Science.gov

Sample records for advanced rechargeable batteries

  1. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  2. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

  3. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  4. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg were realized in practical batteries. Other technological advantages include its chemical simplicity, absence of self-discharge, and long cycle life possibility. More recently, other high temperature sodium batteries have come into the spotlight. These systems can be described as follow: Na/Beta Double Prime-Al2O3/NaAlCl4/Metal Dichloride Sodium/metal dichloride systems are colloquially known as the zebra system and are currently being developed for traction and load leveling applications. The sodium-metal dichloride systems appear to offer many of the same advantages of the Na/S system, especially in terms of energy density and chemical simplicity. The metal dichloride systems offer increased safety and good resistance to overcharge and operate over a wide range of temperatures from 150 to 400 C with less corrosion problems.

  5. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  6. Polyphase alloys as rechargeable electrodes in advanced battery systems

    NASA Technical Reports Server (NTRS)

    Huggins, Robert A.

    1987-01-01

    The rechargeability of electrochemical cells is often limited by negative electrode problems. These may include loss of capacity, increased impedance, macroscopic shape change, dendrite growth, or a tendency for filamentary or whisker growth. In principle, these problems can be reduced or eliminated by the use of alloys that undergo either displacement or insertion reactions at reactant species activities less than unity, rather than pure elements. The fundamental reasons for some of these problems with elemental electrodes, as well as the basic principles involved in the different behavior of alloys, are briefly discussed. More information is now available concerning the thermodynamic and kinetic properties of a number of alloys of potential interest for use as electrodes in elevated temperature lithium battery systems. Recent results have extended these results down to ambient temperatures, indicating that some such materials may be of interest for use with new low temperature molten salt electrolytes, or with organic solvent electrolytes. The all solid mixed conductor matrix concept is also reviewed.

  7. Rechargeable zinc halogen battery

    SciTech Connect

    Spaziante, P.M.; Nidola, A.

    1980-01-01

    A rechargeable zinc halogen battery has an aqueous electrolyte containing ions of zinc and halogen and an amount of polysaccharide and/or sorbitol sufficient to prevent zinc dendrite formation during recharging. The electrolyte may also contain trace amounts of metals such as tungsten, molybdenum, and lead. 7 tables.

  8. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    PubMed

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-04-03

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g(-1) (2.27 V vs Li(+) /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g(-1) (2.60 V vs Li(+) /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm(-2) with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries.

  9. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    SciTech Connect

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

  10. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE PAGES

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; ...

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembledmore » into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  11. Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries.

    PubMed

    Li, Xuemin; Wolden, Colin A; Ban, Chunmei; Yang, Yongan

    2015-12-30

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1-5 μm). Electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

  12. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.

    PubMed

    Yu, Zhijing; Kang, Zepeng; Hu, Zongqian; Lu, Jianhong; Zhou, Zhigang; Jiao, Shuqiang

    2016-08-16

    Hexagonal NiS nanobelts served as novel cathode materials for rechargeable Al-ion batteries based on an AlCl3/[EMIm]Cl ionic liquid electrolyte system. The nano-banded structure of the materials can facilitate the electrolyte immersion and enhance Al(3+) diffusion. The hexagonal NiS nanobelt based cathodes exhibit high storage capacity, good cyclability and low overpotential.

  13. Ambient Temperature Rechargeable Lithium Battery.

    DTIC Science & Technology

    1982-08-01

    AD-AI O297 EIC LA BS INC NEWTON MA F/6 10/3 AMB IENT TEMPERATURE RECHARGEABLE LITHIUM BATTERAU AG(MARHMU)L TI ARI AK IC07 UNCLASSIFIED C-655DEE TB6...036FL -T Research and Development Technical Report -N DELET-TR-81-0378-F AMBIENT TEMPERATURE RECHARGEABLE LITHIUM BATTERY K. M. Abraham D. L. Natwig...WORDS (Cenimne an revee filf Of ~"#amp Pu l41"lfr bg’ 61WA amober) Rechargeable lithium battery, CrO.5VO.5S2 positive electrode, 2Me-THF/LiAsF6, cell

  14. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement

    NASA Astrophysics Data System (ADS)

    Xu, M.; Ivey, D. G.; Xie, Z.; Qu, W.

    2015-06-01

    Zn-air batteries, which are cost-effective and have high energy density, are promising energy storage devices for renewable energy and power sources for electric transportation. Nevertheless, limited charge and discharge cycles and low round-trip efficiency have long been barriers preventing the large-scale deployment of Zn-air batteries in the marketplace. Technology advancements for each battery component and the whole battery/cell assembly are being pursued, with some key milestones reached during the past 20 years. As an example, commercial Zn-air battery products with long lifetimes and high energy efficiencies are being considered for grid-scale energy storage and for automotive markets. In this review, we present our perspectives on improvements in Zn-air battery technology through the exploration and utilization of different electrolyte systems. Recent studies ranging from aqueous electrolytes to nonaqueous electrolytes, including solid polymer electrolytes and ionic liquids, as well as hybrid electrolyte systems adopted in Zn-air batteries have been evaluated. Understanding the benefits and drawbacks of each electrolyte, as well as the fundamental electrochemistry of Zn and air electrodes in different electrolytes, are the focus of this paper. Further consideration is given to detailed Zn-air battery configurations that have been studied and applied in commercial or nearing commercial products, with the purpose of exposing state-of-the-art technology innovations and providing insights into future advancements.

  15. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  16. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  17. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  18. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  19. Survey of rechargeable battery technology

    SciTech Connect

    Not Available

    1993-07-01

    We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

  20. Challenges for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Goodenough, J. B.; Kim, Youngsik

    Strategies for Li-ion batteries that are based on lithium-insertion compounds as cathodes are limited by the capacities of the cathode materials and by the safe charging rates for Li transport across a passivating SEI layer on a carbon-based anode. With these strategies, it is difficult to meet the commercial constraints on Li-ion batteries for plug-in-hybrid and all-electric vehicles as well as those for stationary electrical energy storage (EES) in a grid. Existing alternative strategies include a gaseous O 2 electrode in a Li/air battery and a solid sulfur (S 8) cathode in a Li/S battery. We compare the projected energy densities and EES efficiencies of these cells with those of a third alternative, a Li/Fe(III)/Fe(II) cell containing a redox couple in an aqueous solution as the cathode. Preliminary measurements indicate proof of concept, but implementation of this strategy requires identification of a suitable Li +-ion electrolyte.

  1. Polymer Energy Rechargeable System Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.

  2. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  3. In situ, operando measurements of rechargeable batteries

    DOE PAGES

    Wang, Howard; Wang, Feng

    2016-08-01

    This article reviews recent in operando measurements (IOMs) for addressing challenges in advancing rechargeable battery (RB) technologies. As the demands on energy and power density of RBs for broader applications continue to grow, current RB technologies are pushed to their theoretical and engineering limits while new approaches are being extensively investigated. Also, IOMs have become more powerful and effective research tools in recent years; they will play an essential role in developing next generation RBs. This review is organized around outstanding issues in battery science and engineering. Finally, we emphasize the critical need for quantifying the distribution and transport ofmore » active ions in functioning batteries over wide temporal and spatial scales in real time.« less

  4. In situ, operando measurements of rechargeable batteries

    SciTech Connect

    Wang, Howard; Wang, Feng

    2016-08-01

    This article reviews recent in operando measurements (IOMs) for addressing challenges in advancing rechargeable battery (RB) technologies. As the demands on energy and power density of RBs for broader applications continue to grow, current RB technologies are pushed to their theoretical and engineering limits while new approaches are being extensively investigated. Also, IOMs have become more powerful and effective research tools in recent years; they will play an essential role in developing next generation RBs. This review is organized around outstanding issues in battery science and engineering. Finally, we emphasize the critical need for quantifying the distribution and transport of active ions in functioning batteries over wide temporal and spatial scales in real time.

  5. Advanced Manufacturing Process for Lower Cost Rechargeable Lithium-ion Batteries for DOD Including the BB2590

    DTIC Science & Technology

    2013-11-30

    Nickelate in 18650 Cell 24 8. Installation of Resistance Welder 25 9. Bi-Cell Vacuum Dryer and with Activation Box 26 10. Semi...DOD lithium-ion rechargeable cells/batteries are composed of combinations using Asian 18650 cells including the BB2590. This dependence is due to the...much lower cost of the Asian and particularly the Chinese 18650 cells which are made on very large scale and also with lower labor costs. LithChem

  6. Application potential of rechargeable lithium batteries

    SciTech Connect

    Hunger, H.F.; Bramhall, P.J.

    1983-10-01

    Rechargeable lithium cells with Cr /SUB 0.5/ V/sub 0/ /sub 5/S/sub 2/ and MoO/sub 3/ cathodes were investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). Current densities and capacities as a function of temperature, cathode utilization efficiencies versus cycle life, and shelf lives were determined. The state of charge could be related to open circuit voltages after partial discharge. The potential of the system for communication applications is discussed. Recent advances in rechargeable lithium batteries were mainly due to the discovery of stable, cyclic ether electrolyte solvents (1) and to the use of rechargeable cathode materials (2). The practical usefulness of rechargeable lithium cells with Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ and MoO/sub 3/ cathodes was investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was mainly 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). The two cathode materials were chosen because Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ resembles TiS/sub 2/ in capacity and cycling behavior and MoO/sub 3/ is a low cost cathode material of interest.

  7. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    DOE PAGES

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; ...

    2017-02-13

    There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg-1 with Coulombic efficiency B98%, at a current density of 99mAg-1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg-1 at 6 C, over 6,000 cycles with Coulombic efficiency B 99%. Raman spectroscopymore » shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less

  8. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    PubMed Central

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; Pan, Chun-Jern; Chou, Hung-Lung; Chen, Hsin-An; Gong, Ming; Wu, Yingpeng; Yuan, Chunze; Angell, Michael; Hsieh, Yu-Ju; Chen, Yu-Hsun; Wen, Cheng-Yen; Chen, Chun-Wei; Hwang, Bing-Joe; Chen, Chia-Chun; Dai, Hongjie

    2017-01-01

    Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g−1 with Coulombic efficiency ∼98%, at a current density of 99 mA g−1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60 mAh g−1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode. PMID:28194027

  9. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    NASA Astrophysics Data System (ADS)

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; Pan, Chun-Jern; Chou, Hung-Lung; Chen, Hsin-An; Gong, Ming; Wu, Yingpeng; Yuan, Chunze; Angell, Michael; Hsieh, Yu-Ju; Chen, Yu-Hsun; Wen, Cheng-Yen; Chen, Chun-Wei; Hwang, Bing-Joe; Chen, Chia-Chun; Dai, Hongjie

    2017-02-01

    Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion-graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ~110 mAh g-1 with Coulombic efficiency ~98%, at a current density of 99 mA g-1 (0.9 C) with clear discharge voltage plateaus (2.25-2.0 V and 1.9-1.5 V). The cell has a capacity of 60 mAh g-1 at 6 C, over 6,000 cycles with Coulombic efficiency ~ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C-Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.

  10. Mastering the interface for advanced all-solid-state lithium rechargeable batteries.

    PubMed

    Li, Yutao; Zhou, Weidong; Chen, Xi; Lü, Xujie; Cui, Zhiming; Xin, Sen; Xue, Leigang; Jia, Quanxi; Goodenough, John B

    2016-11-22

    A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)3 with rhombohedral structure at room temperature that has a bulk Li-ion conductivity σLi = 2 × 10(-4) S⋅cm(-1) at 25 °C, a high electrochemical stability up to 5.5 V versus Li(+)/Li, and a small interfacial resistance for Li(+) transfer. It reacts with a metallic lithium anode to form a Li(+)-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)3 electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life.

  11. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  12. The Rechargeability of Silicon-Air Batteries

    DTIC Science & Technology

    2012-06-01

    seconds in order to remove surface native oxide layer. The silicon was then rinsed with de- ionized (DI) water and dried using a nitrogen stream. After the...continued operation without loss of energy density, and avoiding the build-up of water byproduct in the electrolyte during reduction during recharge phase...an Si-air electrochemical cell a source of water for other applications. Metal-air batteries, silicon-air, electrochemistry, rechargeable batteries UU

  13. Rechargeable alkaline manganese dioxide/zinc batteries

    NASA Astrophysics Data System (ADS)

    Kordesh, K.; Weissenbacher, M.

    The rechargeable alkaline manganese dioxide/zinc MnO 2/Zn) system, long established commercial as a primay battery, has reached a high level of performance as a secondary battery system. The operating principles are presented and the technological achievements are surveyed by referencing the recent publications and patent literature. A review is also given of the improvements obtained with newly formulated cathodes and anodes and specially designed batteries. Supported by modelling of the cathode and anode processes and by statistical evidence during cycling of parallel/series-connected modules, the envisioned performance of the next generation of these batteries is described. The possibility of extending the practical use of the improved rechargeable MnO 2/Zn system beyond the field of small electronics into the area of power tools, and even to kW-sized power sources, is demonstrated. Finally, the commercial development in comparison with other rechargeable battery systems is examined.

  14. Electrode materials for rechargeable battery

    DOEpatents

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0

  15. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  16. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  17. The rechargeable aluminum-ion battery.

    PubMed

    Jayaprakash, N; Das, S K; Archer, L A

    2011-12-21

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g(-1) in the first cycle and 273 mAh g(-1) after 20 cycles, with very stable electrochemical behaviour.

  18. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  19. All inorganic ambient temperature rechargeable lithium battery

    NASA Astrophysics Data System (ADS)

    Kuo, H. C.; Dey, A. N.; Schlaikjer, C.; Foster, D.; Kallianidis, M.

    Research and development was carried out on ambient-temperature rechargeable lithium batteries with inorganic SO2 electrolytes. The following solutes in SO2 were studied: tetrachloroaluminates, LiAlCl4, Li2B10Cl10, and LiGaCl4. Copper chloride (CuCl2) was used as one of the electrode materials.

  20. Design considerations for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

    1993-01-01

    Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

  1. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Federal Aviation Administration Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries...: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  2. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Federal Aviation Administration Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries...: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  3. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Federal Aviation Administration Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries...: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  4. Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode

    PubMed Central

    Sun, Dan; Jiang, Yifan; Wang, Haiyan; Yao, Yan; Xu, Guoqing; He, Kejian; Liu, Suqin; Tang, Yougen; Liu, Younian; Huang, Xiaobing

    2015-01-01

    Poor cycling performance arising from the instability of anode is still a main challenge for aqueous rechargeable lithium batteries (ARLB). In the present work, a high performance LiTi2(PO4)3/C composite has been achieved by a novel and facile preparation method associated with an in-situ carbon coating approach. The LiTi2(PO4)3/C nanoparticles show high purity and the carbon layer is very uniform. When used as an anode material, the ARLB of LiTi2(PO4)3/C//LiMn2O4 delivered superior cycling stability with a capacity retention of 90% after 300 cycles at 30 mA g−1 and 84% at 150 mA g−1 over 1300 cycles. It also demonstrated excellent rate capability with reversible discharge capacities of 115 and 89 mAh g−1 (based on the mass of anode) at 15 and 1500 mA g−1, respectively. The superior electrochemical properties should be mainly ascribed to the high performance of LiTi2(PO4)3/C anode, benefiting from its nanostructure, high-quality carbon coating, appropriate crystal structure and excellent electrode surface stability as verified by Raman spectra, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. PMID:26035774

  5. Electroactive materials for rechargeable batteries

    SciTech Connect

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  6. Anode-Free Rechargeable Lithium Metal Batteries

    SciTech Connect

    Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming; Xu, Wu; Henderson, Wesley A.; Wang, Jun; Bowden, Mark E.; Xu, Suochang; Hu, Jianzhi; Zhang, Ji-Guang

    2016-08-18

    Anode-free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li-ion batteries, as well as ease of assembly owing to the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, we report for the first time an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (> 99.8%). This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols which minimize the corrosion of the in-situ formed Li metal anode.

  7. Making Li-air batteries rechargeable: material challenges

    SciTech Connect

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  8. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOEpatents

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  9. An ultrafast rechargeable aluminium-ion battery

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-01

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g-1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g-1 (equivalent to ~3,000 W kg-1), and to withstand more than 7,500 cycles without capacity decay.

  10. Evolution of strategies for modern rechargeable batteries.

    PubMed

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  11. Rechargeable Seawater Battery and Its Electrochemical Mechanism

    SciTech Connect

    kim, Jae-Kwang; Lee, Eungje; Kim, Hyojin; Johnson, Christopher; Cho, Jaephil; Kim, Youngsik

    2015-01-01

    Herein, we explore the electrochemical mechanism of a novel rechargeable seawater battery system that uses seawater as the cathode material. Sodium is harvested from seawater while charging the battery, and the harvested sodium is discharged with oxygen dissolved in the seawater, functioning as oxidants to produce electricity. The seawater provides both anode (Na metal) and cathode (O2) materials for the proposed battery. Based on the discharge voltage (~2.9 V) with participation of O2 and the charge voltage (~4.1 V) with Cl2 evolution during the first cycle, a voltage efficiency of about 73% is obtained. If the seawater battery is constructed using hard carbon as the anode and a Na super ion conductor as the solid electrolyte, a strong cycle performance of 84% is observed after 40 cycles.

  12. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY...: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium...

  13. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  14. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  15. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  16. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  17. Anodes for rechargeable lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  18. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  19. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... TRANSPORTATION Federal Aviation Administration Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium.... Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 225, Rechargeable Lithium... public of the sixth meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  20. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Federal Aviation Administration Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium.... Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 225, Rechargeable Lithium... public of the seventh meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  1. An ultrafast rechargeable aluminium-ion battery.

    PubMed

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-16

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay.

  2. Transient Rechargeable Batteries Triggered by Cascade Reactions.

    PubMed

    Fu, Kun; Liu, Zhen; Yao, Yonggang; Wang, Zhengyang; Zhao, Bin; Luo, Wei; Dai, Jiaqi; Lacey, Steven D; Zhou, Lihui; Shen, Fei; Kim, Myeongseob; Swafford, Laura; Sengupta, Louise; Hu, Liangbing

    2015-07-08

    Transient battery is a new type of technology that allows the battery to disappear by an external trigger at any time. In this work, we successfully demonstrated the first transient rechargeable batteries based on dissoluble electrodes including V2O5 as the cathode and lithium metal as the anode as well as a biodegradable separator and battery encasement (PVP and sodium alginate, respectively). All the components are robust in a traditional lithium-ion battery (LIB) organic electrolyte and disappear in water completely within minutes due to triggered cascade reactions. With a simple cut-and-stack method, we designed a fully transient device with an area of 0.5 cm by 1 cm and total energy of 0.1 J. A shadow-mask technique was used to demonstrate the miniature device, which is compatible with transient electronics manufacturing. The materials, fabrication methods, and integration strategy discussed will be of interest for future developments in transient, self-powered electronics. The demonstration of a miniature Li battery shows the feasibility toward system integration for all transient electronics.

  3. Moderate temperature rechargeable sodium batteries

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Rupich, M. W.; Pitts, L.; Elliott, J. E.

    1983-01-01

    Cells utilizing the organic electrolyte, NaI in triglyme, operated at approx. 130 C with Na(+) - intercalating cathodes. However, their rate and stability were inadequate. NaAlCl4 was found to be a highly useful electrolyte for cell operation at 165-190 C. Na(+) intercalating chalcogenides reacted with NaAlCl4 during cycling to form stable phases. Thus, VS2 became essentially VS2Cl, with reversible capacity of approx 2.8 e(-)/V, and a mid-discharge voltage of approx 2.5V and 100 deep discharge cycles were readily achieved. A positive electrode consisting of VCl3 and S plus NaAlCl4 was subjected to deep-discharge cycles 300 times and it demonstrated identity with the in-situ-formed BSxCly cathode. NiS2 and NiS which are not Na(+)-intercalating structures formed highly reversible electrodes in NaAlCl4. The indicated discharge mechanism implies a theoretical capacity 4e(-)/Ni for NiS2 and 2e(-)/Ni for NiS. The mid-discharge potentials are, respectively, 2.4V and 2.1V. A Na/NiS2 cell cycling at a C/5 rate has exceeded 500 deep discharge cycles with 2.5e(-)/Ni average utilization. A 4 A-hr nominal capacity prototype Na/NiS2 cell was tested at 190 C. It was voluntarily terminated after 80 cycles. Further development, particularly of cathode structure and hardware should produce a battery capable of at least 50-W-hr/lb and more than 1000 cycles.

  4. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery.... Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 225, Rechargeable Lithium... public of a meeting of RTCA Special Committee 225, Rechargeable Lithium Battery and Battery...

  5. Wearable textile battery rechargeable by solar energy.

    PubMed

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  6. Porous silicon nanowires for lithium rechargeable batteries.

    PubMed

    Yoo, Jung-Keun; Kim, Jongsoon; Lee, Hojun; Choi, Jaesuk; Choi, Min-Jae; Sim, Dong Min; Jung, Yeon Sik; Kang, Kisuk

    2013-10-25

    Porous silicon nanowire is fabricated by a simple electrospinning process combined with a magnesium reduction; this material is investigated for use as an anode material for lithium rechargeable batteries. We find that the porous silicon nanowire electrode from the simple and scalable method can deliver a high reversible capacity with an excellent cycle stability. The enhanced performance in terms of cycling stability is attributed to the facile accommodation of the volume change by the pores in the interconnect and the increased electronic conductivity due to a multi-level carbon coating during the fabrication process.

  7. Porous silicon nanowires for lithium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Keun; Kim, Jongsoon; Lee, Hojun; Choi, Jaesuk; Choi, Min-Jae; Sim, Dong Min; Jung, Yeon Sik; Kang, Kisuk

    2013-10-01

    Porous silicon nanowire is fabricated by a simple electrospinning process combined with a magnesium reduction; this material is investigated for use as an anode material for lithium rechargeable batteries. We find that the porous silicon nanowire electrode from the simple and scalable method can deliver a high reversible capacity with an excellent cycle stability. The enhanced performance in terms of cycling stability is attributed to the facile accommodation of the volume change by the pores in the interconnect and the increased electronic conductivity due to a multi-level carbon coating during the fabrication process.

  8. Nanostructured cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  9. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1994-11-01

    Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxyniuide electrolyte, Li metal anode, and Li{sub 1-x}Mn{sub 2}O{sub 4} as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100{degrees}C or by enhancing the lithium ion transport rate in the cathode material.

  10. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of the eighth meeting of RTCA Special Committee 225, Rechargeable Lithium Battery...

  11. Studies of rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Cui, Yi

    The studies of rechargeable lithium-sulfur (Li-S) batteries are included in this thesis. In the first part of this thesis, a linear sweep voltammetry method to study polysulfide transport through separators is presented. Shuttle of polysulfide from the sulfur cathode to lithium metal anode in rechargeable Li-S batteries is a critical issue hindering cycling efficiency and life. Several approaches have been developed to minimize it including polysulfide-blocking separators; there is a need for measuring polysulfide transport through separators. We have developed a linear sweep voltammetry method to measure the anodic (oxidization) current of polysulfides crossed separators, which can be used as a quantitative measurement of the polysulfide transport through separators. The electrochemical oxidation of polysulfide is diffusion controlled. The electrical charge in Coulombs produced by the oxidation of polysulfide is linearly related to the concentration of polysulfide within a certain range (≤ 0.5 M). Separators with a high porosity (large pore size) show high anodic currents, resulting in fast capacity degradation and low Coulombic efficiencies in Li-S cells. These results demonstrate this method can be used to correlate the polysulfide transport through separators with the separator structure and battery performance, therefore provide guidance for developing new separators for Li-S batteries. The second part includes a study on improving cycling performance of Li/polysulfide batteries by applying a functional polymer on carbon current collector. Significant capacity decay over cycling in Li-S batteries is a major impediment for their practical applications. Polysulfides Li2S x (3 < x ≤ 8) formed in the cycling are soluble in liquid electrolyte, which is the main reason for capacity loss and cycling instability. Functional polymers can tune the structure and property of sulfur electrodes, hold polysulfides, and improve cycle life. We have examined a

  12. Materials for rechargeable lithium-ion batteries.

    PubMed

    Hayner, Cary M; Zhao, Xin; Kung, Harold H

    2012-01-01

    The lithium-ion battery is the most promising battery candidate to power battery-electric vehicles. For these vehicles to be competitive with those powered by conventional internal combustion engines, significant improvements in battery performance are needed, especially in the energy density and power delivery capabilities. Recent discoveries and advances in the development of electrode materials to improve battery performance are summarized. Promising substitutes for graphite as the anode material include silicon, tin, germanium, their alloys, and various metal oxides that have much higher theoretical storage capacities and operate at slightly higher and safer potentials. Designs that attempt to accommodate strain owing to volumetric changes upon lithiation and delithiation are presented. All known cathode materials have storage capacities inferior to those of anode materials. In addition to variations on known transition metal oxides and phosphates, other potential materials, such as metal fluorides, are discussed as well as the effects of particle size and electrode architecture. New electrolyte systems and additives as well as their effects on battery performance, especially with regard to safety, are described.

  13. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the eleventh meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  14. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the twelfth meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  15. Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries.

    PubMed

    Tan, Rui; Yang, Jinlong; Hu, Jiangtao; Wang, Kai; Zhao, Yan; Pan, Feng

    2016-01-18

    We report the formation of core-shell nano-FeS2@N-doped graphene as a novel cathode material and its mechanism for use in rechargeable Li-ion batteries. A benefit of the amount of FeS2 nano-crystals as the core for Li-ion storage with high capacity and using coated N-doped graphene as the shell is that FeS2@N-graphene exhibits a remarkable specific energy (950 W h kg(-1) at 0.15 kW g(-1)) and higher specific power (543 W h kg(-1) at 2.79 kW g(-1)) than commercial rechargeable LIB cathodes, as well as stable cycling performance (∼600 W h kg(-1) at 0.75 kW g(-1) after 400 cycles).

  16. Bipolar rechargeable lithium battery for high power applications

    NASA Technical Reports Server (NTRS)

    Hossain, Sohrab; Kozlowski, G.; Goebel, F.

    1993-01-01

    Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

  17. Improved zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  18. NiF2 Cathodes For Rechargeable Na Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Halpert, Gerald

    1992-01-01

    Use of NiF2 cathodes in medium-to-high-temperature rechargeable sodium batteries increases energy and power densities by 25 to 30 percent without detracting from potential advantage of safety this type of sodium battery offers over sodium batteries having sulfur cathodes. High-energy-density sodium batteries with metal fluoride cathodes used in electric vehicles and for leveling loads on powerlines.

  19. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1989-06-27

    This patent describes an improved zinc electrode for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed.

  20. Design and simulation of lithium rechargeable batteries

    SciTech Connect

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  1. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  2. Lithium-Ion rechargeable batteries on Mars Rover

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.

    2004-01-01

    NASA's Mars Rovers, Spirit and Opportunity, have been roving on the surface of Mars, capturing impressive images of its terrain and analyzing the drillings from Martian rocks, to answer the ever -puzzling questions of life beyond Earth and origin of our planets. These rovers are being enabled by an advanced rechargeable battery system, lithium-ion, for the first time on a space mission of this scale, for keeping the rover electronics warm, and for supporting nighttime experimentation and communications. These rover Li-ion batteries are characterized by their unique low temperature capability, in addition to the usual advantages associated with Li-ion chemistry in terms of mass, volume and energy efficiency. To enable a rapid insertion of this advanced Li-ion chemistry into flight missions, we have performed several performance assessment studies on several prototype cells over the last few years. These tests mainly focused primarily on the long-term performance characteristics, such as cycling and storage, as described in our companion paper. In addition, various tests have been performed on MER cells and engineering and proto flight batteries; under conditions relevant to these missions. For example, we have examined the performance of the cells in: a) an inverted orientation, as during integration and launch, and b) conditions of low rate discharge, between 3.0-2.5 V to support the mission clock. Likewise, we have determined the impedance of the proto-flight Rover battery assembly unit in detail, with a view to asses whether a current-limiting resistor would be unduly stressed, in the event of a shorting induced by a failed pyro. In this paper we will describe these studies in detail, as well as the performance of Li-ion batteries in Spirit and Opportunity rovers, during cruise and on Mars.

  3. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Federal Aviation Administration Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the twelfth meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  4. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Federal Aviation Administration Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the fourteenth meeting of the RTCA Special Committee 225, Rechargeable...

  5. Competitive systems - Ambient temperature rechargeable batteries

    NASA Astrophysics Data System (ADS)

    dell, R. M.

    Recent in designs of aqueous electrolyte secondary batteries are presented. Operation principles, performance characteristics, and applications of various types of lead/acid batteries, alkaline electrolyte batteries, flow batteries, and battery/fuel cell hybrids (such as metal/air and hydrogen/metal oxide systems) are discussed. Consideration is given to the relative importance of such battery parameters as deep discharge capability, freedom from maintenance, shelf life, and cost, depending upon the specific application.

  6. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.

    PubMed

    Fu, Jing; Cano, Zachary Paul; Park, Moon Gyu; Yu, Aiping; Fowler, Michael; Chen, Zhongwei

    2017-02-01

    Zinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance. Additionally, a section dedicated to battery-testing techniques and corresponding recommendations for best practices are included. Finally, a general perspective on the current limitations, recent application-targeted developments, and recommended future research directions to prolong the lifespan of electrically rechargeable zinc-air batteries is provided.

  7. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes.

    PubMed

    Liu, Bin; Luo, Tao; Mu, Guangyuan; Wang, Xianfu; Chen, Di; Shen, Guozhen

    2013-09-24

    The increasing interest in future energy storage technologies has generated the urgent need for alternative rechargeable magnesium ion batteries due to their innate merits in terms of raw abundance, theoretical capacity, and operational safety. Herein, we report an alternative pathway to a new energy storage regime: toward advanced rechargeable magnesium-ion batteries based on WSe2 nanowire-assembled film cathodes. The as-grown electrodes delivered efficient Mg(2+) intercalation/insertion activity, excellent cycling life, enhanced specific capacity, and excellent rate capability. We also evaluated the influence of Mg-intercalation behavior on Mg-ion batteries based on WSe2 film cathodes via the first-principles DFT computations. The results reveal the feasibility of using advanced magnesium-ion batteries based on WSe2 film as energy storage components in next-generation optoelectronic systems.

  8. High power rechargeable magnesium/iodine battery chemistry

    NASA Astrophysics Data System (ADS)

    Tian, Huajun; Gao, Tao; Li, Xiaogang; Wang, Xiwen; Luo, Chao; Fan, Xiulin; Yang, Chongyin; Suo, Liumin; Ma, Zhaohui; Han, Weiqiang; Wang, Chunsheng

    2017-01-01

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid-solid two-phase reaction pathway circumvents solid-state Mg2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180 mAh g-1 at 0.5 C and 140 mAh g-1 at 1 C) and a higher energy density (~400 Wh kg-1) than all other reported rechargeable magnesium batteries using intercalation cathodes. This study demonstrates that the liquid-solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.

  9. High power rechargeable magnesium/iodine battery chemistry

    DOE PAGES

    Tian, Huajun; Gao, Tao; Li, Xiaogang; ...

    2017-01-10

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180 mAh g–1more » at 0.5 C and 140 mAh g–1 at 1 C) and a higher energy density (~400 Wh kg–1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less

  10. High power rechargeable magnesium/iodine battery chemistry

    PubMed Central

    Tian, Huajun; Gao, Tao; Li, Xiaogang; Wang, Xiwen; Luo, Chao; Fan, Xiulin; Yang, Chongyin; Suo, Liumin; Ma, Zhaohui; Han, Weiqiang; Wang, Chunsheng

    2017-01-01

    Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180 mAh g−1 at 0.5 C and 140 mAh g−1 at 1 C) and a higher energy density (∼400 Wh kg−1) than all other reported rechargeable magnesium batteries using intercalation cathodes. This study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries. PMID:28071666

  11. Hybrid system for rechargeable magnesium battery with high energy density

    PubMed Central

    Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf

    2015-01-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624

  12. Rechargeable thin film battery and method for making the same

    DOEpatents

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  13. Evaluation of slurry characteristics for rechargeable lithium-ion batteries

    SciTech Connect

    Cho, Ki Yeon; Kwon, Young Il; Youn, Jae Ryoun; Song, Young Seok

    2013-08-01

    Graphical abstract: - Highlights: • Lithium-ion battery slurries are prepared for rechargeable batteries. • The dispersion state of slurry constituents is identified. • Thermal, morphological, rheological, and electrical properties of slurries are analyzed. - Abstract: A multi-component slurry for rechargeable batteries is prepared by dispersing LiCoO{sub 2}, conductive additives, and polymeric binders in a solvent. The physical properties, including rheological, morphological, electrical, and spectroscopic features of battery slurries are investigated. The relationship between the measured physical properties and the internal structure of the slurry is analyzed. It is found that the rheological behavior of the slurry is determined by the interaction of active materials and binding materials (e.g., network structure) and that the dispersion state of conductive additives (e.g., agglomeration) also depends on the binder–carbon interaction.

  14. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  15. Electrolytes for rechargeable lithium batteries. Research and development technical report

    SciTech Connect

    Hunger, H.F.

    1981-09-01

    Theoretical considerations predict increased stability of cyclic ethers and diethers against reductive cleavage by lithium if the ethers have 2 methyl substitution. Diethers are solvents with low viscosity which are desirable for high rate rechargeable lithium batteries. Synergistic, mixed solvent effects increase electrolyte conductance and rate capability of lithium intercalating cathodes.

  16. Rechargeable Room-Temperature Na-CO2 Batteries.

    PubMed

    Hu, Xiaofei; Sun, Jianchao; Li, Zifan; Zhao, Qing; Chen, Chengcheng; Chen, Jun

    2016-05-23

    Developing rechargeable Na-CO2 batteries is significant for energy conversion and utilization of CO2 . However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g(-1) . Herein, we realized the rechargeability of a Na-CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2 +4 Na↔2 Na2 CO3 +C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g(-1) at 1 A g(-1) (≈1000 Wh kg(-1) ) and runs for 200 cycles with controlled capacity of 2000 mAh g(-1) at charge voltage <3.7 V. The porous structure, high electro-conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2 .

