metal-cooled reactor technology programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynatt, F.R.

    1987-03-18

    This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Zhang, Hongbin

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  8. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    DOE PAGES

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  9. Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.

    Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less

  10. Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion

    DOE PAGES

    Rader, Jordan D.; Greenwood, Michael Scott; Humrickhouse, Paul W.

    2018-03-20

    Here, tritium transport in metal and molten salt fluids combined with diffusion through high-temperature structural materials is an important phenomenon in both magnetic confinement fusion (MCF) and molten salt reactor (MSR) applications. For MCF, tritium is desirable to capture for fusion fuel. For MSRs, uncaptured tritium potentially can be released to the environment. In either application, quantifying the time- and space-dependent tritium concentration in the working fluid(s) and structural components is necessary.Whereas capability exists specifically for calculating tritium transport in such systems (e.g., using TMAP for fusion reactors), it is desirable to unify the calculation of tritium transport with othermore » system variables such as dynamic fluid and structure temperature combined with control systems such as those that might be found in a system code. Some capability for radioactive trace substance transport exists in thermal-hydraulic systems codes (e.g., RELAP5-3D); however, this capability is not coupled to species diffusion through solids. Combined calculations of tritium transport and thermal-hydraulic solution have been demonstrated with TRIDENT but only for a specific type of MSR.Researchers at Oak Ridge National Laboratory have developed a set of Modelica-based dynamic system modeling tools called TRANsient Simulation Framework Of Reconfigurable Models (TRANSFORM) that were used previously to model advanced fission reactors and associated systems. In this system, the augmented TRANSFORM library includes dynamically coupled fluid and solid trace substance transport and diffusion. Results from simulations are compared against analytical solutions for verification.« less

  11. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  12. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  13. Nuclear reactor remote disconnect control rod coupling indicator

    DOEpatents

    Vuckovich, Michael

    1977-01-01

    A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.

  14. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 260 with Black Thunder Mine subbituminous coal: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In ordermore » to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)« less

  15. Dedicated nuclear facilities for electrolytic hydrogen production

    NASA Technical Reports Server (NTRS)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  16. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  17. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  18. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.

  19. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honma, George

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will bemore » used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).« less

  20. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online to inductively coupled plasma mass spectrometry (ICP-MS) for elemental speciation and identification of the inorganic additive. SdFFF had a larger separation power to distinguish different particle size populations whereas AF4 had the capability of separating the organic particles and inorganic TiO2 particles, with high resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process.

    PubMed

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Xing, Wei

    2016-03-01

    Nitrogen pollution in ground and surface water significantly affects the environment and its organisms, thereby leading to an increasingly serious environmental problem. Such pollution is difficult to degrade because of the lack of carbon sources. Therefore, an electrochemical and biological coupling process (EBCP) was developed with a composite catalytic biological carrier (CCBC) and applied in a pilot-scale cylindrical reactor to treat wastewater with a carbon-to-nitrogen (C/N) ratio of 2. The startup process, coupling principle, and dynamic feature of the EBCP were examined along with the effects of hydraulic retention time (HRT), dissolved oxygen (DO), and initial pH on nitrogen removal. A stable coupling system was obtained after 51 days when plenty of biofilms were cultivated on the CCBC without inoculation sludge. Autotrophic denitrification, with [Fe(2+)] and [H] produced by iron-carbon galvanic cells in CCBC as electron donors, was confirmed by equity calculation of CODCr and nitrogen removal. Nitrogen removal efficiency was significantly influenced by HRT, DO, and initial pH with optimal values of 3.5 h, 3.5 ± 0.1 mg L(-1), and 7.5 ± 0.1, respectively. The ammonia, nitrate, and total nitrogen (TN) removal efficiencies of 90.1 to 95.3 %, 90.5 to 99.0 %, and 90.3 to 96.5 % were maintained with corresponding initial concentrations of 40 ± 2 mg L(-1) (NH3-N load of 0.27 ± 0.01 kg NH3-N m(-3) d(-1)), 20 ± 1 mg L(-1), and 60 ± 2 mg L(-1) (TN load of 0.41 ± 0.02 kg TN m(-3) d(-1)). Based on the Eckenfelder model, the kinetics equation of the nitrogen transformation along the reactor was N e  = N 0 exp (-0.04368 h/L(1.8438)). Hence, EBCP is a viable method for advanced low C/N ratio wastewater treatment.

  2. Work Domain Analysis of a Predecessor Sodium-cooled Reactor as Baseline for AdvSMR Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald Farris; David Gertman; Jacques Hugo

    This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was tomore » develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.« less

  3. Standalone BISON Fuel Performance Results for Watts Bar Unit 1, Cycles 1-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T.; Pawlowski, Roger; Stimpson, Shane

    2016-03-07

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is moving forward with more complex multiphysics simulations and increased focus on incorporating fuel performance analysis methods. The coupled neutronics/thermal-hydraulics capabilities within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) have become relatively stable, and major advances have been made in analysis efforts, including the simulation of twelve cycles of Watts Bar Nuclear Unit 1 (WBN1) operation. While this is a major achievement, the VERA-CS approaches for treating fuel pin heat transfer have well-known limitations that could be eliminated through better integration with the BISON fuel performance code. Severalmore » approaches are being implemented to consider fuel performance, including a more direct multiway coupling with Tiamat, as well as a more loosely coupled one-way approach with standalone BISON cases. Fuel performance typically undergoes an independent analysis using a standalone fuel performance code with manually specified input defined from an independent core simulator solution or set of assumptions. This report summarizes the improvements made since the initial milestone to execute BISON from VERA-CS output. Many of these improvements were prompted through tighter collaboration with the BISON development team at Idaho National Laboratory (INL). A brief description of WBN1 and some of the VERA-CS data used to simulate it are presented. Data from a small mesh sensitivity study are shown, which helps justify the mesh parameters used in this work. The multi-cycle results are presented, followed by the results for the first three cycles of WBN1 operation, particularly the parameters of interest to pellet-clad interaction (PCI) screening (fuel-clad gap closure, maximum centerline fuel temperature, maximum/minimum clad hoop stress, and cumulative damage index). Once the mechanics of this capability are functioning, future work will target cycles with known or suspected PCI failures to determine how well they can be estimated.« less

  4. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  5. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoos, K., E-mail: kristel.ghoos@kuleuven.be; Dekeyser, W.; Samaey, G.

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracymore » by making use of averaging in the Random Noise coupling technique.« less

  6. 76 FR 18586 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... as technical reports related to the Gas Turbine Generator design. The Subcommittee will hear... Subcommittee on United States-Advanced Pressurized Water Reactor (US-APWR); Notice of Meeting The ACRS Subcommittee on United States-Advanced Pressurized Water Reactor (US-APWR) will hold a meeting on April 22...

  7. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less

  8. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  9. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less

  10. Optimization and parallelization of the thermal–hydraulic subchannel code CTF for high-fidelity multi-physics applications

    DOE PAGES

    Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.

    2014-11-23

    This study describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis.

  11. Advanced refractory metals and composites for extraterrestrial power systems

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Grobstein, Toni L.

    1990-01-01

    Concepts for future space power systems include nuclear and focused solar heat sources coupled to static and dynamic power-conversion devices; such systems must be designed for service lives as long as 30 years, despite service temperatures of the order of 1600 K. Materials are a critical technology-development factor in such aspects of these systems as reactor fuel containment, environmental protection, power management, and thermal management. Attention is given to the prospective performance of such refractory metals as Nb, W, and Mo alloys, W fiber-reinforced Nb-matrix composites, and HfC precipitate-strengthened W-Re alloys.

  12. a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.

    2009-08-01

    This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.

  13. Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yacout, A. M.; Billone, M. C.

    2016-09-16

    The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less

  14. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performancemore » of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.« less

  15. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  16. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOEpatents

    Challberg, Roy C.; Gou, Perng-Fei; Chu, Cherk Lam; Oliver, Robert P.

    1999-01-01

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block.

  17. Assemblies and methods for mitigating effects of reactor pressure vessel expansion

    DOEpatents

    Challberg, R.C.; Gou, P.F.; Chu, C.L.; Oliver, R.P.

    1999-07-27

    Support assemblies for allowing RPV radial expansion while simultaneously limiting horizontal, vertical, and azimuthal movement of the RPV within a nuclear reactor are described. In one embodiment, the support assembly includes a support block and a guide block. The support block includes a first portion and a second portion, and the first portion is rigidly coupled to the RPV adjacent the first portion. The guide block is rigidly coupled to a reactor pressure vessel support structure and includes a channel sized to receive the second portion of the support block. The second portion of the support block is positioned in the guide block channel to movably couple the guide block to the support block. 6 figs.

  18. Run 263 with Black Thunder Mine subbituminous coal and dispersed molybdenum catalysts. Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 263 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on October 31, 1991 and continued until February 23, 1992. Tests were conducted by operating the reactors in the Close-Coupled Integrated Two-Stage Liquefaction mode and by processing Black Thunder Mine subbituminous coal from Wyodak-Anderson seam in Wyoming Powder River Basin. Half volume reactors were used for the entire run. In the first part of Run 263, a dispersed molybdenum catalyst was evaluated for its performance without a supported catalyst in the second stage. Molyvan L and Molyvan 822more » (commercially available as friction reducing lubricants) were used as precursors for the dispersed molybdenum catalyst. The effect of the dispersed catalyst on eliminating the solids buildup was also evaluated. For the second part of the run, the hybrid catalyst system was tested with supported Criterion 324 1/1611 catalyst in the second stage at catalyst replacement rates of 2 and 3 lb/ton of MF coal. The molybdenum concentration was 100--200 ppm based on MF coal. Iron oxide was used as a slurry catalyst precursor at a rate of 1--2 wt % MF coal throughout the run with dimethyl disulfide (DMDS) as the sulfiding agent. The close-coupled reactor unit was on-stream for 2482 hours for an on-stream factor of 91.2% and the ROSE-SR{sup sm} unit was on-feed for 2126 hours for an on-stream factor of 96.4% for the entire run.« less

  19. Run 263 with Black Thunder Mine subbituminous coal and dispersed molybdenum catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the results of Run 263 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on October 31, 1991 and continued until February 23, 1992. Tests were conducted by operating the reactors in the Close-Coupled Integrated Two-Stage Liquefaction mode and by processing Black Thunder Mine subbituminous coal from Wyodak-Anderson seam in Wyoming Powder River Basin. Half volume reactors were used for the entire run. In the first part of Run 263, a dispersed molybdenum catalyst was evaluated for its performance without a supported catalyst in the second stage. Molyvan L and Molyvanmore » 822 (commercially available as friction reducing lubricants) were used as precursors for the dispersed molybdenum catalyst. The effect of the dispersed catalyst on eliminating the solids buildup was also evaluated. For the second part of the run, the hybrid catalyst system was tested with supported Criterion 324 1/1611 catalyst in the second stage at catalyst replacement rates of 2 and 3 lb/ton of MF coal. The molybdenum concentration was 100--200 ppm based on MF coal. Iron oxide was used as a slurry catalyst precursor at a rate of 1--2 wt % MF coal throughout the run with dimethyl disulfide (DMDS) as the sulfiding agent. The close-coupled reactor unit was on-stream for 2482 hours for an on-stream factor of 91.2% and the ROSE-SR[sup sm] unit was on-feed for 2126 hours for an on-stream factor of 96.4% for the entire run.« less

  20. File-Based One-Way BISON Coupling Through VERA: User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G.

    Activities to incorporate fuel performance capabilities into the Virtual Environment for Reactor Applications (VERA) are receiving increasing attention [1–6]. The multiphysics emphasis is expanding as the neutronics (MPACT) and thermal-hydraulics (CTF) packages are becoming more mature. Capturing the finer details of fuel phenomena (swelling, densification, relocation, gap closure, etc.) is the natural next step in the VERA development process since these phenomena are currently not directly taken into account. While several codes could be used to accomplish this, the BISON fuel performance code [8,9] being developed by the Idaho National Laboratory (INL) is the focus of ongoing work in themore » Consortium for Advanced Simulation of Light Water Reactors (CASL). Built on INL’s MOOSE framework [10], BISON uses the finite element method for geometric representation and a Jacobian-free Newton-Krylov (JFNK) scheme to solve systems of partial differential equations for various fuel characteristic relationships. There are several modes of operation in BISON, but, this work uses a 2D azimuthally symmetric (R-Z) smeared-pellet model. This manual is intended to cover (1) the procedure pertaining to the standalone BISON one-way coupling from VERA and (2) the procedure to generate BISON fuel temperature tables that VERA can use.« less

  1. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.

  2. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Chen, Tianyi

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, andmore » thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.« less

  4. SAM Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactormore » concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.« less

  5. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3

    DOE PAGES

    Stimpson, Shane; Powers, Jeffrey; Clarno, Kevin; ...

    2017-12-22

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity multiphysics simulations of light water nuclear reactors. To accomplish this, CASL is developing the Virtual Environment for Reactor Applications (VERA), which is a suite of code packages for thermal hydraulics, neutron transport, fuel performance, and coolant chemistry. As VERA continues to grow and expand, there has been an increased focus on incorporating fuel performance analysis methods. One of the primary goals of CASL is to estimate local cladding failure probability through pellet-clad interaction, which consists of both pellet-clad mechanical interaction (PCMI) and stress corrosion cracking. Estimatingmore » clad failure is important to preventing release of fission products to the primary system and accurate estimates could prove useful in establishing less conservative power ramp rates or when considering load-follow operations.While this capability is being pursued through several different approaches, the procedure presented in this article focuses on running independent fuel performance calculations with BISON using a file-based one-way coupling based on multicycle output data from high fidelity, pin-resolved coupled neutron transport–thermal hydraulics simulations. This type of approach is consistent with traditional fuel performance analysis methods, which are typically separate from core simulation analyses. A more tightly coupled approach is currently being developed, which is the ultimate target application in CASL.Recent work simulating 12 cycles of Watts Bar Unit 1 with VERA core simulator are capitalized upon, and quarter-core BISON results for parameters of interest to PCMI (maximum centerline fuel temperature, maximum clad hoop stress, and minimum gap size) are presented for Cycles 1–3. In conclusion, based on these results, this capability demonstrates its value and how it could be used as a screening tool for gathering insight into PCMI, singling out limiting rods for further, more detailed analysis.« less

  6. Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Powers, Jeffrey; Clarno, Kevin

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity multiphysics simulations of light water nuclear reactors. To accomplish this, CASL is developing the Virtual Environment for Reactor Applications (VERA), which is a suite of code packages for thermal hydraulics, neutron transport, fuel performance, and coolant chemistry. As VERA continues to grow and expand, there has been an increased focus on incorporating fuel performance analysis methods. One of the primary goals of CASL is to estimate local cladding failure probability through pellet-clad interaction, which consists of both pellet-clad mechanical interaction (PCMI) and stress corrosion cracking. Estimatingmore » clad failure is important to preventing release of fission products to the primary system and accurate estimates could prove useful in establishing less conservative power ramp rates or when considering load-follow operations.While this capability is being pursued through several different approaches, the procedure presented in this article focuses on running independent fuel performance calculations with BISON using a file-based one-way coupling based on multicycle output data from high fidelity, pin-resolved coupled neutron transport–thermal hydraulics simulations. This type of approach is consistent with traditional fuel performance analysis methods, which are typically separate from core simulation analyses. A more tightly coupled approach is currently being developed, which is the ultimate target application in CASL.Recent work simulating 12 cycles of Watts Bar Unit 1 with VERA core simulator are capitalized upon, and quarter-core BISON results for parameters of interest to PCMI (maximum centerline fuel temperature, maximum clad hoop stress, and minimum gap size) are presented for Cycles 1–3. In conclusion, based on these results, this capability demonstrates its value and how it could be used as a screening tool for gathering insight into PCMI, singling out limiting rods for further, more detailed analysis.« less

  7. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  8. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Astrophysics Data System (ADS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-09-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  9. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  10. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE PAGES

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa; ...