  17. The Impact of Rechargeable Batteries: Quantifying the Cost and Weight for a Marine Infantry Battalion

    DTIC Science & Technology

    2011-12-01

    should implement policies to use rechargeable batteries when operationally feasible. Solar panels work well with rechargeable batteries and represent an... batteries because of the numerous communication and weapons systems they power. The BA-5590 is a 12v 15-ampere lithium sulfur dioxide (LiSO2) weighing...Building upon the work of Kiper, Hughley, and McClellan (2010), this thesis quantifies the Impact of Rechargeable Batteries (IRB). The IRB is defined as

  18. Rechargeable Sodium All-Solid-State Battery.

    PubMed

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B

    2017-01-25

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  19. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... Federal Aviation Administration Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the tenth meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  20. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... Federal Aviation Administration Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the ninth meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  1. A 65 Ah rechargeable lithium molybdenum disulfide battery

    NASA Technical Reports Server (NTRS)

    Brandt, K.

    1986-01-01

    A rechargeable lithium molybdenum disulfide battery which has a number of superior performance characteristics which includes a high energy density, a high power density, and a long charge retention time was developed. The first cell sizes developed included a C size cell and an AA size cell. Over the last two years, a project to demonstrate the feasibility of the scale up to this technology to a BC size cell with 65 Ah capacity was undertaken. The objective was to develop, build, and test a .6 kWh storage battery consisting of 6 BC cells in series.

  2. Rechargeable Sodium All-Solid-State Battery

    PubMed Central

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C. PMID:28149953

  3. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  4. Ionic liquids for rechargeable lithium batteries

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  5. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  6. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.

    PubMed

    Li, Huiqiao; Wang, Yonggang; Na, Haitao; Liu, Haimei; Zhou, Haoshen

    2009-10-28

    A rechargeable Ni-Li battery, in which nickel hydroxide serving as a cathode in an aqueous electrolyte and Li metal serving as an anode in an organic electrolyte were integrated by a superionic conductor glass ceramic film (LISICON), was proposed with the expectation to combine the advantages of both a Li-ion battery and Ni-MH battery. It has the potential for an ultrahigh theoretical energy density of 935 Wh/kg, twice that of a Li-ion battery (414 Wh/kg), based on the active material in electrodes. A prototype Ni-Li battery fabricated in the present work demonstrated a cell voltage of 3.47 V and a capacity of 264 mAh/g with good retention during 50 cycles of charge/discharge. This battery system with a hybrid electrolyte provides a new avenue for the best combination of electrode/electrolyte/electrode to fulfill the potential of high energy density as well as high power density.

  7. The Li-ion rechargeable battery: a perspective.

    PubMed

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  8. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    3SO 2 electrolyte. Surface treatments were carried out at 240"C using water (Cell 15) and thionyl chloride (Cell 16). Cathodes were placed in a Parr... LITHIUM SULFUR DIOXIDE CELL R.C. McDonald R. Vierra P. Harris M. Guentert F. Goebel C. Todino S. Hossain Yardney Technical Products, Inc. 82 Mechanic...61" INK rYPOT I AM 9al covmw 4 November 1991 Final Rpt: Sep 88 to Feb 91 ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL C: DAAL01-88-C-0849 R C

  9. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    DTIC Science & Technology

    1991-11-01

    electrolyte. Surface treatments were carried out at 2406C using water (Cell 15) and thionyl chloride (Cell 16). 3 Cathodes were placed in a Parr Bomb...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald, P. Harris, F. Goebel, S. Hossain...Test Group 3 13 Test Group 4 22 Test Group 5 22 Test Group 6 24 Test Group 7 46 Test Group 8 52 Test Group 9 65 I CHEMICAL ANALYSIS 65 LITHIUM CYCLING

  10. Rechargeable battery which combats shape change of the zinc anode

    NASA Technical Reports Server (NTRS)

    Cohn, E. M. (Inventor)

    1976-01-01

    A rechargeable cell or battery is provided in which shape change of the zinc anode is combatted by profiling the ionic conductivity of the paths between the electrodes. The ion flow is greatest at the edges of the electrodes and least at the centers, thereby reducing migration of the zinc ions from edges to the center of the anode. A number of embodiments are disclosed in which the strength and/or amount of electrolyte, and/or the number and/or size of the paths provided by the separator between the electrodes, are varied to provide the desired ionic conductivity profile.

  11. Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms.

    PubMed

    Wang, Xi; Weng, Qunhong; Yang, Yijun; Bando, Yoshio; Golberg, Dmitri

    2016-08-07

    Integration of two-dimensional (2D) nanomaterials and their composites into energy storage devices, especially rechargeable batteries, offers opportunities to timely tackle the challenges of ever growing clean and sustainable energy demands. Therefore, it is crucial to design hybrid 2D electrode materials for high performance rechargeable batteries and to fundamentally understand their storage mechanisms at the atomic or nanoscopic levels. This review firstly describes some of the exciting progress achieved in the economic production of graphenes, 2D transition metal dichalcogenides (TMDCs), and their composites. Then we survey the recent developments in their electrochemical energy storage pathways and present the associated three kinds of storage mechanisms. In addition, we highlight the uncovered structure-performance relationships while utilizing advanced microscopic techniques, such as in situ high resolution transmission electron microscopy (TEM) and spherical aberration-corrected scanning TEM (STEM), both leading to deep unveiling and understanding of the atomic-scale ion storage/release mechanisms and hence providing clear guidance for designing optimized 2D nanostructured electrode materials. Finally, the major challenges and opportunities that researchers have to face in this field are outlined. We hope that this review can deepen the Chemical and Material Science Communities' understanding of this field and thus effectively contribute to the smart design of future-generation 2D nanostructured electrodes and exploitation of their microscopic mechanisms toward novel high-performance rechargeable batteries.

  12. New nanostructured Li2S/silicon rechargeable battery with high specific energy.

    PubMed

    Yang, Yuan; McDowell, Matthew T; Jackson, Ariel; Cha, Judy J; Hong, Seung Sae; Cui, Yi

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li(2)S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg(-1), which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO(2) cathodes and graphite anodes (approximately 410 Wh kg(-1)). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg(-1) based on the mass of the active electrode materials.

  13. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries.

    PubMed

    Paolella, Andrea; Faure, Cyril; Bertoni, Giovanni; Marras, Sergio; Guerfi, Abdelbast; Darwiche, Ali; Hovington, Pierre; Commarieu, Basile; Wang, Zhuoran; Prato, Mirko; Colombo, Massimo; Monaco, Simone; Zhu, Wen; Feng, Zimin; Vijh, Ashok; George, Chandramohan; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2017-04-10

    Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron-hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries.

  14. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    SciTech Connect

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  15. Aqueous rechargeable alkali-ion batteries with polyimide anode

    NASA Astrophysics Data System (ADS)

    Qin, H.; Song, Z. P.; Zhan, H.; Zhou, Y. H.

    2014-03-01

    1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTCDA)-derived Polyimide is proposed as the anode material for aqueous rechargeable lithium-ion or sodium-ion battery (ARLB or ARSB), which is based on a mechanism beyond the intercalation chemistry. Comparing with other transient oxide anode for ARLB, Polyimide has more suitable working voltage, higher capacity and better structure stability. Therefore, the ARLB with Polyimide anode and LiCoO2 cathode presents a specific capacity of 71 mAh g-1 and a specific energy of 80 Wh kg-1 in 5 M LiNO3 solution at the current rate of 100 mA g-1, which is the highest among all reported ARLB system. Besides, it shows excellent cycling stability and rate capability. The ARSB system is demonstrated by Polyimide/NaVPO4F cell. It has been proved that the Polyimide anode has a good capacity performance and cycling stability in 5 M NaNO3 solution. The two aqueous rechargeable batteries with Polyimide anode both show a promising prospect in large-scale energy storage.

  16. A high-voltage rechargeable magnesium-sodium hybrid battery

    DOE PAGES

    Li, Yifei; An, Qinyou; Cheng, Yingwen; ...

    2017-02-13

    There is a growing global demand for safe and low-cost energy storage technology which triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. We report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na3V2(PO4)3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10 C rate) among reported hybrid batteries. Synchrotron radiation-based X-ray absorption near edgemore » structure (XANES), atomic-pair distribution function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na3V2(PO4)3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. Our work represents a significant step forward for practical safe and low-cost hybrid batteries.« less

  17. High efficiency iron electrode and additives for use in rechargeable iron-based batteries

    DOEpatents

    Narayan, Sri R.; Prakash, G. K. Surya; Aniszfeld, Robert; Manohar, Aswin; Malkhandi, Souradip; Yang, Bo

    2017-02-21

    An iron electrode and a method of manufacturing an iron electrode for use in an iron-based rechargeable battery are disclosed. In one embodiment, the iron electrode includes carbonyl iron powder and one of a metal sulfide additive or metal oxide additive selected from the group of metals consisting of bismuth, lead, mercury, indium, gallium, and tin for suppressing hydrogen evolution at the iron electrode during charging of the iron-based rechargeable battery. An iron-air rechargeable battery including an iron electrode comprising carbonyl iron is also disclosed, as is an iron-air battery wherein at least one of the iron electrode and the electrolyte includes an organosulfur additive.

  18. Symposium on Rechargeable Lithium Batteries, Hollywood, FL, Oct. 19-24, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Subbarao, S. (Editor); Koch, V. R. (Editor); Owens, B. B. (Editor); Smyrl, W. H. (Editor)

    1990-01-01

    Recent advances in the technology and applications of rechargeable Li cells are discussed in reviews and reports. A general overview of the field is provided, and sections are devoted to organic electrolyte systems, polymeric electrolyte systems, inorganic electrolytes systems, and molten-salt electrolytes. Particular attention is given to electrolyte stabilization, the effects of organic additives on electrolyte performance, a cycle-life sensor, consumer-product applications, in situ measurements of gas evolution in Li secondary cells, ultrathin polymer cathodes, electrochemical growth of conducting polymers, and sealing Li/FeS(x) cells for a bipolar battery.

  19. Flexible Rechargeable Zinc-Air Batteries through Morphological Emulation of Human Hair Array.

    PubMed

    Fu, Jing; Hassan, Fathy Mohamed; Li, Jingde; Lee, Dong Un; Ghannoum, Abdul Rahman; Lui, Gregory; Hoque, Md Ariful; Chen, Zhongwei

    2016-08-01

    An electrically rechargeable, nanoarchitectured air electrode that morphologically emulates a human hair array is demonstrated in a zinc-air battery. The hair-like array of mesoporous cobalt oxide nanopetals in nitrogen-doped carbon nanotubes is grown directly on a stainless-steel mesh. This electrode produces both flexibility and improved battery performance, and thus fully manifests the advantages of flexible rechargeable zinc-air batteries in practical applications.

  20. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  1. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    PubMed

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  2. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  3. Layered cathode materials for lithium ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  4. Solid polymer electrolytes for rechargeable batteries. Final report

    SciTech Connect

    Narang, S.C.; Ventura, S.C.

    1992-02-01

    SRI International has synthesized and tested new, dimensionally stable polymer electrolytes for high energy density rechargeable lithium batteries. We have prepared semi-interpenetrating networks of sulfur-substituted polyethyleneoxide with tetmethylorthosilicate (TEOS). The in situ hydrolysis of TEOS produces a mechanically stable three-dimensional network that entangles the polymer electrolytes and makes the film dimensionally flexible and stable. With this approach, the best dimensionally stable polymer electrolyte of this type produced so far, has a room temperature lithium ion conductivity of 7.5 {times} 10{sup {minus}4} S cm{sup {minus}1}. Another type of solid polymer electrolytes, polydiacetylene-based single-ion conductors with high room temperature proton conductivity were also developed. The best conductivity of these polymers is two orders of magnitude higher than that of Nafion under comparable experimental conditions. With further appropriate chemical modification, the new polymers could be used in fuel cells.

  5. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.

    PubMed

    Zhu, Yujie; Gao, Tao; Fan, Xiulin; Han, Fudong; Wang, Chunsheng

    2017-03-16

    Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the

  6. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries.

    PubMed

    Park, Hey Woong; Lee, Dong Un; Park, Moon Gyu; Ahmed, Raihan; Seo, Min Ho; Nazar, Linda F; Chen, Zhongwei

    2015-03-01

    Developing an effective bifunctional catalyst is a significant issue, as rechargeable metal-air batteries are very attractive for future energy systems. In this study, a facile one-pot process is introduced to prepare an advanced bifunctional catalyst (op-LN) incorporating nitrogen-doped carbon nanotubes (NCNTs) into perovskite La0.5 Sr0.5 Co0.8 Fe0.2 O3 nanoparticles (LSCF-NPs). Confirmed by half-cell testing, op-LN exhibits synergistic effects of LSCF-NP and NCNT with excellent bifunctionality for both the oxygen reduction reaction and the oxygen evolution reaction. Furthermore, op-LN exhibits comparable performances in these reactions to Pt/C and Ir/C, respectively, which highlights its potential for use as a commercially viable bifunctional catalyst. Moreover, the results obtained by testing op-LN in a practical Li-air battery demonstrate improved and complementary charge/discharge performance compared to those of LSCF-NP and NCNT, and this confirms that simply prepared op-LN is a promising candidate as a highly effective bifunctional catalyst for rechargeable metal-air batteries.

  7. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    PubMed Central

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-01-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge. PMID:27629362

  8. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    NASA Astrophysics Data System (ADS)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  9. A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc

    NASA Astrophysics Data System (ADS)

    Lu, Ke; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-07-01

    Rechargeable aqueous batteries are very attractive as a promising alternative energy storage system, although their reversible capacity is typically limited. A new rechargeable Na-Zn hybrid aqueous battery with nickel hexacyanoferrate (NiHCF) cathode and the nanostructured zinc anode is fabricated. The rational combination of two materials with mild aqueous electrolyte renders the devices with an average operating voltage close to 1.5 V, higher specific capacity of 76.2 mAh g-1, and a good cycling stability with 81% capacity retention for 1000 cycles. These remarkable features can provide guidance for the development of rechargeable batteries from the naturally abundant electrode materials with neutral aqueous electrolytes.

  10. High rechargeable sodium metal-conducting polymer batteries

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Trottier, J.; Gagnon, C.; Barray, F.; Zaghib, K.

    2016-12-01

    Rechargeable lithium batteries accelerated the wireless revolution over the last two decades, and they are now a mature technology for transportation applications in electric vehicles (EV). However, numerous studies have concluded that the proven lithium reserves can hardly absorb the growth in demand. Therefore, sustainable sodium batteries are being considered to overcome the lithium resource shortages that may arise from large-scale application in EVs and stationary energy storage. It is difficult to find a suitable host material for reversible Na-ion storage due to the size of the Na+ ion (0.102 nm) compared to the Li+ ion (0.076 nm). Here we report a low cost and simple sodium technology that is based on a metal-free cathode material. Sodium metal was used as the anode with a conducting polymer cathode and electrochemically tested in a liquid electrolyte. With this technology, a host material for Na intercalation is not required, and because a polymer conductor is used, the size of the Na ion is not an issue.

  11. Recharging the battery of implantable biomedical devices by light.

    PubMed

    Algora, Carlos; Peña, Rafael

    2009-10-01

    This article describes a new powering system for implantable medical devices that could significantly increase their lifetime. The idea is based on the substitution of the usual implantable device battery for an electric accumulator (rechargeable battery), which is fed by the electric power generated by a photovoltaic converter inside the implantable device. Light impinges on the photovoltaic device through an optical fiber going from the photovoltaic device to just beneath the patient's epidermis. Light can enter the optical fiber by passing through the skin. A complete power-by-light system has been developed and tested with a real implantable pulse generator for spinal cord stimulation. The feasibility of the proposed system has been evaluated theoretically. For example, after 13 h/week of laser exposure, the lifetime of the implantable device would increase by 50%. Other combinations resulting in lifetime increases of more than 100% are also possible. So, the proposed system is now ready to take a further step forward: in vivo animal testing.

  12. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance.

    PubMed

    Wang, Faxing; Yu, Feng; Wang, Xiaowei; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wen, Zubiao; Wu, Yuping; Huang, Wei

    2016-04-13

    Developing rechargeable batteries with low cost is critically needed for the application in large-scale stationary energy storage systems. Here, an aqueous rechargeable zinc//aluminum ion battery is reported on the basis of zinc as the negative electrode and ultrathin graphite nanosheets as the positive electrode in an aqueous Al2(SO4)3/Zn(CHCOO)2 electrolyte. The positive electrode material was prepared through a simple electrochemically expanded method in aqueous solution. The cost for the aqueous electrolyte together with the Zn negative electrode is low, and their raw materials are abundant. The average working voltage of this aqueous rechargeable battery is 1.0 V, which is higher than those of most rechargeable Al ion batteries in an ionic liquid electrolyte. It could also be rapidly charged within 2 min while maintaining a high capacity. Moreover, its cycling behavior is also very good, with capacity retention of nearly 94% after 200 cycles.

  13. Rechargeable Mg batteries with graphene-like MoS₂ cathode and ultrasmall Mg nanoparticle anode.

    PubMed

    Liang, Yanliang; Feng, Rujun; Yang, Siqi; Ma, Hua; Liang, Jing; Chen, Jun

    2011-02-01

    The combination of a highly exfoliated, graphene-like MoS₂ cathode and ultrasmall Mg nanoparticle anode is proposed, for the first time, for rechargeable Mg batteries. Such a configuration exhibits an operating voltage of 1.8 V and a well reversible discharge capacity of ca. 170 mA h g−1, emphasizing the necessity of rational morphological control of electrode materials and opening up new opportunities for rechargeable Mg batteries.

  14. Recycling application of Li-MnO₂ batteries as rechargeable lithium-air batteries.

    PubMed

    Hu, Yuxiang; Zhang, Tianran; Cheng, Fangyi; Zhao, Qing; Han, Xiaopeng; Chen, Jun

    2015-03-27

    The ever-increasing consumption of a huge quantity of lithium batteries, for example, Li-MnO2 cells, raises critical concern about their recycling. We demonstrate herein that decayed Li-MnO2 cells can be further utilized as rechargeable lithium-air cells with admitted oxygen. We further investigated the effects of lithiated manganese dioxide on the electrocatalytic properties of oxygen-reduction and oxygen-evolution reactions (ORR/OER). The catalytic activity was found to be correlated with the composition of Li(x)MnO2 electrodes (0batteries can be prolonged by their application as rechargeable lithium-air batteries.

  15. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    PubMed

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-04-10

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands.

  16. Advanced Thermal Batteries.

    DTIC Science & Technology

    1980-03-01

    demonstrated that a thermal battery with a LiAl alloy anode, a NaAlCl4 anolyte , and a catholyte made primarily with MoCl5 was at least feasible. However, the...Varying Amounts of Mg Arranged In order Of Increasing Magnesiun 33 Battery Test Data For Batteries Made With 102 Anodes That Contained Anolyte and LiAl...1.75 gm anolyte , and 1.9 grams catholyte, to prepare the first McO 3 cells. The cells averaged 0.081 inches thick. These cells were tested on the

  17. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries.

    PubMed

    Fu, Jing; Lee, Dong Un; Hassan, Fathy Mohamed; Yang, Lin; Bai, Zhengyu; Park, Moon Gyu; Chen, Zhongwei

    2015-10-07

    A thin-film, flexible, and rechargeable zinc-air battery having high energy density is reported particularly for emerging portable and wearable electronic applications. This freeform battery design is the first demonstrated by sandwiching a porous-gelled polymer electrolyte with a freestanding zinc film and a bifunctional catalytic electrode film. The flexibility of both the electrode films and polymer electrolyte membrane gives great freedom in tailoring the battery geometry and performance.

  18. Long life, low cost, rechargeable AgZn battery for non-military applications

    NASA Astrophysics Data System (ADS)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  19. Growth of oxygen bubbles during recharge process in zinc-air battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Chen, Huicui; Xu, Huachi; Chen, Dongfang; Xing, Haoqiang

    2015-11-01

    Rechargeable zinc-air battery used for energy storage has a serious problem of charging capacity limited by oxygen bubble coalescence. Fast removal of oxygen bubbles adhered to the charging electrode surface is of great importance for improving the charging performance of the battery. Here we show that the law of oxygen bubble growth can be achieved by means of phase-field simulation, revealing two phenomena of bubble detachment and bubble coalescence located in the charging electrode on both sides. Hydrodynamic electrolyte and partial insulation structure of the charging electrode are investigated to solve the problem of oxygen bubble coalescence during charging. Two types of rechargeable zinc-air battery are developed on the basis of different tri-electrode configurations, demonstrating that the charging performance of the battery with electrolyte flow (Ⅰ) is better than that of the battery with the partially insulated electrode (Ⅱ), while the battery Ⅱ is superior to the battery Ⅰ in the discharging performance, cost and portability. The proposed solutions and results would be available for promoting commercial application of rechargeable zinc-air batteries or other metal-air batteries.

  20. Advanced batteries for electric vehicle applications

    SciTech Connect

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  1. Advanced Battery Manufacturing (VA)

    SciTech Connect

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  2. Multilayer Approach for Advanced Hybrid Lithium Battery.

    PubMed

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Li, Lain-Jong

    2016-06-28

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode(-1) (vs the total mass of electrode) or 1866 mAh gs(-1) (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs(-1)). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode(-1) at 0.25C and 376 mAh gcathode(-1) at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications.

  3. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte.

    PubMed

    Jeong, Goojin; Kim, Hansu; Lee, Hyo Sug; Han, Young-Kyu; Park, Jong Hwan; Jeon, Jae Hwan; Song, Juhye; Lee, Keonjoon; Yim, Taeeun; Kim, Ki Jae; Lee, Hyukjae; Kim, Young-Jun; Sohn, Hun-Joon

    2015-08-05

    Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153 mAh g(-1) based on the mass of catholyte and carbon electrode with an operating voltage of 3 V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na-SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system.

  4. Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability

    SciTech Connect

    Lin, Zhenhong; Greene, David L

    2012-01-01

    Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

  5. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    PubMed

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries.

  6. Gradient porous electrode architectures for rechargeable metal-air batteries

    DOEpatents

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  7. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  8. Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries.

    PubMed

    NuLi, Yanna; Chen, Qiang; Wang, Weikun; Wang, Ying; Yang, Jun; Wang, Jiulin

    2014-01-01

    We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g(-1) at 3.9 mA g(-1). These studies show that carbyne polysulfide is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved.

  9. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.

    PubMed

    Kar, Mega; Simons, Tristan J; Forsyth, Maria; MacFarlane, Douglas R

    2014-09-21

    Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress

  10. High-performance rechargeable batteries with nanoparticle active materials, photochemically regenerable active materials, and fast solid-state ion conductors

    DOEpatents

    Farmer, Joseph C.

    2017-04-04

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  11. What is the limiting factor of the cycle-life of Zn-polyaniline rechargeable batteries?

    NASA Astrophysics Data System (ADS)

    Rahmanifar, M. S.; Mousavi, M. F.; Shamsipur, M.; Ghaemi, M.

    The factors affecting the cycle-life of Zn-polyaniline (PANI) rechargeable batteries are studied by means of electrochemical and surface analyses of electrodes. The PANI polymeric film is prepared by cyclic voltammetery in an aqueous solution, and is tested as the positive electrode (cathode) of a secondary battery containing a 1.0 M ZnCl 2 and 0.5 M NH 4Cl electrolyte. The battery is charged and discharged by a constant current. The capacity variation of Zn-PANI rechargeable batteries is studied as a function of cycle number, and the relation between capacity loss and performance of the zinc anode and polymeric cathode is examined. The behaviour of the zinc electrode is evaluated from Tafel plots. The capacity decreases with charge-discharge cycling. The cathode (PANI) is degraded electrochemically under charge conditions, and the cycle-life of the Zn-PANI rechargeable battery is limited by the anode (zinc). The polarization resistance ( Rp) of the anode increases with cycling. As a result, the battery capacity is limited by the anode Rp. Surface analysis of the anode reveals that a solid phase containing the chlorine element is formed on the anode surface. The cycle-life of the Zn-PANI battery is limited by zinc passivation, which is possibly related to the formation of the solid phases ZnCl 2·3NH 4Cl and ZnCl 2·2NH 4Cl on the anode surface.

  12. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.

    PubMed

    Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi; Tatsumisago, Masahiro

    2012-05-22

    Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na(+) ion conductivity. An ambient temperature conductivity of over 10(-4) S cm(-1) was obtained in a glass-ceramic electrolyte, in which a cubic Na(3)PS(4) crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na(3)PS(4) electrolyte, functioned as a rechargeable battery at room temperature.

  13. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries.

    PubMed

    Bitenc, Jan; Pirnat, Klemen; Bančič, Tanja; Gaberšček, Miran; Genorio, Boštjan; Randon-Vitanova, Anna; Dominko, Robert

    2015-12-21

    Mg batteries are a promising battery technology that could lead to safer and significantly less expensive non-aqueous batteries with energy densities comparable or even better than state-of-the-art Li-ion batteries. Although the first prototype Mg battery using stable Mo6S8 as cathode was introduced over fifteen years ago, major challenges remain to be solved. In particular, the design of high energy cathode materials and the development of non-corrosive electrolytes with high oxidative stability are issues that need to be tackled. Herein, we present a new, general, and robust approach towards achieving stable cycling of Mg batteries. The core of our approach is the use of stable polymer cathode and Mg powder anode coupled with non-nucleophilic electrolytes. Our systems exhibit an excellent rate capability and significant improvement in electrochemical stability.

  14. Performance Versus Safety of Some Primary and Rechargeable Lithium Batteries

    DTIC Science & Technology

    2004-12-01

    Figure 3. A. Photograph of a BA-521 battery; B. a lithium - thionyl chloride ...contained lithium - thionyl chloride cells was offered to the CF for evaluation. This couple has very good low temperature performance but there are...hours VO LT A G E / v ol ts 0 batteries are not for use at low temperatures. There are other battery chemistries available, such as lithium - thionyl

  15. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    PubMed

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion.

  16. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  17. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  18. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  19. The development of a new type of rechargeable batteries based on hybrid electrolytes.

    PubMed

    Zhou, Haoshen; Wang, Yonggang; Li, Huiqiao; He, Ping

    2010-09-24

    Lithium ion batteries (LIBs), which have the highest energy density among all currently available rechargeable batteries, have recently been considered for use in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and pure electric vehicles (PEV). A major challenge in this effort is to increase the energy density of LIBs to satisfy the industrial needs of HEVs, PHEVs, and PEVs. Recently, new types of lithium-air and lithium-copper batteries that employ hybrid electrolytes have attracted significant attention; these batteries are expected to succeed lithium ion batteries as next-generation power sources. Herein, we review the concept of hybrid electrolytes, as well as their advantages and disadvantages. In addition, we examine new battery types that use hybrid electrolytes.

  20. Design concepts of high power bipolar rechargeable lithium battery

    NASA Technical Reports Server (NTRS)

    Shen, David H.; Halpert, Gerald

    1993-01-01

    The present study shows that current bipolar Li/TiS2 batteries using a 0.38 mm thick TiS2 bipolar plate can yield moderate specific power and also high specific energy battery. The computer design studies project that a 100 V, 10 A h bipolar Li/TiS2 battery can achieve 150 W h/kg, 210 W h/l, and 150 W/kg. The unoptimized experimental bipolar Li/TiS2 batteries (3 cells, 90 mA h) exhibited 47 W h/kg, 90 W h/l, and 140 W/kg. Preliminary results on the cycleability of the bipolar batteries are demonstrated. The results also show that enhanced rate capability can be achieved by using pulse discharge and longer rest period between pulses.

  1. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  2. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    PubMed Central

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-01-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh·g−1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide–triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems. PMID:25011939

  3. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOEpatents

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  4. Long life, low cost, rechargeable AgZn battery for non-military applications

    SciTech Connect

    Brown, C.C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven {open_quote}{open_quote}enabling technology{close_quote}{close_quote} for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost. {copyright} {ital 1996 American Institute of Physics.}

  5. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.

    PubMed

    Lee, Dong Un; Park, Hey Woong; Park, Moon Gyu; Ismayilov, Vugar; Chen, Zhongwei

    2015-01-14

    Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.

  6. Li-ion rechargeable batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Smart, M.; Whitacanack, L.; Ewell, R.; Surampudi, S.

    2006-01-01

    Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.

  7. Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery

    NASA Astrophysics Data System (ADS)

    Christy, Maria; Arul, Anupriya; Zahoor, Awan; Moon, Kwang Uk; Oh, Mi Young; Stephan, A. Manuel; Nahm, Kee Suk

    2017-02-01

    The choice of electrolyte solvent is expected to play a key role in influencing the lithium-oxygen battery performance. The electrochemical performances of three electrolytes composed of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) salt and different solvents namely, ethylene carbonate/propylene carbonate (EC/PC), tetra ethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO) are investigated by assembling lithium oxygen cells. The electrolyte composition significantly varied the specific capacity of the battery. The choice of electrolyte also influences the overpotential, cycle life, and rechargeability of the battery. Electrochemical impedance spectra, cyclic voltammetry, and chronoamperometry were utilized to determine the reversible reactions associated with the air cathode.

  8. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    PubMed

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  9. A new design for dry polyaniline rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Karami, Hassan; Mousavi, Mir Fazlollah; Shamsipur, Mojtaba

    Polyanilline powder of high conductivity is prepared by chemical polymerization of aniline in a solution of 0.10 M aniline, 2 M perchloric acid and 0.15 M ammonium persulfate at 5 °C. The powder is mixed with graphite and acetylene black to obtain the required conductivity and porosity. The mixed powder is compressed into a ring shape at a pressure of 2 t cm -2 for use as positive electrodes (cathodes) in batteries. Zinc powder is mixed with magnesium oxide, zinc oxide and sodium carboxymethyl cellulose (CMC), and then compressed into a cylindrical shape at a pressure of 7 t cm -2 for use as negative electrodes (anodes) in batteries. The battery electrolyte comprises 2 M Zn(ClO 4) 2, 1 M NH 4ClO 4, and 1.0×10 -4 M Triton-X100 at pH 3. A 1 wt.% Optalloy powder is added to the negative-electrode composite to prevent the release of hydrogen gas. The assembled battery has an open-circuit voltage (OCV) of 1.64 V, a charge storage capacity of 125.43 m Ah g -1, and a Coulombic efficiency greater than 95% during the first 100 charge-discharge cycles. Due to the low amount of electrolyte used, the battery is considered as a dry battery.

  10. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    NASA Astrophysics Data System (ADS)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  11. An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries.

    PubMed

    Tutusaus, Oscar; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Nelson, Emily G; Sevryugina, Yulia V

    2015-06-26

    Unlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride-based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12(-) produced the first halogen-free, simple-type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non-corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high-voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.

  12. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Airplane; Rechargeable Lithium-Ion Battery Installations AGENCY: Federal Aviation Administration (FAA), DOT... lithium-ion batteries. The applicable airworthiness regulations do not contain adequate or appropriate... lithium-ion batteries in the Model 680. Type Certification Basis Under the provisions of Title 14, Code...

  13. Implications of CO2 Contamination in Rechargeable Nonaqueous Li-O2 Batteries.

    PubMed

    Gowda, S R; Brunet, A; Wallraff, G M; McCloskey, B D

    2013-01-17

    In this Letter, the effect of CO2 contamination on nonaqueous Li-O2 battery rechargeability is explored. Although CO2 contamination was found to increase the cell's discharge capacity, it also spontaneously reacts with Li2O2 (the primary discharge product of a nonaqueous Li-O2 battery) to form Li2CO3. CO2 evolution from Li2CO3 during battery charging was found to occur only at very high potentials (>4 V) compared to O2 evolution from Li2O2 (∼3-3.5 V), and as a result, the presence of CO2 during discharge dramatically reduced the voltaic efficiency of the discharge-charge cycle. These results emphasize the importance of not only completely removing CO2 from air fed to a Li-air battery, but also developing stable cathodes and electrolytes that will not decompose during battery operation to form carbonate deposits.

  14. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode.

    PubMed

    Zhao, Qing; Lu, Yanying; Zhu, Zhiqiang; Tao, Zhanliang; Chen, Jun

    2015-09-09

    Rechargeable Li-iodine batteries are attractive electrochemical energy storage systems because iodine cathode provides the possibility of high energy density, wide abundance and low cost. However, the safety risk caused by low thermostability of iodine and the self-discharge reaction due to high solvency of iodine in aprotic solvent are target issues to be considered. Herein, we designed a room-temperature "solution-adsorption" method to prepare a thermostable iodine-carbon cathode by utilizing the strong adsorption of nanoporous carbon. Meanwhile, Li-iodine batteries constructed by the as-prepared cathode and ether-based electrolyte with the addition of LiNO3 showed negligible self-discharge reaction, high rate and long cycling performance. The reversible reactions of I2/LiI3 and LiI3/LiI in Li-iodine batteries were also proved with in situ Raman measurement. For the demonstration of application, soft-package batteries with Al-plastic film were assembled, displaying energy densities of 475 Wh/kg by mass of Li and iodine, and 136 Wh/kg by total mass of the battery. The use of nanoporous carbon to adsorb iodine at room-temperature represents a new and promising direction for realizing high-performance cathode for rechargeable Li-iodine batteries.

  15. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.

    PubMed

    Dong, Xiaoli; Yu, Hongchuan; Ma, Yuanyuan; Bao, Junwei Lucas; Truhlar, Donald G; Wang, Yonggang; Xia, Yongyao

    2017-02-21

    Rechargeable batteries with organic electrodes are preferred to those with transition-metal-containing electrodes for their environmental friendliness, and resource availability, but all such batteries reported to date are based on organic electrolytes, which raise concerns of safety and performance. Here an aqueous-electrolyte all-organic rechargeable battery is reported, with a maximum operating voltage of 2.1 V, in which polytriphenylamine (PTPAn) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA)-derived polyimide (PNTCDA) serve as cathode and anode material, respectively. A key feature of the design is use of a "water-in-salt" electrolyte to bind "free" water; this impedes the side reaction of water oxidation, thereby enabling excellent reversibility in aqueous solution. The battery can deliver a maximum energy density of 52.8 Wh kg(-1) , which is close to most of the all-organic batteries with organic electrolytes. The battery exhibits a supercapacitor-like high power of 32 000 W kg(-1) and a long cycle life (700 cycles with capacity retention of 85 %), due to the kinetics not being limited by ion diffusion at either electrode.

  16. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.

    PubMed

    Shui, Jiang-Lan; Okasinski, John S; Kenesei, Peter; Dobbs, Howard A; Zhao, Dan; Almer, Jonathan D; Liu, Di-Jia

    2013-01-01

    Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium.