    2016-09-07

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  11. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  12. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Hesham

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less

  13. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).

  14. Development of a Polysilicon Process Based on Chemical Vapor Deposition of Dichlorosilane in an Advanced Siemen's Reactor

    NASA Technical Reports Server (NTRS)

    Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.

    1983-01-01

    Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.

  15. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel

    2013-12-01

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less

  16. Code qualification of structural materials for AFCI advanced recycling reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Majumdar, S.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Codemore » Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded in the past. The availability and additional needs for the key experimental facilities are summarized at the end of the report. Detailed information covered in each Chapter is given.« less

  17. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  18. Plant maintenance and advanced reactors, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2005-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: First U.S. EPRs in 2015, by Ray Ganthner, Framatome ANP; Pursuing several opportunities, by William E. (Ed) Cummins, Westinghouse Electric Company; Vigorous plans to develop advanced reactors, by Yuliang Sun, Tsinghua University, China; Multiple designs, small and large, by Kumiaki Moriya, Hitachi Ltd., Japan; Sealed and embedded for safety and security, by Handa Norihiko, Toshiba Corporation, Japan; Scheduled online in 2010, by Johan Slabber, PMBR (Pty) Ltd., South Africa; Multi-application reactors, by Nikolay G. Kodochigov, OKBM, Russia; Six projects under budgetmore » and on schedule, by David F. Togerson, AECL, Canada; Creating a positive image, by Scott Peterson, Nuclear Energy Institute (NEI); Advanced plans for nuclear power's renaissance, by John Cleveland, International Atomic Energy Agency, Austria; and, Plant profile: last five outages in less than 20 days, by Beth Rapczynski, Exelon Nuclear.« less

  19. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  20. IECEC '83; Proceedings of the Eighteenth Intersociety Energy Conversion Engineering Conference, Orlando, FL, August 21-26, 1983. Volume 1 - Thermal energy systems

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055

  1. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  2. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.

  3. Eddy Current Flow Measurements in the FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less

  4. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  5. Screening of redox couples and electrode materials

    NASA Technical Reports Server (NTRS)

    Giner, J.; Swette, L.; Cahill, K.

    1976-01-01

    Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.

  6. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    PubMed

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  7. Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.

    First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set relatively well, with the (110) surface being more active at higher temperaures; in contrast, for the other experimental data set, our reactor simulations achieve surprisingly and perhaps fortuitously good agreement with the activity and phenomenological pressure dependence when it is assumed that the (111) facet is the only active facet present. Lastly, the active phase of catalytic CO oxidation over RuO 2 remains unsettled, but the present study presents proof of principle (and progress) toward more accurate multiscale modeling from electrons to reactors and new simulation results.« less

  8. Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2

    DOE PAGES

    Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.; ...

    2018-04-20

    First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set relatively well, with the (110) surface being more active at higher temperaures; in contrast, for the other experimental data set, our reactor simulations achieve surprisingly and perhaps fortuitously good agreement with the activity and phenomenological pressure dependence when it is assumed that the (111) facet is the only active facet present. Lastly, the active phase of catalytic CO oxidation over RuO 2 remains unsettled, but the present study presents proof of principle (and progress) toward more accurate multiscale modeling from electrons to reactors and new simulation results.« less

  9. Development of new generation reduced activation ferritic-martenstic steels for advanced fusion reactors

    DOE PAGES

    Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai

    2016-05-26

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M 23C 6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods.more » Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.« less

  10. Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.

    2006-06-01

    Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.

  11. Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A; Clarno, Kevin T; Hansen, Glen A

    2009-09-01

    Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied moremore » on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.« less

  12. Space Nuclear Reactor Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David Irvin

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  13. Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    2016-08-01

    Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologiesmore » (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants« less

  14. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.

  15. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.

    This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less

  16. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, Emily R.

    2016-10-10

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less

  17. LWRS ATR Irradiation Testing Readiness Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less

  18. In Space Nuclear Power as an Enabling Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Houts, Michael

    2000-01-01

    Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably reach the outer planets for scientific exploration.

  19. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    NASA Astrophysics Data System (ADS)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.

  20. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  1. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  2. L3.PHI.CTF.P10.02-rev2 Coupling of Subchannel T/H (CTF) and CRUD Chemistry (MAMBA1D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salko, Robert K.; Palmtag, Scott; Collins, Benjamin S.

    2015-05-15

    The purpose of this milestone is to create a preliminary capability for modeling light water reactor (LWR) thermal-hydraulic (T/H) and CRUD growth using the CTF subchannel code and the subgrid version of the MAMBA CRUD chemistry code, MAMBA1D. In part, this is a follow-on to Milestone L3.PHI.VCS.P9.01, which is documented in Report CASL-U-2014-0188-000, titled "Development of CTF Capability for Modeling Reactor Operating Cycles with Crud Growth". As the title suggests, the previous milestone set up a framework for modeling reactor operation cycles with CTF. The framework also facilitated coupling to a CRUD chemistry capability for modeling CRUD growth throughout themore » reactor operating cycle. To demonstrate the capability, a simple CRUD \\surrogate" tool was developed and coupled to CTF; however, it was noted that CRUD growth predictions by the surrogate were not considered realistic. This milestone builds on L3.PHI.VCS.P9.01 by replacing this simple surrogate tool with the more advanced MAMBA1D CRUD chemistry code. Completing this task involves addressing unresolved tasks from Milestone L3.PHI.VCS.P9.01, setting up an interface to MAMBA1D, and extracting new T/H information from CTF that was not previously required in the simple surrogate tool. Speci c challenges encountered during this milestone include (1) treatment of the CRUD erosion model, which requires local turbulent kinetic energy (TKE) (a value that CTF does not calculate) and (2) treatment of the MAMBA1D CRUD chimney boiling model in the CTF rod heat transfer solution. To demonstrate this new T/H, CRUD modeling capability, two sets of simulations were performed: (1) an 18 month cycle simulation of a quarter symmetry model of Watts Bar and (2) a simulation of Assemblies G69 and G70 from Seabrook Cycle 5. The Watts Bar simulation is merely a demonstration of the capability. The simulation of the Seabrook cycle, which had experienced CRUD-related fuel rod failures, had actual CRUD-scrape data to compare with results. As results show, the initial CTF/MAMBA1D-predicted CRUD thicknesses were about half of their expected values, so further investigation will be required for this simulation.« less

  3. Small low mass advanced PBR's for propulsion

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  4. A roadmap for nuclear energy technology

    NASA Astrophysics Data System (ADS)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.

  5. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, Carlo; Prescott, Steve; Ma, Zhegang

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA modelsmore » for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.« less

  6. 75 FR 8154 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the... on Reactor Safeguards (ACRS) will hold a meeting on March 4-6, 2010, 11545 Rockville Pike, Rockville....-12 p.m.: New Advanced Reactor Designs (Open)--The Committee will hear presentations by and hold...

  7. Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors

    NASA Astrophysics Data System (ADS)

    Hoekstra, Robert J.; Kushner, Mark J.

    1996-03-01

    Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.

  8. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less

  9. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    NASA Astrophysics Data System (ADS)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several additional fuels will also be analyzed, including uranium nitride (UN), uranium carbide (UC) and uranium silicide (U3Si2). Focusing on the system response in an accident scenario, an emphasis is placed on the fracture mechanics of the ceramic cladding by design the fuel rods to eliminate pellet cladding mechanical interaction (PCMI). The time to failure and how much of the fuel in the reactor fails with an advanced fuel design will be analyzed and compared to the current UO2/Zircaloy design using a full scale reactor model.

  10. Physical and chemical controls on the critical zone

    USGS Publications Warehouse

    Anderson, S.P.; Von Blanckenburg, F.; White, A.F.

    2007-01-01

    Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.

  11. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Loop-scale Testbed Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    2016-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less

  12. A Passive System Reliability Analysis for a Station Blackout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, Acacia; Bucknor, Matthew; Grabaskas, David

    2015-05-03

    The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less

  13. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirementsmore » for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.« less

  14. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two magnetostrictive transducers were fabricated with Remendur or Galfenol as the active elements. Pulse-echo ultrasonic measurements of these transducers are made in-situ. This paper will present an overview of the test design including selection criteria for candidate materials and optimization of test assembly parameters, data obtained from both out-of-pile and in-pile testing at elevated temperatures, and an assessment based on initial data of the expected performance of ultrasonic devices in irradiation conditions.

  15. 77 FR 64563 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In... Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting on November 1-3, 2012, 11545 Rockville...-Term Core Cooling Approach for the Advanced Boiling Water Reactor (ABWR) Design for South Texas Project...

  16. 75 FR 55365 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Joint Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Joint Subcommittee The ACRS Subcommittees on Thermal Hydraulics Phenomena; Advanced Boiling Water Reactor (ABWR); and Materials, Metallurgy, and Reactor Fuels will hold a joint meeting on October 4, 2010...

  17. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  18. Free-radical solution-polymerization of trifluoronitrosomethane with tetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Gdickman, S. A.

    1972-01-01

    Heavy-walled glass reactor, equipped with aerosol-compatible couplings and needle valve and charged with solvent and initiator, is utilized for polymerization. Polymer conversions and reactor/vessel operation are discussed.

  19. Developments in neutron beam devices and an advanced cold source for the NIST research reactor

    NASA Astrophysics Data System (ADS)

    Williams, Robert E.; Rowe, J. Michael

    2002-01-01

    The last 5 yr has been a period of steady growth in instrument capabilities and utilization at the National Institute of Standards and Technology Center for Neutron Research. Since the installation of the liquid hydrogen cold source in 1995, all of the instruments originally planned for the Cold Neutron Research Facility have been completed and made available to users, and three new thermal neutron instruments have been installed. Currently, an advanced cold source is being fabricated that will better couple the reactor core and the existing network of neutron guides. Many improvements are also being made in neutron optics to enhance the beam characteristics of certain instruments. For example, optical filters will be installed that will increase the fluxes at the two 30-m SANS instruments by as much as two. Sets of MgF 2 biconcave lenses have been developed for SANS that have demonstrated a significant improvement in resolution over conventional pinhole collimation. The recently commissioned high-flux backscattering spectrometer incorporates a converging guide, a large spherically focusing monochromator and analyzer, and a novel phase space transform chopper, to achieve very high intensity while maintaining excellent energy resolution. Finally, a prototype low background, doubly focusing neutron monochromator is nearing completion that will be the heart of a new cold neutron spectrometer, as well as two new thermal neutron triple axis spectrometers.

  20. Preliminary Design of a SP-100/Stirling Radiatively Coupled Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul; Tower, Leonard; Dawson, Ronald; Blue, Brian; Dunn, Pat

    1995-01-01

    Several methods for coupling the SP-100 space nuclear reactor to the NASA Lewis Research Center's Free Piston Stirling Power Convertor (FPSPC) are presented. A 25 kWe, dual opposed Stirling convertor configuration is used in these designs. The concepts use radiative coupling between the SP-100 lithium loop and the sodium heat pipe of the Stirling convertor to transfer the heat from the reactor to the convertor. Four separate configurations are presented. Masses for the four designs vary from 41 to 176 kgs. Each design's structure, heat transfer characteristics, and heat pipe performance are analytically modeled.

  1. Preliminary design of a SP-100/Stirling radiatively coupled heat exchanger

    NASA Astrophysics Data System (ADS)

    Schmitz, Paul; Tower, Leonard; Dawson, Ronald; Blue, Brian; Dunn, Pat

    1995-10-01

    Several methods for coupling the SP-100 space nuclear reactor to the NASA Lewis Research Center's Free Piston Stirling Power Convertor (FPSPC) are presented. A 25 kWe, dual opposed Stirling convertor configuration is used in these designs. The concepts use radiative coupling between the SP-100 lithium loop and the sodium heat pipe of the Stirling convertor to transfer the heat from the reactor to the convertor. Four separate configurations are presented. Masses for the four designs vary from 41 to 176 kgs. Each design's structure, heat transfer characteristics, and heat pipe performance are analytically modeled.

  2. Nuclear materials safeguards for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tape, J.W.

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating internationalmore » inspection of excess weapons materials and verifying a fissile materials cutoff convention.« less

  3. Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna-reactor hybrids: charge and energy transfer.

    PubMed

    Chen, Kai; Ding, Si-Jing; Luo, Zhi-Jun; Pan, Gui-Ming; Wang, Jia-Hong; Liu, Jia; Zhou, Li; Wang, Qu-Quan

    2018-02-22

    An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS 2 /Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS 2 shell (∼2.6 nm). Due to efficient charge transfer across the XS 2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS 2 /Au exhibits a 3.59-fold enhancement, whereas Au/MoS 2 /Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS 2 /Au and Au/MoS 2 /Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS 2 /Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Barrett; Shannon Bragg-Sitton

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system thatmore » would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.« less

  5. Integrated head package for top mounted nuclear instrumentation

    DOEpatents

    Malandra, Louis J.; Hornak, Leonard P.; Meuschke, Robert E.

    1993-01-01

    A nuclear reactor such as a pressurized water reactor has an integrated head package providing structural support and increasing shielding leading toward the vessel head. A reactor vessel head engages the reactor vessel, and a control rod guide mechanism over the vessel head raises and lowers control rods in certain of the thimble tubes, traversing penetrations in the reactor vessel head, and being coupled to the control rods. An instrumentation tube structure includes instrumentation tubes with sensors movable into certain thimble tubes disposed in the fuel assemblies. Couplings for the sensors also traverse penetrations in the reactor vessel head. A shroud is attached over the reactor vessel head and encloses the control rod guide mechanism and at least a portion of the instrumentation tubes when retracted. The shroud forms a structural element of sufficient strength to support the vessel head, the control rod guide mechanism and the instrumentation tube structure, and includes radiation shielding material for limiting passage of radiation from retracted instrumentation tubes. The shroud is thicker at the bottom adjacent the vessel head, where the more irradiated lower ends of retracted sensors reside. The vessel head, shroud and contents thus can be removed from the reactor as a unit and rested safely and securely on a support.

  6. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributesmore » to the design and implementation of AdvRx concepts.« less

  7. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less

  8. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  9. 2015 Groundwater Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  10. 75 FR 71744 - Toshiba Corporation Power Systems Company Notice of Receipt and Availability of an Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0361] Toshiba Corporation Power Systems Company Notice of Receipt and Availability of an Application for Renewal of the U.S. Advanced Boiling Water Reactor Design... application for a design certification (DC) renewal for the U.S. Advanced Boiling Water Reactor (ABWR). An...

  11. Recent advances in physics and technology of ion cyclotron resonance heating in view of future fusion reactors

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Kazakov, Ye O.; Koch, R.; Ragona, R.; Bobkov, V.; Crombé, K.; Durodié, F.; Goniche, M.; Krivska, A.; Lerche, E.; Louche, F.; Lyssoivan, A.; Vervier, M.; Van Eester, D.; Van Schoor, M.; Wauters, T.; Wright, J.; Wukitch, S.

    2017-05-01

    Ion temperatures of over 100 million degrees need to be reached in future fusion reactors for the deuterium-tritium fusion reaction to work. Ion cyclotron resonance heating (ICRH) is a method that has the capability to directly heat ions to such high temperatures, via a resonant interaction between the plasma ions and radiofrequency waves launched in the plasma. This paper gives an overview of recent developments in this field. In particular a novel and recently developed three-ion heating scenario will be highlighted. It is a flexible scheme with the potential to accelerate heavy ions to high energies in high density plasmas as expected for future fusion reactors. New antenna designs will be needed for next step large future devices like DEMO, to deliver steady-state high power levels, cope with fast variations in coupling due to fast changes in the edge density and to reduce the possibility for impurity production. Such a new design is the traveling wave antenna (TWA) consisting of an array of straps distributed around the circumference of the machine, which is intrinsically resilient to edge density variations and has an optimized power coupling to the plasma. The structure of the paper is as follows: to provide the general reader with a basis for a good understanding of the later sections, an overview is given of wave propagation, coupling and RF power absorption in the ion cyclotron range of frequencies, including a brief summary of the traditionally used heating scenarios. A special highlight is the newly developed three-ion scenario together with its promising applications. A next section discusses recent developments to study edge-wave interaction and reduce impurity influx from ICRH: the dedicated devices IShTAR and Aline, field aligned and three-strap antenna concepts. The principles behind and the use of ICRH as an important option for first wall conditioning in devices with a permanent magnetic field is discussed next. The final section presents ongoing developments for antenna systems in next step devices like ITER and DEMO, with as highlight the TWA concept.

  12. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wai Kit, E-mail: kekyeung@ust.hk; Joueet, Justine; Heng, Samuel

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface chargesmore » from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.« less

  13. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  14. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  15. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.

  16. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less

  17. An advanced carbon reactor subsystem for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, Gary P.; Cusick, Robert J.

    1986-01-01

    An evaluation is presented of the development status of an advanced carbon-reactor subsystem (ACRS) for the production of water and dense, solid carbon from CO2 and hydrogen, as required in physiochemical air revitalization systems for long-duration manned space missions. The ACRS consists of a Sabatier Methanation Reactor (SMR) that reduces CO2 with hydrogen to form methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolize methane to carbon and hydrogen; the carbon is recycled to the SMR, while the produce carbon is periodically removed from the CFR. A preprototype ACRS under development for the NASA Space Station is described.

  18. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  19. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 3, Sessions 12-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, R.C.; Feiner, F.

    This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Advanced Instrumentation for Transient Reactor Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Michael L.; Anderson, Mark; Imel, George

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less

  1. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE PAGES

    Melin, Alexander M.; Kisner, Roger A.

    2018-04-03

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  2. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  3. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn thesemore » actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.« less

  4. Pretreatment of vinasse from the sugar refinery industry under non-sterile conditions by Trametes versicolor in a fluidized bed bioreactor and its effect when coupled to an UASB reactor.

    PubMed

    España-Gamboa, Elda; Vicent, Teresa; Font, Xavier; Dominguez-Maldonado, Jorge; Canto-Canché, Blondy; Alzate-Gaviria, Liliana

    2017-01-01

    During hydrous ethanol production from the sugar refinery industry in Mexico, vinasse is generated. Phenolic compounds and melanoidins contribute to its color and make degradation of the vinasse a difficult task. Although anaerobic digestion (AD) is feasible for vinasse treatment, the presence of recalcitrant compounds can be toxic or inhibitory for anaerobic microorganism. Therefore, this study presents new data on the coupled of the FBR (Fluidized Bed Bioreactor) to the UASB (Upflow Anaerobic Sludge Blanket) reactor under non-sterile conditions by T. versicolor . Nevertheless, for an industrial application, it is necessary to evaluate the performance in this kind of proposal system. Therefore, this study used a FBR for the removal of phenolic compounds (67%) and COD (38%) at non-sterile conditions. Continuous operation of the FBR was successfully for 26 days according to the literature. When the FBR was coupled to the UASB reactor, we obtained a better quality of effluent, furthermore methane content and yield were 74% and 0.18 m 3 CH 4 / kg COD removal respectively. This study demonstrated the possibility of using for an industrial application the coupled of the FBR to the UASB reactor under non-sterile conditions. Continuous operation of the FBR was carried out successfully for 26 days, which is the highest value found in the literature.

  5. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    DOE PAGES

    Hu, Rui; Yu, Yiqi

    2016-09-08

    For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less

  6. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Short; D. Gaston; C. R. Stanek

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Baksoi, Jozsef; Barnett, Nathan

    This report describes the work carried out for completion of the Thermal Hydraulics Methods (THM) Level 2 Milestone THM.CFD.P5.01 for the Consortium for Advanced Simulation of Light Water Reactors (CASL). This milestone focused primarily on the initial integration of Hydra-TH in VERA. The primary objective for this milestone was the integration of Hydra-TH as a standalone executable in VERA. A series of code extensions/modifications have been made to Hydra-TH to facilitate integration of Hydra-TH in VERA and to permit future tighter integration and physics coupling. A total of 61 serial and 64 parallel regression tests have been supplied with Hydra-TH.more » These tests are are being executed in the TriBITS environment. Once the VERA team enables the full suite of tests, the results can be posted to the VERA CDash site. Future work will consider the use of the LIME 2.0 interface for tighter integration in VERA with additional efforts focused on multiphysics coupling with radiation transport, fuel performance, and solid/structural mechanics.« less

  8. Research gaps and technology needs in development of PHM for passive AdvSMR components

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.

    2014-02-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  9. Simulator platform for fast reactor operation and safety technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, R. B.; Park, Y. S.; Grandy, C.

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe responsemore » to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.« less

  10. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  11. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in the...

  12. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteleone, S.

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updatedmore » and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.« less

  14. Enhancements to the SHARP Build System and NEK5000 Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay

    The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase inmore » overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that was implemented using GNU Autotools, mirroring much of the current SHARP build system, and easing the use of structural mechanics calculations for end-users of the SHARP multiphysics framework. It lets users easily build and use Diablo as a stand-alone simulation, as well as fully couple with the other SHARP physics modules. The top-level SHARP build system was modified to allow Diablo to hook in directly. New dependency handlers were implemented to let SHARP users easily build the framework with these new simulation capabilities. The remainder of this report will describe this work in full, with a detailed discussion of the overall design philosophy of SHARP, the new solution interpolation method introduced, and the Diablo integration work. We will conclude with a discussion of possible future SHARP improvements that will serve to increase solution accuracy and framework capability.« less

  15. Corn industrial wastewater (nejayote): a promising substrate in Mexico for methane production in a coupled system (APCR-UASB).

    PubMed

    España-Gamboa, Elda; Domínguez-Maldonado, Jorge Arturo; Tapia-Tussell, Raul; Chale-Canul, Jose Silvano; Alzate-Gaviria, Liliana

    2018-01-01

    In Mexico, the corn tortilla is a food of great economic importance. Corn tortilla production generates about 1500-2000 m 3 of wastewater per 600 tons of processed corn. Although this wastewater (also known as nejayote) has a high organic matter content, few studies in Mexico have analyzed its treatment. This study presents fresh data on the potential methane production capacity of nejayote in a two-phase anaerobic digestion system using an Anaerobic-Packed Column Reactor (APCR) to optimize the acidogenic phase and an up-flow anaerobic sludge blanket (UASB) reactor to enhance the methanogenic process. Results indicate that day 8 was ideal to couple the APCR to the UASB reactor. This allowed for a 19-day treatment that yielded 96% COD removal and generated a biogas containing 84% methane. The methane yield was 282 L kg -1 of COD removed . Thus, two-phase anaerobic digestion is an efficient process to treat nejayote; furthermore, this study demonstrated the possibility of using an industrial application by coupling the APCR to the UASB reactor system, in order to assess its feasibility for biomethane generation as a sustainable bioenergy source.

  16. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappiello, M.; Hobbins, R.; Penny, K.

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As partmore » of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.« less

  18. Development of a Reactor Model for Chemical Conversion of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.

  19. Development of a Reactor Model for Chemical Conversion of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hedge, uday; Balasubramaniam, R.; Gokoglu, S.

    2007-01-01

    Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.

  20. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, Gerhard; Bostelmann, F.

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained).more » SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) be implemented. This CRP is a continuation of the previous IAEA and Organization for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) international activities on Verification and Validation (V&V) of available analytical capabilities for HTGR simulation for design and safety evaluations. Within the framework of these activities different numerical and experimental benchmark problems were performed and insight was gained about specific physics phenomena and the adequacy of analysis methods.« less

  1. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  2. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    NASA Astrophysics Data System (ADS)

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Valdes-Galán, Sergio; Li, Xiaohang

    2018-04-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  3. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, R.C.; Feiner, F.

    1995-09-01

    Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers dealmore » with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.« less

  4. Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Richins; Stephen Novascone; Cheryl O'Brien

    Summary of SMIRT20 Preconference Topical Workshop – Identifying Structural Issues in Advanced Reactors William Richins1, Stephen Novascone1, and Cheryl O’Brien1 1Idaho National Laboratory, US Dept. of Energy, Idaho Falls, Idaho, USA, e-mail: William.Richins@inl.gov The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selectedmore » to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; 1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and 2) calibrating simulation software and methods that address topic 1 The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.« less

  5. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  6. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne; Honma, George

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical informationmore » is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.« less

  7. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar

    2016-12-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less

  8. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turinsky, Paul J., E-mail: turinsky@ncsu.edu; Kothe, Douglas B., E-mail: kothe@ornl.gov

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear powermore » industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry. - Highlights: • Complexity of physics based modeling of light water reactor cores being addressed. • Capability developed to help address problems that have challenged the nuclear power industry. • Simulation capabilities that take advantage of high performance computing developed.« less

  9. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progressmore » toward element testing will be reviewed.« less

  10. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Grandy, C.; Natesan, K.

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less

  11. 78 FR 5840 - Notice of License Termination for University of Illinois Advanced TRIGA Reactor, License No. R-115

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... University of Illinois Advanced TRIGA Reactor, License No. R-115 The U.S. Nuclear Regulatory Commission (NRC) is noticing the termination of Facility Operating License No. R-115, for the University of Illinois... Operating License No. R-115 is terminated. The above referenced documents may be examined, and/or copied for...

  12. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less

  13. Recent Advances in Pd-Based Membranes for Membrane Reactors.

    PubMed

    Arratibel Plazaola, Alba; Pacheco Tanaka, David Alfredo; Van Sint Annaland, Martin; Gallucci, Fausto

    2017-01-01

    Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.

  14. Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James

    2017-12-01

    A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.

  15. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  16. Biomethanation of poultry litter leachate in UASB reactor coupled with ammonia stripper for enhancement of overall performance.

    PubMed

    Gangagni Rao, A; Sasi Kanth Reddy, T; Surya Prakash, S; Vanajakshi, J; Joseph, Johny; Jetty, Annapurna; Rajashekhara Reddy, A; Sarma, P N

    2008-12-01

    In the present study possibility of coupling stripper to remove ammonia to the UASB reactor treating poultry litter leachate was studied to enhance the overall performance of the reactor. UASB reactor with stripper as ammonia inhibition control mechanism exhibited better performance in terms of COD reduction (96%), methane yield (0.26m(3)CH(4)/kg COD reduced), organic loading rate (OLR) (18.5kg COD m(-3)day(-1)) and Hydraulic residence time (HRT) (12h) compared to the UASB reactor without stripper (COD reduction: 92%; methane yield: 0.21m(3)CH(4)/kg COD reduced; OLR: 13.6kg CODm(-3)day(-1); HRT: 16h). The improved performance was due to the reduction of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) in the range of 75-95% and 80-95%, respectively by the use of stripper. G/L (air flow rate/poultry leachate flow rate) in the range of 60-70 and HRT in the range of 7-9min are found to be optimum parameters for the operation of the stripper.

  17. A coupled CFD and two-phase substrate kinetic model for enzymatic hydrolysis of lignocellulose

    NASA Astrophysics Data System (ADS)

    Danes, Nicholas; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael

    2017-11-01

    Cost-effective production of fuels from lignocellulosic biomass is an important subject of research in order to meet the world's current and future energy demands. Enzymatic hydrolysis is one of the several steps in the biochemical conversion of biomass into fuels. This process involves the interplay of non-Newtonian fluid dynamics that happen over tens of seconds coupled with chemical reactions that happen over several hours. In this work, we present a coupled CFD-reaction model for conversion of cellulose to sugars in a benchtop mixer reactor. A subcycling approach is used to circumvent the large time scale disparity between fluid dynamics and reactions. We will present a validation study of our simulations with experiments for well-mixed and stratified reactor scenarios along with predictions for conversion rates and product concentrations at varying impeller speeds and in scaled-up reactors. This work is funded by the Bioenergy Technology Office of DOE and the NSF's Enriched Doctoral Training program (DMS-1551229).

  18. Year One Summary of X-energy Pebble Fuel Development at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.

    2017-06-01

    The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.

  19. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  20. Ceramic oxygen transport membrane array reactor and reforming method

    DOEpatents

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  1. Control rod for a nuclear reactor

    DOEpatents

    Roman, Walter G.; Sutton, Jr., Harry G.

    1979-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod.

  2. Health physics aspects of advanced reactor licensing reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinson, C.S.