  17. Thin-film rechargeable lithium batteries for implantable devices

    SciTech Connect

    Bates, J.b.; Dudney, N.J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  18. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  19. High-energy non-rechargeable batteries and their applications

    NASA Astrophysics Data System (ADS)

    Higgins, Robert; Kruger, Ken

    1990-04-01

    Many of the more recently developed high energy battery systems employ Li anodes, which are capable of energy densities of 700 W h/kg and shelf power-losses of less than 3 percent/yr. It has been noted, however, that some Li-based systems exhibit 'voltage sag' during storage and pose some safety problems in cases of inadvertent abuse. The two highest energy-output yielding of the current Li systems, namely Li/CF(x) spiral cells and Li/thionyl chloride liquid cathode cells, are presented and compared with a Zn/AgO electrochemical (aqueous) battery system which, although of older design, is still capable of substantial energy densities.

  20. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments Database

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  1. Highly Soluble Alkoxide Magnesium Salts for Rechargeable Magnesium Batteries

    SciTech Connect

    Liao, Chen; Guo, Bingkun; Jiang, Deen; Custelcean, Radu; Mahurin, Shannon Mark; Sun, Xiao-Guang; Dai, Sheng

    2014-01-01

    A unique class of air-stable and non-pyrophoric magnesium electrolytes has been developed based on alkoxide magnesium compounds. The crystals obtained from this class of electrolytes exhibit a unique structure of tri-magnesium cluster, [Mg3Cl3(OR)2(THF)6]+ [(THF)MgCl3] . High reversible capacities and good rate capabilities were obtained in Mg-Mo6S8 batteries using these new electrolytes at both 20 and 50 oC.

  2. Binder-free V2O5 cathode for greener rechargeable aluminum battery.

    PubMed

    Wang, Huali; Bai, Ying; Chen, Shi; Luo, Xiangyi; Wu, Chuan; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-01-14

    This letter reports on the investigation of a binder-free cathode material to be used in rechargeable aluminum batteries. This cathode is synthesized by directly depositing V2O5 on a Ni foam current collector. Rechargeable aluminum coin cells fabricated using the as-synthesized binder-free cathode delivered an initial discharge capacity of 239 mAh/g, which is much higher than that of batteries fabricated using a cathode composed of V2O5 nanowires and binder. An obvious discharge voltage plateau appeared at 0.6 V in the discharge curves of the Ni-V2O5 cathode, which is slightly higher than that of the V2O5 nanowire cathodes with common binders. This improvement is attributed to reduced electrochemical polarization.

  3. Rechargeable solid-state battery using a proton-conducting composite as electrolyte

    NASA Astrophysics Data System (ADS)

    Lakshmi, N.; Chandra, S.

    Proton-conducting composites of heteropolyacid hydrates (phospbotungstic acid, PTA and phosphomolybdic acid, PMA) with dispersoids such as insulating Al 2O 3, Al 2(SO 4) 3·16H 2O and (NH 4) 10W 12O 41·2H 2O are prepared for use as possible solid-state electrolytes in batteries. Bulk electrical conductivity as a function of composition is reported. Rechargeable solid-state proton batteries are fabricated and characterized. A cell with the configuration Zn+ZnSO 4·7H 2O+MH x|PMA+APT|PbO 2+V 2O 5+C+E gives an open circuit voltage of 1.5 V and can run for >850 h at a current drain of 2.4 μA cm -2. The cell can be recharged without much loss up to 18-20 cycles.

  4. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  5. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    SciTech Connect

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that are currently of the most commercial interest.

  6. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  7. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOEpatents

    Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

    1999-03-16

    A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

  8. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    DOEpatents

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  9. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.

    PubMed

    Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2016-01-26

    An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.

  10. Comparison of rechargeable lithium and nickel/cadmium battery cells for implantable circulatory support devices.

    PubMed

    MacLean, G K; Aiken, P A; Adams, W A; Mussivand, T

    1994-04-01

    Size and weight constraints are critical areas in the design of implantable medical devices. For this reason, a study of different rechargeable lithium and nickel/cadmium (Ni/Cd) battery cell types was undertaken to determine which cell type, when assembled into a multicell battery pack, would provide the smallest and lightest power source for implantation. The discharge rate and cycle life characteristics of 2 different rectangular prismatic Ni/Cd cells and 5 different rechargeable lithium cells were determined at 37 degrees C by charge/discharge cycling, the cells using a constant discharge load of 0.87 A. Using the observed discharge rate and cycle life characteristics of the cells, along with the desired performance criteria of 30 min operating time at the end of a 1-year implant period, the projected weight and volume of the various 12-V battery packs were determined. These results showed that one of the rectangular prismatic Ni/Cd cells would yield the smallest (53 ml) and lightest (189 g) 12-V battery pack that met the performance criteria specified. The results also indicate that, for applications requiring long implant times, cycle life can be more important in the selection of cells for a small, lightweight battery pack than specific energy or energy density.

  11. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

    PubMed Central

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-01-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694

  12. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.

    PubMed

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-08-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

  13. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Naoaki; Komaba, Shinichi

    2014-08-01

    Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

  14. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  15. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE PAGES

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; ...

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  16. Effects of the electrolyte composition on the electrode characteristics of rechargeable lithium batteries

    SciTech Connect

    Morita, Masayuki; Ishikawa, Masashi; Matsuda, Yoshiharu

    1995-12-31

    A variety of organic solvent-based electrolytes have been studied for ambient temperature, rechargeable lithium (ion) batteries. The ionic behavior of the electrolyte system was investigated through conductivity measurements. The electrochemical characteristics of carbon-based materials (carbon fiber and graphite) as the negative electrode were examined in different compositions of the organic electrolytes. The electrolyte composition as well as the structure of the electrode material greatly influenced the charge/discharge profiles of the electrode.

  17. Apparatuses for making cathodes for high-temperature, rechargeable batteries

    DOEpatents

    Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.

    2016-09-13

    The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  18. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    DOEpatents

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  19. Rechargeable alkaline zinc/ferricyanide hybrid redox battery

    NASA Astrophysics Data System (ADS)

    Adams, G. B.; Hollandsworth, R. P.; Littauer, E. L.

    It is noted that the zinc/ferricyanide battery system is intended for utility load leveling and solar photovoltaic/wind applications, offering such advantages as high cell voltage, near-ambient temperature operation, flowing alkaline electrolyte, low-cost reactant storage, low toxicity, potentially long cycle life, and low projected capital costs. The system is found to demonstrate excellent electrochemical performance. Cell voltages are 1.94 V on charge and 1.78 V on discharge at 35 mA/sq cm, and the peak power density is of 4.5 kW/sq m. Cell polarization losses are due almost entirely to IR within the separator material. At 40 C a mean energy efficiency of 84% is obtained after 950 4-hour cycles. An economic analysis suggests a battery selling price of $32/kWh, an installed price of $230/kW, and a footprint of 8.7 kWh per square foot as realistic goals for a 20 MW, 100 MWh system.

  20. Basics and advances in battery systems

    SciTech Connect

    Nelson, J.P.; Bolin, W.D.

    1995-03-01

    One of the most common components in both the utility and industrial/commercial power system is the station battery. In many cases, the original design is marginal or inadequate; the maintenance and testing is practically nonexistent; but the system is called upon during emergency conditions and is expected to perform flawlessly. This paper will begin with the basic battery theory starting with the electrochemical cell. A working knowledge of the battery cell is important to understand typical problems such as hydrogen production, sulfating, and battery charging. The paper will then lead into a discussion of some of the common batteries and battery chargers. While this paper will concentrate primarily on the lead acid type of battery, the theory can be utilized on other types such as the Nickel-Cadmium. A reference will be made to industry standards and codes which are used for the design, installation, and maintenance of battery systems. Along with these standards will be a discussion of the design considerations, maintenance and testing, and, finally, some advanced battery system topics such as individual battery cell voltage equalizers and battery pulsing units. The goal of this paper is to provide the reader with a basic working understanding of a battery system. Only with that knowledge can a person be expected to design and/or properly maintain a battery system which may be called upon during an emergency to minimize the effects of a normal power outage, to minimize personnel hazards and to reduce property damage.

  1. Silicon anode for rechargeable aqueous lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Teranishi, R.; Si, Q.; Mizukoshi, F.; Kawakubo, M.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2015-01-01

    A novel aqueous lithium-air rechargeable cell with the configuration of Si/1 M LiClO4 in ethylene carbonate-diethylene carbonate/Li1+x+yAlx(Ti,Ge)2-xP3-ySiyO12/5 M LiCl-1 M LiOH aqueous solution/carbon black, air is proposed. A silicon anode composed of mechanically milled silicon power with an average particle size of ca. 0.5 μm, vapor grown carbon fiber and a polyimide binder was examined. The open-circuit voltage at the charged state was 2.9 V at 25 °C. The discharge capacity of 700 mAh g-silicon-1 was retained for 40 cycles at 0.3 mA cm-2 with cut-off voltages of 3.5 and 1.5 V. Significant capacity fade was observed at deep charge and discharge cycling at 2000 mAh g-silicon-1.

  2. Impact on global metal flows arising from the use of portable rechargeable batteries.

    PubMed

    Rydh, Carl Johan; Svärd, Bo

    2003-01-20

    The use of portable rechargeable battery cells and their effects on global metal flows were assessed or the following three cases: (1) the base case, which reflects the situation in 1999 of the global production of batteries; (2) the global production of portable nickel-cadmium batteries in 1999, assumed to be replaced by other battery types; and (3) assessment of the projected battery market in 2009. The study included the following battery technologies: nickel-cadmium (NiCd); nickel-metal hydride (NiMH) (AB(5), AB(2)); and lithium-based batteries (Li-ion: Co, Ni, Mn; Li-polymer: V). Based on the lithospheric extraction indicator (LEI), which is the ratio of anthropogenic to natural metal flows, and the significance of battery production related to global metal mining, the potential environmental impact of metals used in different battery types was evaluated. The LEIs and average metal demand for the battery market in 1999, expressed as a percentage of global mining output in 1999, were estimated to be as follows: Ni 5.6 (2.0%); Cd 4.4 (37%); Li 0.65 (3.8%); V 0.33 (6.5%); Co 0.18 (15%); Nd 0.18 (8.4%); La 0.10 (9.5%); Ce 0.083 (4.4%); and Pr 0.073 (9.4%). The use of Ni and Cd is of the greatest environmental interest, due to their high LEIs. In the case of complete replacement of portable NiCd batteries by NiMH or Li-based batteries, the LEI for Ni (5.6) would change by -0.1-0.5% and the LEI for Cd would decrease from 4.4 to 3.0 (-31%). Meanwhile, the mobilization of metals considered less hazardous than Cd (LEI 0 < 5) would increase less than 7%. Based on this assessment, the replacement of NiCd batteries would result in decreased environmental impact. To decrease the impact on global metal flows arising from the use of portable batteries the following points should be considered: (1) development of battery technologies should aim at high energy density and long service life; (2) metals with high natural occurrence should be used; and (3) metals from disused

  3. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    NASA Astrophysics Data System (ADS)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  4. Advanced battery development in the US

    NASA Astrophysics Data System (ADS)

    Shimotake, H.; Nelson, P. A.

    Batteries for load leveling and electric vehicle applications are under development in the United States. The most difficult requirements for these applications are long cycle life, high power density, and low cost. Steady progress is being made in developing advanced batteries. The US Department of Energy is sponsoring development of sodium sulfur, zinc bromine, zinc chloride, and aluminum air batteries. Exploratory research is being conducted on a variety of cell systems, such as lithium metal sulfide, alkali metal sulfur, glass electrolyte, and low temperature organic electrolyte. This paper reviews the US government effort in the development of advanced batteries and discusses some of the key systems.

  5. A Project Assessment of Stabilizing System of WT Generation using Rechargeable Battery

    NASA Astrophysics Data System (ADS)

    Kojima, Yasuhiro; Takano, Tomihiro; Tanikawa, Ryoichi; Takagi, Tetsuro; Hirooka, Koutaro; Kumagai, Sadatoshi

    The expansion of the renewable energy introduction is examined as measures for controlling global warming. Wind power generation is expected as effective power resource, but the negative impact from the difficulty of an unstable output is concerned. In recent years, WT generation with contract of cut-of with shorting adjusting power and with rechargeable battery for stabilizing control are examined, but the introduction has not been accelerated yet because there is an influence in WT generation entrepreneur's business. In this paper, we make a brief summary of relation between the fluctuation of wind power generation and stability of electric power operation, and two types of approach; cut-off contract and stabilization using rechargeable battery. For the stabilization using battery, there are two methods, one is reduction control and the other is constant control. We propose a new control method for constant control based on profit optimization considering WT generation forecast and its risk of deviation. We also propose the estimation method for the .limitation of battery installation. Simulation results show the efficiency of our proposed methods.

  6. Flow of Cadmium from Rechargeable Batteries in the United States, 1996-2007

    USGS Publications Warehouse

    Wilburn, David R.

    2007-01-01

    Cadmium metal has been found to be toxic to humans and the environment under certain conditions; therefore, a thorough understanding of the use and disposal of the metal is warranted. Most of the cadmium used in the United States comes from imported products. In 2007, more than 83 percent of the cadmium used in the United States was contained in batteries, mostly in rechargeable nickel-cadmium batteries used in popular consumer products such as cordless phones and power tools. The flow of cadmium contained in rechageable nickel-cadmium batteries used in the United States was tracked for the years 1996 to 2007. The amount of cadmium metal contained in imported products in 2007 was estimated to be about 1,900 metric tons, or about 160 percent higher than the reported cadmium production in the United States from all primary and secondary sources. Although more than 40,000 metric tons of cadmium was estimated to be contained in nickel-cadmium rechargeable batteries that became obsolete during the 12-year study period, not all of this material was sent to municipal solid waste landfills. About 27 percent of the material available for recovery in the United States was recycled domestically in 2007; the balance was discarded in municipal solid waste landfills, exported for recycling, retained in temporary storage, or thrown away.

  7. An advanced maintenance free aircraft battery system

    SciTech Connect

    Beutler, J.; Green, J.; Kulin, T.

    1996-11-01

    This paper describes an advanced aircraft battery system designed to provide 20 years of maintenance free operation with the flexibility for use on all US Air Force aircraft. System, battery, and charger/analyzer requirements are identified. The final design approach and test results are also presented. There are two general approaches to reduce the maintenance cost of batteries. One approach is to develop a disposable battery system, such that after some time interval the battery is simply replaced. The other approach, the subject of this paper, is to develop a battery that does not require any scheduled maintenance for the design life of the aircraft. This approach is currently used in spacecraft applications where battery maintenance is not practical.

  8. A class of liquid anode for rechargeable batteries with ultralong cycle life

    NASA Astrophysics Data System (ADS)

    Yu, Juezhi; Hu, Yong-Sheng; Pan, Feng; Zhang, Zhizhen; Wang, Qing; Li, Hong; Huang, Xuejie; Chen, Liquan

    2017-03-01

    Low cost, highly efficient and safe devices for energy storage have long been desired in our society. Among these devices, electrochemical batteries with alkali metal anodes have attracted worldwide attention. However, the practical application of such systems is limited by dendrite formation and low cycling efficiency of alkali metals. Here we report a class of liquid anodes fabricated by dissolving sodium metal into a mixed solution of biphenyl and ethers. Such liquid anodes are highly safe and have a low redox potential of 0.09 V versus sodium, exhibiting a high conductivity of 1.2 × 10-2 S cm-1. When coupled with polysulfides dissolved in dimethyl sulfoxide as the cathode, a battery is demonstrated to sustain over 3,500 cycles without measureable capacity loss at room temperature. This work provides a base for exploring a family of liquid anodes for rechargeable batteries that potentially meet the requirements for grid-scale electrical energy storage.

  9. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations.

    PubMed

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging.

  10. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations

    PubMed Central

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging. PMID:27789976

  11. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries.

    PubMed

    Bergner, Benjamin J; Schürmann, Adrian; Peppler, Klaus; Garsuch, Arnd; Janek, Jürgen

    2014-10-22

    Nonaqueous Li-O2 batteries are an intensively studied future energy storage technology because of their high theoretical energy density. However, a number of barriers prevent a practical application, and one of the major challenges is the reduction of the high charge overpotential: Whereas lithium peroxide (Li2O2) is formed during discharge at around 2.7 V (vs Li(+)/Li), its electrochemical decomposition during the charge process requires potentials up to 4.5 V. This high potential gap leads to a low round-trip efficiency of the cell, and more importantly, the high charge potential causes electrochemical decomposition of other cell constituents. Dissolved oxidation catalysts can act as mobile redox mediators (RM), which enable the oxidation of Li2O2 particles even without a direct electric contact to the positive electrode. Herein we show that the addition of 10 mM TEMPO (2,2,6,6-tetramethylpiperidinyloxyl), homogeneously dissolved in the electrolyte, provides a distinct reduction of the charging potentials by 500 mV. Moreover, TEMPO enables a significant enhancement of the cycling stability leading to a doubling of the cycle life. The efficiency of the TEMPO mediated catalysis was further investigated by a parallel monitoring of the cell pressure, which excludes a considerable contribution of a parasitic shuttle (i.e., internal ionic short circuit) to the anode during cycling. We prove the suitability of TEMPO by a systematic study of the relevant physical and chemical properties, i.e., its (electro)chemical stability, redox potential, diffusion coefficient and the influence on the oxygen solubility. Furthermore, the charging mechanisms of Li-O2 cells with and without TEMPO were compared by combining different electrochemical and analytical techniques.

  12. A review of recent developments in rechargeable lithium-sulfur batteries.

    PubMed

    Kang, Weimin; Deng, Nanping; Ju, Jingge; Li, Quanxiang; Wu, Dayong; Ma, Xiaomin; Li, Lei; Naebe, Minoo; Cheng, Bowen

    2016-09-22

    The research and development of advanced energy-storage systems must meet a large number of requirements, including high energy density, natural abundance of the raw material, low cost and environmental friendliness, and particularly reasonable safety. As the demands of high-performance batteries are continuously increasing, with large-scale energy storage systems and electric mobility equipment, lithium-sulfur batteries have become an attractive candidate for the new generation of high-performance batteries due to their high theoretical capacity (1675 mA h g(-1)) and energy density (2600 Wh kg(-1)). However, rapid capacity attenuation with poor cycle and rate performances make the batteries far from ideal with respect to real commercial applications. Outstanding breakthroughs and achievements have been made to alleviate these problems in the past ten years. This paper presents an overview of recent advances in lithium-sulfur battery research. We cover the research and development to date on various components of lithium-sulfur batteries, including cathodes, binders, separators, electrolytes, anodes, collectors, and some novel cell configurations. The current trends in materials selection for batteries are reviewed and various choices of cathode, binder, electrolyte, separator, anode, and collector materials are discussed. The current challenges associated with the use of batteries and their materials selection are listed and future perspectives for this class of battery are also discussed.

  13. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    PubMed

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  14. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.

    PubMed

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A

    2013-05-21

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163,544 mg/kg; σ = 62,897; limit 8000), copper (average 98,694 mg/kg; σ = 28,734; limit 2500), and nickel (average 9525 mg/kg; σ = 11,438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  15. Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery.

    PubMed

    Chiku, Masanobu; Takeda, Hiroki; Matsumura, Shota; Higuchi, Eiji; Inoue, Hiroshi

    2015-11-11

    Amorphous vanadium oxide/carbon composite (V2O5/C) was first applied to the positive electrode active material for rechargeable aluminum batteries. Electrochemical properties of V2O5/C were investigated by cyclic voltammetry and charge-discharge tests. Reversible reduction/oxidation peaks were observed for the V2O5/C electrode and the rechargeable aluminum cell showed the maximum discharge capacity over 200 mAh g(-1) in the first discharging. The XPS analyses after discharging and the following charging exhibited that the redox of vanadium ion in the V2O5/C active material occurred during discharging and charging, and the average valence of V changed between 4.14 and 4.85.

  16. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries.

    PubMed

    Gao, Jie; Abruña, Héctor D

    2014-03-06

    Rechargeable lithium-sulfur batteries have high theoretical capacity and energy density. However, their volumetric energy density has been believed to be lower than that of conventional lithium ion batteries employing metal oxide cathodes like LiCoO2. Here, we study the effects of sulfur loading percentage, develop a simple model and calculate the gravimetric and volumetric energy densities based on the total composition of electrodes in a lithium-sulfur cell, and compare those results with a typical graphite/LiCoO2 cell. From the model output, we have identified and established key parameters governing the energy density of rechargeable Li/S batteries. We find that the sulfur loading percentage has a much higher impact on the volumetric energy density than on the gravimetric energy density. A lithium-sulfur cell can exceed a lithium ion cell's volumetric energy density but only at high sulfur loading percentages (ca. 70%). We believe that these findings may attract more attention of lithium-sulfur system studies to high sulfur loading levels.

  17. A rechargeable room-temperature sodium superoxide (NaO2) battery

    NASA Astrophysics Data System (ADS)

    Hartmann, Pascal; Bender, Conrad L.; Vračar, Miloš; Dürr, Anna Katharina; Garsuch, Arnd; Janek, Jürgen; Adelhelm, Philipp

    2013-03-01

    In the search for room-temperature batteries with high energy densities, rechargeable metal-air (more precisely metal-oxygen) batteries are considered as particularly attractive owing to the simplicity of the underlying cell reaction at first glance. Atmospheric oxygen is used to form oxides during discharging, which—ideally—decompose reversibly during charging. Much work has been focused on aprotic Li-O2 cells (mostly with carbonate-based electrolytes and Li2O2 as a potential discharge product), where large overpotentials are observed and a complex cell chemistry is found. In fact, recent studies evidence that Li-O2 cells suffer from irreversible electrolyte decomposition during cycling. Here we report on a Na-O2 cell reversibly discharging/charging at very low overpotentials (< 200 mV) and current densities as high as 0.2 mA cm-2 using a pure carbon cathode without an added catalyst. Crystalline sodium superoxide (NaO2) forms in a one-electron transfer step as a solid discharge product. This work demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal-air batteries.

  18. Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

    SciTech Connect

    2010-09-15

    GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as they’re forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

  19. A novel rechargeable zinc-air battery with molten salt electrolyte

    NASA Astrophysics Data System (ADS)

    Liu, Shuzhi; Han, Wei; Cui, Baochen; Liu, Xianjun; Zhao, Fulin; Stuart, Jessica; Licht, Stuart

    2017-02-01

    Zinc-air batteries have been proposed for EV applications and large-scale electricity storage such as wind and solar power. Although zinc-air batteries are very promising, there are numerous technological barriers to overcome. We demonstrate for the first time, a new rechargeable zinc-air battery that utilizes a molten Li0.87Na0.63K0.50CO3 eutectic electrolyte with added NaOH. Cyclic voltammetry reveals that a reversible deposition/dissolution of zinc occurs in the molten Li0.87Na0.63K0.50CO3 eutectic. At 550 °C, this zinc-air battery performs with a coulombic efficiency of 96.9% over 110 cycles, having an average charging potential of ∼1.43 V and discharge potential of ∼1.04 V. The zinc-air battery uses cost effective steel and nickel electrodes without the need for any precious metal catalysts. Moreover, the molten salt electrolyte offers advantages over aqueous electrolytes, avoiding the common aqueous alkaline electrolyte issues of hydrogen evolution, Zn dendrite formation, ;drying out;, and carbonate precipitation.

  20. Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries

    SciTech Connect

    Song, Zhiping; Xu, Terrence; Gordin, Mikhail; Jiang, Yingbing; Bae, In-Tae; Xiao, Qiangfeng; Zhan, Hui; Liu, Jun; Wang, Donghai

    2012-05-09

    Electroactive polymers are a new generation of 'green' cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in-situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging - the composite can deliver more than 100 mAh/g within just a few seconds.

  1. Cathode limited charge transport and performance of thin-film rechargeable lithium batteries

    SciTech Connect

    Bates, J.B.; Hart, F.X.; Lubben, D.; Kwak, B.S.; van Zomeren, A.

    1994-11-01

    Several types of thin-film rechargeable batteries based on lithium metal anodes and amorphous V{sub 2}O{sub 5} (aV{sub 2}O{sub 5}), LiMn{sub 2}O{sub 4}, and LiCoO{sub 2} cathodes have been investigated in this laboratory. In all cases, the current density of these cells is limited by lithium ion transport in the cathodes. This paper, discusses sources of this impedance in Li-aV{sub 2}O{sub 5} and Li-LiMn{sub 2}O{sub 4} thin-film cells and their effect on cell performance.

  2. Studies of sulfur-based cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Wu, Min

    Developing alternative cathodes with high capacity is critical for the next generation rechargeable batteries to meet the ever-increasing desires of global energy storage market. This thesis is focused on two sulfur-based cathode materials ranging from inorganic lithium sulfide to organotrisulfide. For lithium sulfide cathode, we developed a nano-Li2S/MWCNT paper electrode through solution filtration method, which involved a low temperature of 100 °C. The Li2S nanocrystals with a size less than 10 nm were formed uniformly in the pores of carbon paper network. These electrodes show an unprecedented low overpotential (0.1 V) in the first charges, also show high discharge capacities, good rate capability, and excellent cycling performance. This superior electrochemical performance makes them promising for use with lithium metal-free anodes in rechargeable Li-S batteries for practical applications. For organotrisulfide cathode, we use a small organotrisulfide compound, e.g. dimethyl trisulfide, to be a high capacity and high specific energy organosulfide cathode material for rechargeable lithium batteries. Based on XRD, XPS, SEM, and GC-MS analysis, we investigated the cell reaction mechanism. The redox reaction of DMTS is a 4e- process and the major discharge products are LiSCH3 and Li2S. The following cell reaction becomes quite complicated, apart from the major product DMTS, the high order organic polysulfide dimethyl tetrasulfide (DMTtS) and low order organic polysulfide dimethyl disulfide (DMDS) are also formed and charged/discharged in the following cycles. With a LiNO3 containing ether-based electrolyte, DMTS cell delivers an initial discharge capacity of 720 mAh g -1 and retains 74% of the initial capacity over 70 cycles with high DMTS loading of 6.7 mg cm-2 at C/10 rate. When the DMTS loading is increased to 11.3 mg cm -2, the specific energy is 1025 Wh kg -1 for the active materials (DMTS and lithium) and the specific energy is 229 Wh kg-1 for the cell

  3. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin

    2016-02-01

    A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system.

  4. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

    PubMed Central

    Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin

    2016-01-01

    A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system. PMID:26878890

  5. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  6. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    PubMed

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g(-1)carbon at 20 μA cm(-2). Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g(-1)carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g(-1)carbon at 20 μA cm(-2) and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  7. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g‑1carbon at 20 μA cm‑2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g‑1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g‑1carbon at 20 μA cm‑2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  8. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    PubMed Central

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359

  9. Lithium-Ion Polymer Rechargeable Battery Developed for Aerospace and Military Applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, orman H.

    1999-01-01

    A recently completed 3 -year project funded by the Defense Advanced Research Projects Agency (DARPA) under the Technology Reinvestment Program has resulted in the development and scaleup of new lithium-ion polymer battery technology for military and aerospace applications. The contractors for this cost-shared project were Lockheed Martin Missiles & Space and Ultralife Batteries, Inc. The NASA Lewis Research Center provided contract management and technical oversight. The final products of the project were a portable 15-volt (V), 10-ampere-hour (A-hr) military radio battery and a 30-V, 50-A-hr marine/aerospace battery. Lewis will test the 50-A-hr battery. The new lithium-ion polymer battery technology offers a threefold or fourfold reduction in mass and volume, relative to today s commonly used nickel-cadmium, nickel-hydrogen, and nickel-metal hydride batteries. This is of special importance for orbiting satellites. It has been determined for a particular commercial communications satellite that the replacement of 1 kg of battery mass with 1 kg of transponder mass could increase the annual revenue flow by $100 000! Since this lithium-ion polymer technology offers battery mass reductions on the order of hundreds of kilograms for some satellites, the potential revenue increases are impressive.

  10. Advanced lithium ion battery charger

    SciTech Connect

    Teofilo, V.L.; Merritt, L.V.; Hollandsworth, R.P.

    1997-12-01

    A lithium ion battery charger has been developed for four and eight cell batteries or multiples thereof. This charger has the advantage over those using commercial lithium ion charging chips in that the individual cells are allowed to be taper charged at their upper charging voltage rather than be cutoff when all cells of the string have reached the upper charging voltage limit. Since 30--60% of the capacity of lithium ion cells maybe restored during the taper charge, this charger has a distinct benefit of fully charging lithium ion batteries by restoring all of the available capacity to all of its cells.

  11. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material

    NASA Astrophysics Data System (ADS)

    Yamaura, Junichi; Ozaki, Yoshiyuki; Morita, Akiyoshi; Ohta, Akira

    1993-03-01

    Carbon is a good candidate for negative electrodes because it can take the form of lithium intercalation compounds. We discussed the characteristics of typical carbon materials which have been studied as negative electrode materials. We have found that the mesophase pitch-based carbon microbead (MCMB) of high graphitization stage which have been graphitized at a high temperature such as 2800 C gives good characteristics as a negative electrode for rechargeable lithium batteries. The cylindrical 'AA-size' batteries of our trial products using LiCoO2 as the positive electrode and the M CMB graphitized at 2800 C as the negative electrode have been found to provide large capacities of 500 mA h and high voltages of 3.7 V with high energy densities of 240 W h/l, 100 W h/kg.

  12. Preparation and performance of a sulfur/graphene composite for rechargeable lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Dong, Yunhui; Huang, Yun; Huang, Gang; Zhang, Xinbo; Wang, Limin

    2012-01-01

    The lithium-sulfur (Li-S) battery is a promising electrochemical system that has high theoretical capacity. The sulfur/graphene nanosheets (S/GNS) composite is prepared through thermal reduction between the sulfur (S) and graphene oxide (GO). The morphology and composition of the composite are analyzed by means of x-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopic (EDS) characterization. It is found that the element S distributed uniformly between the layers of GNS. Graphene with a two-dimensional structure of carbon atoms is employed as a conductive and absorbing agent for the S cathode materials of rechargeable Li-S battery. The S/GNS composite cathode shows a specific electrochemical capacity, which is about 1598 mAh g-1 S at the initial discharge and remains above 670 mAh g-1 after 80 cycles.

  13. Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries

    DOE PAGES

    Berger, Cornelius M.; Mahmoud, Abdelfattah; Hermann, Raphaël P.; ...

    2016-08-08

    Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe3O5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe3O5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry, and scanning electron microscopy.more » Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.« less

  14. Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries

    SciTech Connect

    Berger, Cornelius M.; Mahmoud, Abdelfattah; Braun, Waldemar; Yazhenskikh, Elena; Sohn, Yoo Jung; Menzler, Norbert H.; Guillon, Olivier; Bram, Martin

    2016-08-08

    Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe3O5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe3O5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry, and scanning electron microscopy. Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.

  15. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries.

    PubMed

    Cho, Jae-Hyun; Aykol, Muratahan; Kim, Soo; Ha, Jung-Hoon; Wolverton, C; Chung, Kyung Yoon; Kim, Kwang-Bum; Cho, Byung-Won

    2014-11-19

    We have conducted extensive theoretical and experimental investigations to unravel the origin of the electrochemical properties of hybrid Mg(2+)/Li(+) rechargeable batteries at the atomistic and macroscopic levels. By revealing the thermodynamics of Mg(2+) and Li(+) co-insertion into the Mo6S8 cathode host using density functional theory calculations, we show that there is a threshold Li(+) activity for the pristine Mo6S8 cathode to prefer lithiation instead of magnesiation. By precisely controlling the insertion chemistry using a dual-salt electrolyte, we have enabled ultrafast discharge of our battery by achieving 93.6% capacity retention at 20 C and 87.5% at 30 C, respectively, at room temperature.

  16. Advanced batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Paul A.

    1989-03-01

    Over the past twenty years, some of the most difficult problems have been solved in the development of long-lived lithium/sulfide secondary batteries having molten chloride electrolytes. Recent tests of Li-Al/FeS2 cells have demonstrated 1000 cycles of operation and the practicality of achieving a specific energy of 175 Wh/kg for prismatic cells. Bipolar cells now under study may achieve even higher specific energy. Also, bipolar cells make possible the use of low-cost coated current collectors for the positive electrode instead of the expensive molybdenum current collectors that have been required for prismatic cells. Very compact batteries to power an electric van have been conceptually designed with this approach. These batteries would provide a range for the loaded vehicle of more than 100 miles for a battery weighing 280 kg, only 15 percent of the loaded vehicle weight (1930 kg).

  17. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications

    NASA Astrophysics Data System (ADS)

    Wang, Jinmin; Zhang, Lei; Yu, Le; Jiao, Zhihui; Xie, Huaqing; Lou, Xiong Wen (David); Wei Sun, Xiao

    2014-09-01

    Electrochromic smart windows are regarded as a good choice for green buildings. However, conventional devices need external biases to operate, which causes additional energy consumption. Here we report a self-powered electrochromic window, which can be used as a self-rechargeable battery. We use aluminium to reduce Prussian blue (PB, blue in colour) to Prussian white (PW, colourless) in potassium chloride electrolyte, realizing a device capable of self-bleaching. Interestingly, the device can be self-recovered (gaining blue appearance again) by simply disconnecting the aluminium and PB electrodes, which is due to the spontaneous oxidation of PW to PB by the dissolved oxygen in aqueous solution. The self-operated bleaching and colouration suggest another important function of the device: a self-rechargeable transparent battery. Thus the PB/aluminium device we report here is bifunctional, that is, it is a self-powered electrochromic window as well as a self-rechargeable transparent battery.

  18. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications.

    PubMed

    Wang, Jinmin; Zhang, Lei; Yu, Le; Jiao, Zhihui; Xie, Huaqing; Lou, Xiong Wen David; Sun, Xiao Wei

    2014-09-23

    Electrochromic smart windows are regarded as a good choice for green buildings. However, conventional devices need external biases to operate, which causes additional energy consumption. Here we report a self-powered electrochromic window, which can be used as a self-rechargeable battery. We use aluminium to reduce Prussian blue (PB, blue in colour) to Prussian white (PW, colourless) in potassium chloride electrolyte, realizing a device capable of self-bleaching. Interestingly, the device can be self-recovered (gaining blue appearance again) by simply disconnecting the aluminium and PB electrodes, which is due to the spontaneous oxidation of PW to PB by the dissolved oxygen in aqueous solution. The self-operated bleaching and colouration suggest another important function of the device: a self-rechargeable transparent battery. Thus the PB/aluminium device we report here is bifunctional, that is, it is a self-powered electrochromic window as well as a self-rechargeable transparent battery.

  19. Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Po-Chieh; Chien, Yu-Ju; Hu, Chi-Chang

    2016-05-01

    A novel configuration of two electrodes containing electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) pressed into a bifunctional air electrode is designed for rechargeable Zn-air batteries. MOC/25BC carbon paper (MOC consisting of α-MnO2 and XC-72 carbon black) and Fe0.1Ni0.9Co2O4/Ti mesh on this air electrode mainly serve as the cathode for the ORR and the anode for the OER, respectively. The morphology and physicochemical properties of Fe0.1Ni0.9Co2O4 are investigated through scanning electron microscopy, inductively coupled plasma-mass spectrometry, and X-ray diffraction. Electrochemical studies comprise linear sweep voltammetry, rotating ring-disk electrode voltammetry, and the full-cell charge-discharge-cycling test. The discharge peak power density of the Zn-air battery with the unique air electrode reaches 88.8 mW cm-2 at 133.6 mA cm-2 and 0.66 V in an alkaline electrolyte under an ambient atmosphere. After 100 charge-discharge cycles at 10 mA cm-2, an increase of 0.3 V between charge and discharge cell voltages is observed. The deep charge-discharge curve (10 h in each step) indicates that the cell voltages of discharge (1.3 V) and charge (1.97 V) remain constant throughout the process. The performance of the proposed rechargeable Zn-air battery is superior to that of most other similar batteries reported in recent studies.

  20. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.

    PubMed

    Song, Zhiping; Qian, Yumin; Zhang, Tao; Otani, Minoru; Zhou, Haoshen

    2015-09-01

    In concern of resource sustainability and environmental friendliness, organic electrode materials for rechargeable batteries have attracted increasing attentions in recent years. However, for many researchers, the primary impression on organic cathode materials is the poor cycling stability and low energy density, mainly due to the unfavorable dissolution and low redox potential, respectively. Herein, a novel polymer cathode material, namely poly(benzoquinonyl sulfide) (PBQS) is reported, for either rechargeable Li or Na battery. Remarkably, PBQS shows a high energy density of 734 W h kg(-1) (2.67 V × 275 mA h g(-1)) in Li battery, or 557 W h kg(-1) (2.08 V × 268 mA h g(-1)) in Na battery, which exceeds those of most inorganic Li or Na intercalation cathodes. Moreover, PBQS also demonstrates excellent long-term cycling stability (1000 cycles, 86%) and superior rate capability (5000 mA g(-1), 72%) in Li battery. Besides the exciting battery performance, investigations on the structure-property relationship between benzoquinone (BQ) and PBQS, and electrochemical behavior difference between Li-PBQS battery and Na-PBQS battery, also provide significant insights into developing better Li-organic and Na-organic batteries beyond conventional Li-ion batteries.

  1. Method and system for constructing a rechargeable battery and battery structures formed with the method

    DOEpatents

    Hobson, David O.; Snyder, Jr., William B.

    1995-01-01

    A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.

  2. Highly Conductive Solvent-Free Polymer Electrolytes for Lithium Rechargeable Batteries

    SciTech Connect

    Robert Filler, Zhong Shi and Braja Mandal

    2004-10-21

    In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

  3. Cr2O5 as new cathode for rechargeable sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Feng, Xu-Yong; Chien, Po-Hsiu; Rose, Alyssa M.; Zheng, Jin; Hung, Ivan; Gan, Zhehong; Hu, Yan-Yan

    2016-10-01

    Chromium oxide, Cr2O5, was synthesized by pyrolyzing CrO3 at 350 °C and employed as a new cathode in rechargeable sodium ion batteries. Cr2O5/Na rechargeable batteries delivered high specific capacities up to 310 mAh/g at a current density of C/16 (or 20 mA/g). High-resolution solid-state 23Na NMR both qualitatively and quantitatively revealed the reversible intercalation of Na ions into the bulk electrode and participation of Na ions in the formation of the solid-electrolyte interphase largely at low potentials. Amorphization of the electrode structure occurred during the first discharge revealed by both NMR and X-ray diffraction data. CrO3-catalyzed electrolyte degradation and loss in electronic conductivity led to gradual capacity fading. The specific capacity stabilized at >120 mAh/g after 50 charge-discharge cycles. Further improvement in electrochemical performance is possible via electrode surface modification, polymer binder incorporation, or designs of new morphologies.

  4. Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Farokh Niaei, Amir H.; Hussain, Tanveer; Hankel, Marlies; Searles, Debra J.

    2017-03-01

    We present the results of a density functional theory study of sodium storage and mobility on graphdiyne (GDY) and consider the applicability of GDY intercalated with sodium (Na) as an anode material for rechargeable batteries. The maximum capacity, energy barriers for Na diffusion throughout the layers, and expansion of the layers due to Na insertion are determined. The calculations indicate that Na intercalates within the GDY bulk layers with a capacity of NaC5.14 without expansion (316 mA h g-1) and NaC2.57 with expansion of 28% (497 mA h g-1). The energy barrier for movement of Na in the slit pore formed by two GDY bulk layers is found to be 0.82 eV for bulk GDY with an AB-2 stacking, and the barrier for movement through a GDY sheet is found to be 0.12 eV. The barrier for movement in the slit pore formed by sheets becomes even lower for AB-3 stacking, with values of 0.68 and 0.40 eV found for different pathways. Movement from one GDY sheet to another for the AB-3 stacking also has a moderate energy of 0.37 eV. Therefore, GDY intercalated with Na is proposed to have potential as an anode material for rechargeable batteries.

  5. Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries.

    PubMed

    Han, Dong-Wook; Ku, Jun-Hwan; Kim, Ryoung-Hee; Yun, Dong-Jin; Lee, Seok-Soo; Doo, Seok-Gwang

    2014-07-01

    We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability.

  6. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries.

    PubMed

    Tepavcevic, Sanja; Xiong, Hui; Stamenkovic, Vojislav R; Zuo, Xiaobing; Balasubramanian, Mahalingam; Prakapenka, Vitali B; Johnson, Christopher S; Rajh, Tijana

    2012-01-24

    Tailoring nanoarchitecture of materials offers unprecedented opportunities in utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na(+) ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na(2)V(2)O(5) stochiometry of 250 mAh/g. The stability evaluation during charge-discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of ~760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures.

  7. Effects of binders on the electrochemical performance of rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin

    2017-02-01

    A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.

  8. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  9. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  10. Synergistic catalytic properties of bifunctional nanoalloy catalysts in rechargeable lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Kang, Ning; Ng, Mei Shan; Shan, Shiyao; Wu, Jinfang; Zhao, Wei; Yin, Jun; Fang, Weiqing; Luo, Jin; Petkov, Valeri; Zhong, Chuan-Jian

    2016-09-01

    The understanding of factors influencing the performance of catalysts in the air cathode of a rechargeable lithium-oxygen battery, including overpotentials for oxygen reduction/evolution and discharge capacity, is essential for exploration of its ultimate application. This report describes new findings of an investigation of PdCu nanoalloys as cathode catalysts. Alloying Pd with oxophilic base metals such as Cu leads to reduction of the overpotentials and increase of the discharge capacity. The nanoalloy structures depend on the bimetallic composition, with an atomic ratio near 50:50 featuring mixed bcc and fcc structures. The discharge potential exhibits a maximum while the charge potential display a minimum in the range of 20-50% Cu, closer to 25% Cu, both of which correspond to a maximum reduction of the discharge-charge overpotentials. The discharge capacity displays a gradual increase with Cu%. This type of catalytic synergy is believed to be associated with a combination of ensemble and ligand effects. In particular, the activation of oxygen on Pd sites and oxygen oxophilicity at the alloyed Cu sites in the catalyst may have played an important role in effectively activating oxygen and maneuvering surface superoxide/peroxide species. These findings have implications for the design of multifunctional cathode catalysts in rechargeable lithium-oxygen batteries.

  11. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.

    PubMed

    Jung, Kyu-Nam; Jung, Jong-Hyuk; Im, Won Bin; Yoon, Sukeun; Shin, Kyung-Hee; Lee, Jong-Won

    2013-10-23

    Rechargeable metal-air batteries have attracted a great interest in recent years because of their high energy density. The critical challenges facing these technologies include the sluggish kinetics of the oxygen reduction-evolution reactions on a cathode (air electrode). Here, we report doped lanthanum nickelates (La2NiO4) with a layered perovskite structure that serve as efficient bifunctional electrocatalysts for oxygen reduction and evolution in an aqueous alkaline electrolyte. Rechargeable lithium-air and zinc-air batteries assembled with these catalysts exhibit remarkably reduced discharge-charge voltage gaps (improved round-trip efficiency) as well as high stability during cycling.

  12. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  13. Fabrication of all solid-state rechargeable lithium battery and its electrochemical properties

    NASA Astrophysics Data System (ADS)

    Rho, Young Ho; Kanamura, Kiyoshi

    An all solid-state rechargeable lithium battery was successfully fabricated using a ceramic electrolyte and a thin film technique. A polymer-modified sol-gel method was applied in order to prepare the electrode-coated ceramic electrolyte. Li 4Ti 5O 12 known for its outstanding electrochemical performances and the partially crystallized glass ceramics, LiTi 2(PO 4) 3-AlPO 4 were adopted as electrode and electrolyte materials, respectively. The all solid-state battery cell constructed with lithium metal, PMMA buffer, and electrode-coated ceramic electrolyte was electrochemically evaluated with ac impedance, cyclic voltammetry, and discharge-charge test. The impedance of the interface between Li 4Ti 5O 12 film and the solid electrolyte showed a relatively low resistance of ∼110 Ω cm -2 at 1.60 V. Highly reversible sharp redox peaks were observed at around 1.55 V from cyclic voltammograms, and these were still clear even at a high scan rate of 3 mV s -1, indicating a fast electrochemical response. A charge-discharge experiment showed an excellent reversibility of the cell but a relatively smaller discharge capacity of 100.49 mAh g -1 at C/5 than theoretical one of 175 mAh g -1. This may be due to formation of an interlayer at the interface, which may be caused by chemical reaction between Li 4Ti 5O 12 and the ceramic electrolyte during a firing step during preparation. In spite of the undesirable side-reaction, the ceramic electrolyte was successfully applied to the solid-state rechargeable lithium battery by means of a thin film technique using the polymer-modified sol-gel method, through increasing the interfacial contact area, i.e. reducing the interfacial resistance.

  14. Sulfur-vanadium oxide gel composites as thin film cathodes for rechargeable lithium batteries

    SciTech Connect

    Mukherjee, S.P.; Gavrilov, A.B.; Skotheim, T.A.

    1998-07-01

    A class of novel electroactive cathode materials based on composites produced from elemental sulfur and vanadium oxide xerogels or aerogels has been developed as models for lithium battery applications. The use of elemental sulfur in rechargeable lithium batteries has been hindered due to certain limitations such as, very low electronic conductivity and the out-diffusion of polysulfides during the cycling process which reduces the cycling efficiency. Vanadium oxide xerogels and aerogels have certain desirable characteristic physico-chemical properties, such as, high surface areas with nono-scale interconnecting porosity, high electronic conductivity, non- or nanocrystallinity, and oxidation reduction catalytic activity. Since these properties may improve the performance of sulfur based rechargeable batteries, a family of composite cathodes containing elemental sulfur and vanadium oxide gels were produced. The performance of the composites cathodes, in thin film form, were evaluated in coin cells and AA cells with metallic lithium anodes and liquid electrolytes. The multifunctional role of vanadium oxide gels on the cell performance of the cells having composite cathodes has been qualitatively explored. Results indicate that the cathodes having xerogel composites based on vanadium oxide sol from vanadium oxide isopropoxide can be made with high sulfur content (80 wt %) and with low carbon content (5 wt %) and without any polymer binder. This shows the contribution of adhesive properties and electronic conductivity of vanadium oxide xerogels. A significant suppression of polysulfide out-diffusion is observed with appropriate processing of the composite cathodes. It is anticipated that the nanoscale interconnecting porosity of gels plays an important role in this behavior. An excellent rate capability is observed with the vanadium-oxide sulfur composite cathodes indicating the contribution of intrinsic electrochemical properties of the vanadium oxide.

  15. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1989-12-01

    Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  16. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    Recent results for Li-Al/FeS sub 2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  17. Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries.

    PubMed

    Gu, Xingxing; Tong, Chuan-Jia; Rehman, Sarish; Liu, Li-Min; Hou, Yanglong; Zhang, Shanqing

    2016-06-29

    Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.

  18. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies

    NASA Astrophysics Data System (ADS)

    Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng

    2017-04-01

    Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).

  19. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application.

    PubMed

    Chen, Zhu; Yu, Aiping; Higgins, Drew; Li, Hui; Wang, Haijiang; Chen, Zhongwei

    2012-04-11

    A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

  20. An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode

    PubMed Central

    Wang, Xujiong; Hou, Yuyang; Zhu, Yusong; Wu, Yuping; Holze, Rudolf

    2013-01-01

    New energy industry including electric vehicles and large-scale energy storage in smart grids requires energy storage systems of good safety, high reliability, high energy density and low cost. Here a coated Li metal is used as anode for an aqueous rechargeable lithium battery (ARLB) combining LiMn2O4 as cathode and 0.5 mol l−1 Li2SO4 aqueous solution as electrolyte. Due to the “cross-over” effect of Li+ ions in the coating, this ARLB delivers an output voltage of about 4.0 V, a big breakthrough of the theoretic stable window of water, 1.229 V. Its cycling is very excellent with Coulomb efficiency of 100% except in the first cycle. Its energy density can be 446 Wh kg−1, about 80% higher than that for traditional lithium ion battery. Its power efficiency can be above 95%. Furthermore, its cost is low and safety is much reliable. It provides another chemistry for post lithium ion batteries. PMID:23466633

  1. A novel thermal swelling model for a rechargeable lithium-ion battery cell

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Epureanu, Bogdan I.

    2016-01-01

    The thermal swelling of rechargeable lithium-ion battery cells is investigated as a function of the charge state and the charge/discharge rate. The thermal swelling shows significant dependency on the state of charge and the charge rate. The thermal swelling follows a quadratic form at low temperatures, and shows linear characteristics with respect to temperature at high temperatures in free-swelling conditions. Moreover, the equivalent coefficient of thermal expansion is much larger than that of each electrode and host materials, suggesting that the separator and the complex shape of the cell play a critical role in thermal expansion. Based on the experimental characterization, a novel thermal swelling model is proposed. The model introduces an equivalent coefficient of thermal expansion for the cell and also considers the temperature distribution throughout the battery by using heat transfer theory. The comparison between the proposed model and experiments demonstrates that the model accurately predicts thermal swelling at a variety of charge/discharge rates during operation and relaxation periods. The model is relatively simple yet very accurate. Hence, it can be useful for battery management applied to prolong the cycle life of cells and packs.

  2. Analytical ABF-STEM imaging of Li ions in rechargeable batteries.

    PubMed

    Wen, Yuren; Shang, Tongtong; Gu, Lin

    2017-02-08

    Rechargeable batteries are being intensively investigated in an attempt to solve the energy issues while meeting the environmental demands. Even though Li-ion batteries (LIB) with high energy and light weight have been commercialized within the last 20 years, these devices currently require higher energy density, output power and sustainability characteristics. The atomic behavior of Li ion that determines LIB's performance is hardly characterized by transmission electron microscopy (TEM) owing to its weak electron-scattering power. In this sense, annular bright-field (ABF) scanning TEM (STEM), in which the contrast has a low scaling rate with the atomic number, has been proven to be a robust technique for simultaneous imaging of light and heavy elements. The s-state model, in which electron channeling along the atomic column allows the intensity to be focusing in the forward direction, has successfully explained the theory of ABF contrast. Furthermore, the detector angle range, the defocus-thickness dependence and the accelerating voltage (among other parameters) were discussed for optimized imaging conditions. ABF-STEM has shown powerful capabilities in resolving the atomic structure and the chemistry of electrodes (e.g. Li-ion occupation and diffusion, phase transformation and interface reaction), thereby providing critical insights into the physical properties, the battery performance and the design guidance of LIB. The future directions of ABF imaging for the characterization of LIB materials were also reviewed.

  3. A class of liquid anode for rechargeable batteries with ultralong cycle life

    PubMed Central

    Yu, Juezhi; Hu, Yong-Sheng; Pan, Feng; Zhang, Zhizhen; Wang, Qing; Li, Hong; Huang, Xuejie; Chen, Liquan

    2017-01-01

    Low cost, highly efficient and safe devices for energy storage have long been desired in our society. Among these devices, electrochemical batteries with alkali metal anodes have attracted worldwide attention. However, the practical application of such systems is limited by dendrite formation and low cycling efficiency of alkali metals. Here we report a class of liquid anodes fabricated by dissolving sodium metal into a mixed solution of biphenyl and ethers. Such liquid anodes are highly safe and have a low redox potential of 0.09 V versus sodium, exhibiting a high conductivity of 1.2 × 10−2 S cm−1. When coupled with polysulfides dissolved in dimethyl sulfoxide as the cathode, a battery is demonstrated to sustain over 3,500 cycles without measureable capacity loss at room temperature. This work provides a base for exploring a family of liquid anodes for rechargeable batteries that potentially meet the requirements for grid-scale electrical energy storage. PMID:28262666

  4. A class of liquid anode for rechargeable batteries with ultralong cycle life.

    PubMed

    Yu, Juezhi; Hu, Yong-Sheng; Pan, Feng; Zhang, Zhizhen; Wang, Qing; Li, Hong; Huang, Xuejie; Chen, Liquan

    2017-03-06

    Low cost, highly efficient and safe devices for energy storage have long been desired in our society. Among these devices, electrochemical batteries with alkali metal anodes have attracted worldwide attention. However, the practical application of such systems is limited by dendrite formation and low cycling efficiency of alkali metals. Here we report a class of liquid anodes fabricated by dissolving sodium metal into a mixed solution of biphenyl and ethers. Such liquid anodes are highly safe and have a low redox potential of 0.09 V versus sodium, exhibiting a high conductivity of 1.2 × 10(-2) S cm(-1). When coupled with polysulfides dissolved in dimethyl sulfoxide as the cathode, a battery is demonstrated to sustain over 3,500 cycles without measureable capacity loss at room temperature. This work provides a base for exploring a family of liquid anodes for rechargeable batteries that potentially meet the requirements for grid-scale electrical energy storage.

  5. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    SciTech Connect

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  6. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  7. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1990-02-01

    Recent results for Li-Al/FeS2 cells and a bipolar battery design have shown the possibility of achieving high specific energy (210 W h/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  8. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries.

    PubMed

    Liu, Yongchang; Jiao, Lifang; Wu, Qiong; Zhao, Yanping; Cao, Kangzhe; Liu, Huiqiao; Wang, Yijing; Yuan, Huatang

    2013-10-21

    Distinctive rGO-supported MoS2 hybrids have been fabricated via a hydrothermal method followed by a heat treatment. Characterizations demonstrate that layered MoS2 and graphene nanosheets in the hybrids interlace with each other to form novel sandwich-structured microspheres, which exhibit preferable electrochemical performance in rechargeable Mg batteries.

  9. The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries.

    PubMed

    Zhu, Zhiqiang; Li, Hao; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2015-01-28

    The disodium salt of 2,5-dihydroxy-1,4-benzoquinone has been prepared and proposed as anode material for rechargeable sodium ion batteries for the first time, showing an average operation voltage of ∼1.2 V, a reversible capacity of ∼265 mA h g(-1), a long cycle life (300 cycles), and high rate capability.

  10. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0

  11. An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.

    PubMed

    Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; Du, Xian-Long; Wang, Jian-Qiang; He, He-Yong; Cao, Yong

    2014-12-01

    The formate-based rechargeable hydrogen battery (RHB) promises high reversible capacity to meet the need for safe, reliable, and sustainable H2 storage used in fuel cell applications. Described herein is an additive-free RHB which is based on repetitive cycles operated between aqueous formate dehydrogenation (discharging) and bicarbonate hydrogenation (charging). Key to this truly efficient and durable H2 handling system is the use of highly strained Pd nanoparticles anchored on graphite oxide nanosheets as a robust and efficient solid catalyst, which can facilitate both the discharging and charging processes in a reversible and highly facile manner. Up to six repeated discharging/charging cycles can be performed without noticeable degradation in the storage capacity.

  12. Ionic modeling of lithium manganese spinel materials for use in rechargeable batteries

    SciTech Connect

    Cygan, R.T.; Westrich, H.R.; Doughty, D.H.

    1995-12-31

    In order to understand and evaluate materials for use in lithium ion rechargeable battery electrodes, the authors have modeled the crystal structures of various manganese oxide and lithium manganese oxide compounds. They have modeled the MnO{sub 2} polymorphs and several spinels with intermediate compositions based on the amount of lithium inserted into the tetrahedral site. Three-dimensional representations of the structures provide a basis for identifying site occupancies, coordinations, manganese valence, order-disorder, and potentially new dopants for enhanced cathode behavior. X-ray diffraction simulations of the crystal structures provide good agreement with observed patterns for synthesized samples. Ionic modeling of these materials consists of an energy minimization approach using Coulombic, repulsive, and van der Waals interactions. Modeling using electronic polarizability (shell model) allows a systematic analysis of changes in lattice energy, cell volume, and the relative stability of doped structures using ions such as aluminum, titanium, nickel, and cobalt.

  13. Novel poly(methyl methacrylate)-based semi-interpenetrating polyelectrolyte gels for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Kalapala, Saibabu; Easteal, Allan J.

    Novel semi-interpenetrating polymer gel electrolytes designed for use in rechargeable lithium polymer batteries are synthesised from methyl methacrylate and the lithium salt of 2-acrylamido-2-methylpropanesulfonic acid (LiAMPS). The gels are made by first synthesising linear chains of poly(LiAMPS) by free radical polymerisation of LiAMPS dissolved in dimethyl acetamide (DMA) or DMA/ethylene carbonate mixtures, then co-polymerisation of methyl methacrylate and a cross-linking monomer (tetraethyleneglycol diacrylate) to form the semi-interpenetrating network. The electrical conductivity of the gels is determined as a function of LiAMPS and methyl methacrylate (MMA) concentrations, cross-link density, and solvent composition. The conductivity ( σ) is found to be in the range 0.2 ≤ σ ≤ 0.8 mS cm -1 at ambient temperature (20 ± 1 °C).

  14. Chemical routes to synthesize lithium cobalt oxide powders for rechargeable lithium batteries

    SciTech Connect

    Gallet, D.; Waghray, A.; Kumta, P.N.

    1996-12-31

    Lithium cobalt oxide (LiCoO{sub 2}) is known to be a good cathode material for high voltage (4V) rechargeable Li-ion batteries. New chemical routes based on aqueous solution chemistry have been developed to synthesize molecularly mixed precursors that transform to form LiCoO{sub 2} at temperatures as low as 400{degrees}C. The resultant oxide powders are nanocrystalline ({approx} 20-40 nm) and exhibit unique morphologies and microstructures depending on the molecular environment of the ions in solution. Cathodes fabricated from the oxide powders and tested in {open_quote}hockey-puck{close_quote} test cells exhibited specific capacities of about 135 mAh/g with a reversible range close to 0.5 Li ions. Results of the phase evolution and microstructural analysis are discussed in relation to the electrochemical performance of the cathodes.

  15. Rechargeable Al/Cl2 battery with molten AlCl4/-/ electrolyte.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.; Burrows, B.

    1972-01-01

    A molten salt system based on Al- and Cl2 carbon electrodes, with an AlCl3 alkali chloride eutectic as electrolyte, offers promise as a rechargeable, high energy density battery which can operate at a relatively low temperature. Electrode kinetic studies showed that the electrode reactions at the Al anode were rapid and that the observed passivation phenomena were due to the formation at the electrode surface of a solid salt layer resulting from concentration changes on anodic or cathodic current flow. It was established that carbon electrodes were intrinsically active for chlorine reduction in AlCl3-alkali chloride melts. By means of a rotating vitreous carbon disk electrode, the kinetic parameters were determined.

  16. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    PubMed Central

    Cui, Xinwei; Chen, Jian; Wang, Tianfei; Chen, Weixing

    2014-01-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the reversible fluorination/defluorination reactions and lithium-ion storage/release at the CNTA paper cathodes, resulting in a dual-storage mechanism. The rechargeable battery with this dual-storage mechanism demonstrated a maximum discharging capacity of 2174 mAh gcarbon−1 and a specific energy of 4113 Wh kgcarbon−1 with good cycling performance. PMID:24931036

  17. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  18. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    PubMed

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries.

  19. Advanced nickel-hydrogen spacecraft battery development

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-01-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  20. Self-Assembled Monolayers of n-Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes

    SciTech Connect

    Malkhandi, S; Yang, B; Manohar, AK; Prakash, GKS; Narayanan, SR

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  1. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  2. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  3. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  4. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries.

    PubMed

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J; Hong, Seung Sae; Cui, Yi

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li(2)S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO(3) additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy.

  5. Properties of All-Solid Lithium-Ion Rechargeable Batteries Deposited by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, R. J.; Ren, Y.; Geng, L. Q.; Chen, T.; Li, L. X.; Yuan, C. R.

    2013-08-01

    Amorphous V2O5, LiPON and Li2Mn2O4 thin films were fabricated by RF magnetron sputtering methods and the morphology of thin films were characterized by scanning electron microscopy. Then with these three materials deposited as the anode, solid electrolyte, cathode, and vanadium as current collector, a rocking-chair type of all-solid-state thin-film-type Lithium-ion rechargeable battery was prepared by using the same sputtering parameters on stainless steel substrates. Electrochemical studies show that the thin film battery has a good charge-discharge characteristic in the voltage range of 0.3-3.5 V, and after 30 cycles the cell performance turned to become stabilized with the charge capacity of 9 μAh/cm2, and capacity loss of single-cycle of about 0.2%. At the same time, due to electronic conductivity of the electrolyte film, self-discharge may exist, resulting in approximately 96.6% Coulombic efficiency.

  6. Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries

    PubMed Central

    Kim, Haegyeom; Lim, Hee-Dae; Kim, Sung-Wook; Hong, Jihyun; Seo, Dong-Hwa; Kim, Dae-chul; Jeon, Seokwoo; Park, Sungjin; Kang, Kisuk

    2013-01-01

    High-performance and cost-effective rechargeable batteries are key to the success of electric vehicles and large-scale energy storage systems. Extensive research has focused on the development of (i) new high-energy electrodes that can store more lithium or (ii) high-power nano-structured electrodes hybridized with carbonaceous materials. However, the current status of lithium batteries based on redox reactions of heavy transition metals still remains far below the demands required for the proposed applications. Herein, we present a novel approach using tunable functional groups on graphene nano-platelets as redox centers. The electrode can deliver high capacity of ~250 mAh g−1, power of ~20 kW kg−1 in an acceptable cathode voltage range, and provide excellent cyclability up to thousands of repeated charge/discharge cycles. The simple, mass-scalable synthetic route for the functionalized graphene nano-platelets proposed in this work suggests that the graphene cathode can be a promising new class of electrode. PMID:23514953

  7. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    NASA Astrophysics Data System (ADS)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  8. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    PubMed

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7-based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V(4+)/V(3+), V(3+)/V(2+), and Sn(4+)/Sn(2+) redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g(-1) for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  9. Synthesis and characterization of nanostructured cathode materials for rechargeable lithium/lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Jingsi

    The rapidly increasing markets of portable electronic devices and electric/hybrid vehicles have raised worldwide R&D efforts in developing high-energy rechargeable lithium and lithium ion batteries. High performance intercalation cathodes are key to the success of these batteries. The nanotechnology has endowed the electrode materials with a variety of improved features as well as unique characteristics. Synthesis approaches were designed in this thesis work to utilize these advantages and investigate the exceptional phenomena raised by the nanostructured materials. A novel sol-gel method was designed for the synthesis of carbon-coated phase-pure lithium iron phosphate with submicron particle sizes and uniform size distribution. The surface carbon coating was formed in-situ through pyrolysis of the precursor gel, which improved the apparent electronic conductivity of the as prepared material to 10-2 S/cm compared with 10-9-10-10 S/cm of the pristine LiFePO 4. The favorable physical characteristics of the synthesized LiFePO 4 particles and the improved electronic conductivity through the carbon coating led to electrochemical properties comparable to the best performances reported so far. Amorphous manganese oxide cryogels with nanoarchitecture were obtained by freeze-drying Mn (IV) oxide hydrogels. The combination of the advantages of the amorphous structure and the nano-architecture of the materials gave high capacities and excellent rate capabilities. This work led to the finding of a nanocrystalline Li2MnO3-like compound with a surprising electrochemical activity, which is in sharp contrast to the microcrystalline rock-salt Li2MnO3 that has been known to be electrochemically inactive. The study highlights the possibility of qualitative difference in intercalation behavior of nanostructured intercalation compounds compared with their microcrystalline counterparts. Bismuth and copper modified amorphous manganese oxides were synthesized by aqueous coprecipitation

  10. Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory.

    PubMed

    Bhatt, Mahesh Datt; Geaney, Hugh; Nolan, Michael; O'Dwyer, Colm

    2014-06-28

    Rechargeable Li-air (henceforth referred to as Li-O2) batteries provide theoretical capacities that are ten times higher than that of current Li-ion batteries, which could enable the driving range of an electric vehicle to be comparable to that of gasoline vehicles. These high energy densities in Li-O2 batteries result from the atypical battery architecture which consists of an air (O2) cathode and a pure lithium metal anode. However, hurdles to their widespread use abound with issues at the cathode (relating to electrocatalysis and cathode decomposition), lithium metal anode (high reactivity towards moisture) and due to electrolyte decomposition. This review focuses on the key scientific challenges in the development of rechargeable non-aqueous Li-O2 batteries from both experimental and theoretical findings. This dual approach allows insight into future research directions to be provided and highlights the importance of combining theoretical and experimental approaches in the optimization of Li-O2 battery systems.

  11. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Luan, Yanping; Lyu, Zhiyang; Wang, Liangjun; Xu, Leilei; Yuan, Kaidi; Pan, Feng; Lai, Min; Liu, Zhaolin; Chen, Wei

    2015-09-01

    A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery cathode. Here, we report a controllable approach to synthesize hierarchical porous δ-MnO2 nanoboxes by using Prussian blue analogues as the precursors. The obtained products possess hierarchical pore size and an extremely large surface area (249.3 m2 g-1), which would favour oxygen transportation and provide more catalytically active sites to promote ORR and OER as the Li-O2 battery cathode. The battery shows enhanced discharge capacity (4368 mA h g-1@0.08 mA cm-2), reduced overpotential (270 mV), improved rate performance and excellent cycle stability (248 cycles@500 mA h g-1 and 112 cycles@1000 mA h g-1), in comparison with the battery with a VX-72 carbon cathode. The superb performance of the hierarchical porous δ-MnO2 nanoboxes, together with a convenient fabrication method, presents an alternative to develop advanced cathode catalysts for the Li-O2 battery.A rechargeable lithium-oxygen (Li-O2) battery with a remarkably high theoretical energy storage capacity has attracted enormous research attention. However, the poor oxygen reduction and oxygen evolution reaction (ORR and OER) activities in discharge and charge processes cause low energy efficiency, poor electrolyte stability and short cycle life. This requires the development of efficient cathode catalysts to dramatically improve the Li-O2 battery performances. MnO2-based materials are recognized as efficient and low-cost catalysts for a Li-O2 battery

  12. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  13. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  14. Combining electrospinning and sputtering to improve rechargeable lithium battery cathodes: coating carbon fibre felt with nickel sulfide

    NASA Astrophysics Data System (ADS)

    Lee, Dong Kyu; Ryu, Ho Suk; Ahn, Chi Won; Jeon, Hwan-Jin

    2016-11-01

    Various nickel sulfide nanostructures have been developed for the fabrication of high surface area electrodes for rechargeable lithium batteries. In this study, we fabricated a nickel sulfide covered carbon fibre felt with high uniformity, high density, and large area for cathode materials for use in rechargeable lithium batteries, by using a combined electrospinning and sputtering deposition technique. In particular, the nickel sulfide/carbon fibre felt is a multi-functional material that can act as a conducting electrode itself without the use of binders and conductive materials owing to the high conductivity of the interlinked carbon fibre structures. A Li/nickel sulfide cell with current density of 100 mA g-1 exhibits good cycle performance and high first discharge capacity (970.46 mAh g-1) and good coulombic efficiency of 99% at 20 cycles. This electrode has good structural and electrochemical properties and has a potential to be commercialized when the properties are matured.

  15. Cr, N-Codoped TiO2 Mesoporous Microspheres for Li-ion Rechargeable Batteries with Enhanced Electrochemical Performance

    SciTech Connect

    Bi, Zhonghe; Paranthaman, Mariappan Parans; Guo, Bingkun; Unocic, Raymond R; Meyer III, Harry M; Bridges, Craig A; Sun, Xiao-Guang; Dai, Sheng

    2014-01-01

    Cr,N-codoped TiO2 mesoporous microspheres synthesized using hydrothermal and subsequent nitridation treatment, exhibited higher solubility of nitrogen, and improved electrical conductivity than N-doped TiO2, as anode for Lithium-ion rechargeable batteries, which led to improving charge-discharge capacity at 0.1 C and twice higher rate capability compared to that of nitrogen-doped TiO2 mesoporous microsphere at 10 C

  16. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  17. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  18. Material Use in the United States - Selected Case Studies for Cadmium, Cobalt, Lithium, and Nickel in Rechargeable Batteries

    USGS Publications Warehouse

    Wilburn, David R.

    2008-01-01

    This report examines the changes that have taken place in the consumer electronic product sector as they relate to (1) the use of cadmium, cobalt, lithium, and nickel contained in batteries that power camcorders, cameras, cell phones, and portable (laptop) computers and (2) the use of nickel in vehicle batteries for the period 1996 through 2005 and discusses forecasted changes in their use patterns through 2010. Market penetration, material substitution, and technological improvements among nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li-ion) rechargeable batteries are assessed. Consequences of these changes in light of material consumption factors related to disposal, environmental effects, retail price, and serviceability are analyzed in a series of short case studies.

  19. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  20. Gaston Planté and his invention of the lead-acid battery-The genesis of the first practical rechargeable battery

    NASA Astrophysics Data System (ADS)

    Kurzweil, P.

    In 1860, the Frenchman Gaston Planté (1834-1889) invented the first practical version of a rechargeable battery based on lead-acid chemistry-the most successful secondary battery of all ages. This article outlines Planté's fundamental concepts that were decisive for later development of practical lead-acid batteries. The 'pile secondaire' was indeed ahead its time in that an appropriate appliance for charging the accumulator was not available. The industrial success came after the invention of the Gramme machine. In 1879, Planté obtained acceptance for his work by publishing a book entitled Recherches sur l' Electricité. He never protected his inventions by patents, and spent much of his fortune on assisting impoverished scientists.