    1995-03-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovativemore » design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adversemore » consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different requirements, including the need to operate in different coolant environments, higher operating temperatures, and longer operating cycles between planned refueling and maintenance outages. These features, along with the relative lack of operating experience for some of the proposed advanced designs, may limit the ability to estimate event probability and component POF with a high degree of certainty. Incorporating real-time estimates of component POF may compensate for a relative lack of established knowledge about the long-term component behavior and improve operational and maintenance planning and optimization. The particular eccentricities of advanced reactors and small modular reactors provide unique challenges and needs for advanced instrumentation, control, and human-machine interface (ICHMI) techniques such as enhanced risk monitors (ERM) in aSMRs. Several features of aSMR designs increase the need for accurate characterization of the real-time risk during operation and maintenance activities. A number of technical gaps in realizing ERM exist, and these gaps are largely independent of the specific reactor technology. As a result, the development of a framework for ERM would enable greater situational awareness regardless of the specific class of reactor technology. A set of research tasks are identified in a preliminary research plan to enable the development, testing, and demonstration of such a framework. Although some aspects of aSMRs, such as specific operational characteristics, will vary and are not now completely defined, the proposed framework is expected to be relevant regardless of such uncertainty. The development of an ERM framework will provide one of the key technical developments necessary to ensure the economic viability of aSMRs.« less

  4. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept

    NASA Astrophysics Data System (ADS)

    Guo, Shaoqiang; Shay, Nikolas; Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2017-12-01

    The fluoride molten salt such as FLiNaK and FLiBe is one of the coolant candidates for the next generation nuclear reactor concepts, for example, the fluoride salt cooled high temperature reactor (FHR). For mitigating corrosion of structural materials in molten fluoride salt, the redox condition of the salts needs to be monitored and controlled. This study investigates the feasibility of applying the Eu3+/Eu2+ couple for redox control. Cyclic voltammetry measurements of the Eu3+/Eu2+ couple were able to obtain the concentrations ratio of Eu3+/Eu2+ in the melt. Additionally, the formal standard potential of Eu3+/Eu2+ was characterized over the FHR's operating temperatures allowing for the application of the Nernst equation to establish a Eu3+/Eu2+ concentration ratio below 0.05 to prevent corrosion of candidate structural materials. A platinum quasi-reference electrode with potential calibrated by potassium reduction potential is shown as reliable for the redox potential measurement. These results show that the Eu3+/Eu2+ couple is a feasible redox buffering agent to control the redox condition in molten fluoride salts.

  5. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  6. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...

  7. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.

  8. Reactor vibration reduction based on giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  9. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Forest Howard

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  10. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    PubMed

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Assessment of SFR Wire Wrap Simulation Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc-Olivier G.; Popov, Emilian L.; Pointer, William David

    Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advancedmore » Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results for the 3-D pipe, the single pin THORS mesh, and the 7-pin bundle mesh, respectively.« less

  13. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klain, Kimberly L.

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set ofmore » multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the individual coupling coefficients from measurement: unlike the symmetrical cases, only the product of the values can be obtained. A method is proposed utilizing MCNP6 tally ratios to separate the coupling coefficients for such systems. This work provides insight into the behavior of asymmetrically-coupled systems as the separation distance between the two cores is changed and also as the asymmetry is increased. As the asymmetry increases, both the slower and the faster observable prompt neutron decay constants increase in magnitude. The coupling time constants are determined from the measured decay constants. As the separation distance increases, both coupling coefficients decrease as expected. Based on these findings, an effective computational method utilizing MCNP6 and the Rossialpha technique can be applied to the prediction of asymmetrical coupled system measurements.« less

  14. An Update on Improvements to NiCE Support for PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay

    2015-09-01

    The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less

  15. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less

  17. Automated Solid-Phase Protein Modification with Integrated Enzymatic Digest for Reaction Validation: Application of a Compartmented Microfluidic Reactor for Rapid Optimization and Analysis of Protein Biotinylation

    PubMed Central

    Fraas, Regina; Diehm, Juliane; Franzreb, Matthias

    2017-01-01

    Protein modification by covalent coupling of small ligands or markers is an important prerequisite for the use of proteins in many applications. Well-known examples are the use of proteins with fluorescent markers in many in vivo experiments or the binding of biotinylated antibodies via biotin–streptavidin coupling in the frame of numerous bioassays. Multiple protocols were established for the coupling of the respective molecules, e.g., via the C and N-terminus, or via cysteines and lysines exposed at the protein surface. Still, in most cases the conditions of these standard protocols are only an initial guess. Optimization of the coupling parameters like reagent concentrations, pH, or temperature may strongly increase coupling yield and the biological activity of the modified protein. In order to facilitate the process of optimizing coupling conditions, a method was developed which uses a compartmented microfluidic reactor for the rapid screening of different coupling conditions. In addition, the system allows for the integration of an enzymatic digest of the modified protein directly after modification. In combination with a subsequent MALDI-TOF analysis of the resulting fragments, this gives a fast and detailed picture not only of the number and extent of the generated modifications but also of their position within the protein sequence. The described process was demonstrated for biotinylation of green fluorescent protein. Different biotin-excesses and different pH-values were tested in order to elucidate the influence on the modification extent and pattern. In addition, the results of solid-phase based modifications within the microfluidic reactor were compared to modification patterns resulting from coupling trials with unbound protein. As expected, modification patterns of immobilized proteins showed clear differences to the ones of dissolved proteins. PMID:29181376

  18. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    PubMed Central

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  19. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less

  20. Test case for VVER-1000 complex modeling using MCU and ATHLET

    NASA Astrophysics Data System (ADS)

    Bahdanovich, R. B.; Bogdanova, E. V.; Gamtsemlidze, I. D.; Nikonov, S. P.; Tikhomirov, G. V.

    2017-01-01

    The correct modeling of processes occurring in the fuel core of the reactor is very important. In the design and operation of nuclear reactors it is necessary to cover the entire range of reactor physics. Very often the calculations are carried out within the framework of only one domain, for example, in the framework of structural analysis, neutronics (NT) or thermal hydraulics (TH). However, this is not always correct, as the impact of related physical processes occurring simultaneously, could be significant. Therefore it is recommended to spend the coupled calculations. The paper provides test case for the coupled neutronics-thermal hydraulics calculation of VVER-1000 using the precise neutron code MCU and system engineering code ATHLET. The model is based on the fuel assembly (type 2M). Test case for calculation of power distribution, fuel and coolant temperature, coolant density, etc. has been developed. It is assumed that the test case will be used for simulation of VVER-1000 reactor and in the calculation using other programs, for example, for codes cross-verification. The detailed description of the codes (MCU, ATHLET), geometry and material composition of the model and an iterative calculation scheme is given in the paper. Script in PERL language was written to couple the codes.

  1. Proceedings of a Symposium on Advanced Compact Reactor Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.

  2. High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon

    2016-10-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  3. COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS

    DOEpatents

    Fox, R.J.; Oakes, L.C.

    1959-04-14

    A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.

  4. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    PubMed

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  5. Plasma generators, reactor systems and related methods

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Lee, James E [Idaho Falls, ID

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  6. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Erich; Scopatz, Anthony

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  7. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less

  8. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohachek, Randolph Charles

    2015-09-01

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactorsmore » is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.« less

  9. CALIBRATION OF FULL-SCALE OZONATION SYSTEMS WITH CONSERVATIVE AND REACTIVE TRACERS

    EPA Science Inventory

    A full-scale ozonation reactor was characterized with respect to the overall oxidation budget by coupling laboratory kinetics with reactor hydraulics. The ozone decomposition kinetics and the ratio of the OH radical to the ozone concentration were determined in laboratory batch ...

  10. 10 CFR 73.72 - Requirement for advance notice of shipment of formula quantities of strategic special nuclear...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... strategic significance, or irradiated reactor fuel. (a) A licensee, other than one specified in paragraph (b... strategic significance, or irradiated reactor fuel required to be protected in accordance with § 73.37...

  11. 10 CFR 73.72 - Requirement for advance notice of shipment of formula quantities of strategic special nuclear...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... strategic significance, or irradiated reactor fuel. (a) A licensee, other than one specified in paragraph (b... strategic significance, or irradiated reactor fuel required to be protected in accordance with § 73.37...

  12. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less

  13. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a smallmore » version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.« less

  14. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  15. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johanna Oxstrand; Katya Le Blanc

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  16. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. Integrated intelligent systems in advanced reactor control rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs.,more » 5 figs.« less

  18. Advanced In-Pile Instrumentation for Materials Testing Reactors

    NASA Astrophysics Data System (ADS)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  19. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  20. Steady State Advanced Tokamak (SSAT): The mission and the machine

    NASA Astrophysics Data System (ADS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.

  1. Initial Coupling of the RELAP-7 and PRONGHORN Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; D. Andrs; A.A. Bingham

    2012-10-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP’s current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations inmore » 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.« less

  2. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  3. Phenomena Important in Molten Salt Reactor Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, David J.; Brown, Nicholas R.; Denning, Richard

    The U.S. Nuclear Regulatory Commission (NRC) is preparing for the future licensing of advanced reactors that will be very different from current light water reactors. Part of the NRC preparation strategy is to identify the simulation tools that will be used for confirmatory safety analysis of normal operation and abnormal situations in those reactors. This report advances that strategy for reactors that will use molten salts (MSRs). This includes reactors with the fuel within the salt as well as reactors using solid fuel. Although both types are discussed in this report, the emphasis is on those reactors with liquid fuelmore » because of the perception that solid-fuel MSRs will be significantly easier to simulate. These liquid-fuel reactors include thermal and fast neutron spectrum alternatives. The specific designs discussed in the report are a subset of many designs being considered in the U.S. and elsewhere but they are considered the most likely to submit information to the NRC in the near future. The objective herein, is to understand the design of proposed molten salt reactors, how they will operate under normal or transient/accident conditions, and what will be the corresponding modeling needs of simulation tools that consider neutronics, heat transfer, fluid dynamics, and material composition changes in the molten salt. These tools will enable the NRC to eventually carry out confirmatory analyses that examine the validity and accuracy of applicant’s calculations and help determine the margin of safety in plant design.« less

  4. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  5. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne L.

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  6. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less

  7. Apollo - An advanced fuel fusion power reactor for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulcinski, G.L.; Emmert, G.A.; Blanchard, J.P.

    1989-03-01

    A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented. A low aspect ratio (A=2-4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m/sup 2/) allows a permanent first wall to be designed and the low nuclear decay heat enablesmore » the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.« less

  8. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.

    2016-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less

  9. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    DOE PAGES

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...

    2017-01-24

    We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less

  10. NRC ARDC Guidance Support Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbrook, Mark R.

    This report provides a summary that reflects the progress and status of proposed regulatory design criteria for advanced non-light water reactor (LWR) designs in accordance with the Level 3 milestone M3AT-17IN2001013 in work package AT-17IN200101. These criteria have been designated as advanced reactor design criteria (ARDC) and they provide guidance to future applicants for addressing the general design criteria (GDC) that are currently applied specifically to LWR designs. This report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of ARDC regulatory guidance for sodium fast reactor (SFR) andmore » modular high-temperature gas-cooled reactor (HTGR) designs. Status Report Organization: Section 2 discusses the origin of the GDC and their application to LWRs. Section 3 addresses the objective of this initiative and how it benefits the advanced non-LWR reactor vendors. Section 4 discusses the scope and structure of the initiative. Section 5 provides background on the U.S. Department of Energy (DOE) ARDC team’s original development of the proposed ARDC that were submitted to the NRC for consideration. Section 6 provides a summary of recent ARDC Phase 2 activities. Appendices A through E document the DOE ARDC team’s public comments on various sections of the NRC’s draft regulatory guide DG–1330, “Guidance for Developing Principal Design Criteria for Non-Light Water Reactors.”« less

  11. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less

  12. Membrane biofouling mechanism in an aerobic granular reactor degrading 4-chlorophenol.

    PubMed

    Buitrón, Germán; Moreno-Andrade, Iván; Arellano-Badillo, Víctor M; Ramírez-Amaya, Víctor

    2014-01-01

    The membrane fouling of an aerobic granular reactor coupled with a submerged membrane in a sequencing batch reactor (SBR) was evaluated. The fouling analysis was performed by applying microscopy techniques to determine the morphology and structure of the fouling layer on a polyvinylidene fluoride membrane. It was found that the main cause of fouling was the polysaccharide adsorption on the membrane surface, followed by the growth of microorganisms to form a biofilm.

  13. EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.

    1960-03-24

    A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)

  14. Non-Nuclear Validation Test Results of a Closed Brayton Cycle Test-Loop

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, or for next generation nuclear power plants on earth. Although open Brayton cycles are in use for many applications (combined cycle power plants, aircraft engines), only a few closed Brayton cycles have been tested. Experience with closed Brayton cycles coupled to nuclear reactors is even more limited and current projections of Brayton cycle performance are based on analytic models. This report describes and compares experimental results with model predictions from a series of non-nuclear tests using a small scale closed loop Brayton cycle available at Sandia National Laboratories. A substantial amount of testing has been performed, and the information is being used to help validate models. In this report we summarize the results from three kinds of tests. These tests include: 1) test results that are useful for validating the characteristic flow curves of the turbomachinery for various gases ranging from ideal gases (Ar or Ar/He) to non-ideal gases such as CO2, 2) test results that represent shut down transients and decay heat removal capability of Brayton loops after reactor shut down, and 3) tests that map a range of operating power versus shaft speed curve and turbine inlet temperature that are useful for predicting stable operating conditions during both normal and off-normal operating behavior. These tests reveal significant interactions between the reactor and balance of plant. Specifically these results predict limited speed up behavior of the turbomachinery caused by loss of load, the conditions for stable operation, and for direct cooled reactors, the tests reveal that the coast down behavior during loss of power events can extend for hours provided the ultimate heat sink remains available.

  15. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    NASA Astrophysics Data System (ADS)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  16. Advanced instrumentation and analysis methods for in-pile thermal and nuclear measurements: from out-of-pile studies to irradiation campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynard-Carette, C.; Lyoussi, A.

    Research and development on nuclear fuel behavior under irradiations and accelerated ageing of structure materials is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR) currently under construction in the South of France in the CEA Cadarache research centre will offer a real opportunity to perform R and D programs and hence will crucially contribute to the selection, optimization and qualification of innovative materials and fuels. To perform such programs advanced accurate and innovative experiments, irradiation devices thatmore » contain material and fuel samples are required to be set up inside or beside the reactor core. These experiments needs beforehand in situ and on line sophisticated measurements to accurately reach specific and determining parameters such as thermal and fast neutron fluxes, nuclear heating and temperature conditions to precisely monitor and control the conducted assays. Consequently, since 2009 CEA and Aix-Marseille University collaborate in order to design and develop a new multi-sensor device which will be dedicated to measuring profiles of such conditions inside the experimental channels of the JHR. These works are performed in the framework of two complementary joint research programs called MAHRI-BETHY and INCORE. These programs couple experimental studies carried out both out-of nuclear fluxes (in laboratory) and under irradiation conditions (in OSIRIS MTR reactor in France and MARIA MTR reactor in Poland) with numerical works realized by thermal simulations (CAST3M code) and Monte Carlo simulations (MCNP code). These programs deal with three main aims. The first one corresponds to the design and/or the test of new in-pile instrumentation. The second one concerns the development of advanced calibration procedures in particular in the case of one specific sensor: a differential calorimeter used to quantify nuclear heating. The last one consists in the development of accurate measurement and analysis methods. The paper will be dedicated to a complete review of the experimental and numerical works performed since 2009 thanks to two parts. The first part will detail a new thermal approach implemented to improve nuclear heating measurements by radiometric calorimeters. New experimental tools (calorimeter prototypes and set-ups such BETHY Bench) developed to perform preliminary out-of-pile studies under suitable conditions will be presented (temperature and velocity of the external cooling fluid, heat source localization and intensity inside the calorimetric cells). Then the response of two kinds of sensors, their calibrations curves and their thermal behaviors will be compared for various parameters. Finally validated numerical thermal and Monte Carlo works will be discussed to propose new improvements. The second parts of the paper will focus on works realized in order to design, develop and test the first prototype of the multi-sensor device called CARMEN [7-9]. The two mock-ups dedicated respectively to neutron measurements and photon measurements will be detailed. The results obtained during two irradiation campaigns inside the periphery of OSIRIS reactor will be shown. The new analysis method will be discussed. (authors)« less

  17. Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients

    NASA Astrophysics Data System (ADS)

    Salko, Robert K.

    COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for Coolant-Line-Analysis Package. Versions were created that were both coupled to COBRA-TF and standalone, with the most recent version being a standalone code. This code performs a separate, simplified, 1-D solution of the conservation equations while making special considerations for coolant-line geometry and flow phenomena. The end of this project saw a functional code package that demonstrates a stable numerical solution and that has gone through a series of Validation and Verification tests using the Two-Phase Testing Facility (TPTF) experimental data[2]. The results indicate that CLAP is under-performing RELAP5-MOD3 in predicting the experimental void of the TPTF facility in some cases. There is no apparent pattern, however, to point to a consistent type of case that the code fails to predict properly (e.g., low-flow, high-flow, discharging to full vessel, or discharging to empty vessel). Pressure-profile predictions are sometimes unrealistic, which indicates that there may be a problem with test-case boundary conditions or with the coupling of continuity and momentum equations in the solution algorithm. The code does predict the flow regime correctly for all cases with the stratification-force model off. Turning the stratification model on can cause the low-flow case void profiles to over-react to the force and the flow regime to transition out of stratified flow. The code would benefit from an increased amount of Validation & Verification testing. The development of CLAP was significant, as it is a cleanly written, logical representation of the reactor coolant-line geometry. It is stable and capable of modeling basic flow physics in the reactor coolant-line. Code development and debugging required the temporary removal of the energy equation and mass-transfer terms in governing equations. The reintroduction of these terms will allow future coupling to RELAP and re-coupling with COBRA-TF. Adding in more applicable entrainment and de-entrainment models would allow the capture of more advanced physics in the coolant-line that can be expected during Loss-of-Coolant Accident. One of the package's benefits is its ability to be used as a platform for future coolant-line model development and implementation, including capturing of the important de-entrainment behavior in reactor hot-legs (steam-binding effect) and flow convection in the upper-plenum region of the vessel.

  18. Specifications for a coupled neutronics thermal-hydraulics SFR test case

    NASA Astrophysics Data System (ADS)

    Tassone, A.; Smirnov, A. D.; Tikhomirov, G. V.

    2017-01-01

    Coupling neutronics/thermal-hydraulics calculations for the design of nuclear reactors are a growing trend in the scientific community. This approach allows to properly represent the mutual feedbacks between the neutronic distribution and the thermal-hydraulics properties of the materials composing the reactor, details which are often lost when separate analysis are performed. In this work, a test case for a generation IV sodium-cooled fast reactor (SFR), based on the ASTRID concept developed by CEA, is proposed. Two sub-assemblies (SA) characterized by different fuel enrichment and layout are considered. Specifications for the test case are provided including geometrical data, material compositions, thermo-physical properties and coupling scheme details. Serpent and ANSYS-CFX are used as reference in the description of suitable inputs for the performing of the benchmark, but the use of other code combinations for the purpose of validation of the results is encouraged. The expected outcome of the test case are the axial distribution of volumetric power generation term (q‴), density and temperature for the fuel, the cladding and the coolant.

  19. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  20. Analysis and recent advances in gamma heating measurements in MINERVE facility by using TLD and OSLD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Di Salvo, J.; Lyoussi, A.

    2011-07-01

    The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo-Luminescent Detector (TLD) and Optically Stimulated Luminescent Detectors (OSLD) experiments in the UO{sub 2} core of the MINERVE research reactor at the CEA Cadarache. The experimental sources of uncertainties on the gamma dose have been reduced by improving the conditions, as well as the repeatability, of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account calculation of cavity correction factors, related to calibration and irradiation configurations, as well asmore » neutron corrections calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. TLD and OSLD are positioned inside aluminum pillboxes. The comparison between calculated and measured integral gamma-ray absorbed doses using TLD, shows that calculation slightly overestimates the measurement with a C/E value equal to 1.05 {+-} 5.3 % (k = 2). By using OSLD, the calculation slightly underestimates the measurement with a C/E value equal to 0.96 {+-} 7.0% (k = 2. (authors)« less

  1. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  2. Dynamic Modeling and Control of Nuclear Reactors Coupled to Closed-Loop Brayton Cycle Systems using SIMULINK{sup TM}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Sanchez, Travis

    2005-02-06

    The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less

  3. 2015 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.

  4. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE PAGES

    Bartel, N.; Chen, M.; Utgikar, V. P.; ...

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  5. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, N.; Chen, M.; Utgikar, V. P.

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  6. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  7. Progress on Fabrication of Planar Diffusion Couples with Representative TRISO PyC/SiC Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Jolly, Brian C.; Gerczak, Tyler J.

    Release of fission products from tristructural-isotropic (TRISO) coated particle fuel limits the fuel’s operational lifetime and creates potential safety and maintenance concerns. A need for diffusion analysis in representative TRISO layers exists to provide fuel performance models with high fidelity data to improve fuel performance and efficiency. An effort has been initiated to better understand fission product transport in, and release from, quality TRISO fuel by investigating diffusion couples with representative pyrocarbon (PyC) and silicon carbide (SiC). Here planar PyC/SiC diffusion couples are being developed with representative PyC/SiC layers using a fluidized bed chemical vapor deposition (FBCVD) system identical tomore » those used to produce laboratory-scale TRISO fuel for the Advanced Gas Reactor Fuel Qualification and Development Program’s (AGR) first fuel irradiation. The diffusivity of silver, the silver and palladium system, europium, and strontium in the PyC/SiC will be studied at elevated temperatures and under high temperature neutron irradiation. The study also includes a comparative study of PyC/SiC diffusion couples with varying TRISO layer properties to understand the influence of SiC microstructure (grain size) and the PyC/SiC interface on fission product transport. The first step in accomplishing these goals is the development of the planar diffusion couples. The diffusion couple construction consists of multiple steps which includes fabrication of the primary PyC/SiC structures with targeted layer properties, introduction of fission product species and seal coating to create an isolated system. Coating development has shown planar PyC/SiC diffusion couples with similar properties to AGR TRISO fuel can be produced. A summary of the coating development process, characterization methods, and status are presented.« less

  8. TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR AREAS SOUTH OF PERCH AVENUE. "COLD" SERVICES NORTH OF PERCH. ADVANCED TEST REACTOR IN NEW SECTION WEST OF COLD SERVICES SECTION. NEW PERIMETER FENCE ENCLOSES BETA RAY SPECTROMETER, TRA-669, AN ATR SUPPORT FACILITY, AND ATR STACK. UTM LOCATORS HAVE BEEN DELETED. IDAHO NUCLEAR CORPORATION, FROM A BLAW-KNOX DRAWING, 3/1968. INL INDEX NO. 530-0100-00-400-011646, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  10. Advanced PIC-MCC simulation for the investigation of step-ionization effect in intermediate-pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June

    2018-03-01

    A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.

  11. Summary of the Advanced Reactor Design Criteria (ARDC) Phase 2 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbrook, Mark Raymond

    This report provides an end-of-year summary reflecting the progress and status of proposed regulatory design criteria for advanced non-LWR designs in accordance with the Level 3 milestone in M3AT-15IN2001017 in work package AT-15IN200101. These criteria have been designated as ARDC, and they provide guidance to future applicants for addressing the GDC that are currently applied specifically to LWR designs. The report provides a summary of Phase 2 activities related to the various tasks associated with ARDC development and the subsequent development of example adaptations of ARDC for Sodium Fast Reactor (SFR) and modular High Temperature Gas-cooled Reactor (HTGR) designs.

  12. Advanced gray rod control assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drudy, Keith J; Carlson, William R; Conner, Michael E

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber tomore » enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.« less

  13. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    NASA Astrophysics Data System (ADS)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic absorption chiller model is presented. The transient FORTRAN model is grounded on time-dependent mass, species, and energy conservation equations. Due to the vast computational costs of the high-fidelity model, a low-fidelity absorption chiller model is formulated and calibrated to mimic the behavior of the high-fidelity model. Stratified chilled-water storage tank performance is characterized using Computational Fluid Dynamics (CFD). The geometry employed in the CFD model represents a 5-million-gallon storage tank currently in use at a North Carolina college campus. Simulation results reveal the laminar numerical model most closely aligns with actual tank charging and discharging data. A subsequent parametric study corroborates storage tank behavior documented throughout literature and industry. Two absorption chiller configurations are considered. The first involves bypassing lowpressure steam from the low-pressure turbine to absorption chillers during periods of excess reactor capacity in order to keep reactor power constant. Simulation results show steam conditions downstream of the turbine control valves are a strong function of turbine load, and absorption chiller performance is hindered by reduced turbine impulse pressures at reduced turbine demands. A more suitable configuration entails integrating the absorption chillers into a flash vessel system that is thermally coupled to a sensible heat storage system. The sensible heat storage system is able to maintain reactor thermal output constant at 100% and match turbine output with several different electric demand profiles. High-pressure condensate in the sensible heat storage system is dropped across a let-down orifice and flashed in an ideal separator. Generated steam is sent to a bank of absorption chillers. Simulation results show enough steam is available during periods of reduced turbine demand to power four large absorption chillers to charge a 5-million-gallon stratified chilled-water storage tank, which is used to offset cooling loads in an adjacent facility. The coupled TES systems operating in conjunction with an SMR comprise the foundation of a tightly coupled NHES.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Prescott, Steven; Coleman, Justin

    This report describes the current progress and status related to the Industry Application #2 focusing on External Hazards. For this industry application within the Light Water Reactor Sustainability (LWRS) Program Risk-Informed Safety Margin Characterization (RISMC) R&D Pathway, we will create the Risk-Informed Margin Management (RIMM) approach to represent meaningful (i.e., realistic facility representation) event scenarios and consequences by using an advanced 3D facility representation that will evaluate external hazards such as flooding and earthquakes in order to identify, model and analyze the appropriate physics that needs to be included to determine plant vulnerabilities related to external events; manage the communicationmore » and interactions between different physics modeling and analysis technologies; and develop the computational infrastructure through tools related to plant representation, scenario depiction, and physics prediction. One of the unique aspects of the RISMC approach is how it couples probabilistic approaches (the scenario) with mechanistic phenomena representation (the physics) through simulation. This simulation-based modeling allows decision makers to focus on a variety of safety, performance, or economic metrics. In this report, we describe the evaluation of various physics toolkits related to flooding representation. Ultimately, we will be coupling the flooding representation with other events such as earthquakes in order to provide coupled physics analysis for scenarios where interactions exist.« less

  15. The development of a thermal hydraulic feedback mechanism with a quasi-fixed point iteration scheme for control rod position modeling for the TRIGSIMS-TH application

    NASA Astrophysics Data System (ADS)

    Karriem, Veronica V.

    Nuclear reactor design incorporates the study and application of nuclear physics, nuclear thermal hydraulic and nuclear safety. Theoretical models and numerical methods implemented in computer programs are utilized to analyze and design nuclear reactors. The focus of this PhD study's is the development of an advanced high-fidelity multi-physics code system to perform reactor core analysis for design and safety evaluations of research TRIGA-type reactors. The fuel management and design code system TRIGSIMS was further developed to fulfill the function of a reactor design and analysis code system for the Pennsylvania State Breazeale Reactor (PSBR). TRIGSIMS, which is currently in use at the PSBR, is a fuel management tool, which incorporates the depletion code ORIGEN-S (part of SCALE system) and the Monte Carlo neutronics solver MCNP. The diffusion theory code ADMARC-H is used within TRIGSIMS to accelerate the MCNP calculations. It manages the data and fuel isotopic content and stores it for future burnup calculations. The contribution of this work is the development of an improved version of TRIGSIMS, named TRIGSIMS-TH. TRIGSIMS-TH incorporates a thermal hydraulic module based on the advanced sub-channel code COBRA-TF (CTF). CTF provides the temperature feedback needed in the multi-physics calculations as well as the thermal hydraulics modeling capability of the reactor core. The temperature feedback model is using the CTF-provided local moderator and fuel temperatures for the cross-section modeling for ADMARC-H and MCNP calculations. To perform efficient critical control rod calculations, a methodology for applying a control rod position was implemented in TRIGSIMS-TH, making this code system a modeling and design tool for future core loadings. The new TRIGSIMS-TH is a computer program that interlinks various other functional reactor analysis tools. It consists of the MCNP5, ADMARC-H, ORIGEN-S, and CTF. CTF was coupled with both MCNP and ADMARC-H to provide the heterogeneous temperature distribution throughout the core. Each of these codes is written in its own computer language performing its function and outputs a set of data. TRIGSIMS-TH provides an effective use and data manipulation and transfer between different codes. With the implementation of feedback and control- rod-position modeling methodologies, the TRIGSIMS-TH calculations are more accurate and in a better agreement with measured data. The PSBR is unique in many ways and there are no "off-the-shelf" codes, which can model this design in its entirety. In particular, PSBR has an open core design, which is cooled by natural convection. Combining several codes into a unique system brings many challenges. It also requires substantial knowledge of both operation and core design of the PSBR. This reactor is in operation decades and there is a fair amount of studies and developments in both PSBR thermal hydraulics and neutronics. Measured data is also available for various core loadings and can be used for validation activities. The previous studies and developments in PSBR modeling also aids as a guide to assess the findings of the work herein. In order to incorporate new methods and codes into exiting TRIGSIMS, a re-evaluation of various components of the code was performed to assure the accuracy and efficiency of the existing CTF/MCNP5/ADMARC-H multi-physics coupling. A new set of ADMARC-H diffusion coefficients and cross sections was generated using the SERPENT code. This was needed as the previous data was not generated with thermal hydraulic feedback and the ARO position was used as the critical rod position. The B4C was re-evaluated for this update. The data exchange between ADMARC-H and MCNP5 was modified. The basic core model is given a flexibility to allow for various changes within the core model, and this feature was implemented in TRIGSIMS-TH. The PSBR core in the new code model can be expanded and changed. This allows the new code to be used as a modeling tool for design and analyses of future code loadings.

  16. Summary of the Workshop on Molten Salt Reactor Technologies Commemorating the 50th Anniversary of the Startup of the Molten Salt Reactor Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betzler, Benjamin R; Mays, Gary T

    2016-01-01

    A workshop on Molten Salt Reactor (MSR) technologies commemorating the 50th anniversary of the Molten Salt Reactor Experiment (MSRE) was held at Oak Ridge National Laboratory on October 15 16, 2015. The MSRE represented a pioneering experiment that demonstrated an advanced reactor technology: the molten salt eutectic-fueled reactor. A multinational group of more than 130 individuals representing a diverse set of stakeholders gathered to discuss the historical, current, and future technical challenges and paths to deployment of MSR technology. This paper provides a summary of the key messages from this workshop.