  1. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    NASA Astrophysics Data System (ADS)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  2. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    SciTech Connect

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  3. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  4. Exploration of vanadium benzenedicarboxylate as a cathode for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Kaveevivitchai, Watchareeya; Jacobson, Allan J.

    2015-03-01

    The electrochemical reaction with lithium of a vanadium-based metal-organic framework VIV(O)(bdc) [MIL-47], which is isostructural to the iron compound MIL-53(Fe), was investigated. The large open channels which can accommodate small guest species, such as Li+ ions, together with the redox properties of the tetravalent vanadium ions make this material of potential interest as a rechargeable intercalation electrode for lithium batteries. The electrochemical properties were investigated in Li|1 M LiPF6 in ethylene carbonate (EC) and dimethyl carbonate (DMC)|V(O)(bdc) cells between 4.0 and 1.5 V vs. Li/Li+. V(O)(bdc) cathodes can be reversibly cycled in Li cells with good rate capability and specific capacity. At a current density of C/12, Li/V(O)(bdc) cells can be cycled between 0 ≤ x ≤ 0.7 in LixV(O)(bdc) with ∼100% coulombic efficiency corresponding to 82 mAh g-1 which is a higher capacity than that found for MIL-53(Fe). The cell performance and electrochemical profiles at various current conditions are discussed. Structural evolution taking place during lithium intercalation was monitored by powder X-ray diffraction on phases of LixV(O)(bdc) (0 < x ≤ 2) chemically prepared by using n-BuLi. Previous studies of the reaction of lithium with metal-organic frameworks are briefly reviewed for comparison with the data presented for LixV(O)(bdc).

  5. Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Shenouda, Atef Y.; Murali, K. R.

    Several substituted titanates of formula Li 4- xMg xTi 5- xV xO 12 (0 ≤ x ≤ 1) were synthesized (and investigated) as anode materials in rechargeable lithium batteries. Five samples labeled as S1-S5 were calcined (fired) at 900 °C for 10 h in air, and slowly cooled to room temperature in a tube furnace. The structural properties of the synthesized products have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transmission infrared (FTIR). XRD explained that the crystal structures of all samples were monoclinic while S1 and S3 were hexagonal. The morphology of the crystal of S1 was spherical while the other samples were prismatic in shape. SEM investigations explained that S4 had larger grain size diameter of 15-16 μm in comparison with the other samples. S4 sample had the highest conductivity 2.452 × 10 -4 S cm -1. At a voltage plateau located at about 1.55 V (vs. Li +), S4 cell exhibited an initial specific discharge capacity of 198 mAh g -1. The results of cyclic voltammetry for Li 4- xMg xTi 5- xV xO 12 showed that the electrochemical reaction was based on Ti 4+/Ti 3+ redox couple at potential range from 1.5 to 1.7 V. There is a pair of reversible redox peaks corresponding to the process of Li + intercalation and de-intercalation in the Li-Ti-O oxides.

  6. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  7. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries.

    PubMed

    Huang, Shiting; Fan, Wugang; Guo, Xiangxin; Meng, Fanhao; Liu, Xuanyong

    2014-12-10

    Surface defects on carbon nanotube cathodes have been artificially introduced by bombardment with argon plasma. Their roles in the electrochemical performance of rechargeable Li-O2 batteries have been investigated. In batteries with tetraethylene glycol dimethyl ether (TEGDME)- and N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI)-based electrolytes, the defects increase the number of nucleation sites for the growth of Li2O2 particles and reduce the size of the formed particles. This leads to increased discharge capacity and reduced cycle overpotential. However, in the former batteries, the hydrophilic surfaces induced by the defects promote carbonate formation, which imposes a deteriorating effect on the cycle performance of the Li-O2 batteries. In contrast, in the latter case, the defective cathodes promote Li2O2 formation without enhancing formation of carbonates on the cathode surfaces, resulting in extended cycle life. This is most probably attributable to the passivation effect on the functional groups of the cathode surfaces imposed by the ionic liquid. These results indicate that defects on carbon surfaces may have a positive effect on the cycle performance of Li-O2 batteries if they are combined with a helpful electrolyte solvent such as PP13TFSI.

  8. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  9. Investigation of novel electrolyte systems for advanced metal/air batteries and fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Hui

    It is a worldwide challenge to develop advanced green power sources for modern portable devices, transportation and stationary power generation. Metal/air batteries and fuel cells clearly stand out in view of their high specific energy, high energy efficiency and environment-friendliness. Advanced metal/air batteries based on metal ion conductors and proton exchange membrane (PEM) fuel cells operated at elevated temperatures (>120°C) can circumvent the limitations of current technologies and bring considerable advantages. The key is to develop suitable electrolytes to enable these new technologies. In this thesis research, investigation of novel electrolytes systems for advanced metal/air batteries and PEM fuel cells is conducted. Novel polymer gel electrolyte systems, [metal salt/ionic liquid/polymer] and [metal salt/liquid polyether/polymer] are prepared. Such systems contain no volatile solvents, conduct metal ions (Li+ or Zn 2+) with high ionic conductivity, possess wide electrochemical stability windows, and exhibit wide operating temperature ranges. They promise to enable non-aqueous, all-solid-state, thin-film Li/air batteries and Zn/air batteries. They are advantageous for application in other battery systems as well, such as rechargeable lithium and lithium ion batteries. In the case of proton exchange membranes, polymer gel electrolyte systems [acid/ionic liquid/polymer] are prepared. Especially, H3PO4/PMIH2PO 4/PBI is demonstrated as prospective proton exchange membranes for PEM fuel cells operating at elevated temperatures. Comprehensive electrochemical characterization, thermal analysis (TGA and DSC) and spectroscopy analysis (NMR and FTIR) are carried out to investigate these novel electrolyte systems and their ion transport mechanisms. The design and synthesis of novel ionic liquids and electrolyte systems based on them for advantageous application in various electrochemical power sources are highlighted in this work.

  10. Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    SciTech Connect

    Gao, Jie; Lowe, Michael A.; Abruna, Hector D.

    2011-07-12

    Mn₃O₄ has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn₃O₄ was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge–charge tests. The results indicate that this novel type of nanosized Mn₃O₄ exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles.

  11. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability

    NASA Astrophysics Data System (ADS)

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-01

    We report the synthesis of a graphene-sulfur composite material by wrapping polyethyleneglycol (PEG) coated submicron sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ~600mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  12. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.

    PubMed

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-13

    We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  13. Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets.

    PubMed

    Xu, Yifan; Zhang, Ye; Guo, Ziyang; Ren, Jing; Wang, Yonggang; Peng, Huisheng

    2015-12-14

    The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next-generation electronics. Herein, fiber-shaped Zn-air batteries, are realized for the first time by designing aligned, cross-stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g(-1) . They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.

  14. Small angle x-ray scattering studies of carbon anodes used in lithium rechargeable batteries.

    SciTech Connect

    Sandi, G.; Carrado, K. A.; Winans, R. E.; Seifert, S.; Johnson, C. S.

    1999-11-16

    In ANL laboratories, disordered carbons with predictable surface area and porosity properties have been prepared using inorganic templates containing well defined pore sizes. The carbons have been tested in electrochemical cells as anodes in lithium secondary batteries. They deliver high specific capacity and display excellent performance in terms of the number of cycles run. In situ small angle X-ray scattering (SAXS) during electrochemical cycling was carried out at the Advanced Photon Source, at ANL. In order to monitor the carbon electrode structural changes upon cycling, an electrochemical cell was specially designed to allow for the application of electrical current and the collection of SAXS data at the same time. Results show that upon cycling the structure of the carbon remains unchanged, which is desirable in reversible systems.

  15. Intelligent power management system for N+ rechargeable solid-state microscale batteries

    NASA Astrophysics Data System (ADS)

    Alahmad, Mahmoud Ahmad

    2005-07-01

    Jet Propulsion Laboratory (JPL) has been pursing miniaturized power sources for aerospace applications. In the area of power storage, they have developed a rechargeable solid state micro-scale lithium battery, rated at 4.25 V with a 50 nAH capacity. It is fabricated on a single 4-inch wafer using microelectronic fabrication techniques. Up to 20,000 microbatteries can be fabricated on a single wafer. A system to charge, discharge and monitor the status of each microbattery is required to utilize the microbatteries in practical applications. This Ph.D. dissertation describes the development of a novel N+ Switch Array Matrix (N+ SAM) topology. This topology is unique in its dynamic reconfiguration ability by providing selective connection and isolation and it is versatile in its core design by incorporating passive, active or energy storage elements. It is customized for the microbatteries to provide selective voltage and capacity ratios by reconfiguring the microbatteries during the charge or discharge cycle. In addition, a microbattery model and a categorization model have been developed to identify the status of each microbattery in the topology at any given time. An Intelligent Power Management System has been developed based on the N+ SAM topology to provide user-defined methods and connections for charging and discharging arbitrary number N microbatteries connected in series, parallel, or series-parallel configurations. Using the categorization model, the system provides real time information regarding the condition and status of each microbattery. Using the microbattery model, the system also provides real time fault tolerant capabilities and protection using voltage setting to terminate the charge and discharge if required. A two microbattery prototype circuit has been designed and built using a microprocessor-based controller and off-the-shelf components for the verification of the system's operation. The results of the prototype circuit are presented

  16. A Facile Approach Using MgCl2 to Formulate High Performance Mg2+ Electrolytes for Rechargeable Mg Batteries

    SciTech Connect

    Liu, Tianbiao L.; Shao, Yuyan; Li, Guosheng; Gu, Meng; Hu, Jian Z.; Xu, Suochang; Nie, Zimin; Chen, Xilin; Wang, Chong M.; Liu, Jun

    2014-01-01

    Rechargeable Mg batteries have been regarded as a viable battery technology for grid scale energy storage and transportation applications. However, the limited performance of Mg2+ electrolytes has been a primary technical hurdle to develop high energy density rechargeable Mg batteries. In this study, MgCl2 is demonstrated as a non-nucleophilic and cheap Mg2+ source in combining with Al Lewis acids (AlCl3, AlPh3 and AlEtCl2) to formulate a series of Mg2+ electrolytes characteristic of high oxidation stability (up to 3.4 V vs Mg), sulfur compatibility and electrochemical reversibility (up to 100% coulombic efficiency). Three electrolyte systems (MgCl2-AlCl3, MgCl2-AlPh3, and MgCl2-AlEtCl2) were prepared free of purification and fully characterized by multinuclear NMR (27Al{1H} and 25Mg{1H}) spectroscopies, single crystal X-ray diffraction, and electrochemical analysis. The reaction mechanism of MgCl2 and the Al Lewis acids in THF is discussed to highlight the formation of the electrochemically active [(µ-Cl)3Mg2(THF)6]+ monocation in these electrolytes. We are grateful for the financial support from the Pacific Northwest National Laboratory (PNNL)-Laboratory Directed Research and Development (LDRD) program for developing magnesium battery technology. The XRD and SEM data were collected at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830.

  17. Rechargeable, silver-zinc battery conditioner/monitor unit and state-of-charge indicator

    NASA Technical Reports Server (NTRS)

    Thomas, C. E.

    1974-01-01

    Unit automatically charges batteries to desired state-of-charge levels, monitors functional battery parameter data both on meters and printer, and automatically activates alarm in event of battery malfunctions. Unit consists of state-of-charge indicator panel, control panel, monitor panel, power panel, charging-current power supply, and load panel.

  18. Electrically recharged battery employing a packed/spouted bed metal particle electrode

    DOEpatents

    Siu, Stanley C.; Evans, James W.; Salas-Morales, Juan

    1995-01-01

    A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

  19. Disulfide-Bridged (Mo3S11) Cluster Polymer: Molecular Dynamics and Application as Electrode Material for a Rechargeable Magnesium Battery.

    PubMed

    Truong, Quang Duc; Kempaiah Devaraju, Murukanahally; Nguyen, Duc N; Gambe, Yoshiyuki; Nayuki, Keiichiro; Sasaki, Yoshikazu; Tran, Phong D; Honma, Itaru

    2016-09-14

    Exploring novel electrode materials is critical for the development of a next-generation rechargeable magnesium battery with high volumetric capacity. Here, we showed that a distinct amorphous molybdenum sulfide, being a coordination polymer of disulfide-bridged (Mo3S11) clusters, has great potential as a rechargeable magnesium battery cathode. This material provided good reversible capacity, attributed to its unique structure with high flexibility and capability of deformation upon Mg insertion. Free-terminal disulfide moiety may act as the active site for reversible insertion and extraction of magnesium.

  20. Application of advanced borehole geophysical logging to managed aquifer recharge investigations

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Clayton, Edward A.; Missimer, Thomas M.

    2009-09-01

    Communities and water utilities are increasingly being forced to implement more hydrogeologically complex alternative water supply and storage options to meet increasing freshwater demands. The performance of managed aquifer recharge projects, including aquifer storage and recovery, is controlled by the movement and mixing of stored freshwater and native groundwater, and fluid-rock interactions, which, in turn, are strongly influenced by aquifer heterogeneity. Advanced borehole geophysical logging techniques developed for the oil and gas industry such as neutron-gamma ray spectroscopy, microresistivity imaging, and nuclear magnetic resonance, can provide hitherto unavailable fine-scale data on porosity (total and effective), hydraulic conductivity, salinity, and the mineralogical composition of aquifers. Data on aquifer heterogeneity obtained from advanced borehole geophysics logs, combined with information on larger-scale aquifer hydraulics obtained from pumping tests, have the potential for improving aquifer characterization and modeling needed for feasibility assessments and the design and optimization of the operation of managed aquifer recharge systems.

  1. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  2. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  3. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    NASA Astrophysics Data System (ADS)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  4. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  5. Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries.

    PubMed

    Takeguchi, Tatsuya; Yamanaka, Toshiro; Takahashi, Hiroki; Watanabe, Hiroshi; Kuroki, Tomohiro; Nakanishi, Haruyuki; Orikasa, Yuki; Uchimoto, Yoshiharu; Takano, Hiroshi; Ohguri, Nobuaki; Matsuda, Motofumi; Murota, Tadatoshi; Uosaki, Kohei; Ueda, Wataru

    2013-07-31

    For the development of a rechargeable metal-air battery, which is expected to become one of the most widely used batteries in the future, slow kinetics of discharging and charging reactions at the air electrode, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, are the most critical problems. Here we report that Ruddlesden-Popper-type layered perovskite, RP-LaSr3Fe3O10 (n = 3), functions as a reversible air electrode catalyst for both ORR and OER at an equilibrium potential of 1.23 V with almost no overpotentials. The function of RP-LaSr3Fe3O10 as an ORR catalyst was confirmed by using an alkaline fuel cell composed of Pd/LaSr3Fe3O10-2x(OH)2x·H2O/RP-LaSr3Fe3O10 as an open circuit voltage (OCV) of 1.23 V was obtained. RP-LaSr3Fe3O10 also catalyzed OER at an equilibrium potential of 1.23 V with almost no overpotentials. Reversible ORR and OER are achieved because of the easily removable oxygen present in RP-LaSr3Fe3O10. Thus, RP-LaSr3Fe3O10 minimizes efficiency losses caused by reactions during charging and discharging at the air electrode and can be considered to be the ORR/OER electrocatalyst for rechargeable metal-air batteries.

  6. Thin film solid electrolytes and electrodes for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Schoonman, J.; Kelder, E. M.

    Various modifications of chemical vapour deposition (CVD), and electrostatic spray deposition (ESD) have been developed recently for the production of solid-state battery components. In addition, the DSM-Solufill ™ process will be explored for the production of thin films of these battery components. The principles of these techniques will be discussed, with examples of materials used for these thin film Li-ion batteries.

  7. Ultralife's polymer electrolyte rechargeable lithium-ion batteries for use in the mobile electronics industry

    NASA Astrophysics Data System (ADS)

    Cuellar, Edward A.; Manna, Michael E.; Wise, Ralph D.; Gavrilov, Alexei B.; Bastian, Matthew J.; Brey, Rufus M.; DeMatteis, Jeffrey

    Ultralife Polymer™ brand batteries for cellular phones as made by Nokia Mobile Phones Incorporated were introduced in July 2000. Characteristics of the UBC443483 cell and UB750N battery are described and related to the power and battery requirements of these cellular phones and chargers. Current, power, and pulse capability are presented as functions of temperature, depth of discharge, and storage at the cell level. Safety protection devices and chargers are discussed at the battery pack level, as well as performance in cellular phones under various wireless communication protocols. Performance is competitive with liquid lithium-ion systems while offering opportunity for non-traditional form factors.

  8. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.; Vijh, A.; Zaghib, K.

    2014-02-01

    A non-aqueous zinc-polyaniline secondary battery was fabricated with polyaniline Emeraldine base as cathode and zinc metal as anode in an electrolyte consisting of 0.3 M zinc-bis(trifluoromethyl-sulfonyl)imide Zn(TFSI)2 dissolved in propylene carbonate. We observed that the formation of the battery required a prerequisite condition to stabilize the interfaces in order to maintain a stable capacity. The battery suffered from Zn dissolution which induces a competition between concurrent Zn dissolution and plating when the battery is in charge mode, and thus inefficient cycles are obtained. The capacity and coulombic efficiency of the battery depends on the charge-discharge rates. We propose cycling protocols at different rates to determine the steady-state rates of competing reactions. When the cell is cycled at ≥1 C rate, the coulombic efficiency improves. The maximum capacity and energy densities of the battery are 148 mAhg-1 and 127 mWhg-1, respectively for discharge at C/2. The battery was successively charged/discharged at constant current densities (1C rate), and high cycling stability was obtained for more than 1700 cycles at 99.8% efficiency. Zinc dissolution and self discharge of the battery were investigated after 24 h of standby. The investigation showed that the battery experiences a severe self-discharge of 48% per day.

  9. Preparation and Development of Advanced Battery Catalysts.

    DTIC Science & Technology

    1987-10-01

    necessary and identify by block number) FIELD GROUP SUB-GROUP 07 04 ) Catalysis, Lithium Batteries ,, Thionvl Chloride 𔄃 ABSTRACT (Continue on reverse if...report describes some initial studies to evaluate new catalytic materials to improve the performance of high energy density, active lithium batteries ...at 33rd Power Sources Symposium, Cherry Hill, NJ, Jun 1988)• 3. Schlaikjer, C. R., Chapter 13 in Lithium Batteries , J. P. Gabano, Ed., Academic Press

  10. Advances and Future Challenges in Printed Batteries.

    PubMed

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed.

  11. Alkaline zinc battery having improved shelf-life, rechargeability, charge retention and capacity retention

    SciTech Connect

    Dantam, T.M.; Jones, R.A.

    1990-08-14

    This paper discusses an improvement in an alkaline zinc galvanic rechargeable cell comprising a zinc electrode having a copper-containing conductor embedded in a zinc-rich active material, a counterelectrode spaced from the zinc electrode, and a concentrated, aqueous alkaline electrolyte permeating the active material and bridging the space between the electrodes. The improvement comprises the electrolyte including sufficient benzotriazole to suppress dissolution of the copper from the conductor when the zinc electrode is substantially fully discharged and thereby extend the shelf-life and improve the rechargeability and charge retention of the cell following prolonged periods in such discharged state.

  12. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries.

    PubMed

    Gu, Lin; Xiao, Dongdong; Hu, Yong-Sheng; Li, Hong; Ikuhara, Yuichi

    2015-04-01

    Lithium-ion batteries have proven to be extremely attractive candidates for applications in portable electronics, electric vehicles, and smart grid in terms of energy density, power density, and service life. Further performance optimization to satisfy ever-increasing demands on energy storage of such applications is highly desired. In most of cases, the kinetics and stability of electrode materials are strongly correlated to the transport and storage behaviors of lithium ions in the lattice of the host. Therefore, information about structural evolution of electrode materials at an atomic scale is always helpful to explain the electrochemical performances of batteries at a macroscale. The annular-bright-field (ABF) imaging in aberration-corrected scanning transmission electron microscopy (STEM) allows simultaneous imaging of light and heavy elements, providing an unprecedented opportunity to probe the nearly equilibrated local structure of electrode materials after electrochemical cycling at atomic resolution. Recent progress toward unraveling the atomic-scale structure of selected electrode materials with different charge and/or discharge state to extend the current understanding of electrochemical reaction mechanism with the ABF and high angle annular dark field STEM imaging is presented here. Future research on the relationship between atomic-level structure evolution and microscopic reaction mechanisms of electrode materials for rechargeable batteries is envisaged.

  13. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries.

    PubMed

    Suo, Liumin; Hu, Yong-Sheng; Li, Hong; Armand, Michel; Chen, Liquan

    2013-01-01

    Liquid electrolyte plays a key role in commercial lithium-ion batteries to allow conduction of lithium-ion between cathode and anode. Traditionally, taking into account the ionic conductivity, viscosity and dissolubility of lithium salt, the salt concentration in liquid electrolytes is typically less than 1.2 mol l(-1). Here we show a new class of 'Solvent-in-Salt' electrolyte with ultrahigh salt concentration and high lithium-ion transference number (0.73), in which salt holds a dominant position in the lithium-ion transport system. It remarkably enhances cyclic and safety performance of next-generation high-energy rechargeable lithium batteries via an effective suppression of lithium dendrite growth and shape change in the metallic lithium anode. Moreover, when used in lithium-sulphur battery, the advantage of this electrolyte is further demonstrated that lithium polysulphide dissolution is inhibited, thus overcoming one of today's most challenging technological hurdles, the 'polysulphide shuttle phenomenon'. Consequently, a coulombic efficiency nearing 100% and long cycling stability are achieved.

  14. NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries.

    PubMed

    Sumboja, Afriyanti; Chen, Jingwei; Zong, Yun; Lee, Pooi See; Liu, Zhaolin

    2017-01-05

    High performance catalysts for the oxygen evolution reaction (OER) are in demand to improve the re-chargeability of Zn-air batteries. In this work, atomically dispersed NiMn layered double hydroxides are prepared via simple hydrothermal synthesis and tested as the OER catalyst in rechargeable Zn-air batteries. NiMn layered double hydroxides with the optimized Ni : Mn molar feeding ratio have good crystallinity, big interlayer spacing, and large surface area, which are beneficial to enhance their catalytic activity. They are highly active and stable during the OER, showing an overpotential of 0.35 V, a Tafel slope of 40 mV dec(-1), and remarkable stability during 16 h of a chronopotentiometry test. Rechargeable Zn-air batteries with NiMn layered double hydroxides as the OER catalyst exhibit a low charge voltage of ≈2 V which is stable for up to 200 cycles. This study illustrates a platform to enhance the catalytic activity of the OER catalyst via fine-tuning the composition and physical properties of the materials and their application for rechargeable metal-air batteries.

  15. Electrically recharged battery employing a packed/spouted bed metal particle electrode

    SciTech Connect

    Siu, S.C.; Evans, J.W.; Salas-Morales, J.

    1995-08-15

    A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

  16. An Advanced Battery Management System for Lithium Ion Batteries

    DTIC Science & Technology

    2011-08-01

    preliminary cycle life data of the 18650 1100 mAh, and 26650 2200 mAh Lithium Iron Phosphate (LiFePO4) cells from Tenergy Battery Corp. (Manufacturer...10 shows how the data might be used to estimate SOL of a 18650 cell. The plot shows the analytical life cycle curve (blue) superimposed on actual...of equation 3 result with real 18650 Tenergy cell cycle life data. REFERENCES [1] Z. Filipi, L. Louca, A. Stefanopoulou, J. Pukrushpan, B

  17. An Update on the Performance of Li-Ion Rechargeable Batteries on Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumara, Bugga V.; Smart, M. C.; Whitcanack, L. D.; Chin, K. B.; Ewell, R. C.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2006-01-01

    NASA's Mars Rovers, Spirit and Opportunity have been exploring the surface of Mars for the last thirty months, far exceeding the primary mission life of three months, performing astounding geological studies to examine the habitability of Mars. Such an extended mission life may be attributed to impressive performances of several subsystems, including power subsystem components, i.e., solar array and batteries. The novelty and challenge for this mission in terms of energy storage is the use of lithium-ion batteries, for the first time in a major NASA mission, for keeping the rover electronics warm, and supporting nighttime experimentation and communications. The use of Li-ion batteries has considerably enhanced or even enabled these rovers, by providing greater mass and volume allocations for the payload and wider range of operating temperatures for the power subsystem and thus reduced thermal management. After about 800 days of exploration, there is only marginal change in the end-of discharge (EOD) voltages of the batteries or in their capacities, as estimated from in-flight voltage data and corroborated by ground testing of prototype batteries. Enabled by such impressive durability from the Li-ion batteries, both from a cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond 1000 sols, though other components have started showing signs of decay. In this paper, we will update the performance characteristics of these batteries on both Spirit and Opportunity.

  18. In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.

    PubMed

    Sharma, Neeraj; Pang, Wei Kong; Guo, Zaiping; Peterson, Vanessa K

    2015-09-07

    The ability to directly track the charge carrier in a battery as it inserts/extracts from an electrode during charge/discharge provides unparalleled insight for researchers into the working mechanism of the device. This crystallographic-electrochemical information can be used to design new materials or modify electrochemical conditions to improve battery performance characteristics, such as lifetime. Critical to collecting operando data used to obtain such information in situ while a battery functions are X-ray and neutron diffractometers with sufficient spatial and temporal resolution to capture complex and subtle structural changes. The number of operando battery experiments has dramatically increased in recent years, particularly those involving neutron powder diffraction. Herein, the importance of structure-property relationships to understanding battery function, why in situ experimentation is critical to this, and the types of experiments and electrochemical cells required to obtain such information are described. For each battery type, selected research that showcases the power of in situ and operando diffraction experiments to understand battery function is highlighted and future opportunities for such experiments are discussed. The intention is to encourage researchers to use in situ and operando techniques and to provide a concise overview of this area of research.

  19. Battery capacity and recharging needs for electric buses in city transit service

    DOE PAGES

    Gao, Zhiming; Lin, Zhenhong; LaClair, Tim J.; ...

    2017-01-27

    Our paper evaluates the energy consumption and battery performance of city transit electric buses operating on real day-to-day routes and standardized bus drive cycles, based on a developed framework tool that links bus electrification feasibility with real-world vehicle performance, city transit bus service reliability, battery sizing and charging infrastructure. The impacts of battery capacity combined with regular and ultrafast charging over different routes have been analyzed in terms of the ability to maintain city transit bus service reliability like conventional buses. These results show that ultrafast charging via frequent short-time boost charging events, for example at a designated bus stopmore » after completing each circuit of an assigned route, can play a significant role in reducing the battery size and can eliminate the need for longer duration charging events that would cause schedule delays. Furthermore, the analysis presented shows that significant benefits can be realized by employing multiple battery configurations and flexible battery swapping practices in electric buses. These flexible design and use options will allow electric buses to service routes of varying city driving patterns and can therefore enable meaningful reductions to the cost of the vehicle and battery while ensuring service that is as reliable as conventional buses.« less

  20. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  1. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles

    NASA Astrophysics Data System (ADS)

    Neubauer, Jeremy; Pesaran, Ahmad; Bae, Chulheung; Elder, Ron; Cunningham, Brian

    2014-12-01

    Battery electric vehicles (BEVs) offer significant potential to reduce the nation's consumption of petroleum based products and the production of greenhouse gases however, their widespread adoption is limited largely by the cost and performance limitations of modern batteries. With recent growth in efforts to accelerate BEV adoption (e.g. the Department of Energy's (DOE) EV Everywhere Grand Challenge) and the age of existing BEV battery technology targets, there is sufficient motivation to re-evaluate the industry's technology targets for battery performance and cost. Herein we document the analysis process that supported the selection of the United States Advanced Battery Consortium's (USABC) updated BEV battery technology targets. Our technology agnostic approach identifies the necessary battery performance characteristics that will enable the vehicle level performance required for a commercially successful, mass market full BEV, as guided by the workgroup's OEM members. The result is an aggressive target, implying that batteries need to advance considerably before BEVs can be both cost and performance competitive with existing petroleum powered vehicles.

  2. Advanced intermediate temperature sodium copper chloride battery

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  3. Confined selenium within metal-organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium-selenium batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Jia, Min; Zhang, Yan; Han, Jin; Li, Yi; Bao, ShuJuan; Liu, Dingyu; Jiang, Jian; Xu, Maowen

    2017-02-01

    Unique hierarchically porous carbon microcubes (CMCs) consists of irregular bubbles derived from metal organic frameworks (MOFs) have been prepared via simple hydrothermal synthesis method and carbonization treatment. Selenium nanoparticles are uniformly dispersed in the hierarchical porous structure of CMCs by a typical melt-diffusion process, and the yielding Se/CMCs composite is enabled as a cathode material for lithium-selenium rechargeable batteries. In the carbonate-based electrolyte, with Se loading of nearly ∼50 wt%, the Se/CMCs composite exhibits an ultrahigh initial discharge specific capacity of 780.4 mAh g-1 and still retains a reversible capacity of 425.2 mAh g-1 after 100 cycles at 0.2 C. Specially, these hollow structure CMCs with high conductivity contribute to the outstanding electrochemical properties by effectively decreasing the charge transfer resistance and suppressing polyselenides dissolution in carbonate electrolyte.

  4. Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries.

    PubMed

    Wang, Long; Song, Jie; Qiao, Ruimin; Wray, L Andrew; Hossain, Muhammed A; Chuang, Yi-De; Yang, Wanli; Lu, Yuhao; Evans, David; Lee, Jong-Jan; Vail, Sean; Zhao, Xin; Nishijima, Motoaki; Kakimoto, Seizoh; Goodenough, John B

    2015-02-25

    A novel air-stable sodium iron hexacyanoferrate (R-Na1.92Fe[Fe(CN)6]) with rhombohedral structure is demonstrated to be a scalable, low-cost cathode material for sodium-ion batteries exhibiting high capacity, long cycle life, and good rate capability. The cycling mechanism of the iron redox is clarified and understood through synchrotron-based soft X-ray absorption spectroscopy, which also reveals the correlation between the physical properties and the cell performance of this novel material. More importantly, successful preparation of a dehydrated iron hexacyanoferrate with high sodium-ion concentration enables the fabrication of a discharged sodium-ion battery with a non-sodium metal anode, and the manufacturing feasibility of low cost sodium-ion batteries with existing lithium-ion battery infrastructures has been tested.

  5. Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries

    SciTech Connect

    Wang, L; Song, J; Qiao, RM; Wray, LA; Hossain, MA; Chuang, YD; Yang, WL; Lu, YH; Evans, D; Lee, JJ; Vail, S; Zhao, X; Nishijima, M; Kakimoto, S; Goodenough, JB

    2015-02-25

    A novel air-stable sodium iron hexacyanoferrate (R-Na1.92Fe[Fe(CN)(6)]) with rhombohedral structure is demonstrated to be a scalable, low-cost cathode material for sodium-ion batteries exhibiting high capacity, long cycle life, and good rate capability. The cycling mechanism of the iron redox is clarified and understood through synchrotron-based soft X-ray absorption spectroscopy, which also reveals the correlation between the physical properties and the cell performance of this novel material. More importantly, successful preparation of a dehydrated iron hexacyanoferrate with high sodium-ion concentration enables the fabrication of a discharged sodium-ion battery with a non-sodium metal anode, and the manufacturing feasibility of low cost sodium-ion batteries with existing lithium-ion battery infrastructures has been tested.

  6. Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries.

    PubMed

    Yue, Ji-Li; Sun, Qian; Fu, Zheng-Wen

    2013-07-04

    A Cu2Se electrode on a copper grid substrate has been directly fabricated by a facile post-selenized method and tested as a positive material for sodium ion batteries. Cu2Se exhibits large reversible capacities (about 250 mA h g(-1)), good cyclic stabilities and low polarization. These results indicate that Cu2Se is a promising candidate as a cathode material for sodium ion batteries.

  7. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  8. Results of advanced battery technology evaluations for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1992-10-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  9. Two volt, high power, high energy density rechargeable lithium polymer battery

    SciTech Connect

    Broadhead, J.

    1997-12-01

    Research and development of organo-sulfur polymer composite cathodes has produced a family of materials which are electroactive and rechargeable in nonaqueous systems. This publication describes the latest improvements in performance of AA cells and indicates directions to be taken for further development. Applications oriented performance characteristics (including high-rate charge and GSM pulse discharge) of AA cells are described. Initial Regulatory Agency abuse tests are outlined.

  10. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier.

    PubMed

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-04

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based "rocking chair" type battery.

  11. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    PubMed Central

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147

  12. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes.

    PubMed

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-02-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi-solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]-4% SiO2/NaClO4-TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm(-1)), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na(+) plating/stripping (5.7 to 16.5 mA cm(-2)). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g(-1) with a fixed capacity of 1000 mA·hour g(-1) in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg(-1)). This study makes quasi-solid state Na-CO2 batteries an attractive prospect.

  13. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes

    PubMed Central

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-01-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi–solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]–4% SiO2/NaClO4–TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm−1), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na+ plating/stripping (5.7 to 16.5 mA cm−2). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g−1 with a fixed capacity of 1000 mA·hour g−1 in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg−1). This study makes quasi–solid state Na-CO2 batteries an attractive prospect. PMID:28164158

  14. Advancement Of Tritium Powered Betavoltaic Battery Systems

    SciTech Connect

    Staack, G.; Gaillard, J.; Hitchcock, D.; Peters, B.; Colon-Mercado, H.; Teprovich, J.; Coughlin, J.; Neikirk, K.; Fisher, C.

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  15. Encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries.

    PubMed

    Moon, San; Jung, Young Hwa; Jung, Wook Ki; Jung, Dae Soo; Choi, Jang Wook; Kim, Do Kyung

    2013-12-03

    Monoclinic S8 , an uncommon allotrope of sulfur at room temperature, can be formed when common orthorhombic S8 is heat-treated under enclosed environments in nanometer dimensions. Monoclinic S8 prevents the formation of soluble polysulfides during battery operation, resulting in unprecedented cycling performance over 1000 cycles under the highest sulfur content to date.

  16. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S.

    2016-03-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible with Li-metal anodes, prevent Li dendrite formation, and eliminate risks associated with flammable organic solvents. Less than 10 years ago, LiBH4 was proposed as a solid-state electrolyte. It showed a high ionic conductivity, but only at elevated temperatures. Since then a range of other complex metal hydrides has been reported to show similar characteristics. Strategies have been developed to extend the high ionic conductivity of LiBH4 down to room temperature by partial anion substitution or nanoconfinement. The present paper reviews the recent developments in complex metal hydrides as solid electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries.