  17. Quantity of 135I released from the AGR-1, AGR-2, and AGR-3/4 experiments and discovery of 131I at the FPMS traps during the AGR-3/4 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scates, Dawn M.

    2014-09-01

    A series of three Advanced Gas Reactor (AGR) experiments have been conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). From 2006 through 2014, these experiments supported the development and qualification of the new U.S. tristructural isotropic (TRISO) particle fuel for Very High Temperature Reactors (VHTR). Each AGR experiment consisted of multiple fueled capsules, each plumbed for independent temperature control using a mix of helium and neon gases. The gas leaving a capsule was routed to individual Fission Product Monitor (FPM) detectors. For intact fuel particles, the TRISO particle coatings provide a substantial barrier to fission productmore » release. However, particles with failed coatings, whether because of a minute percentage of initially defective particles, those which fail during irradiation, or those designed to fail (DTF) particles, can release fission products to the flowing gas stream. Because reactive fission product elements like iodine and cesium quickly deposit on cooler capsule components and piping structures as the effluent gas leaves the reactor core, only the noble fission gas isotopes of Kr and Xe tend to reach FPM detectors. The FPM system utilizes High Purity Germanium (HPGe) detectors coupled with a thallium activated sodium iodide NaI(Tl) scintillator. The HPGe detector provides individual isotopic information, while the NaI(Tl) scintillator is used as a gross count rate meter. During irradiation, the 135mXe concentration reaching the FPM detectors is from both direct fission and by decay of the accumulated 135I. About 2.5 hours after irradiation (ten 15.3 minute 135mXe half lives) the directly produced 135mXe has decayed and only the longer lived 135I remains as a source. Decay systematics dictate that 135mXe will be in secular equilibrium with its 135I parent, such that its production rate very nearly equals the decay rate of the parent, and its concentration in the flowing gas stream will appear to decay with the parent half life. This equilibrium condition enables the determination of the amount of 135I released from the fuel particles by measurement of the 135mXe at the FPM following reactor shutdown. In this paper, the 135I released will be reported and compared to similar releases for noble gases as well as the unexpected finding of 131I deposition from intentional impure gas injection into capsule 11 of experiment AGR 3/4.« less

  18. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individualmore » component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.« less

  19. ASME Code Efforts Supporting HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less

  20. ASME Code Efforts Supporting HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less

  1. ASME Code Efforts Supporting HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less

  2. Development of a polysilicon process based on chemical vapor deposition, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Plahutnik, F.; Arvidson, A.; Sawyer, D.; Sharp, K.

    1982-01-01

    High-purity polycrystalline silicon was produced in an experimental, intermediate and advanced CVD reactor. Data from the intermediate and advanced reactors confirmed earlier results obtained in the experimental reactor. Solar cells were fabricated by Westinghouse Electric and Applied Solar Research Corporation which met or exceeded baseline cell efficiencies. Feedstocks containing trichlorosilane or silicon tetrachloride are not viable as etch promoters to reduce silicon deposition on bell jars. Neither are they capable of meeting program goals for the 1000 MT/yr plant. Post-run CH1 etch was found to be a reasonably effective method of reducing silicon deposition on bell jars. Using dichlorosilane as feedstock met the low-cost solar array deposition goal (2.0 gh-1-cm-1), however, conversion efficiency was approximately 10% lower than the targeted value of 40 mole percent (32 to 36% achieved), and power consumption was approximately 20 kWh/kg over target at the reactor.

  3. Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code

    NASA Astrophysics Data System (ADS)

    Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal

    2017-07-01

    Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.

  4. Applying flow chemistry: methods, materials, and multistep synthesis.

    PubMed

    McQuade, D Tyler; Seeberger, Peter H

    2013-07-05

    The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

  5. ADVANCED COURSE ON FUEL ELEMENTS FOR WATER COOLED POWER REACTORS, ORGANIZED BY THE NETHERLANDS'-NORWEGIAN REACTOR SCHOOL AT INSTITUTT FOR ATOMENERGI, KJELLER, NORWAY, 22nd AUGUST-3rd SEPTEMBER,1960. VOLUME III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aas, S.; Barendregt, T.J.; Chesne, A.

    1960-07-01

    A series of lectures on fuel elements for water-cooled power reactors are presented. Topics covered include fabrication, properties, cladding, radiation damage, design, cycling, storage and transpont, and reprocessing. Separate records have been prepared for each section.

  6. Proceedings of the 1994 international meeting on reduced enrichment for research and test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    This meeting brought together participants in the international effort to minimize and eventually eliminate the use of highly enriched uranium in civilian nuclear programs. Papers cover the following topics: National programs; fuel cycle; nuclear fuels; analyses; advanced reactors; and reactor conversions. Selected papers have been indexed separately for inclusion to the Energy Science and Technology Database.

  7. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by themore » Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.« less

  8. Development of advanced strain diagnostic techniques for reactor environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less

  9. Chemsheet as a Simulation Platform for Pyrometallurgical Processes

    NASA Astrophysics Data System (ADS)

    Penttilä, Karri; Salminen, Justin; Tripathi, Nagendra; Koukkari, Pertti

    ChemSheet is a thermodynamic multi-phase multi-component simulation software, which is used as an Add-in in Microsoft Excel. In ChemSheet, the unique Constrained Gibbs free energy method can be used to include dynamic constraints and reaction rates of kinetically slow reactions, yet retaining full consistency of the multiphase thermodynamic model. With appropriate data, ChemSheet models can be used to simulate reactors and processes in all fields of thermochemistry. The presentation will cover off-line modeling of Cu-flash smelters and advanced thermochemical simulation coupled with on-line process control of Cu-Ni smelting. The presentation will describe an off-line model of Cu-smelter based on critically assessed properties of the Al-Ca-Cu-Fe-O-S-Si -system (slag, matte and liquid metal) by using the quasichemical model. A four-stage reactor model (shaft, settler, uptake and bath) is used for optimizing process parameters and feed particle distribution. As a second example, an advanced thermochemical model of a Ni-Cu sulphide smelting plant will be given. The on-line model covers the operation of treating Ni-Cu-S concentrate via roasters, electric furnace and converters, producing a high grade Bessemer matte product for further refining. The model integrates the thermochemistry of the roasters and electric furnace, and predicts important process parameters such as degree of sulphur elimination in the fluid-bed roasters, matte grade, iron metallization, slag losses and the iron to silica ratio in the electric furnace slag. Both models can be used to assist process engineers and operators in calculating the addition rates of coke, flux and air for different feed scenarios.

  10. Evaluation of coupling approaches for thermomechanical simulations

    DOE PAGES

    Novascone, S. R.; Spencer, B. W.; Hales, J. D.; ...

    2015-08-10

    Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,more » while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.« less

  11. Cermet-fueled reactors for advanced space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less

  12. A summary of sodium-cooled fast reactor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoto, Kazumi; Dufour, Philippe; Hongyi, Yang

    Much of the basic technology for the Sodium-cooled fast Reactor (SFR) has been established through long term development experience with former fast reactor programs, and is being confirmed by the Phénix end-of-life tests in France, the restart of Monju in Japan, the lifetime extension of BN-600 in Russia, and the startup of the China Experimental Fast Reactor in China. Planned startup in 2014 for new SFRs: BN-800 in Russia and PFBR in India, will further enhance the confirmation of the SFR basic technology. Nowadays, the SFR development has advanced to aiming at establishment of the Generation-IV system which is dedicatedmore » to sustainable energy generation and actinide management, and several advanced SFR concepts are under development such as PRISM, JSFR, ASTRID, PGSFR, BN-1200, and CFR-600. Generation-IV International Forum is an international collaboration framework where various R&D activities are progressing on design of system and component, safety and operation, advanced fuel, and actinide cycle for the Generation-IV SFR development, and will play a beneficial role of promoting them thorough providing an opportunity to share the past experience and the latest data of design and R&D among countries developing SFR.« less

  13. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less

  14. Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: effect of pH and bulking agent.

    PubMed

    Xu, Su Yun; Lam, Hoi Pui; Karthikeyan, O Parthiba; Wong, Jonathan W C

    2011-02-01

    The effects of pH and bulking agents on hydrolysis/acidogenesis of food waste were studied using leach bed reactor (LBR) coupled with methanogenic up-flow anaerobic sludge blanket (UASB) reactor. The hydrolysis rate under regulated pH (6.0) was studied and compared with unregulated one during initial experiment. Then, the efficacies of five different bulking agents, i.e. plastic full particles, plastic hollow sphere, bottom ash, wood chip and saw dust were experimented under the regulated pH condition. Leachate recirculation with 50% water replacement was practiced throughout the experiment. Results proved that the daily leachate recirculation with pH control (6.0) accelerated the hydrolysis rate (59% higher volatile fatty acids) and methane production (up to 88%) compared to that of control without pH control. Furthermore, bottom ash improved the reactor alkalinity, which internally buffered the system that improved the methane production rate (0.182 l CH(4)/g VS(added)) than other bulking agents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Transuranic inventory reduction in repository by partitioning and transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, C.H.; Kazimi, M.S.

    1992-01-01

    The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).

  16. Fuel Fabrication and Nuclear Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF 6. UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  17. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has beenmore » restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed a Readiness Assessment in November 2009. The HSIS is a key component of the ATR National Scientific User Facility (NSUF) operated by Battelle Energy Alliance, LLC and is available to a wide variety of university researchers for nuclear fuels and materials experiments as well as medical isotope research and production.« less

  18. DynMo: Dynamic Simulation Model for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed; Tournier, Jean-Michel

    2005-02-01

    A Dynamic simulation Model (DynMo) for space reactor power systems is developed using the SIMULINK® platform. DynMo is modular and could be applied to power systems with different types of reactors, energy conversion, and heat pipe radiators. This paper presents a general description of DynMo-TE for a space power system powered by a Sectored Compact Reactor (SCoRe) and that employs off-the-shelf SiGe thermoelectric converters. SCoRe is liquid metal cooled and designed for avoidance of a single point failure. The reactor core is divided into six equal sectors that are neutronically, but not thermal-hydraulically, coupled. To avoid a single point failure in the power system, each reactor sector has its own primary and secondary loops, and each loop is equipped with an electromagnetic (EM) pump. A Power Conversion assembly (PCA) and a Thermoelectric Conversion Assembly (TCA) of the primary and secondary EM pumps thermally couple each pair of a primary and a secondary loop. The secondary loop transports the heat rejected by the PCA and the pumps TCA to a rubidium heat pipes radiator panel. The primary loops transport the thermal power from the reactor sector to the PCAs for supplying a total of 145-152 kWe to the load at 441-452 VDC, depending on the selections of the primary and secondary liquid metal coolants. The primary and secondary coolant combinations investigated are lithium (Li)/Li, Li/sodium (Na), Na-Na, Li/NaK-78 and Na/NaK-78, for which the reactor exit temperature is kept below 1250 K. The results of a startup transient of the system from an initial temperature of 500 K are compared and discussed.

  19. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kurt R.; Howard, Richard H.; Daily, Charles R.

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designsmore » allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.« less

  20. Low pass filter for plasma discharge

    DOEpatents

    Miller, Paul A.

    1994-01-01

    An isolator is disposed between a plasma reactor and its electrical energy source in order to isolate the reactor from the electrical energy source. The isolator operates as a filter to attenuate the transmission of harmonics of a fundamental frequency of the electrical energy source generated by the reactor from interacting with the energy source. By preventing harmonic interaction with the energy source, plasma conditions can be readily reproduced independent of the electrical characteristics of the electrical energy source and/or its associated coupling network.

  1. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  2. D-He-3 spherical torus fusion reactor system study

    NASA Astrophysics Data System (ADS)

    Macon, William A., Jr.

    1992-04-01

    This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerczak, Tyler J.; Smith, Kurt R.; Petrie, Christian M.

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Departmentmore » of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.« less

  4. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  5. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incorporation of real-time component information using equipment condition assessment (ECA) through the developmentof enhanced risk monitors (ERM) for active components in advanced reactor (AR) and advanced small modular reactor (SMR) designs. We incorporate time-dependent failure probabilities from prognostic health management (PHM) systems to dynamically update the risk metric of interest. This information is used to augment data used for supervisory control and plant-wide coordination of multiple modules by providing the incremental risk incurred due to aging and demands placed on components that support mission requirements.

  7. Computational Modeling as a Design Tool in Microelectronics Manufacturing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Plans to introduce pilot lines or fabs for 300 mm processing are in progress. The IC technology is simultaneously moving towards 0.25/0.18 micron. The convergence of these two trends places unprecedented stringent demands on processes and equipments. More than ever, computational modeling is called upon to play a complementary role in equipment and process design. The pace in hardware/process development needs a matching pace in software development: an aggressive move towards developing "virtual reactors" is desirable and essential to reduce design cycle and costs. This goal has three elements: reactor scale model, feature level model, and database of physical/chemical properties. With these elements coupled, the complete model should function as a design aid in a CAD environment. This talk would aim at the description of various elements. At the reactor level, continuum, DSMC(or particle) and hybrid models will be discussed and compared using examples of plasma and thermal process simulations. In microtopography evolution, approaches such as level set methods compete with conventional geometric models. Regardless of the approach, the reliance on empricism is to be eliminated through coupling to reactor model and computational surface science. This coupling poses challenging issues of orders of magnitude variation in length and time scales. Finally, database development has fallen behind; current situation is rapidly aggravated by the ever newer chemistries emerging to meet process metrics. The virtual reactor would be a useless concept without an accompanying reliable database that consists of: thermal reaction pathways and rate constants, electron-molecule cross sections, thermochemical properties, transport properties, and finally, surface data on the interaction of radicals, atoms and ions with various surfaces. Large scale computational chemistry efforts are critical as experiments alone cannot meet database needs due to the difficulties associated with such controlled experiments and costs.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Momozaki, Y.; Li, M.

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory,more » the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carbon particulates) in sodium that is of interest for materials compatibility evaluation. The removal of carbon from the sodium will be accomplished by exposing carbon-gettering alloys such as refractory metals that have a high partitioning coefficient for carbon and also precipitate carbides, thereby decreasing the carbon concentration in sodium.« less

  9. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    DTIC Science & Technology

    2006-12-01

    24 Table 3.3 Hazards of Sodium Reaction Products, Hydride And Oxide...........................26 Table 3.4 Chemical Reactivity Of Selected...Liquid Metal Fast Breeder Reactor ORIGEN Oak Ridge Isotope Generator ORIGENARP Oak Ridge Isotope Generator Automated Rapid Processing PWR ...nuclear reactors, both because of the possibility of increased reactivity due to boiling and the potential loss of effectiveness of coolant heat transfer

  10. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  11. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearlman, Howard; Chen, Chien-Hua

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements inmore » this program.« less

  12. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected tomore » come from increasingly diverse educational and experiential backgrounds.« less

  13. Isolation Mounting for Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Salomon, P. M.

    1985-01-01

    CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, G.

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivatingmore » effect of metal oxides.« less

  15. Coupling Schemes for Multiphysics Reactor Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay Mahadeven; Jean Ragusa

    2007-11-01

    This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Terry D.; Bingham, Dennis N.; Benefiel, Bradley C.

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. A downtube is disposed at least partially within the interior crucible along an axis. At least one structure is coupled with the downtube and extends substantially across the cross-sectional area of the interior volume taken in a direction substantially perpendicular to the axis. A plurality of holes is formed in the structure enabling fluid flow therethrough. The structure coupled with themore » downtube may include a lower body portion and an upper body portion coupled with the lower body portion, wherein the plurality of holes is formed in the lower body portion adjacent to, and radially outward from, a periphery of the upper body portion.« less

  17. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less

  18. Advanced Small Modular Reactor Economics Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less

  19. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry.

  20. 100-kWe lunar/Mars surface power utilizing the SP-100 reactor with dynamic conversion

    NASA Technical Reports Server (NTRS)

    Harty, Richard B.; Mason, Lee S.

    1992-01-01

    Results are presented from a study of the coupling of an SP-100 nuclear reactor with either a Stirling or Brayton power system, at the 100 kWe level, for a power generating system suitable for operation in the lunar and Martian surface environments. In the lunar environment, the reactor and primary coolant loop would be contained in a guard vessel to protect from a loss of primary loop containment. For Mars, all refractory components, including the reactor, coolant, and power conversion components will be contained in a vacuum vessel for protection against the CO2 environment.

  1. Reactor and method for production of nanostructures

    DOEpatents

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmony, S.C.; Steiner, J.L.; Stumpf, H.J.

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. As part of the preapplication and eventual design certification process, advanced reactor applicants are required to submit neutronic and thermal-hydraulic safety analyses over a sufficient range of normal operation, transient conditions, and specified accident sequences. Los Alamos is supporting the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. A fully one-dimensional modelmore » of the PIUS reactor has been developed for the Transient Reactor Analysis Code, TRACPF1/MOD2. Early in 1992, ABB submitted a Supplemental Information Package describing recent design modifications. An important feature of the PIUS Supplement design was the addition of an active scram system that will function for most transient and accident conditions. A one-dimensional Transient Reactor Analysis Code baseline calculation of the PIUS Supplement design were performed for a break in the main steam line at the outlet nozzle of the loop 3 steam generator. Sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions following a main steam line break. The sensitivity study results provide insights into the robustness of the design.« less

  3. Advanced Electron Microscopy and Micro analytical technique development and application for Irradiated TRISO Coated Particles from the AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Lillo, Thomas Martin; Wen, Haiming

    2017-01-01

    A series of up to seven irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Quantification Program, with irradiation completed at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the first experiment (i.e., AGR-1) in November 2009 for an effective 620 full power days. The objective of the AGR-1 experiment was primarily to provide lessons learned on the multi-capsule test train design and to provide early data on fuel performance for use in fuel fabrication process development and post-irradiation safety testing data at high temperatures. This report describes the advanced microscopy and micro-analysismore » results on selected AGR-1 coated particles.« less

  4. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  5. Coupling between a multi-physics workflow engine and an optimization framework

    NASA Astrophysics Data System (ADS)

    Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.

    2016-03-01

    A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.

  6. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI formore » performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)« less

  7. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations.more » Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.« less

  8. 10 CFR 110.41 - Executive Branch review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (6) An export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium... equipment to a foreign reactor. (8) An export involving radioactive waste. (9) An export to any country...

  9. Pulsed corona generation using a diode-based pulsed power generator

    NASA Astrophysics Data System (ADS)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  10. Summary of space nuclear reactor power systems, 1983--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressedmore » from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.« less

  11. FFTF Passive Safety Test Data for Benchmarks for New LMR Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.

    Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less

  12. Summary of space nuclear reactor power systems, 1983 - 1992

    NASA Astrophysics Data System (ADS)

    Buden, D.

    1993-08-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  13. Development of a Reduced-Order Three-Dimensional Flow Model for Thermal Mixing and Stratification Simulation during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    2017-09-03

    Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less

  14. The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations

    NASA Astrophysics Data System (ADS)

    Matzie, Regis A.

    2007-03-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.

  15. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov; Tomé, Carlos, E-mail: tome@lanl.gov; Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC)more » polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.« less

  16. Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Status, Challenges, and Path Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less

  17. Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Status, Challenges, and Path Forward

    DOE PAGES

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; ...

    2017-02-26

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less

  18. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less

  19. Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Leonard J.; Bowler, John R.

    The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-servicemore » inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO 3-xPbTiO 3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.« less

  20. Risk Management for Sodium Fast Reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denman, Matthew R.; Groth, Katrina; Cardoni, Jeffrey N.

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event withmore » the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.« less

  1. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

    2005-02-01

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  2. Plant maintenance and advanced reactors issue, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada;more » Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.« less

  3. Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R. E.

    1960-02-01

    The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)

  4. PHISICS/RELAP5-3D RESULTS FOR EXERCISES II-1 AND II-2 OF THE OECD/NEA MHTGR-350 BENCHMARK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, Gerhard

    2016-03-01

    The Idaho National Laboratory (INL) Advanced Reactor Technologies (ART) High-Temperature Gas-Cooled Reactor (HTGR) Methods group currently leads the Modular High-Temperature Gas-Cooled Reactor (MHTGR) 350 benchmark. The benchmark consists of a set of lattice-depletion, steady-state, and transient problems that can be used by HTGR simulation groups to assess the performance of their code suites. The paper summarizes the results obtained for the first two transient exercises defined for Phase II of the benchmark. The Parallel and Highly Innovative Simulation for INL Code System (PHISICS), coupled with the INL system code RELAP5-3D, was used to generate the results for the Depressurized Conductionmore » Cooldown (DCC) (exercise II-1a) and Pressurized Conduction Cooldown (PCC) (exercise II-2) transients. These exercises require the time-dependent simulation of coupled neutronics and thermal-hydraulics phenomena, and utilize the steady-state solution previously obtained for exercise I-3 of Phase I. This paper also includes a comparison of the benchmark results obtained with a traditional system code “ring” model against a more detailed “block” model that include kinetics feedback on an individual block level and thermal feedbacks on a triangular sub-mesh. The higher spatial fidelity that can be obtained by the block model is illustrated with comparisons of the maximum fuel temperatures, especially in the case of natural convection conditions that dominate the DCC and PCC events. Differences up to 125 K (or 10%) were observed between the ring and block model predictions of the DCC transient, mostly due to the block model’s capability of tracking individual block decay powers and more detailed helium flow distributions. In general, the block model only required DCC and PCC calculation times twice as long as the ring models, and it therefore seems that the additional development and calculation time required for the block model could be worth the gain that can be obtained in the spatial resolution« less

  5. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George W. Griffith

    2011-10-01

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the fibers and the matrix allows formore » ductile behavior. The SiC CMC has relatively high strength at high reactor accident temperatures when compared to metallic cladding. SiC also has a very low chemical reactivity and doesn't react exothermically with the reactor cooling water. The radiation behavior of SiC has also been studied extensively as structural fusion system components. The SiC CMC technology is in the early stages of development and will need to mature before confidence in the developed designs can created. The advanced SiC CMC materials do offer the potential for greatly improved safety because of their high temperature strength, chemical stability and reduced hydrogen generation.« less

  6. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  7. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Thermodynamic analysis of the advanced zero emission power plant

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  9. Verification and Validation Strategy for LWRS Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl M. Stoots; Richard R. Schultz; Hans D. Gougar

    2012-09-01

    One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verifiedmore » and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.« less

  10. Three-dimensional time-dependent STAR reactor kinetics analyses coupled with RETRAN and MCPWR system response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.

    1989-11-01

    The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less

  11. Update on reactors and reactor instruments in Asia

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1991-10-01

    The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.

  12. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H 2O 2

    DOE PAGES

    Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...

    2017-03-01

    The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less

  13. Moving bed reactor for solar thermochemical fuel production

    DOEpatents

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  14. Plant maintenance and advanced reactors issue, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2004-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Optimism about the future of nuclear power, by Ruth G. Shaw, Duke Power Company; Licensed in three countries, by GE Energy; Enhancing public acceptance, by Westinghouse Electric Company; Standardized MOV program, by Ted Neckowicz, Exelon; Inservice testing, by Steven Unikewicz, U.S. Nuclear Regulatory Commission; Asian network for education, Fatimah Mohd Amin, Malaysian Institute for Nuclear Technology Research; and, Cooling water intake optimization, by Jeffrey M. Jones and Bert Mayer, P.E., Framatome ANP.

  15. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  16. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  17. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  18. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven, E-mail: hamiltonsp@ornl.gov; Berrill, Mark, E-mail: berrillma@ornl.gov; Clarno, Kevin, E-mail: clarnokt@ornl.gov

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNKmore » and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  19. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    PubMed

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  1. Reactor Application for Coaching Newbies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-06-17

    RACCOON is a Moose based reactor physics application designed to engage undergraduate and first-year graduate students. The code contains capabilities to solve the multi group Neutron Diffusion equation in eigenvalue and fixed source form and will soon have a provision to provide simple thermal feedback. These capabilities are sufficient to solve example problems found in Duderstadt & Hamilton (the typical textbook of senior level reactor physics classes). RACCOON does not contain any advanced capabilities as found in YAK.

  2. THE ARMOUR DUST FUELED REACTOR (ADFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krucoff, D.

    1958-01-01

    The A-DFR is based on the use of a fissionable dust carried in a gas. This fuel ferm offers promise of a major economic advance through the use of 2,000 to 3,000 F operating temperatures and a low cost fuel cycle. The development program is described that was initiated to investigate experimentally the proposed fuel and study analytically other reactor characteristics. A brief review of the reactor concept is presented. (W.D.M.)

  3. 10 CFR 110.41 - Executive Branch review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium, except for exports of... foreign reactor. (8) An export involving radioactive waste. (9) An export to any country listed in § 110...

  4. Advanced Diesel Oil Fuel Processor Development

    DTIC Science & Technology

    1986-06-01

    water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit

  5. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.

    PubMed

    Schaefer, C; Jansen, A P J

    2013-02-07

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  6. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor.

    PubMed

    Maldonado, M I; Malato, S; Pérez-Estrada, L A; Gernjak, W; Oller, I; Doménech, Xavier; Peral, José

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (alpha-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html] founded by the European Union that inquires into the potential coupling between chemical and biological oxidations for the removal of toxic or non-biodegradable contaminants from water. The evolution of pollutant concentration, TOC mineralization, generation of inorganic species and consumption of O3 have been followed in order to visualize the chemical treatment effectiveness. Although complete mineralization is hard to accomplish, and large amounts of the oxidant are required to lower the organic content of the solutions, the possibility of ozonation cannot be ruled out if partial degradation is the final goal wanted. In this sense, Zahn-Wellens biodegradability tests of the ozonated MPG solutions have been performed, and the possibility of a further coupling with a secondary biological treatment for complete organic removal is envisaged.

  7. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ˜100 μm scale and ˜20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (˜ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ˜3%.

  8. Apparatus and systems for measuring elongation of objects, methods of measuring, and reactor

    DOEpatents

    Rempe, Joy L [Idaho Falls, ID; Knudson, Darrell L [Firth, ID; Daw, Joshua E [Idaho Falls, ID; Condie, Keith G [Idaho Falls, ID; Stoots, Carl M [Idaho Falls, ID

    2011-11-29

    Elongation measurement apparatuses and systems comprise at least two Linear Variable Differential Transformers (LVDTs) with a push rod coupled to each of the at least two LVDTs at one longitudinal end thereof. At least one push rod extends to a base and is coupled thereto at an opposing longitudinal end, and at least one other push rod extends to a location spaced apart from the base and is configured to receive a sample between an opposing longitudinal end of the at least one other push rod and the base. Nuclear reactors comprising such apparatuses and systems and methods of measuring elongation of a material are also disclosed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less

  10. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  11. Metal fires and their implications for advanced reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in thesemore » areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety analysis capabilities of the advanced-reactor community for directly relevant scenarios. Beyond the focus on the thermally-interacting and smoldering sodium pool fires, experimental and analysis capabilities for sodium spray fires have also been developed in this project.« less

  12. Reactivity Initiated Accident Simulation to Inform Transient Testing of Candidate Advanced Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R; Wysocki, Aaron J; Terrani, Kurt A

    2016-01-01

    Abstract. Advanced cladding materials with potentially enhanced accident tolerance will yield different light water reactor performance and safety characteristics than the present zirconium-based cladding alloys. These differences are due to different cladding material properties and responses to the transient, and to some extent, reactor physics, thermal, and hydraulic characteristics. Some of the differences in reactors physics characteristics will be driven by the fundamental properties (e.g., absorption in iron for an iron-based cladding) and others will be driven by design modifications necessitated by the candidate cladding materials (e.g., a larger fuel pellet to compensate for parasitic absorption). Potential changes in thermalmore » hydraulic limits after transition from the current zirconium-based cladding to the advanced materials will also affect the transient response of the integral fuel. This paper leverages three-dimensional reactor core simulation capabilities to inform on appropriate experimental test conditions for candidate advanced cladding materials in a control rod ejection event. These test conditions are using three-dimensional nodal kinetics simulations of a reactivity initiated accident (RIA) in a representative state-of-the-art pressurized water reactor with both nuclear-grade iron-chromium-aluminum (FeCrAl) and silicon carbide based (SiC-SiC) cladding materials. The effort yields boundary conditions for experimental mechanical tests, specifically peak cladding strain during the power pulse following the rod ejection. The impact of candidate cladding materials on the reactor kinetics behavior of RIA progression versus reference zirconium cladding is predominantly due to differences in: (1) fuel mass/volume/specific power density, (2) spectral effects due to parasitic neutron absorption, (3) control rod worth due to hardened (or softened) spectrum, and (4) initial conditions due to power peaking and neutron transport cross sections in the equilibrium cycle cores due to hardened (or softened) spectrum. This study shows minimal impact of SiC-based cladding configurations on the transient response versus reference zirconium-based cladding. However, the FeCrAl cladding response indicates similar energy deposition, but with significantly shorter pulses of higher magnitude. Therefore the FeCrAl-based cases have a more rapid fuel thermal expansion rate and the resultant pellet-cladding interaction occurs more rapidly.« less

  13. Cross-separatrix Coupling in Nonlinear Global Electrostatic Turbulent Transport in C-2U

    NASA Astrophysics Data System (ADS)

    Lau, Calvin; Fulton, Daniel; Bao, Jian; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar; TAE Team

    2017-10-01

    In recent years, the progress of the C-2/C-2U advanced beam-driven field-reversed configuration (FRC) experiments at Tri Alpha Energy, Inc. has pushed FRCs to transport limited regimes. Understanding particle and energy transport is a vital step towards an FRC reactor, and two particle-in-cell microturbulence codes, the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC), are being developed and applied toward this goal. Previous local electrostatic GTC simulations find the core to be robustly stable with drift-wave instability only in the scrape-off layer (SOL) region. However, experimental measurements showed fluctuations in both regions; one possibility is that fluctuations in the core originate from the SOL, suggesting the need for non-local simulations with cross-separatrix coupling. Current global ANC simulations with gyrokinetic ions and adiabatic electrons find that non-local effects (1) modify linear growth-rates and frequencies of instabilities and (2) allow instability to move from the unstable SOL to the linearly stable core. Nonlinear spreading is also seen prior to mode saturation. We also report on the progress of the first turbulence simulations in the SOL. This work is supported by the Norman Rostoker Fellowship.