  17. Study for promotion of introducing advanced battery energy storage systems

    NASA Astrophysics Data System (ADS)

    1991-03-01

    An advanced battery energy storage system is examined, with studies focused mainly on its technical development, but also its commercialization, cost, reliability, simplification and compactness. The purpose of this project is to study the parameters which are needed in order to promote introduction of the advanced battery energy storage system. Systems which are expected to be commercialized in the near future are a customer peak-cut system, an isolated island peak-cut system, and emergency electric power sources. When technology reaches maturity, a load-leveling system to be installed at substations of electric utilities are expected to be commercially used. With the study on commercial application as one of the purposes, small scale (50 to 100 kW) advanced battery energy storage systems are expected to be trially employed to peak cut use at customers (prime) end. To promote introduction of the system, it is necessary to make environmental improvement in the institutional aspect.

  18. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  19. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    PubMed Central

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  20. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    PubMed Central

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-01-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g−1 and 96 mAh g−1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0–4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries. PMID:27174224

  1. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance

    NASA Astrophysics Data System (ADS)

    Zhao, H. B.; Hu, C. J.; Cheng, H. W.; Fang, J. H.; Xie, Y. P.; Fang, W. Y.; Doan, T. N. L.; Hoang, T. K. A.; Xu, J. Q.; Chen, P.

    2016-05-01

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g‑1 and 96 mAh g‑1 at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li+ and Na+. The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0–4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries.

  2. Novel Rechargeable M3V2(PO4)3//Zinc (M = Li, Na) Hybrid Aqueous Batteries with Excellent Cycling Performance.

    PubMed

    Zhao, H B; Hu, C J; Cheng, H W; Fang, J H; Xie, Y P; Fang, W Y; Doan, T N L; Hoang, T K A; Xu, J Q; Chen, P

    2016-05-12

    A rechargeable hybrid aqueous battery (ReHAB) containing NASICON-type M3V2(PO4)3 (M = Li, Na) as the cathodes and Zinc metal as the anode, working in Li2SO4-ZnSO4 aqueous electrolyte, has been studied. Both of Li3V2(PO4)3 and Na3V2(PO4)3 cathodes can be reversibly charge/discharge with the initial discharge capacity of 128 mAh g(-1) and 96 mAh g(-1) at 0.2C, respectively, with high up to 84% of capacity retention ratio after 200 cycles. The electrochemical assisted ex-XRD confirm that Li3V2(PO4)3 and Na3V2(PO4)3 are relative stable in aqueous electrolyte, and Na3V2(PO4)3 showed more complicated electrochemical mechanism due to the co-insertion of Li(+) and Na(+). The effect of pH of aqueous electrolyte and the dendrite of Zn on the cycling performance of as designed MVP/Zn ReHABs were investigated, and weak acidic aqueous electrolyte with pH around 4.0-4.5 was optimized. The float current test confirmed that the designed batteries are stable in aqueous electrolytes. The MVP//Zn ReHABs could be a potential candidate for future rechargeable aqueous battery due to their high safety, fast dynamic speed and adaptable electrochemical window. Moreover, this hybrid battery broadens the scope of battery material research from single-ion-involving to double-ions -involving rechargeable batteries.

  3. High Power/High Voltage Rechargeable Batteries Open New Opportunities for Space Missions

    NASA Astrophysics Data System (ADS)

    Borthomieu, Y.; Brochard, P.; Lagattu, B.; Netchev, K.

    2008-09-01

    Scientific missions probes, new generation of launchers and satellites are increasingly requesting high power (permanent or pulses). The introduction of a range of rechargeable cells capable of delivering up and receiving high current addresses these needs and opens new horizons for future space missions power supply.Moreover, high power is often linked to high voltage and such need becomes more and more common for space & defence applications. The aim of the high voltage is to carry reasonable current in the harness of the electrical systems.This paper presents Saft answers to these demands, for existing launchers and also for in development ones, as well as for other markets with similar needs, such as military equipment or underwater vehicles.

  4. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.

    PubMed

    Wu, Xian-Yong; Sun, Meng-Ying; Shen, Yi-Fei; Qian, Jiang-Feng; Cao, Yu-Liang; Ai, Xin-Ping; Yang, Han-Xi

    2014-02-01

    Aqueous rechargeable sodium-ion batteries have the potential to meet growing demand for grid-scale electric energy storage because of the widespread availability and low cost of sodium resources. In this study, we synthesized a Na-rich copper hexacyanoferrate(II) Na2 CuFe(CN)6 as a high potential cathode and used NaTi2 (PO4 )3 as a Na-deficient anode to assemble an aqueous sodium ion battery. This battery works very well with a high average discharge voltage of 1.4 V, a specific energy of 48 Wh kg(-1) , and an excellent high-rate cycle stability with approximately 90 % capacity retention over 1000 cycles, achieving a new record in the electrochemical performance of aqueous Na-ion batteries. Moreover, all the anode, cathode, and electrolyte materials are low cost and naturally abundant and are affordable for widespread applications.

  5. Performance evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.

    1990-01-01

    At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).

  6. Design considerations for advanced battery concepts

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1986-01-01

    A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stoichastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.

  7. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery.

    PubMed

    Lee, Dong Un; Fu, Jing; Park, Moon Gyu; Liu, Hao; Ghorbani Kashkooli, Ali; Chen, Zhongwei

    2016-03-09

    Herein, a proof-of-concept of novel hybrid rechargeable battery based on electrochemical reactions of both nickel-zinc and zinc-air batteries is demonstrated using NiO/Ni(OH)2 nanoflakes self-assembled into mesoporous spheres as the active electrode material. The hybrid battery operates on two sets of fundamentally different battery reactions combined at the cell level, unlike in other hybrid systems where batteries of different reactions are simply connected through an external circuitry. As a result of combining nickel-zinc and zinc-air reactions, the hybrid battery demonstrates both remarkably high power density (volumetric, 14 000 W L(-1); gravimetric, 2700 W kg(-1)) and energy density of 980 W h kg(-1), significantly outperforming the performances of a conventional zinc-air battery. Furthermore, the hybrid battery demonstrates excellent charge rate capability up to 10 times faster than the rate of discharge without any capacity and voltage degradations, which makes it highly suited for large-scale applications such as electric vehicle propulsion and smart-grid energy storage.

  8. The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge-charge performances of rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Zhonglin; Duan, Donghong; Sun, Yanbo; Wei, Guoqiang; Hao, Xiaogang; Liu, Shibin; Han, Yunxia; Meng, Weijuan

    2016-10-01

    Pyrrolidinium-based ionic liquids (ILs), such as PYR13TFSI, PYR14TFSI, and PYR1(2O1)TFSI, exhibit high thermal and electrochemical stability with wide electrochemical windows as electrolytes for application to rechargeable Li-O2 batteries. In this work, several fundamental properties of three ILs are measured: the ionic conductivity, oxygen solubility, and oxygen diffusion coefficient. The oxygen electro-reduction kinetics is characterized using cyclic voltammetry. The performances of Li-O2 batteries with these IL electrolytes are also investigated using electrochemical impedance spectroscopy and galvanostatic discharge-charge tests. The results demonstrate that the PYR1(2O1)TFSI electrolyte battery has a higher first-discharge voltage than the PYR13TFSI electrolyte and PYR14TFSI electrolyte batteries. Both PYR13TFSI- and PYR1(2O1)TFSI-based batteries exhibit higher first-discharge capacities and better cycling stabilities than the PYR14TFSI-based battery for 30 cycles. A theoretical analysis of the experimental results shows that the diffusion coefficient and solubility of oxygen in the electrolyte remarkably affect the discharge capacity and cycling stability of the batteries. Particularly, the oxygen diffusion coefficient of the IL electrolyte can effectively facilitate the electrochemical oxygen electro-reduction reaction and oxygen concentration distribution in the catalyst layers of air electrodes. The oxygen diffusion coefficient and oxygen solubility improvements of IL electrolytes can enhance the discharge-charge performances of Li-O2 batteries.

  9. Advances in primary lithium liquid cathode batteries

    NASA Astrophysics Data System (ADS)

    Blomgren, George E.

    1989-05-01

    Recent work on cell development and various aspects of cell chemistry and cell development of lithium/thionyl chloride liquid cathode batteries is reviewed. As a result of safety studies, a number of cell sizes can now be considered satisfactory for many applications and the energy densities of these cells is higher than any other developed battery system. Primary batteries operate with low to moderate currents and the anode delay effect appears to be under reasonable control. Reserve cells are in the design stage and operate at high to very high power densities as well as very high energy densities. The nature of the anode film and the operation of the lithium anode has been studied with substantial success and understanding has grown accordingly. Also, studies of the structure of the electrolyte and the effects on the electrolyte of impurities and additives have led to improved understanding in this area as well. Work in progress on new electrolytes is reviewed. The state of the art of mathematical modeling is also discussed and it is expected that this work will continue to develop.

  10. Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn(2)O(4) bifunctional catalysts under practical rechargeable conditions.

    PubMed

    Prabu, Moni; Ramakrishnan, Prakash; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya; Shanmugam, Sangaraju

    2014-10-08

    Nitrogen-doped/undoped thermally reduced graphene oxide (N-rGO) decorated with CoMn2O4 (CMO) nanoparticles were synthesized using a simple one-step hydrothermal method. The activity and stability of this hybrid catalyst were evaluated by preparing air electrodes with both primary and rechargeable zinc-air batteries that consume ambient air. Further, we investigated the relationship between the physical properties and the electrochemical results for hybrid electrodes at various cycles using X-ray diffraction, scanning electron microscopy, galvanodynamic charge-discharging and electrochemical impedance spectroscopy. The structural, morphological and electrocatalytic performances confirm that CMO/N-rGO is a promising material for safe, reliable, and long-lasting air cathodes for both primary and rechargeable zinc-air batteries that consume air under ambient condition.

  11. Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Moon, San; Jung, Young Hwa; Kim, Do Kyung

    2015-10-01

    Due to the extraordinarily high theoretical capacity of sulfur (1675 mAh g-1), the lithium-sulfur (Li-S) battery has been considered a promising candidate for future high-energy battery applications. Li-S batteries, however, have suffered from limited cycle lives, mainly due to the formation of soluble polysulfides, which prevent the practical application of this attractive technology. The encapsulation of sulfur with various conductive materials has addressed this issue to some extent. Nevertheless, most approaches still present partial encapsulation of sulfur and moreover require a large quantity of conductive material (typically, >30 wt%), making the use of sulfur less desirable from the viewpoint of capacity. Here, we address these chronic issues of Li-S cells by developing a graphene oxide-sulfur composite with a thin crosslinked polyaniline (PANI) layer. Graphene oxide nanosheets with large surface area, high conductivity and a uniform conductive PANI layer, which are synthesized by a layer-by-layer method, have a synergetic interaction with a large portion of the sulfur in the active material. Furthermore, a simple crosslinking process efficiently prevents polysulfide dissolution, resulting in unprecedented electrochemical performance, even with a high sulfur content (∼75%): a high capacity retention of ∼80% is observed, in addition to 97.53% of the average Coulombic efficiency being retained after 500 cycles. The performance we demonstrate represents an advance in the field of lithium-sulfur batteries for applications such as power tools.

  12. A fully integrated wireless system for intracranial direct cortical stimulation, real-time electrocorticography data transmission, and smart cage for wireless battery recharge.

    PubMed

    Piangerelli, Marco; Ciavarro, Marco; Paris, Antonino; Marchetti, Stefano; Cristiani, Paolo; Puttilli, Cosimo; Torres, Napoleon; Benabid, Alim Louis; Romanelli, Pantaleo

    2014-01-01

    Wireless transmission of cortical signals is an essential step to improve the safety of epilepsy procedures requiring seizure focus localization and to provide chronic recording of brain activity for Brain Computer Interface (BCI) applications. Our group developed a fully implantable and externally rechargeable device, able to provide wireless electrocorticographic (ECoG) recording and cortical stimulation (CS). The first prototype of a wireless multi-channel very low power ECoG system was custom-designed to be implanted on non-human primates. The device, named ECOGIW-16E, is housed in a compact hermetically sealed Polyether ether ketone (PEEK) enclosure, allowing seamless battery recharge. ECOGIW-16E is recharged in a wireless fashion using a special cage designed to facilitate the recharge process in monkeys and developed in accordance with guidelines for accommodation of animals by Council of Europe (ETS123). The inductively recharging cage is made up of nylon and provides a thoroughly novel experimental setting on freely moving animals. The combination of wireless cable-free ECoG and external seamless battery recharge solves the problems and shortcomings caused by the presence of cables leaving the skull, providing a safer and easier way to monitor patients and to perform ECoG recording on primates. Data transmission exploits the newly available Medical Implant Communication Service band (MICS): 402-405 MHz. ECOGIW-16E was implanted over the left sensorimotor cortex of a macaca fascicularis to assess the feasibility of wireless ECoG monitoring and brain mapping through CS. With this device, we were able to record the everyday life ECoG signal from a monkey and to deliver focal brain stimulation with movement elicitation.

  13. ANL's electric vehicle battery activities for USABC. [US Advanced Battery Consortium (USABC)

    SciTech Connect

    Not Available

    1992-01-01

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides advanced battery R D; technology transfer to industry; technical analyses, assessments, modeling, and databases; and independent testing and post-test analyses of advanced batteries. These capabilities and services are being offered to the US Advanced Battery Consortium (USABC) and Cooperative Research and Development Agreements (CRADA) are being negotiated for USABC-sponsored work at ANL. A small portion of DOE's cost share for USABC projects has been provided to ANL to continue R D and testing activities on key technologies that were previously supported directly by DOE. This report summarizes progress on these USABC projects during the period of April I through September 30, 1992. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Lithium/Sulfide Batteries; 2.0 Nickel/Metal Hydride Support 3.0 EV Battery Performance and Life Evaluation.

  14. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    DOEpatents

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  15. Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode

    SciTech Connect

    2010-09-01

    GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

  16. Characterization of polyperinaphthalenic organic semiconductor thin films prepared by excimer laser ablation and application to anode electrodes for ultrathin rechargeable Li ion batteries

    NASA Astrophysics Data System (ADS)

    Nishio, Satoru; Tamura, Kazuyuki; Tsujine, Yukari; Fukao, Tomoko; Murata, Jun; Nakano, Masyoshi; Matsuzaki, Akiyoshi; Sato, Hiroyasu; Ando, Nobuo; Hato, Yukinori

    2001-06-01

    Polyperinaphthlenic organic semiconductor (PPNOS) films with polyperinaphthalene (PPN) structure for anode electrodes for ultra thin rechargeable Li ion batteries are prepared on temperature-controlled substrates by excimer laser ablation (ELA) of 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) or mixture target of PTCDA with a few metal powder (PTCDA/M) using a 308 nm (XeCl) pulsed excimer laser beam. It is demonstrated that ELA of PTCDA at a fluence of less than 0.5 Jcm-2pulse-1 enables us to obtain PPNOS on a substrate at 300 degree(s)C. It is found that ELA of PTCDA/Co at a fluence of more than 1.0 Jcm-4pulse-1 leads to produce effectively fragments without anhydride groups of PTCDA. FT-IR and Raman spectroscopies reveal that ELA of PTCDA/Co enables us to obtain better-defined PPN films with electric conductivity of approximately 1x10-1Scm-1 on a substrate at 300 degree(s)C. Electrochemical doping characteristics of lithium ion into the films obtained by ELA are performed to verify the lithium doping mechanism by in situ Raman spectroscopy. Furthermore a trial piece of thin lithium ion rechargeable battery with the films is fabricated to appraise performance of the films as anode thin electrodes for ultra thin rechargeable lithium ion batteries.

  17. Advances in lithium-ion batteries

    SciTech Connect

    Kerr, John B.

    2003-06-24

    The editors state in their introduction that this book is intended for lithium-ion scientists and engineers but they hope it may be of interest to scientists from other fields. Their main aim was to provide a snapshot of the state of the Lithium-ion art and in this they have largely succeeded. The book is comprised of a collection of very current reviews of the lithium ion battery literature by acknowledged experts that draw heavily on the authors' own research but are sufficiently general to provide the lithium ion researcher with enough guidance to the current literature and the current thinking in the field. Some of the literature references may be too current as there are numerous citations of conference proceedings which may be easily accessible to the lithium ion scientist or engineer but are not likely to be available to the interested chemist coming to the field for the first time. One author expresses the hope and expectation that properly peer-reviewed articles will appear in due course and the interested reader should look out for them in future. From the point of view of the lithium ion battery scientist and engineer, the book covers most of the topics that are of current interest. Two areas are treated by inference in the various chapters but are not specifically granted chapters of their own. One of these is safety and abuse tolerance and the other is cost. Since there are a number of groups active in the investigation of abuse tolerance of these batteries this is a curious omission and obviously the cost factor is a driver for commercial development. The book should be instructive to the chemical community provided the average chemist can obtain some guidance from an electrochemist or battery engineer. Many of the measurements and techniques referred to (e.g. impedance, capacities, etc.) may be somewhat unfamiliar and confusing in the context they are used. Chemists who persevere and can obtain some guidance will find some rich opportunities for the

  18. Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries

    PubMed Central

    Lv, Meixiang; Zhang, Fen; Wu, Yiwen; Chen, Mujuan; Yao, Chunfeng; Nan, Junmin; Shu, Dong; Zeng, Ronghua; Zeng, Heping; Chou, Shu-Lei

    2016-01-01

    The heteroaromatic organic compound, N,N’-diphenyl-1,4,5,8-naphthalenetetra- carboxylic diimide (DP-NTCDI-250) as the cathode material of lithium batteries is prepared through a simple one-pot N-acylation reaction of 1,4,5,8-naphthalenetetra-carboxylic dianhydride (NTCDA) with phenylamine (PA) in DMF solution followed by heat treatment in 250 °C. The as prepared sample is characterized by the combination of elemental analysis, NMR, FT-IR, TGA, XRD, SEM and TEM. The electrochemical measurements show that DP-NTCDI-250 can deliver an initial discharge capacity of 170 mAh g−1 at the current density of 25 mA g−1. The capacity of 119 mAh g−1 can be retained after 100 cycles. Even at the high current density of 500 mA g−1, its capacity still reaches 105 mAh g−1, indicating its high rate capability. Therefore, the as-prepared DP-NTCDI-250 could be a promising candidate as low cost cathode materials for lithium batteries. PMID:27064938

  19. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  20. Phenomenological force and swelling models for rechargeable lithium-ion battery cells

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Epureanu, Bogdan I.; Siegel, Jason B.; Stefanopoulou, Anna G.

    2016-04-01

    Three phenomenological force and swelling models are developed to predict mechanical phenomena caused by Li-ion intercalation: a 1-D force model, a 1st order relaxation model, and a 3-D swelling model. The 1-D force model can estimate the Li-ion intercalation induced force for actual pack conditions with preloads. The model incorporates a nonlinear elastic stiffness to capture the mechanical consequences of Li-ion intercalation swelling. The model also separates the entire state of charge range into three regions considering phase transitions. The 1st order relaxation model predicts dynamic swelling during relaxation periods. A coefficient of relaxation is estimated from dynamic and quasi-static swelling at operational conditions. The 3-D swelling model predicts the swelling shape on the battery surface for all states of charge. This model introduces an equivalent modulus of elasticity, which is dependent on the state of charge, to capture material transformations of the electrodes, and the orthotropic expansion of the jellyroll in a direction perpendicular to the electrode surfaces. Considering the simplicity of the measurements and direct physical correlations between stress and strain, the proposed models can enhance battery management systems and power management strategies.

  1. Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Darwiche, Ali; Dugas, Romain; Fraisse, Bernard; Monconduit, Laure

    2016-02-01

    Due to its weight and toxicity, Pb is usually not considered as possible anode for Li- and Na-ion (NIBs) batteries. Nevertheless the toxicity is related to specific applications and its recycling is more than 99% which is one of the highest recycling rates on the planet where no other power source is utilized in more applications with such sustainability. For this reason, we have investigated micrometric lead particles as electrode for NIBs in an ether-based electrolyte (1 M NaPF6 in diglyme). The cyclability, coulombic efficiency and rate capability of lead were unexpected. A high loaded lead electrode with 98%wt of Pb and only 1% of carbon additive showed i) a capacity retention of 464 mA h/g after 50 cycles with only 1.5% of capacity loss, which represents a high volumetric capacity of 5289 mA h/cm3 due to the high density of Pb and ii) a very interesting capacity retention even at high current rate (1950 mA/g). In situ XRD study confirmed a sodiation-desodiation process in four steps. Preliminary tests in Pb//Na3V2(PO4)2F3 full cells showed promising results demonstrating that Pb could be a practical candidate for future high energy density Na-ion batteries with an efficient sodiated or non sodiated positive electrode.

  2. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.

    PubMed

    Yoo, Eunjoo; Zhou, Haoshen

    2016-06-08

    The use of carbon materials as air electrodes in lithium-oxygen (Li-O2 ) batteries is known to be advantageous owing to their good conductivity and because they offer sites suitable for the reversible electrode reactions. However, the exact influence of carbon materials on the electrochemical performance of Li-O2 batteries is not clear. In this study the electrochemical performance of four different types of carbon materials (multiwalled carbon nanotubes (MWCNTs), CMK-3, graphene nanosheets (GNSs), and Ketjen Black (KB)) as air electrodes is examined. We find that a Li-O2 cell based on an electrode of multiwalled carbon nanotubes (MWCNTs) demonstrates good rate performance and cycle stability, when using LiNO3 -LiTFSI/DMSO as electrolyte. Li-O2 cells based on such MWCNT electrodes, with a cut-off capacity of 1000 mAh g(-1) at 500 mA g(-1) , can undergo around 90 cycles without obvious losses of capacity. Even when the discharge depth is increased to 2000 mA h g(-1) , stable cycling is maintained for 45 cycles at a charge potential below 4.0 V.

  3. Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2008-10-14

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

  4. A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Wu, Na; Cao, Qi; Wang, Xianyou; Li, Xiaoyun; Deng, Huayang

    2011-10-01

    Nonwoven films of composites of thermoplastic polyurethane (TPU) with different proportion of poly(vinylidene fluoride) (PVdF) (80, 50 and 20%, w/w) are prepared by electrospinning 9 wt% polymer solution at room temperature. Then the gel polymer electrolytes (GPEs) are prepared by soaking the electrospun TPU-PVdF blending membranes in 1 M LiClO4/ethylene carbonate (EC)/propylene carbonate (PC) for 1 h. The gel polymer electrolyte (GPE) shows a maximum ionic conductivity of 3.2 × 10-3 S cm-1 at room temperature and electrochemical stability up to 5.0 V versus Li+/Li for the 50:50 blend ratio of TPU:PVdF system. At the first cycle, it shows a first charge-discharge capacity of 168.9 mAh g-1 when the gel polymer electrolyte (GPE) is evaluated in a Li/PE/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C. TPU-PVdF (50:50, w/w) based gel polymer electrolyte is observed much more suitable than the composite films with other ratios for high-performance lithium rechargeable batteries.

  5. Graphene intercalated in graphene-like MoS2: A promising cathode for rechargeable Mg batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Fan, Li-Zhen; Jiao, Lifang

    2017-02-01

    In this paper, we report the synthesis of graphene-like MoS2/graphene hybrid by a facile lithium-assisted sonication method and its cathode application for rechargeable Mg batteries. Instrumental analyses elucidate that the composite displays a three-dimensional (3D) porous architecture constructed by exfoliated single or few MoS2 layers, and some graphene is intercalated in the MoS2 gallery with an enlarged interlayer spacing from 0.62 to 0.98 nm. The obtained MoS2/graphene hybrid exhibits high electrochemical performance with a remarkable capacity (115.9 mA h g-1) and good cyclic stability (82.5 mA h g-1 after 50 cycles). This is owing to the synergistic effect between the graphene-like MoS2 and the highly conductive graphene, which can effectively facilitate the Mg2+ ions diffusion and electrons transfer, provide abundant active sites for Mg2+ intercalation, and prevent structural collapse upon prolonged cycling.

  6. A new iron V[sub 2]O[sub 5] bronze as electrode material for rechargeable lithium batteries

    SciTech Connect

    Maingot, S.; Baffier, N. . Lab. de Chimie Appliquee de l'Etat Solide); Baddour, R.; Pereira-Ramos, J.P. . Lab. d'Electrochimie); Willmann, P. )

    1993-11-01

    A new iron V[sub 2]O[sub 5] bronze, Fe[sub 0.12]V[sub 2]O[sub 5], has been prepared via a sol-gel process. This compound exhibits an orthorhombic structure which closely resembles that of the parent oxide V[sub 2]O[sub 5]. A preliminary investigation of its electrochemical properties as rechargeable cathodic material for Li batteries is performed. The results are discussed in relation with the electrochemical behavior known for V[sub 2]O[sub 5]. Three reversible insertion steps appear in the potential range 3.8 to 2 V vs Li/Li[sup +]. They correspond to a high faradaic yield of 2.5 F. per mole of bronze mainly due to the unusually wide Li concentration range involved in the third process located near 2.3 V ([Delta]X = 1.5). The presence of ferric ions in the orthorhombic host lattice is seen to induce interesting features especially in terms of cycle life (potential range: 3.8 to 2 V; C/4 discharge-charge rate) with a specific capacity of about 200 Ah/kg after 40 cycles.

  7. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    DOE R&D Accomplishments Database

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  8. Long-lived Aqueous Rechargeable Lithium Batteries Using Mesoporous LiTi2(PO4)3@C Anode

    PubMed Central

    Sun, Dan; Tang, Yougen; He, Kejian; Ren, Yu; Liu, Suqin; Wang, Haiyan

    2015-01-01

    The instability of anode materials during cycling has been greatly limiting the lifetime of aqueous rechargeable lithium batteries (ARLBs). Here, to tackle this issue, mesoporous LiTi2(PO4)3@C composites with a pore size of 4 nm and a large BET surface area of 165 m2 g−1 have been synthesized by a novel two-step approach. The ARLB with this type of LiTi2(PO4)3@C anode, commercial LiMn2O4 cathode and 2 M Li2(SO4) aqueous solution (oxygen was removed) exhibited superior cycling stability (a capacity retention of 88.9% after 1200 cycles at 150 mA g−1 and 82.7% over 5500 cycles at 750 mA g−1) and excellent rate capability (discharge capacities of 121, 110, 90, and 80 mAh g−1 based on the mass of LiTi2(PO4)3 at 30, 150, 1500, and 3000 mA g−1, respectively). As verified, the mesoporous structure, large surface area and high-quality carbon coating layer of the LiTi2(PO4)3@C composite contribute to the breakthrough in achieving excellent electrochemical properties for ARLB. PMID:26648263

  9. Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.

    PubMed

    Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung

    2017-03-28

    The LiFePO4 surface is coated with AlF3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO4 and the aqueous electrolyte (1 M Li2SO4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO4 by 1 wt % AlF3 has a high discharge capacity of 132 mAh g(-1) and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO4 has a specific capacity of 123 mAh g(-1) and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF3 coating material has good compatibility with the LiFePO4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO4 material in aqueous electrolyte solutions.

  10. A fundamental study on the [(μ-Cl)3 Mg2 (THF)6 ]+ dimer electrolytes for rechargeable Mg batteries

    DOE PAGES

    Liu, Tianbiao; Cox, Jonathan T.; Hu, Dehong; ...

    2015-01-05

    We present a fundamental study on [(μ-Cl)3 Mg2 (THF)6 ]+ dimer electrolytes using various physical methods including Subambient Pressure Ionization with Nanoelectrospray Mass spectrometry (SPIN-MS), Raman spectroscopy, 25Mg{1H} NMR, 27Al{1H} NMR and electrochemical analysis. For the first time, long time sought THF solvated [MgCl]+ species was experimentally characterized by SPIN mass spectrometry in the solution of the Mgdimer containing electrolyte, confirming the mono-Cl- abstraction reaction between MgCl2 and an Al Lewis acid. Solvated MgCl2 in the electrolyte was confirmed by Raman spectroscopy. The experimental results establish the previously proposed dimerization equilibrium of solvated [MgCl]+ and MgCl2 with [(μ-Cl)3Mg2(THF)6]+.more » 25Mg{1H} NMR, 27Al{1H} NMR and electrochemical analysis on chloration reaction of [(μ-Cl)3Mg2(THF)6]AlPh3Cl with external Cl- led to further insights on the coordination chemistry of the dimer electrolyte. Finally, a comprehensive mechanism is proposed for the reversible electrochemical Mg deposition and stripping and Mg2+ and Cl- ion transports of the Mg dimer electrolytes in rechargeable Mg batteries.« less

  11. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc.

  12. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  13. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    SciTech Connect

    Cheng, Yingwen; Luo, Langli; Zhong, Li; Chen, Junzheng; Li, Bin; Wang, Wei; Mao, Scott X.; Wang, Chong M.; Sprenkle, Vincent L.; Li, Guosheng; Liu, Jun

    2016-05-16

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  14. TUNING SILICON NANORODS FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect

    Au, M.

    2010-11-23

    Silicon is a promising anode material for Li-ion batteries in regarding of high capacity, low cost and safety, but it suffers poor cycling stability due to the pulverization induced by severe volume expansion/shrinkage (297%) during lithium insertion/extraction. In our previous investigation on aluminum nanorods anodes, it is found the selection of substrates in which Al nanorods grown plays the role in prevention of pulverization resulting in the increase of cycling life. Adapting this knowledge, we investigated the Si based nanorods anodes by tuning its composition and element distribution. Our results show that although the Si nanorods demonstrated higher initial anodic capacity of 1500 mAh/g, it diminished after 50 cycles due to morphology change and pulverization. By codepositing Cu, the Si-Cu composite nanorods demonstrated sustainable capacity of 500 mAh/g in 100 cycles attributing to its flexible and less brittle nature.

  15. Lithium n-Doped Polyaniline as a High-Performance Electroactive Material for Rechargeable Batteries.

    PubMed

    Jiménez, Pablo; Levillain, Eric; Alévêque, Olivier; Guyomard, Dominique; Lestriez, Bernard; Gaubicher, Joël

    2017-02-01

    The discovery of conducting lithium-doped polyaniline with reversible redox chemistry allows simultaneous unprecedented capacity and stability in a non-aqueous Li battery. This compound (lithium emeraldinate) was synthesized by lithium-proton exchange on the emeraldine base in an anhydrous lithium-based electrolyte. A combination of UV/Vis-NIR spectroelectrochemistry, XPS, FTIR, and EQCM characterization allowed a unified description of the chemical and electrochemical behavior, showing facile charge delocalization of the doped states and the reversibility of the redox processes in this form of polyaniline. From a practical point of view, lithium emeraldinate behaves as a high-capacity organic active material (230 mAh g(-1) ) that enables preparation of relatively thick composite electrodes with a low amount of carbon additives and high energy density (460 Wh kg(-1) ). Concomitantly, at 1C rate, 400 cycles were achieved without significant capacity loss, while the coulombic efficiency is greater than 99 %.

  16. Quick charge battery

    SciTech Connect

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  17. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries.

    PubMed

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-03-21

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes.

  18. Hughes advanced nickel-cadmium batteries: An update

    NASA Astrophysics Data System (ADS)

    Bogner, R. Sam

    1991-05-01

    After delivering a significant data base on boilerplate and prototype advanced nickel cadmium (Ni/Cd) battery cells, Hughes decided to start using the Advanced Ni/Cd batteries on several of their flight programs. The advanced cell can been operated at 80 percent depth of discharge (DOD) for more than 10 years, and possibly 15 years, in geosynchronous earth orbit (GEO) applications. This cell offers an important weight saving over the standard Ni/Cd cell that is usually only operated at 50 to 60 percent DOD in GEO applications. The negative and positive electrodes are manufactured using electrochemical deposition methods which reduce the sinter corrosion problems encountered by the chemical deposition process used in the standard cells. The degradable nylon separators used in standard cells was replaced by polymer impregnated Zirconia separators.

  19. Hughes advanced nickel-cadmium batteries: An update

    NASA Technical Reports Server (NTRS)

    Bogner, R. Sam

    1991-01-01

    After delivering a significant data base on boilerplate and prototype advanced nickel cadmium (Ni/Cd) battery cells, Hughes decided to start using the Advanced Ni/Cd batteries on several of their flight programs. The advanced cell can been operated at 80 percent depth of discharge (DOD) for more than 10 years, and possibly 15 years, in geosynchronous earth orbit (GEO) applications. This cell offers an important weight saving over the standard Ni/Cd cell that is usually only operated at 50 to 60 percent DOD in GEO applications. The negative and positive electrodes are manufactured using electrochemical deposition methods which reduce the sinter corrosion problems encountered by the chemical deposition process used in the standard cells. The degradable nylon separators used in standard cells was replaced by polymer impregnated Zirconia separators.

  20. A survey of advanced battery systems for space applications

    NASA Astrophysics Data System (ADS)

    Attia, Alan I.

    1989-12-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  1. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  2. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Yiqing

    Lithium ion batteries are widely used in portable electronic devices and electric vehicles. However, safety is one of the most important issues for the Li-ion batteries' use. Some cathode materials, such as LiCoO 2, are thermally unstable in the charged state. Upon decomposition these cathode materials release O2, which could react with organic electrolyte, leading to a thermal runaway. Thus understanding the stability of the cathode materials is critical to the safety of lithium ion batteries. Olivine-type LiMnPO4 is a promising cathode material for lithium ion batteries because of its high energy density. We have revealed the critical role of carbon in the stability and thermal behaviour of olivine MnPO 4 obtained by chemical delithiation of LiMnPO4. (Li)MnPO 4 samples with various particle sizes and carbon contents were studied. Carbon-free LiMnPO4 obtained by solid state synthesis in O 2 becomes amorphous upon delithiation. Small amounts of carbon (0.3 wt.%) help to stabilize the olivine structure, so that completely delithiated crystalline olivine MnPO4 can be obtained. Larger amount of carbon (2 wt.%) prevents full delithiation. Heating in air, O2, or N 2 results in structural disorder (< 300 °C), formation of an intermediate sarcopside Mn3(PO4)2 phase (350 -- 450 °C), and complete decomposition to Mn2P2O 7 on extended heating at 400 °C. Carbon protects MnPO4 from reacting with environmental water, which is detrimental to its structural stability. We not only studied the crystalline olivine MnPO4, but also investigated the amorphous products obtained from carbon-free LiMnPO 4. We have revealed the Mn dissolution phenomenon during chemical delithiation of LiMnPO4, which causes the amorphization of olivine MnPO 4. Properties of crystalline-MnPO4 obtained from carbon-coated LiMnPO4 and of amorphous product resulting from the delithiation of pure LiMnPO4 were studied and compared. The P-rich amorphous phases in the latter are considered to be MnHP2O7 and MnH2P

  3. Advanced analytical electron microscopy for alkali-ion batteries

    DOE PAGES

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; ...

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less

  4. Advanced analytical electron microscopy for alkali-ion batteries

    SciTech Connect

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed review of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.

  5. Application of a nitroxide radical as overcharge protection in rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Taggougui, M.; Carré, B.; Willmann, P.; Lemordant, D.

    Redox shuttle electrolyte additives have been suggested as a possible mean of internal overcharge protection of secondary lithium-ion batteries. TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) is one of these redox shuttles for overcharge protection of 3 V class Li-ion cells. The electrochemical reversibility and the diffusion coefficient of this molecule has been evaluated by mean of cyclic voltammetry. The redox shuttle voltage was found to be 3.5 V versus Li/Li + and D = cm 2 s -1. The electrochemical stability of TEMPO in different overcharging conditions has been evaluated by long-term cycling using Li/Li 4Ti 5O 12 cells. Results show that the TEMPO redox system does not act as an ideal shuttle. When dissolved in the electrolyte at 0.5 M, this additive is able to level off the cell potential at 3.5 V for a long period at low overcharging current (C/200 to C/50). Nevertheless, it appears that the cell capacity fades drastically at the first cycles and with time. This phenomenon is probably related to the stability of the oxidized and reduced form of the TEMPO molecule.

  6. Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhian; Jiang, Shaofeng; Lai, Yanqing; Li, Junming; Song, Junxiao; Li, Jie

    2015-06-01

    Selenium sulfide (SeS2) encapsulated into 3D interconnected mesoporous carbon aerogels (MCA) as a selenium sulfide/carbon composite material was prepared for lithium batteries. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the mesoporous structures of the carbon aerogels and the homogeneous distribution of selenium sulfide in the composite. The electrochemical performances of the selenium sulfide@mesoporous carbon aerogel (SeS2@MCA) composite cathode was evaluated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. It is found that the SeS2@MCA cathode shows a better electrochemical performance than the pristine SeS2 cathode. The SeS2@MCA composite with selenium sulfide content of 49.3 wt.% displays an initial discharge capacity of 1150 mAh g-1 at 50 mA g-1 and a reversible discharge capacity of 601 mAh g-1 after 10 cycles at 500 mA g-1. The better electrochemical performance benefit from the high electron conductivity and 3D interconnected porous structures of the carbon aerogels, which contribute to dispersing SeS2 and trapping polysulfide and polyselenide intermediates within the skeleton structure of the mesoporous carbon aerogels.

  7. Effect of Multiple Cation Electrolyte Mixtures on Rechargeable Zn?MnO2 Alkaline Battery

    DOE PAGES

    Hertzberg, Benjamin J.; Huang, An; Hsieh, Andrew; ...

    2016-05-23

    A Bi2O3 in β-MnO2 composite cathode material has been synthesized using a simple hydrothermal method and cycled in a mixed KOH–LiOH electrolyte with a range of concentrations. We show that, at a KOH:LiOH molar ratio of 1:3, both proton insertion and lithium insertion occur, allowing access to a higher fraction of the theoretical capacity of the MnO2 while preventing the formation of ZnMn2O4. This enables a capacity of 360 mAh/g for over 60 cycles, with cycling limited more by anode properties than traditional cathodic failure mechanisms. The structural changes occurring during cycling are characterized using electron microscopy and in situmore » synchrotron energy-dispersive X-ray diffraction (EDXRD) techniques. This mixed electrolyte shows exceptional cyclability and capacity and can be used as a drop-in replacement for current alkaline batteries, potentially drastically improving their cycle life and creating a wide range of new applications for this energy storage technology.« less

  8. Effect of Multiple Cation Electrolyte Mixtures on Rechargeable Zn?MnO2 Alkaline Battery

    SciTech Connect

    Hertzberg, Benjamin J.; Huang, An; Hsieh, Andrew; Chamoun, Mylad; Davies, G.; Seo, Joon Kyo; Zhong, Zhong; Croft, Mark; Erdonmez, Can; Meng, Ying Shirley; Steingart, Dan

    2016-05-23

    A Bi2O3 in β-MnO2 composite cathode material has been synthesized using a simple hydrothermal method and cycled in a mixed KOH–LiOH electrolyte with a range of concentrations. We show that, at a KOH:LiOH molar ratio of 1:3, both proton insertion and lithium insertion occur, allowing access to a higher fraction of the theoretical capacity of the MnO2 while preventing the formation of ZnMn2O4. This enables a capacity of 360 mAh/g for over 60 cycles, with cycling limited more by anode properties than traditional cathodic failure mechanisms. The structural changes occurring during cycling are characterized using electron microscopy and in situ synchrotron energy-dispersive X-ray diffraction (EDXRD) techniques. This mixed electrolyte shows exceptional cyclability and capacity and can be used as a drop-in replacement for current alkaline batteries, potentially drastically improving their cycle life and creating a wide range of new applications for this energy storage technology.

  9. A half millimeter thick coplanar flexible battery with wireless recharging capability.

    PubMed

    Kim, Joo-Seong; Ko, Dongah; Yoo, Dong-Joo; Jung, Dae Soo; Yavuz, Cafer T; Kim, Nam-In; Choi, In-Suk; Song, Jae Yong; Choi, Jang Wook

    2015-04-08

    Most of the existing flexible lithium ion batteries (LIBs) adopt the conventional cofacial cell configuration where anode, separator, and cathode are sequentially stacked and so have difficulty in the integration with emerging thin LIB applications, such as smart cards and medical patches. In order to overcome this shortcoming, herein, we report a coplanar cell structure in which anodes and cathodes are interdigitatedly positioned on the same plane. The coplanar electrode design brings advantages of enhanced bending tolerance and capability of increasing the cell voltage by in series-connection of multiple single-cells in addition to its suitability for the thickness reduction. On the basis of these structural benefits, we develop a coplanar flexible LIB that delivers 7.4 V with an entire cell thickness below 0.5 mm while preserving stable electrochemical performance throughout 5000 (un)bending cycles (bending radius = 5 mm). Also, even the pouch case serves as barriers between anodes and cathodes to prevent Li dendrite growth and short-circuit formation while saving the thickness. Furthermore, for convenient practical use wireless charging via inductive electromagnetic energy transfer and solar cell integration is demonstrated.

  10. Analysis of redox additive-based overcharge protection for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Surampudi, S.; Attia, A. I.; Bankston, C. P.

    1991-01-01

    The overcharge condition in secondary lithium batteries employing redox additives for overcharge protection, has been theoretically analyzed in terms of a finite linear diffusion model. The analysis leads to expressions relating the steady-state overcharge current density and cell voltage to the concentration, diffusion coefficient, standard reduction potential of the redox couple, and interelectrode distance. The model permits the estimation of the maximum permissible overcharge rate for any chosen set of system conditions. Digital simulation of the overcharge experiment leads to numerical representation of the potential transients, and estimate of the influence of diffusion coefficient and interelectrode distance on the transient attainment of the steady state during overcharge. The model has been experimentally verified using 1,1-prime-dimethyl ferrocene as a redox additive. The analysis of the experimental results in terms of the theory allows the calculation of the diffusion coefficient and the formal potential of the redox couple. The model and the theoretical results may be exploited in the design and optimization of overcharge protection by the redox additive approach.

  11. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  12. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ferrari, Stefania; Loveridge, Melanie; Beattie, Shane D.; Jahn, Marcus; Dashwood, Richard J.; Bhagat, Rohit

    2015-07-01

    Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1-10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.

  13. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis.

    PubMed

    Wu, Xiaoyu; Han, Xiaopeng; Ma, Xiaoya; Zhang, Wei; Deng, Yida; Zhong, Cheng; Hu, Wenbin

    2017-04-12

    It remains an ongoing challenge to develop cheap, highly active, and stable electrocatalysts to promote the sluggish electrocatalytic oxygen evolution, oxygen reduction, and hydrogen evolution reactions for rechargeable metal-air batteries and water-splitting systems. In this work, we report the morphology-controllable synthesis of zinc cobalt mixed sulfide (Zn-Co-S) nanoarchitectures, including nanosheets, nanoplates, and nanoneedles, grown on conductive carbon fiber paper (CFP) and the micronanostructure dependent electrochemical efficacy for catalyzing hydrogen and oxygen in zinc-air batteries and water electrolysis. The formation of different Zn-Co-S morphologies was attributed to the synergistic effect of decomposed urea products and the corrosion of NH4F. Among synthesized Zn-Co-S nanostructures, the nanoneedle arrays supported on CFP exhibit superior trifunctional activity for oxygen reduction, oxygen evolution, and hydrogen evolution reactions than its nanosheet and nanoplate counterparts through half reaction testing. It also exhibited better catalytic durability than Pt/C and RuO2. Furthermore, the Zn-Co-S nanoneedle/CFP electrode enables rechargeable Zn-air batteries with low overpotential (0.85 V), high efficiency (58.1%), and long cycling lifetimes (200 cycles) at 10 mA cm(-2) as well as considerable performance for water splitting. The superior performance is contributed to the integrated nanoneedle/CFP nanostructure, which not only provides enhanced electrochemical active area, but also facilitates ion and gas transfer between the catalyst surface and electrolyte, thus maintaining an effective solid-liquid-gas interface necessary for electrocatalysis. These results indicate that the Zn-Co-S nanoneedle/CFP system is a low cost, highly active, and durable electrode for highly efficient rechargeable zinc-air batteries and water electrolysis in alkaline solution.

  14. A multifunctional 3.5V iron-based phosphate cathode for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F.

    2007-10-01

    In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability. Only one member of this class-the olivine LiFePO4 (ref. 3)-has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary. Thus, nanocrystallites are key to enable fast rate behaviour. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A2FePO4F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction-oxidation are minimal. This results in a volume change of only 3.7% that-unlike the olivine-contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical.

  15. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect

    Liao, Chen; Shao, Nan; Bell, Jason R; Guo, Bingkun; Luo, Huimin; Jiang, Deen; Dai, Sheng

    2013-01-01

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  16. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  17. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    NASA Astrophysics Data System (ADS)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  18. Materials in the Li-Mo-O ternary system of interest for use in rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Kuo

    The thermodynamic and kinetic properties of lithium molybdenum oxide bronzes, which are of interest as possible positive electrode materials for use in rechargeable lithium batteries were characterized in this study. Within the Li-Mo-O ternary system, the phases Li4Mo5O12, Li2MoO3, and Li6Mo2O7 were investigated. Based upon theoretical considerations related to electrode potentials, capacities, and weight, lithium cells using these bronze materials as positive electrode reactants, should have a relatively high specific energy. Electrochemical techniques were used in order to determine the potentials and capacities of Li4Mo5O12, Li2MoO3, and Li6Mo2O7 in lithium-based cells. Equilibrium open-circuit voltages were recorded at selected compositions. An alternative method, voltage-relazation, was used in both the Li-Mo-O and the Li-Pb systems. The chemical diffusion coefficients of lithium in selected phases were measured using the Galvanostatic Intermittent Titration Technique (GITT). Powder X-ray diffraction patterns of the products formed during discharge were recorded and compared to those of the parent materials. Room temperature electrochemical experiments were conducted using cells of the following type: Li / 1M LiAsF6 in PC / LixMoOy. Powder X-ray diffraction results for the various phases formed during reaction with lithium showed that the parent framework remains largely unchanged during lithium insertion. The principles underlying the difference between the dynamic and equilibrium behavior of Li-Mo-O and related systems that can undergo both insertion and reconstitution reactions were investigated. As a result, the room temperature metastable ternary phase diagram was constructed and compared to the high temperature equilibrium ternary phase diagram.

  19. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material

    NASA Astrophysics Data System (ADS)

    Chae, Munseok S.; Heo, Jongwook W.; Kwak, Hunho H.; Lee, Hochun; Hong, Seung-Tae

    2017-01-01

    This study demonstrates an organic electrolyte-based rechargeable zinc-ion battery (ZIB) using Prussian blue (PB) analogue potassium nickel hexacyanoferrate K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-086) as the cathode material. KNF-086 is prepared via electrochemical extraction of potassium ions from K1.51Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-151). The cell is composed of a KNF-086 cathode, a zinc metal anode, and a 0.5 M Zn(ClO4)2 acetonitrile electrolyte. This cell shows a reversible discharge capacity of 55.6 mAh g-1 at 0.2 C rate with the discharge voltage at 1.19 V (vs. Zn2+/Zn). As evidenced by Fourier electron density analysis with powder XRD data, the zinc-inserted phase is confirmed as Zn0.32K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (ZKNF-086), and the position of the zinc ion in ZKNF-086 is revealed as the center of the large interstitial cavities of the cubic PB. Compared to KNF-086, ZKNF-086 exhibits a decreased unit cell parameter (0.9%) and volume (2.8%) while the interatomic distance of d(Fe-C) increased (from 1.84 to 1.98 Å), and the oxidation state of iron decreases from 3 to 2.23. The organic electrolyte system provides higher zinc cycling efficiency (>99.9%) than the aqueous system (ca. 80%). This result demonstrates an organic electrolyte-based ZIB, and offers a crucial basis for understanding the electrochemical intercalation chemistry of zinc ions in organic electrolytes.

  20. Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Kato, Takehisa; Yoshida, Ryuji; Yamamoto, Kazuo; Hirayama, Tsukasa; Motoyama, Munekazu; West, William C.; Iriyama, Yasutoshi

    2016-09-01

    Sintering processes yield a mutual diffusion region at the electrode/solid electrolyte interface, which is considered as a crucial problem for developing large-sized all-solid-state rechargeable lithium batteries with high power density. This work focuses on the interface between LiNi1/3Co1/3Mn1/3O2 (NMC) and NASICON-structured Li+ conductive glass ceramics solid electrolyte (Li2Osbnd Al2O3sbnd SiO2sbnd P2O5sbnd TiO2sbnd GeO2: LATP sheet (AG-01)), and investigates the effects of sintering temperature on interfacial structure and interfacial resistance at the NMC/LATP sheet. Thin films of NMC were fabricated on the LATP sheets at 700 °C or 900 °C as a model system. We found that the thickness of the mutual diffusion region was almost the same, ca. 30 nm, in these two samples, but the NMC film prepared at 900 °C had three orders of magnitude larger interfacial resistance than the NMC film prepared at 700 °C. Around the interface between the NMC film prepared at 900 °C and the LATP sheet, Co in the NMC accumulates as a reduced valence and lithium-free impurity crystalline phase will be also formed. These two problems must contribute to drastic increasing of interfacial resistance. Formation of de-lithiated NMC around the interface and its thermal instability at higher temperature may be considerable reason to induce these problems.

  1. Engineering hybrid nanostructures of active materials: Applications as electrode materials in lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Huang, Huan

    Aiming to significantly improve the electrochemical properties of electroactive materials for lithium ion batteries, three novel hybrid nanostructures were developed in this thesis. These include nanostructure A: V2O 5 coated on polymer electrolyte-grafted carbon black, nanostructure B: electrode materials incorporated into an electronically conductive carbon web, and nanostructure C: electrode materials dispersed in a conductive porous carbon matrix. Nanocomposites possessing nanostructure A are fast electronic and ionic transport materials. The improved kinetic properties are due to the incorporated carbon core and the grafted polymer electrolyte in the unique structure. The V2O5 xerogel coated polymer electrolyte-grafted carbon blacks, or V2O5/C-PEG, can reach a capacity as high as 320 mAh/g, and exhibit outstanding rate sustainability (e.g. 190 mAh/g at 14C). This class of nanostructured composites is promising for high power/current applications. Nanostructure B was extremely successful when applied to very poorly conductive active materials, such as LiFePO4 and Li3V 2(PO4)3. In this nanostructure, the web-like carbon framework not only supplies a facile electron transport path, but also provides excellent electronic contact between carbon and the insulating active materials. At room temperature, the LiFePO4/C nanocomposite successfully reaches almost full capacity, along with greatly improved rate sustainability and excellent cycling stability. At elevated temperatures (e.g. 40°C and 60°C), the full capacity is readily accessible over a wide rate range, even at a very fast rate of 2C or 5C. The Li3V2(PO4) 3/C nanocomposite can extract all three lithium in the formula at a rate of 1C, resulting in a high capacity of 200 mAh/g. Therefore, through designing hybrid nanostructures with nanostructure B, we can make insulating active materials into good cathode materials. Nanostructure C was employed for Sn-based anode materials, in order to improve their cycling

  2. Reaction mechanism and thermal stability study on cathode materials for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Jin

    Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4

  3. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.

    PubMed

    Chen, Renjie; Luo, Rui; Huang, Yongxin; Wu, Feng; Li, Li

    2016-10-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in-depth understanding of multi-electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi-electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi-electron reactions are classified in this review: lithium- and sodium-ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal-air batteries, and Li-S batteries. It is noted that challenges still exist in the development of multi-electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this.

  4. Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials

    PubMed Central

    Luo, Rui; Huang, Yongxin; Li, Li

    2016-01-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi‐electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in‐depth understanding of multi‐electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi‐electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi‐electron reactions are classified in this review: lithium‐ and sodium‐ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal–air batteries, and Li–S batteries. It is noted that challenges still exist in the development of multi‐electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this. PMID:27840796

  5. Three-Dimensional Ordered Macroporous FePO4 as High-Efficiency Catalyst for Rechargeable Li-O2 Batteries.

    PubMed

    Li, Chao; Guo, Ziyang; Pang, Ying; Sun, Yunhe; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-11-23

    The Li-O2 battery is receiving much recent attention because of its superhigh theoretical energy density. However, its performance is limited by the irreversible formation/decomposition of Li2O2 on the cathode and the undesired electrolyte decomposition. In this work, low-cost three-dimensional ordered macroporous (3DOM) FePO4 is synthesized by using polystyrene (PS) spheres template in a facile experimental condition and applied as a high-efficiency catalyst for rechargeable Li-O2 batteries, including good rate performance, high specific capacity, and perfect cycling stability. The superior performances can be attributed to the unique structure of 3DOM FePO4 cathodes, which can provide an efficient buffer space for O2/Li2O2 conversion. In addition, it is demonstrated that the Li(+) intercalation/deintercalation behavior of 3DOM FePO4 in ether-based electrolyte can contribute to capacity for Li-O2 batteries over cycling. As a result, when there is no O2 in the environment, the Li-O2 cell can also be operated as a rechargeable Li-FePO4 cell with a perfect cycle capability.

  6. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi; Nishikawa, Heisuke; Hitomi, Shuji; Okuyama, Ryoichi; Usui, Ryo; Yamada, Yasuhiro; Komaba, Shinichi

    2012-06-01

    Rechargeable lithium batteries have risen to prominence as key devices for green and sustainable energy development. Electric vehicles, which are not equipped with an internal combustion engine, have been launched in the market. Manganese- and iron-based positive-electrode materials, such as LiMn2O4 and LiFePO4, are used in large-scale batteries for electric vehicles. Manganese and iron are abundant elements in the Earth’s crust, but lithium is not. In contrast to lithium, sodium is an attractive charge carrier on the basis of elemental abundance. Recently, some layered materials, where sodium can be electrochemically and reversibly extracted/inserted, have been reported. However, their reversible capacity is typically limited to 100 mAh g-1. Herein, we report a new electrode material, P2-Na2/3[Fe1/2Mn1/2]O2, that delivers 190 mAh g-1 of reversible capacity in the sodium cells with the electrochemically active Fe3+/Fe4+ redox. These results will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.

  7. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Xianwen; Li, Yehua; Xiang, Yanhong; Liu, Zhixiong; He, Zeqiang; Wu, Xianming; Li, Youji; Xiong, Lizhi; Li, Chuanchang; Chen, Jian

    2016-12-01

    There is a broad application prospect for smart grid about aqueous rechargeable sodium-ion battery. In order to improve its electrochemical performance, a hybrid cationic aqueous-based rechargeable battery system based on the nanostructural Na0.44MnO2 and metallic zinc foil as the positive and negative electrodes respectively is built up. Nano rod-like Na0.44MnO2 is synthesized by sol-gel method followed by calcination at 850 °C for 9 h, and various characterization techniques including the X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to investigate the structure and morphology of the as-prepared material. The cyclic voltammetry, galvanostatic charge-discharge and self-discharge measurements are performed at the same time. The results show that the battery delivers a very high initial discharge capacity of 186.2 mAh g-1 at 0.2 C-rate in the range of 0.5-2.0 V, and it exhibits a discharge capacity of 113.3 mAh g-1 at high current density of 4 C-rate, indicative of excellent rate capability.

  8. Advanced Battery Management Challenges for Military Vehicles

    DTIC Science & Technology

    2013-12-06

    NCA, NCM) 2.5-4.1 7.5-12.3 10-16.4 15-24.6 17.5-28.7 20-32.8 L F P Nominal Voltage(V) ( LiFePO4 ) 3.3 9.9 13.2 19.8 23.1 26.4 n x 3.3 Voltage range...V) ( LiFePO4 ) 2.0-3.7 6-11.1 8-14.8 12-22.2 14-25.9 16-29.6 15 12V 6T 24V 6T UNCLASSIFIED Advanced Chemistry BMS • Required for Li-ion

  9. Competition between insertion of Li+ and Mg2+: An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Wang, Dashuai; Wei, Yingjin; Zhu, Kai; Zhao, Yingying; Bian, Xiaofei; Du, Fei; Liu, Bingbing; Gao, Yu; Chen, Gang

    2017-04-01

    Titanium dioxide bronze (TiO2-B) nanowires were prepared by the hydrothermal method and used as the positive electrode for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries. First-principles calculations showed that the diffusion barrier for Mg2+ (0.6 eV) in the TiO2-B lattice was more than twice of that for Li+ (0.3 eV). Electrochemical impedance spectroscopy showed that the charge transfer resistance of TiO2-B in the Mg2+ ion electrolyte was much larger than that in the Li+/Mg2+ hybrid electrolyte. For these reasons, the Mg rechargeable battery showed a small discharge capacity of 35 mAh g-1 resulting from an electrochemical double-layer capacitive process. In comparison, the TiO2-B nanowires exhibited a large capacity (242 mAh g-1 at the 20 mA g-1 current density), high rate capability (114 mAh g-1 at 1 A g-1), and excellent cycle stability in the Li+/Mg2+ hybrid-ion battery. The dominant reaction occurred in the TiO2-B electrode was intercalation of Li+ ions, of which about 74% of the total capacity was attributed to Li+ pseudo-capacitance.

  10. Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sundriyal, Poonam; Bhattacharya, Shantanu

    2017-03-01

    The exploration of new and advanced electrode materials are required in electronic and electrical devices for power storage applications. Also, there has been a continuous endeavour to formulate strategies for extraction of high performance electrode materials from naturally obtained waste products. In this work, we have developed an in situ hybrid nanocomposite from coffee waste extracted porous graphene oxide (CEPG), polyaniline (PANI) and silver nanoparticles (Ag) and have found this novel composite to serve as an efficient electrode material for batteries. The successful interaction among the three phases of the nano-composite i.e. CEPG–PANI–Ag have been thoroughly understood through RAMAN, Fourier transform infrared and x-ray diffraction spectroscopy, morphological studies through field emission scanning electron microscope and transmission electron microscope. Thermo-gravimetric analysis of the nano-composite demonstrates higher thermal stability up-to a temperature of 495 °C. Further BET studies through nitrogen adsorption–desorption isotherms confirm the presence of micro/meso and macro-pores in the nanocomposite sample. The cyclic-voltammetry (CV) analysis performed on CEPG–PANI–Ag nanocomposite exhibits a purely faradic behaviour using nickel foam as a current collector thus suggests the prepared nanocomposite as a battery electrode material. The nanocomposite reports a maximum specific capacity of 1428 C g‑1 and excellent cyclic stability up-to 5000 cycles.

  11. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  12. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  13. Study, selection, and preparation of solid cationic conductors. [characteristics of solid electrolytes for rechargeable high energy and high power density batteries

    NASA Technical Reports Server (NTRS)

    Roth, W. L.; Muller, O.

    1974-01-01

    Crystal chemical principles and transport theory have been used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. Structures with 1-, 2-, and 3-dimensional channels were synthesized and screened by nuclear magnetic resonance, dielectric loss, and conductivity. There is significant conductivity at room temperature in some of the materials but none attain a level that is comparable to beta-alumina. Microwave and fast pulse methods were developed to measure conductivity in powders and in small crystals.

  14. The double perovskite oxide Sr2CrMoO(6-δ) as an efficient electrocatalyst for rechargeable lithium air batteries.

    PubMed

    Ma, Zhong; Yuan, Xianxia; Li, Lin; Ma, Zi-Feng

    2014-12-07

    A double perovskite oxide Sr2CrMoO6-δ (SCM), synthesized using the sol-gel and annealing method with the assistance of citric acid and ethylene diamine tetraacetic acid, was investigated for the first time as an efficient catalyst for rechargeable lithium air batteries. The SCM cathode enables higher specific capacity, lower overpotential and a much better cyclability compared to the pure Super P electrode owing to its excellent electrocatalytic activity towards the formation/decomposition of Li2O2.

  15. United States Marine Corps (USMC) Single Channel Ground and Airborne Radio System (SINCGARS) Rechargeable Battery Trade-off Study

    DTIC Science & Technology

    1992-09-18

    m 0OX01~i) Cost estimates for USMC SINCGARS usage of BB-5-90/U Lithium Sulfur Dioxide (LiSO2) Batteries, BA-590/U Sealed Lead- Acid Batteries, and BB...and for mix of Li502 and Lead- Acid batteries over the same range. Estimated hourly battery-related costs are $2~.66 per hour for LiSO2 batteriez $0.34...for Ni-Cad batteries, and $0.’-0 for Lead- Acid batteries. Disposal related regulations and related documents are discussed and included in Appendices

  16. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation.

    PubMed

    Wu, Na; Yang, Zhen-Zhong; Yao, Hu-Rong; Yin, Ya-Xia; Gu, Lin; Guo, Yu-Guo

    2015-05-04

    Rechargeable magnesium batteries have attracted recent research attention because of abundant raw materials and their relatively low-price and high-safety characteristics. However, the sluggish kinetics of the intercalated Mg(2+) ions in the electrode materials originates from the high polarizing ability of the Mg(2+) ion and hinders its electrochemical properties. Here we report a facile approach to improve the electrochemical energy storage capability of the Li4 Ti5 O12 electrode in a Mg battery system by the synergy between Mg(2+) and Li(+) ions. By tuning the hybrid electrolyte of Mg(2+) and Li(+) ions, both the reversible capacity and the kinetic properties of large Li4 Ti5 O12 nanoparticles attain remarkable improvement.

  17. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Prabu, Moni; Ketpang, Kriangsak; Shanmugam, Sangaraju

    2014-02-01

    A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a remarkable electrocatalytic activity towards oxygen reduction and evolution in an aqueous alkaline medium. The extraordinary bi-functional catalytic activity towards both ORR and OER was observed by the low over potential (0.84 V), which is better than that of noble metal catalysts [Pt/C (1.16 V), Ru/C (1.01 V) and Ir/C (0.92 V)], making them promising cathode materials for metal-air batteries. Furthermore, the rechargeable zinc-air battery with NCO-A1 as a bifunctional electrocatalyst displays high activity and stability during battery discharge, charge, and cycling processes.A nickel-doped cobalt oxide spinel structure is a promising non-precious metal electrocatalyst for oxygen evolution and oxygen reduction in rechargeable metal-air batteries and water electrolyzers operating with alkaline electrolytes. One dimensional NiCo2O4 (NCO) nanostructures were prepared by using a simple electrospinning technique with two different metal precursors (metal nitrate/PAN and metal acetylacetonate/PAN). The effect of precursor concentration on the morphologies was investigated. Single-phase, NCO with an average diameter of 100 nm, porous interconnected fibrous morphology was revealed by FESEM and FETEM analysis. The hierarchical nanostructured 1D-spinel NiCo2O4 materials showed a

  18. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  19. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure

    PubMed Central

    Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu; Shiiba, Hiromasa; Ogawa, Masahiro; Nakayama, Keisuke; Ohta, Toshiaki; Endo, Daisuke; Ozaki, Tetsuya; Inamasu, Tokuo; Sato, Kei; Komaba, Shinichi

    2015-01-01

    Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn4+, Ru4+, etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co3+, Ni3+, etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh⋅g−1 of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions. PMID:26056288

  20. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure.

    PubMed

    Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu; Shiiba, Hiromasa; Ogawa, Masahiro; Nakayama, Keisuke; Ohta, Toshiaki; Endo, Daisuke; Ozaki, Tetsuya; Inamasu, Tokuo; Sato, Kei; Komaba, Shinichi

    2015-06-23

    Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn(4+), Ru(4+), etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co(3+), Ni(3+), etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh ⋅ g(-1) of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions.

  1. Advanced Nanofiber-Based Lithium-Ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Toprakci, Ozan

    Among various energy storage technologies, rechargeable lithium-ion batteries have been considered as effective solution to the increasing need for high-energy density electrochemical power sources. Rechargeable lithium-ion batteries offer energy densities 2 - 3 times and power densities 5 - 6 times higher than conventional Ni-Cd and Ni-MH batteries, and as a result, they weigh less and take less space for a given energy delivery. However, the use of lithium-ion batteries in many large applications such as electric vehicles and storage devices for future power grids is hindered by the poor thermal stability, relatively high toxicity, and high cost of lithium cobalt oxide (LiCoO2) powders, which are currently used as the cathode material in commercial lithium-ion batteries. Recently, lithium iron phosphate (LiFePO 4) powders have become a favorable cathode material for lithium-ion batteries because of their low cost, high discharge potential (around 3.4 V versus Li/Li+), large specific capacity (170 mAh g -1), good thermal stability, and high abundance with the environmentally benign and safe nature. As a result, there is a huge demand for the production of high-performance LiFePO4. However, LiFePO4 also has its own limitation such as low conductivity (˜10-9 S cm -1), which results in poor rate capability. To address this problem, various approaches can be used such as decreasing particle size of LiFePO 4, doping LiFePO4 with metal ions or coating LiFePO 4 surface with carboneous materials. Formation of conductive layer on LiFePO4 and decreasing particle size are promising approaches due to their superior contribution to electrical conductivity and electrochemical performance of LiFePO4. Although different approaches can be used for surface coating and particle size decrement, electrospinning can be potentially considered as an efficient, simple and inexpensive way. In this study, LiFePO 4/carbon and carbon nanotube- and graphene-loaded electrospun LiFePO 4/carbon

  2. In situ X-ray absorption fine structure studies of a manganese dioxide electrode in a rechargeable MnO{sub 2}/Zn alkaline battery environment

    SciTech Connect

    Mo, Y.; Hu, Y.; Bae, I.T.; Miller, B.; Scherson, D.A.; Antonio, M.R.

    1996-12-31

    Electronic and structural aspects of a MnO{sub 2} electrode in a rechargeable MnO{sub 2}/Zn battery environment have been investigated by in situ Mn K-edge X-ray absorption fine structure (XAFS). The relative amplitudes of the three major Fourier transform shells of the EXAFS (extended XAFS) function of the rechargeable MnO{sub 2} electrode in the undischarged state were found to be similar to those found for ramsdellite, a MnO{sub 2} polymorph with substantial corner-sharing linkages among the basic MnO{sub 6} octahedral units. The analyses of the background-subtracted pre-edge peaks and absorption edge regions for the nominally 1-e{sup {minus}} discharged electrode were consistent with Mn{sup 3+} as being the predominant constituent species, rather than a mixture of Mn{sup 4+} and Mn{sup 2+} sites. Furthermore, careful inspection of both the XANES (X-ray absorption near edge structure) and EXAFS indicated that the full recharge of MnO, which had been previously discharged either by a 1- or 2-equivalent corner-sharing linkages compared to the original undischarged MnO{sub 2}.

  3. Synthesis and electrochemical characterizations of La doped nano-size LiCo0.2Ni0.8O2 cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Arumugam, D.; Paruthimal Kalaignan, G.; Vediappan, K.; Lee, C. W.

    2010-07-01

    The LiLaxCo0.20-xNi0.80O2, where x = 0.00, 0.01, 0.03, 0.05 and 0.10 cathode materials for rechargeable lithium ion batteries were synthesized by simple sol-gel technique using aqueous solutions of metal nitrates and polyvinyl alcohol. The gel precursors were dried in vacuum oven for 12 h at 120 °C. After drying, the gel precursors were ground and heated at 800 °C. The structural characterization was carried out by X-ray powder diffraction. The sample exhibited a well-defined hexagonal layered structure. Surface morphology and particle size of the synthesized materials was determined by scanning electron microscope and transmittance electron microscope and it was found that the cathode materials consisted of highly-ordered single crystalline particles with layered structure. Electrochemical properties were characterized by the assembled test cells using galvanostatic charge/discharge studies which were carried out at a current rate 0.1 C at potential range of 2.75 to 4.5 V. Among them, lanthanum doped LiLa0.03Co0.17Ni0.80O2 has improved the structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.

  4. Preliminary studies of biominerals-coated spinel LiMn2 O4 as a cathode material on electrochemical performances for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Vediappan, Kumaran; Lee, Chang Woo

    2010-05-01

    Lithium manganese oxide (LiMn2O4) is an inexpensive and pollution-free cathode material for Li-ion rechargeable batteries. In this study, spinel LiMn2O4 cathode material was coated with biomineral powders by the mechano-chemical method. In the course of the material synthesis, citric acid and acryl amide were added to serve as a complexing agent and a gelling agent, respectively, followed by a calcination process at 700 °C for 6 h in a high-purity argon atmosphere. The spinel LiMn2O4 and biominerals-coated spinel LiMn2O4 cathode materials were, from diverse viewpoints, characterized by x-ray diffraction, field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and the electrochemical cycling method to understand the mechanism of improvements in electrochemical performances. We suggest that the biominerals-coated spinel LiMn2O4 is a good candidate as a low cost and environmentally friendly cathode material showing the enlarged capacity characteristic of Li-ion rechargeable batteries.