  14. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongbin Zhang; Haihua Zhao; Cliff Davis

    2008-06-01

    An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heatmore » from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet temperature. The peak cladding, hot pool, cold pool and reactor inlet temperatures were calculated during LOFC. The results indicate that there are two phases during LOFC transient – the initial thermal equilibration phase and the long term decay heat removal phase. The initial thermal equilibration phase occurs over a few hundred seconds, as the system adjusts from forced circulation to natural circulation flow. Subsequently, during long-term heat removal phase all temperatures evolve very slowly due to the large thermal inertia of the primary and buffer pool systems. The results clearly show that passive safety PRACS can effectively transfer decay heat from the primary system to the buffer pool by natural circulation. The DRACS system in turn can effectively transfer the decay heat to the environment.« less

  15. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    PubMed

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  16. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...

  17. An eye on reactor and computer control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.; Knee, B.

    1992-01-01

    At ORNL computer software has been developed to make possible an improved eye-gaze measurement technology. Such an inovation could be the basis for advanced eye-gaze systems that may have applications in reactor control, software development, cognitive engineering, evaluation of displays, prediction of mental workloads, and military target recognition.

  18. 48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...

  19. 48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...

  20. 48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...

  1. 48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...

  2. 48 CFR 2009.570-3 - Criteria for recognizing contractor organizational conflicts of interest.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reactor component that is unique to one type of advanced reactor. As is the case with other technically... contractor prepares plans for specific approaches or methodologies that are to be incorporated into competitive procurements using the approaches or methodologies. (iii) Where the offeror or contractor is...

  3. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.

  4. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less

  5. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, Ya-Ling; Kang, Qinjun

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of whichmore » obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.« less

  6. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term – Trial Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-10-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is notmore » without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.« less

  7. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    PubMed

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C.

    The PIUS advanced reactor is a 640-MWe pressurized water reactor concept developed by Asea Brown Boveri. A unique feature of PIUS is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. Los Alamos supported the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. Baseline calculations of the PIUS design were performed for active and passive reactor scrams using TRAC-PF1/MOD2. Additional sensitivity studies examined flow blockage and boron dilution events to explore the robustness of the PIUS concept for low-probability combination events following active-system scrams.

  9. Direct injection of liquids into low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Goeckner, Matthew; Ogawa, Daisuke; Timmons, Richard; Overzet, Lawrence; Sanchez, Sam

    2006-10-01

    Being forced to use only gaseous precursors in plasma processing reactors is a significant and irrational limitation. Only a small minority of the molecules that could prove useful can be put into the vapor phase. On the other hand, a much greater fraction can be put into solution. We have found that by using a simple fuel injector directly coupled to a heated reactor, one can inject a variety of liquids directly into the plasma environment. A temperature controlled capillary tube can be used to accomplish the same thing. The liquids can also have a variety of solids dispersed in them: metals, dielectrics, aromatics, proteins, viruses, etc. While we have not had time yet to do detailed studies on a very wide range of liquids and dispersed solids, we do have the proof of principle. We have made films from injecting 1] ethanol, 2] hexane 3] iron nanoparticles dispersed in hexane and 4] ferrocene dissolved in benzene into capacitively coupled plasmas at approximately 50 mTorr. The details of the reactor and the films produced to date will be explained in the poster. Briefly: we use capacitively coupled plasma sources. Typical pressures are well below 1 Torr and powers below 10 Watts. The hexane films have growth rates around 10 nm/min.

  10. The Treatment of PPCP-Containing Sewage in an Anoxic/Aerobic Reactor Coupled with a Novel Design of Solid Plain Graphite-Plates Microbial Fuel Cell

    PubMed Central

    Chang, Yi-Tang; Yang, Chu-Wen; Chang, Yu-Jie; Chang, Ting-Chieh; Wei, Da-Jiun

    2014-01-01

    Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm2 and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production. PMID:25197659

  11. The Simulator Development for RDE Reactor

    NASA Astrophysics Data System (ADS)

    Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.

  12. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  13. A Methodology for the Development of a Reliability Database for an Advanced Reactor Probabilistic Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, Dave; Brunett, Acacia J.; Bucknor, Matthew

    GE Hitachi Nuclear Energy (GEH) and Argonne National Laboratory are currently engaged in a joint effort to modernize and develop probabilistic risk assessment (PRA) techniques for advanced non-light water reactors. At a high level the primary outcome of this project will be the development of next-generation PRA methodologies that will enable risk-informed prioritization of safety- and reliability-focused research and development, while also identifying gaps that may be resolved through additional research. A subset of this effort is the development of a reliability database (RDB) methodology to determine applicable reliability data for inclusion in the quantification of the PRA. The RDBmore » method developed during this project seeks to satisfy the requirements of the Data Analysis element of the ASME/ANS Non-LWR PRA standard. The RDB methodology utilizes a relevancy test to examine reliability data and determine whether it is appropriate to include as part of the reliability database for the PRA. The relevancy test compares three component properties to establish the level of similarity to components examined as part of the PRA. These properties include the component function, the component failure modes, and the environment/boundary conditions of the component. The relevancy test is used to gauge the quality of data found in a variety of sources, such as advanced reactor-specific databases, non-advanced reactor nuclear databases, and non-nuclear databases. The RDB also establishes the integration of expert judgment or separate reliability analysis with past reliability data. This paper provides details on the RDB methodology, and includes an example application of the RDB methodology for determining the reliability of the intermediate heat exchanger of a sodium fast reactor. The example explores a variety of reliability data sources, and assesses their applicability for the PRA of interest through the use of the relevancy test.« less

  14. Evaluation Metrics Applied to Accident Tolerant Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuelsmore » and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.« less

  15. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors

    NASA Astrophysics Data System (ADS)

    Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.

    2009-07-01

    Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.

  16. Improving online risk assessment with equipment prognostics and health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Liu, Xiaotong; Briere, Chris

    The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less

  17. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  18. PIE on Safety-Tested AGR-1 Compact 5-1-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactormore » (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.« less

  19. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    NASA Astrophysics Data System (ADS)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could provide a significant optimisation of the UCG process by means of CO2 storage efficiency. The proposed coupled UCG-CCS scheme allows for meeting EU targets for greenhouse gas emissions and increases the coal yield otherwise impossible to exploit.

  20. VERA 3.6 Release Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Richard L.; Kochunas, Brendan; Adams, Brian M.

    The Virtual Environment for Reactor Applications components included in this distribution include selected computational tools and supporting infrastructure that solve neutronics, thermal-hydraulics, fuel performance, and coupled neutronics-thermal hydraulics problems. The infrastructure components provide a simplified common user input capability and provide for the physics integration with data transfer and coupled-physics iterative solution algorithms.

  1. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013

    NASA Astrophysics Data System (ADS)

    Saha, Uttiyoarnab; Devan, K.; Ganesan, S.

    2018-05-01

    Displacements per atom (dpa), estimated based on the standard Norgett-Robinson-Torrens (NRT) model, is used for assessing radiation damage effects in fast reactor materials. A computer code CRaD has been indigenously developed towards establishing the infrastructure to perform improved radiation damage studies in Indian fast reactors. We propose a method for computing multigroup neutron NRT dpa cross sections based on SRIM-2013 simulations. In this method, for each neutron group, the recoil or primary knock-on atom (PKA) spectrum and its average energy are first estimated with CRaD code from ENDF/B-VII.1. This average PKA energy forms the input for SRIM simulation, wherein the recoil atom is taken as the incoming ion on the target. The NRT-dpa cross section of iron computed with "Quick" Kinchin-Pease (K-P) option of SRIM-2013 is found to agree within 10% with the standard NRT-dpa values, if damage energy from SRIM simulation is used. SRIM-2013 NRT-dpa cross sections applied to estimate the integrated dpa for Fe, Cr and Ni are in good agreement with established computer codes and data. A similar study carried out for polyatomic material, SiC, shows encouraging results. In this case, it is observed that the NRT approach with average lattice displacement energy of 25 eV coupled with the damage energies from the K-P option of SRIM-2013 gives reliable displacement cross sections and integrated dpa for various reactor spectra. The source term of neutron damage can be equivalently determined in the units of dpa by simulating self-ion bombardment. This shows that the information of primary recoils obtained from CRaD can be reliably applied to estimate the integrated dpa and damage assessment studies in accelerator-based self-ion irradiation experiments of structural materials. This study would help to advance the investigation of possible correlations between the damages induced by ions and reactor neutrons.

  2. Light Water Reactor Sustainability Program FY13 Status Update for EPRI - RISMC Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis

    2013-09-01

    The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced "RISMC toolkit" that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho Nationalmore » Laboratory (INL) is collaborating with the Electric Power Research Institute (EPRI) in order to focus on applications of interest to the U.S. nuclear power industry. This report documents the collaboration activities performed between INL and EPRI during FY2013.« less

  3. New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Stavitski, Eli; Waluyo, Iradwikanari

    The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. Thus, in-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques pavedmore » a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.« less

  4. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC weremore » tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.« less

  5. New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes

    DOE PAGES

    Palomino, Robert M.; Stavitski, Eli; Waluyo, Iradwikanari; ...

    2017-03-31

    The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. Thus, in-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques pavedmore » a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.« less

  6. The benefits of an advanced fast reactor fuel cycle for plutonium management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less

  7. Fluidized-bed Fenton coupled with ceramic membrane separation for advanced treatment of flax wastewater.

    PubMed

    Fan, Dong; Ding, Lili; Huang, Hui; Chen, Mengtian; Ren, Hongqiang

    2017-10-15

    Fluidized-bed Fenton coupled with ceramic membrane separation to treat the flax secondary effluent was investigated. The operating variables, including initial pH, dosage of H 2 O 2 and Fe 0 , air flow rate, TMP and pore size, were optimized. The distributions of DOMs in the treatment process were analyzed. Under the optimum condition (600mgL -1 H 2 O 2 , 1.4gL -1 Fe 0 , pH=3, 300Lh -1 air flow rate and 15psi TMP), the highest TOC and color removal efficiencies were 84% and 94% in the coupled reactor with 100nm ceramic membrane, reducing 39% of total iron with similar removal efficiency compared with Fluidized-bed Fenton. Experimental results showed that the ceramic membrane could intercept catalyst particles (average particle size >100nm), 10.4% macromolecules organic matter (AMW>20000Da) and 12.53% hydrophobic humic-like component. EEM-PARAFAC identified four humic-like (M1-M4) and one protein-like components (M5), and the fluorescence intensities of M1-M5 in the secondary effluent were 63.27, 63.05, 33.41, 16.71 and 0.72 QSE, respectively. After the coupled treatment, the removal efficiencies of M1(81%), M2(86%) were higher than M3, M4(63%, 61%). Pearson correlation analysis suggested that M1, M2 and M3 were the major contributors to the cake layer, and M4, M5 might more easily lead to pore blockages. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. From biofilm ecology to reactors: a focused review.

    PubMed

    Boltz, Joshua P; Smets, Barth F; Rittmann, Bruce E; van Loosdrecht, Mark C M; Morgenroth, Eberhard; Daigger, Glen T

    2017-04-01

    Biofilms are complex biostructures that appear on all surfaces that are regularly in contact with water. They are structurally complex, dynamic systems with attributes of primordial multicellular organisms and multifaceted ecosystems. The presence of biofilms may have a negative impact on the performance of various systems, but they can also be used beneficially for the treatment of water (defined herein as potable water, municipal and industrial wastewater, fresh/brackish/salt water bodies, groundwater) as well as in water stream-based biological resource recovery systems. This review addresses the following three topics: (1) biofilm ecology, (2) biofilm reactor technology and design, and (3) biofilm modeling. In so doing, it addresses the processes occurring in the biofilm, and how these affect and are affected by the broader biofilm system. The symphonic application of a suite of biological methods has led to significant advances in the understanding of biofilm ecology. New metabolic pathways, such as anaerobic ammonium oxidation (anammox) or complete ammonium oxidation (comammox) were first observed in biofilm reactors. The functions, properties, and constituents of the biofilm extracellular polymeric substance matrix are somewhat known, but their exact composition and role in the microbial conversion kinetics and biochemical transformations are still to be resolved. Biofilm grown microorganisms may contribute to increased metabolism of micro-pollutants. Several types of biofilm reactors have been used for water treatment, with current focus on moving bed biofilm reactors, integrated fixed-film activated sludge, membrane-supported biofilm reactors, and granular sludge processes. The control and/or beneficial use of biofilms in membrane processes is advancing. Biofilm models have become essential tools for fundamental biofilm research and biofilm reactor engineering and design. At the same time, the divergence between biofilm modeling and biofilm reactor modeling approaches is recognized.

  9. Nozzle seal

    DOEpatents

    Herman, Richard Frederick

    1977-10-25

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing members operatively disposed between the outlet nozzle and the hoop. The sealing members are biased against the pressure vessel and the hoop and are connected by a leak restraining member establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel.

  10. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  11. Vibration monitoring of Kraftwerk Union pressurized water reactors - Review, present status, and further development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolben, H.; Wehling, H.J.

    Incipient damage to mechanical structure may be detected early in time by deviations from normal dynamic behavior. For vibration monitoring of coupled systems, only a small number of transducers are necessary, in general. On the basis, Kraftwerk Union has been involved in the development and construction of vibration monitoring systems for pressurized water reactors over the last 20 yr. The current state of the art permits vibration monitoring during normal operation by reactor personnel without expert assistance. The new SUS-86 microprocessor-based system allows further expansion toward an expert system.

  12. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  13. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less

  14. Application of the Enabler to nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Pierce, Bill L.

    This paper describes a power system concept that provides the electric power for a baseline electric propulsion system for a piloted mission to Mars. A 10-MWe space power system is formed by coupling an Enabler reactor with a simple non-recuperated closed Brayton cycle. The Enabler reactor is a gas-cooled reactor based on proven reactor technology developed under the NERVA/Rover programs. The selected power cycle, which uses a helium-xenon mixture at 1920 K at the turbine inlet, is diagramed and described. The specific mass of the power system over the power range from 5 to 70 MWe is given. The impact of operating life on the specific mass of a 10-MWe system is also shown.

  15. Controlled-Turbulence Bioreactors

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwartz, Ray; Trinh, Tinh

    1989-01-01

    Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

  16. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less

  17. Synthesis gas method and apparatus

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie; Kosowski, Lawrence W; Robinson, Charles

    2015-11-06

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  18. Synthesis gas method and apparatus

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2013-01-08

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  19. Research reactor loading pattern optimization using estimation of distribution algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less

  20. Characterization of alternative electric generation technologies for the SPS comparative assessment. Volume 1: Summary of central station technologies

    NASA Astrophysics Data System (ADS)

    1980-08-01

    The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.

Top