  5. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Du, Guojun; Liu, Xiaogang; Zong, Yun; Hor, T. S. Andy; Yu, Aishui; Liu, Zhaolin

    2013-05-01

    We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone.We report the preparation of MnO2 nanotubes functionalized with Co3O4 nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries. These hybrid MnO2/Co3O4 nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction under alkaline conditions compared with that in the presence of MnO2 nanotubes or Co3O4 nanoparticles alone. Electronic supplementary information (ESI) available: Zinc-air cell device, XPS survey scan and power density of the cell. See DOI: 10.1039/c3nr00300k

  6. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery.

    PubMed

    Zhang, Ning; Cheng, Fangyi; Liu, Yongchang; Zhao, Qing; Lei, Kaixiang; Chen, Chengcheng; Liu, Xiaosong; Chen, Jun

    2016-10-05

    Rechargeable aqueous Zn-ion batteries are attractive cheap, safe and green energy storage technologies but are bottlenecked by limitation in high-capacity cathode and compatible electrolyte to achieve satisfactory cyclability. Here we report the application of nonstoichiometric ZnMn2O4/carbon composite as a new Zn-insertion cathode material in aqueous Zn(CF3SO3)2 electrolyte. In 3 M Zn(CF3SO3)2 solution that enables ∼100% Zn plating/stripping efficiency with long-term stability and suppresses Mn dissolution, the spinel/carbon hybrid exhibits a reversible capacity of 150 mAh g(-1) and a capacity retention of 94% over 500 cycles at a high rate of 500 mA g(-1). The remarkable electrode performance results from the facile charge transfer and Zn insertion in the structurally robust spinel featuring small particle size and abundant cation vacancies, as evidenced by combined electrochemical measurements, XRD, Raman, synchrotron X-ray absorption spectroscopy, FTIR, and NMR analysis. The results would enlighten and promote the use of cation-defective spinel compounds and trifluoromethanesulfonic electrolyte to develop high-performance rechargeable zinc batteries.

  7. Advances in Wearable Fiber-Shaped Lithium-Ion Batteries.

    PubMed

    Zhang, Ye; Zhao, Yang; Ren, Jing; Weng, Wei; Peng, Huisheng

    2016-06-01

    It is highly desirable to develop flexible and efficient energy-storage systems for widely used wearable electronic products. To this end, fiber-shaped lithium-ion batteries (LIBs) attract increasing interest due to their combined superiorities of miniaturization, adaptability, and weavability, compared with conventional bulky and planar structures. Recent advances in the fabrication, structure, mechanism, and properties of fiber-shaped LIBs are summarized here, with a focus on the electrode material. Remaining challenges and future directions are also highlighted to provide some useful insights from the viewpoint of practical applications.

  8. Limiting Factors to Advancing Thermal Battery Technology for Naval Applications

    DTIC Science & Technology

    1991-10-01

    batteries are capable of supplanting lithium / thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal...supplanting lithium / thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power...the present lithium thermal battery technology. Improvements benefit missile, small vehicle, and sonobuoy capabilities. The Electrochemistry Branch

  9. Utilization of a bipolar lead acid battery for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Gentry, William O.; Vidas, Robin; Miles, Ronald; Eckles, Steven

    1991-01-01

    The development of a battery comprised of bipolar lead acid modules is discussed. The battery is designed to satisfy the requirements of the Advanced Launch System (ALS). The battery will have the following design features: (1) conventional lead acid chemistry; (2) thin electrode/active materials; (3) a thin separator; (4) sealed construction (gas recombinant); and (5) welded plastic frames for the external seal.

  10. Application features and considerations in advanced lead-acid and nickel/iron EV batteries

    SciTech Connect

    Miller, J.F.; Rajan, J.B.; Lee, T.S.; Christianson, C.C.; Hornstra, F.; Yao, N.P.

    1983-01-01

    In the development of advanced lead-acid and nickel/iron EV batteries, major efforts have focussed on improving specific energy, specific power, cycle life, and cost. Nonetheless, other battery characteristics related to application needs are also important features which must be considered during the battery development process. This paper describes various application features and improvements incorporated in these advanced lead-acid and nickel/iron EV batteries. Their volumetric energy density and packaging flexibility are presented: their charged-stand capabilities and energy efficiencies are reported; and development work on the safe control of battery off-gases and the implementation of single-point watering systems is discussed.

  11. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    PubMed

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.

  12. The NASA "PERS" Program: Solid Polymer Electrolyte Development for Advanced Lithium-Based Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    In fiscal year 2000, The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The ultimate objective of this development program, which was referred to as the Polymer Energy Rechargeable System (PERS), was to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. Out of a total of 38 proposals received in response to a NASA Research Announcement (NRA) solicitation, 18 proposals (13 contracts and 5 grants) were selected for initial award to address these technical challenges. Brief summaries of technical approaches, results and accomplishments of the PERS Program development efforts are presented. With Agency support provided through FY 2004, the PERS Program efforts were concluded in 2005, as internal reorganizations and funding cuts resulted in shifting programmatic priorities within NASA. Technically, the PERS Program participants explored, to various degrees over the lifetime of the formal program, a variety of conceptual approaches for developing and demonstrating performance of a viable advanced solid polymer electrolyte possessing the desired attributes, as well as several participants addressing all components of an integrated cell configuration. Programmatically, the NASA PERS Program was very successful, even though the very challenging technical goals for achieving a viable solid polymer electrolyte material or

  13. 78 FR 62495 - Special Conditions: Learjet Model 35, 35A, 36, and 36A Airplanes; Rechargeable Lithium-Ion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Airplanes; Rechargeable Lithium-Ion Batteries and Battery Systems AGENCY: Federal Aviation Administration... associated with rechargeable lithium-ion batteries and battery systems. These batteries have certain failure... certificate for installing equipment that uses rechargeable lithium-ion battery systems in Learjet Model...

  14. Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes

    PubMed Central

    Zuo, Wenhua; Xu, Pan; Li, Yuanyuan; Liu, Jinping

    2015-01-01

    As promising candidates for next-generation energy storage devices, aqueous rechargeable batteries are safer and cheaper than organic Li ion batteries. But due to the narrow voltage window of aqueous electrolytes, proper anode materials with low redox potential and high capacity are quite rare. In this work, bismuth electrode film was directly grown by a facile hydrothermal route and tested in LiOH, NaOH and KOH electrolytes. With low redox potential (reduction/oxidation potentials at ca. −0.85/−0.52 V vs. SCE, respectively) and high specific capacity (170 mAh·g−1 at current density of 0.5 A·g−1 in KOH electrolyte), Bi was demonstrated as a suitable anode material for aqueous batteries. Furthermore, by electrochemical impedance spectroscopy (EIS) analysis, we found that with smaller Rs and faster ion diffusion coefficient, Bi electrode film in KOH electrolyte exhibited better electrochemical performance than in LiOH and NaOH electrolytes.

  15. Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase

    NASA Astrophysics Data System (ADS)

    Yang, Yingchang; Yang, Xuming; Zhang, Yan; Hou, Hongshuai; Jing, Mingjun; Zhu, Yirong; Fang, Laibing; Chen, Qiyuan; Ji, Xiaobo

    2015-05-01

    Cathodic corrosion, a green electrochemical method, has been employed to obtain Sb nanomaterials utilized as anode material for lithium-ion batteries and sodium-ion batteries. Interestingly, two different corrosion mechanisms are found, coming from the impact of electrolyte, resulting in the formation of hexagonal and amorphous Sb in aqueous and organic solution, respectively. With the help of water-soluble carboxymethyl cellulose binder and the electrolyte additive fluoroethylene carbonate, both hexagonal and amorphous Sb electrodes exhibit good cycling stability when utilized as anode materials for lithium-ion batteries and sodium-ion batteries. Additionally, both the hexagonal and amorphous Sb electrodes show very good rate capability in lithium-ion batteries. Even at high current density (2000 mA g-1), the hexagonal and amorphous Sb give reversible capacities of 422 and 379 mA h g-1, respectively. Surprisingly, when used as anode materials for sodium-ion batteries, the hexagonal Sb electrode exhibits a good rate performance of 632, 625, 569, 515 and 426 mA h g-1 at a current density of 100, 200, 500, 1000, and 2000 mA g-1, respectively. However, limited rate performance is observed from the amorphous Sb electrode in case of sodium-ion battery due to the large impedance.

  16. Na3Ti2(PO4)(3) as a sodium-bearing anode for rechargeable aqueous sodium-ion batteries

    SciTech Connect

    Li, Z; Ravnsbaek, DB; Xiang, K; Chiang, YM

    2014-07-01

    Na3Ti2(PO4)(3) synthesized as fine carbon-coated powders is demonstrated for the first time to be a suitable sodium-bearing anode material for rechargeable aqueous sodium-ion batteries (ANaBs). Importantly, Na3Ti2(PO4)(3) is found to be stable in deoxygenated water, enabling use of this material in aqueous systems. As a sodiated anode, it allows use of sodium-depleted cathode materials that require supply of sodium-ions from the anode. As an example, we demonstrate for the first time the use of olivine FePO4 as a cathode in an ANaB. (C) 2014 Elsevier B.V. All rights reserved.

  17. Synthesis, physical and electrochemical characterization of Gd (III) doped LiMn2O4 cathode material for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Singhal, Rahul; Ram, Pura; Sharma, Rakesh Kumar

    2015-03-01

    The spinel structured LiMn2-xGdxO4 (x =0.01-0.05) have been synthesized via sol gel method. The physical and electrochemical characterization were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive x-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, Raman spectroscopy, cyclic voltammetry and charge-discharge studies. The reversibility of synthesized cathode was supported through cyclic voltammetry in 3.0 - 4.5 voltage range. The initial charge discharge capacity of cathode materials was found in range 130-140 mAhg-1. The fabricated coin cell was tested up to 50 charge -discharge cycles with 0.5 C rate. The small amount of rare earth metal, Gd, doping showed improvement in capacity fading compared to LiMn2O4 cathode, offer its applicability for Li-ion rechargeable battery

  18. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries

    SciTech Connect

    Aurbach, D.; Ein-Eli, Y.; Chusid, O. . Dept. of Chemistry); Carmeli, Y.; Babai, M.; Yamin, H. . Battery Div.)

    1994-03-01

    The correlation between the electrochemical properties of Li carbon intercalation electrodes and their surface chemistry in solutions was investigated. The carbons investigated were primarily graphite and petroleum coke, and the solvent systems included methyl formate (MF), propylene and ethylene carbonates, ethers and their mixtures. The surface chemistry of the electrodes was studied using mainly diffuse reflectance Fourier transform infrared spectroscopy. The following aspects were studied: (1) the effect of temperature on the buildup of the surface films; (2) the effect of additives (e.g., CO[sub 2], crown ethers), (3) the behavior when the passive layer is built in one solution followed by cycling in another; and (4) the effect of cosolvent in MF solutions. The results obtained further prove that the electrochemical behavior of these systems is surface film controlled. An understanding of the surface chemistry of these electrodes enables judicious optimization of carbon-solution systems for use in rechargeable Li batteries.

  19. Advanced catalytic electrode development for nickel-hydrogen batteries

    SciTech Connect

    Coates, D.K.; Grindstaff, B.K.; Hoofnagle, P.S.; Chiappetti, D.P.

    1995-12-31

    Low catalyst loading gas diffusion membrane electrodes have been developed for spaceflight qualified nickel-hydrogen (NiH{sub 2}) batteries. These electrodes involve the use of new electrode designs and innovative manufacturing methods. Supported catalysts, mixed catalysts and alterative catalyst systems have been developed to decrease catalyst loading levels, and therefore reduce electrode cost, without reducing performance or reliability. This advanced electrode technology has currently accumulated more than 13,000 charge/discharge cycles in real-time, low-earth-orbit (LEO) testing. The technology has been incorporated into several nickel-hydrogen spaceflight programs including the TUBSAT B spacecraft, built by the Technical University of Berlin and launched in January of 1994 aboard a Russian Cyclone rocket.

  20. Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries.

    PubMed

    Choi, Sangwon; Go, Hyungho; Lee, Gibaek; Tak, Yongsug

    2017-02-01

    An aluminum metal, both native and with a very thin oxide film, was investigated as an anode for aluminum-ion batteries. Investigations were carried out in an acidic ionic liquid electrolyte, composed of AlCl3 in 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl), with β-MnO2/C as a cathode. The battery based on Al metal with a very thin oxide film showed high capacity and stable surface corrosion.

  1. Lessons learned in acquiring new regulations for shipping advanced electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Henriksen, Gary; Hammel, Carol; Altemos, Edward A.

    1994-12-01

    In 1990, the Electric and Hybrid Propulsion Division of the US Department of Energy established its ad hoc EV Battery Readiness Working Group to identify regulatory barriers to the commercialization of advanced EV battery technologies and facilitate the removal of these barriers. A Shipping Sub-Working Group (SSWG) was formed to address the regulatory issues associated with the domestic and international shipment of these new battery technologies. The SSWG invites major industrial developers of advanced battery technologies to join as members and work closely with appropriate domestic and international regulatory authorities to develop suitable regulations and procedures for the safe transport of these new battery technologies. This paper describes the domestic and international regulatory processes for the transport of dangerous goods; reviews the status of shipping regulations for sodium-beta and lithium batteries; and delineates the lessons learned to date in this process. The sodium-beta battery family was the first category of advanced EV batteries to be addressed by the SSWG. It includes both sodium/sulfur and sodium/metal chloride batteries. Their efforts led to the establishment of a UN number (UN 3292) in the UN Recommendations, for cold cells and batteries, and establishment of a US Department of Transportation general exemption (DOT-E-10917) covering cold and hot batteries, as well as cold cells. The lessons learned for sodium-beta batteries, over the period of 1990--94, are now being applied to the development of regulations for shipping a new generation of lithium battery technologies (lithium-polymer and lithium-aluminum/iron sulfide batteries).

  2. Na0.282V2O5: A high-performance cathode material for rechargeable lithium batteries and sodium batteries

    NASA Astrophysics Data System (ADS)

    Cai, Yangsheng; Zhou, Jiang; Fang, Guozhao; Cai, Gemei; Pan, Anqiang; Liang, Shuquan

    2016-10-01

    Na0.282V2O5 nanorods have been successfully prepared using a facile hydrothermal reaction followed by a calcination treatment, which is then used as a cathode for lithium batteries and sodium batteries for the first time. The crystal structure is refined to be a monoclinic lattice, which contains 3D tunnels along the b-axis. The Na ions are located inside the tunnels and form "pillar effect" to prevent the collapse of the crystal structure. As cathode material for lithium batteries, the Na0.282V2O5 nanorods deliver a high discharge specific capacity of 264, 186, 191 and 149 mA h g-1 at the current density of 50, 500, 1000 and 1500 mA g-1, respectively. The Na0.282V2O5 nanorods demonstrate the excellent cycling performance up to 400 cycles at 1 and 1.5 A g-1. Importantly, as cathode material for sodium batteries, Na0.282V2O5 exhibits superior long-term cyclic stability up to 1000 cycles at 0.3 A g-1. The results of ex-situ XRD, EIS and first-principle calculation indicate that the Na0.282V2O5 possesses good electrical conductivity and structural stability. Our work demonstrates that the Na0.282V2O5 material could be considered as a potential cathode for lithium-ion batteries, and even sodium ion batteries.

  3. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  4. The twelfth annual battery conference on applications and advances: Proceedings

    SciTech Connect

    Frank, H.A.; Seo, E.T.

    1997-12-01

    This book contains the proceedings of the Twelfth Annual Battery Conference. A total of 58 papers were presented in the following technical sessions: Aircraft battery systems; Military power sources; Space and communications; Materials and processes; Testing and evaluation; Electric vehicles; Small batteries; Stationary applications; Battery electronics and management; and Power sources R and D. Fifty papers were selected and indexed for inclusion on the data base.

  5. Advanced batteries for electric vehicles-A status report

    SciTech Connect

    Walsh, W.J.

    1981-01-01

    The candidate battery systems for electric vehicles have been evaluated on a common basis. The batteries with the highest probability of successful development and commercialization appear to be lead-acid, nickel-iron, nickel-zinc, zinc-chlorine, lithium-metal sulfide, and sodium sulfur. The relative development risk was assessed and compared to the desirability of the corresponding batteries.

  6. Self-Organized Amorphous TiO2 Nanotube Arrays on Porous Ti Foam for Rechargeable Lithium and Sodium Ion Batteries

    SciTech Connect

    Bi, Zhonghe; Paranthaman, Mariappan Parans; Menchhofer, Paul A; Dehoff, Ryan R; Bridges, Craig A; Chi, Miaofang; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Self-organized amorphous TiO2 nanotube arrays (NTAs) were successfully fabricated on both Ti foil and porous Ti foam through electrochemical anodization techniques. The starting Ti foams were fabricated using ARCAM s Electron Beam Melting (EBM) technology. The TiO2 NTAs on Ti foam were used as anodes in lithium ion batteries; they exhibited high capacities of 103 Ahcm-2 at 10 Acm-2 and 83 Ahcm-2 at 500 Acm-2, which are two to three times higher than those achieved on the standard Ti foil, which is around 40 Ahcm-2 at 10 Acm-2 and 24 Ahcm-2 at 500 Acm-2, respectively. This improvement is mainly attributed to higher surface area of the Ti foam and higher porosity of the nanotube arrays layer grown on the Ti foam. In addition, a Na-ion half-cell composed of these NTAs anodes and Na metal showed a self-improving specific capacity upon cycling at 10 Acm-2. These results indicate that TiO2 NTAs grown on Ti porous foam are promising electrodes for Li-ion or Na-ion rechargeable batteries.

  7. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.

    PubMed

    Schroeder, Marshall A; Kumar, Nitin; Pearse, Alexander J; Liu, Chanyuan; Lee, Sang Bok; Rubloff, Gary W; Leung, Kevin; Noked, Malachi

    2015-06-03

    One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.

  8. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C

    NASA Astrophysics Data System (ADS)

    Mori, Takuya; Orikasa, Yuki; Nakanishi, Koji; Kezheng, Chen; Hattori, Masashi; Ohta, Toshiaki; Uchimoto, Yoshiharu

    2016-05-01

    The aluminum rechargeable battery is a desirable device for large-scale energy storage owing to the high capacity derived from the properties of the aluminum metal anode. The development of cathode materials is needed to compose battery systems. However, the design principles of the cathode materials have not been determined. We focus on the high capacity FeS2 cathode materials and investigate the discharge/charge reaction mechanisms in chloroaluminate ionic liquids as the electrolyte at 55°C. X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements are performed for the discharged and charged samples. S 3p-orbitals are shown to play an important role in the redox reactions from the results of the S and Fe K-edge XANES spectra. As a result of the redox reaction, FeS2 is transformed into low crystalline FeS and amorphous Al2S3, as shown by the XRD and S, Al, and Fe K-edge XANES spectra. This reaction mechanism is different from the reaction observed with lithium ion.

  9. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries.

    PubMed

    Li, Bing; Ge, Xiaoming; Goh, F W Thomas; Hor, T S Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-02-07

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm(-2)) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.

  10. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Kai; Hu, Shuchun; Li, Yongkui

    2016-09-01

    In this study, nitrogen-doped graphene decorated LiVPO4F cathode material is firstly synthesized via a facile method. Well-dispersed LiVPO4F nanoparticles are embedded in nitrogen-doped graphene nanosheets, forming an effective conducting network. The added nitrogen-doped graphene nanosheets greatly enhance the electronic conductivity and Li-ion diffusion of LiVPO4F sample. When tested as cathode material for rechargeable lithium-ion batteries, the hybrid electrode exhibits superior high-rate performance and long-term cycling stability between 3.0 and 4.5 V. It delivers a large discharge capacity of 152.7 mAhg-1 at 0.1 C and shows a capacity retention of 97.8% after 60 cycles. Moreover, a reversible capacity of 90.1 mAhg-1 is maintained even after 500 cycles at a high rate of 20 C. The charge-transfer resistance of LiVPO4F electrode is also reduced in the nitrogen-doped graphene, revealing that its electrode-electrolyte complex reactions take place easily and thus improve the electrochemical performance. The above results provide a facile and effective strategy for the synthesis of LiVPO4F cathode material for high-performance lithium-ion batteries.

  11. Advanced EV/HEV battery pack testing using the ABC-150 power system

    SciTech Connect

    Gill, J.

    1997-12-01

    The ABC-150 battery test system is the first system designed for the demanding requirements of electric vehicle (EV) and hybrid electric vehicle (HEV) battery testing. With high accuracy, fast response and flexible test automation capabilities, the ABC-150 provides the most advanced set of capabilities for EV/HEV battery pack testing. These features are described and several examples of actual use are given.

  12. Proceedings of the tenth annual battery conference on applications and advances

    SciTech Connect

    1995-07-01

    This is a collection of papers presented at the 1995 Annual Battery Conference on Application and Advances. The goal of the conference is to fill the need for improved communication between the developers and users of battery systems and the designers of interfacing electronic power conversion and control components and systems. The Conference attempts to attain that goal through deliberations on issues involving the interactions between those battery and electronic systems in commercial, industrial, space and military applications.

  13. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-01-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization

  14. Advances in Lithium-Sulfur Rechargeable Batteries Powering the Electronic Future

    NASA Technical Reports Server (NTRS)

    Skotheim, Terje; Akridge, Jim; Hyland, Bob

    2001-01-01

    This viewgraph presentation discusses the Moltech Corporation's history and structure, power systems development, product attributes, Li-S adapted products, cell construction, specific energy comparisons, and product requirements necessary for use in spacecraft applications.

  15. Annual Battery Conference on Applications and Advances, 2nd, California State University, Long Beach, Jan. 14-16, 1986, Proceedings

    SciTech Connect

    Das, R.L.; Frank, H.A.; Pickett, D.F. Jr.; Eliash, B.M.

    1987-01-01

    Various papers on battery applications and advances are presented. The general topics considered include: power systems in biomedical applications, batteries in electronic and computer applications, batteries in transportation and energy systems, space power systems, aircraft power systems, applications in defense systems, battery safety issues, and quality assurance and manufacturing.

  16. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  17. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  18. Advanced batteries for electric vehicle applications: Nontechnical summary

    NASA Astrophysics Data System (ADS)

    Henriksen, G. L.

    This paper provides an overview of the performance characteristics of the most prominent batteries under development for electric vehicles (EV's) and compares these characteristics to the USABC Mid-Term and Long-Term criteria, as well as to typical vehicle-related battery requirements. Most of the battery performance information was obtained from independent tests, conducted using simulated driving power profiles, for DOE and EPRI at Argonne National Laboratory. The EV batteries are categorized as near-term, mid-term, and long-term technologies based on their relative development status, as well as our estimate of their potential availability as commercial EV batteries. Also, the performance capabilities generally increase in going from the near-term to the mid-term and on to the long-term technologies. To date, the USABC has chosen to fund a few selected mid-term and long-term battery technologies.

  19. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) research program annual review

    SciTech Connect

    None, None

    2005-08-01

    This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review.

  20. FLUIDIC: Metal Air Recharged

    ScienceCinema

    Friesen, Cody

    2016-07-12

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  1. FLUIDIC: Metal Air Recharged

    SciTech Connect

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  2. High power bipolar lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Attia, Alan

    1991-01-01

    The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.

  3. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  4. Free-Standing Thin Webs of Activated Carbon Nanofibers by Electrospinning for Rechargeable Li-O2 Batteries.

    PubMed

    Nie, Hongjiao; Xu, Chi; Zhou, Wei; Wu, Baoshan; Li, Xianfeng; Liu, Tao; Zhang, Huamin

    2016-01-27

    Free-standing activated carbon nanofibers (ACNF) were prepared through electrospinning combining with CO2 activation and then used for nonaqueous Li-O2 battery cathodes. As-prepared ACNF based cathode was loosely packed with carbon nanofibers complicatedly overlapped. Owing to some micrometer-sized pores between individual nanofibers, relatively high permeability of O2 across the cathode becomes feasible. Meanwhile, the mesopores introduced by CO2 activation act as additional nucleation sites for Li2O2 formation, leading to an increase in the density of Li2O2 particles along with a size decrease of the individual particles, and therefore, flake-like Li2O2 are preferentially formed. In addition, the free-standing structure of ACNF cathode eliminates the side reactions about PVDF. As a result, the Li-O2 batteries with ACNF cathodes showed increased discharge capacities, reduced overpotentials, and longer cycle life in the case of full discharge and charge operation. This provides a novel pathway for the design of cathodes for Li-O2 battery.

  5. Ionic liquid and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Abu-Lebdeh, Yaser; Abouimrane, Ali; Alarco, Pierre-Jean; Armand, Michel

    A new member of the plastic crystal, pyrazolium imide family, N, N‧-diethyl-3-methylpyrazolium bis-(trifluoromethanesulfonyl)imide (DEMPyr123) was prepared. It showed a single, plastic crystalline phase that extends from 4.2 °C to its melting at 11.3 °C. When 10 mol% LiTFSI salt was added, the mixture showed ionic conductivities reaching 1.7 × 10 -3 S cm -1 at 20 °C, in the liquid state and 6.9 × 10 -4 S cm -1 at 5 °C, in the solid, plastic phase. A wide electrochemical stability window's of 5.5 V was observed by cyclic voltammetry of the molten salt mixture. Batteries were assembled with LiFePO 4/Li 4Ti 5O 12 electrodes and the salt mixture as an electrolyte. They showed a charge/discharge efficiency of 93% and 87% in the liquid and the plastic phase, respectively. The capacity retention was very good in both states with 90% of the initial capacity still available after 40 cycles. In general, the batteries showed good rate capability and cycle life performance in the ionic liquid phase that were sustained when the electrolyte transformed to the plastic phase. Comparison of the battery results with those of a classic (non-plastic crystal) ionic liquid has proven the advantage of the dual state of matter character in this electrolyte.

  6. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode

    NASA Astrophysics Data System (ADS)

    Kundu, Dipan; Adams, Brian D.; Duffort, Victor; Vajargah, Shahrzad Hosseini; Nazar, Linda F.

    2016-10-01

    Although non-aqueous Li-ion batteries possess significantly higher energy density than their aqueous counterparts, the latter can be more feasible for grid-scale applications when cost, safety and cycle life are taken into consideration. Moreover, aqueous Zn-ion batteries have an energy storage advantage over alkali-based batteries as they can employ Zn metal as the negative electrode, dramatically increasing energy density. However, their development is plagued by a limited choice of positive electrodes, which often show poor rate capability and inadequate cycle life. Here we report a vanadium oxide bronze pillared by interlayer Zn2+ ions and water (Zn0.25V2O5.nH2O), as the positive electrode for a Zn cell. A reversible Zn2+ ion (de)intercalation storage process at fast rates, with more than one Zn2+ per formula unit (a capacity up to 300 mAh g-1), is characterized. The Zn cell offers an energy density of ˜450 Wh l-1 and exhibits a capacity retention of more than 80% over 1,000 cycles, with no dendrite formation at the Zn electrode.

  7. Structural Stability and Electronic Properties of Na2C6O6 for a Rechargeable Sodium-ion Battery

    NASA Astrophysics Data System (ADS)

    Yamashita, Tomoki; Fujii, Akihiro; Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    Sodium-ion batteries have been explored as a promising alternative to lithium-ion batteries owing to a significant advantage of a natural abundance of sodium. Recently, it has been reported that disodium rhodizonate, Na2C6O6, exhibit good electrochemical properties and cycle performance as a minor-metal free organic cathode for sodium-ion batteries. However, its crystal structures during discharge/charge cycle still remain unclear. In this work, we theoretically propose feasible crystal structures of Na2+xC6O6 using first principles calculations. A structural phase transition has been found: Na4C6O6 has a different C6O6 packing arrangement from Na2C6O6. Electronic structures of Na2+xC6O6 during discharge/charge cycle are also discussed. Our predictions could be the key to understanding the discharge/charge process of Na2C6O6. Supported by MEXT program ``Elements Strategy Initiative to Form Core Rersearch Center'' (since 2012), MEXT; Ministry of Education Culture, Sports, Science and Technology, Japan.

  8. A study of the incorporation reaction of lithium into V6O13 in a rechargeable lithium battery

    NASA Astrophysics Data System (ADS)

    Wang, Dequan; Liao, Zhenjiang; Feng, Xikang; Liu, Dangjun

    1989-05-01

    Practical C- and AA-size ambient temperature, rechargeable Li/V6O13 cells have been constructed using pure V6O13, prepared in the laboratory, as cathode active material. X-ray diffraction pattern d values of V6O13 prepared in this study are the same as those given by JCPDS, and cathodes of this material have performed satisfactorily. Cathodic discharge products of test cells have been analyzed by XRD and ESR. New expanded diffraction lines have been discovered in XRD patterns. From XRD and ESR results, it is considered that the incorporation of lithium into V6O13 is the main reduction reaction in the V6O13 cathodic process.

  9. Advanced developments in NiH{sub 2} dependent pressure vessel (DPV) cell and battery technology

    SciTech Connect

    Caldwell, D.B.; Fox, C.L.

    1997-12-01

    The Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH{sub 2}) design is being developed by Eagle-Picher Industries, Inc. (EPI) as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced parts count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risks.

  10. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.

    PubMed

    Zhu, Yujie; Fan, Xiulin; Suo, Liumin; Luo, Chao; Gao, Tao; Wang, Chunsheng

    2016-01-26

    In this study, an FeS2@carbon fiber electrode is developed with FeS2 nanoparticles either embedded in or attached to carbon fibers by using an electrospinning method. By applying this binder-free, metal-current-collector-free FeS2@carbon fiber electrode, both the redox reaction and capacity decay mechanisms for the Li-FeS2 system are revealed by changing the electrolyte (conventional carbonate electrolyte and a "solvent-in-salt"-type Li-S battery electrolyte) and working voltage ranges (1.0-3.0 V and 1.5-3.0 V vs Li/Li(+)). The FeS2@carbon fiber electrode shows stable cycling performance in both the conventional carbonate electrolyte and the solvent-in-salt-type Li-S battery electrolyte in the voltage range of 1.5-3.0 V. Electrochemical tests in the solvent-in-salt-type Li-S battery electrolyte indicate that the Li-FeS2 system becomes a hybrid of the Li-S cell and Li-iron sulfide cell after the initial cycle. Based on the understanding on the capacity decay mechanisms, the cycling stability of the Li-FeS2 system in the voltage range of 1.0-3.0 V is then significantly enhanced by coating the FeS2@carbon fiber electrode with a thin layer of Al2O3. The Al2O3-coated electrode demonstrates excellent cycling performance with high discharge energy densities at both the material level (∼1300 Wh/kg-FeS2) and the electrode level (∼1000 Wh/kg-FeS2 electrode).

  11. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques.

    PubMed

    Zhu, Jing; Lu, Li; Zeng, Kaiyang

    2013-02-26

    High-resolution real-space mapping of Li-ion diffusion in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ cathode within an all-solid-state thin film Li-ion battery has been conducted using advanced scanning probe microscopy techniques, namely, band excitation electrochemical strain microscopy (BE-ESM) and conductive atomic force microscopy. In addition, local variations of the electrochemical response in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ thin film cathode at different cycling stages have been investigated. This work demonstrates the unique feature and applications of the BE-ESM technique on battery research. The results allow us to establish a direct relationship of the changes in ionic mobility as well as the electrochemical activity at the nanoscale with the numbers of charge/discharge cycles. Furthermore, various factors influencing the BE-ESM measurements, including sample mechanical properties (e.g., elastic and dissipative properties) as well as surface electrical properties, have also been studied to investigate the coupling effects on the electrochemical strain. The study on the relationships between the Li-ion redistribution and microstructure of the electrode materials within thin film Li-ion battery will provide further understanding of the electrochemical degradation mechanisms of Li-ion rechargeable batteries at the nanoscale.

  12. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  13. Experimental studies in natural groundwater recharge dynamics: Assessment of recent advances in instrumentation

    USGS Publications Warehouse

    Sophocleous, M.; Perry, C.A.

    1984-01-01

    To quantify and model the natural groundwater-recharge process, two sites in south-central Kansas, U.S.A., were instrumented with various modern sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a unified regime. Data from the various sensors were collected using microloggers in combination with magnetic-cassette tape, graphical and digital recorders, analog paper-tape recorders, and direct observations to evaluate and automate data collection and processing. Atmospheric sensors included an anemometer, a tipping-bucket raingage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron moisture probe operated by an observer. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicated that certain types of equipment such as pressure transducers are very sensitive to environmental conditions. Extraordinary steps had to be taken to protect some of the equipment, whereas other equipment seemed to be reliable under all conditions. Based on such experiences, a number of suggestions aimed at improving such investigations are outlined. ?? 1984.

  14. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries.

    PubMed

    Bhattacharjya, Dhrubajyoti; Park, Hyean-Yeol; Kim, Min-Sik; Choi, Hyuck-Soo; Inamdar, Shaukatali N; Yu, Jong-Sung

    2014-01-14

    Nitrogen-doped turbostratic carbon nanoparticles (NPs) are prepared using fast single-step flame synthesis by directly burning acetonitrile in air atmosphere and investigated as an anode material for lithium-ion batteries. The as-prepared N-doped carbon NPs show excellent Li-ion stoarage properties with initial discharge capacity of 596 mA h g(-1), which is 17% more than that shown by the corresponding undoped carbon NPs synthesized by identical process with acetone as carbon precursor and also much higher than that of commercial graphite anode. Further analysis shows that the charge-discharge process of N-doped carbon is highly stable and reversible not only at high current density but also over 100 cycles, retaining 71% of initial discharge capacity. Electrochemical impedance spectroscopy also shows that N-doped carbon has better conductivity for charge and ions than that of undoped carbon. The high specific capacity and very stable cyclic performance are attributed to large number of turbostratic defects and N and associated increased O content in the flame-synthesized N-doped carbon. To the best of our knowledge, this is the first report which demonstrates single-step, direct flame synthesis of N-doped turbostratic carbon NPs and their application as a potential anode material with high capacity and superior battery performance. The method is extremely simple, low cost, energy efficient, very effective, and can be easily scaled up for large scale production.

  15. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Hyun; Lee, Sanghun

    2016-08-01

    Surface-modified graphite for application as an anode material in lithium ion batteries was obtained by etching with KOH under mild conditions without high-temperature annealing. The surface of the etched graphite is covered with many nano-sized pores that act as entrances for lithium ions during the charging process. As compared with pristine graphite and other references such as pitch-coated or etched graphite samples with annealing, our non-annealed etched graphite exhibits excellent electrochemical properties, particularly at fast charging rates of over 2.5 C. While avoidance of the trade-off between increase of irreversible capacity and good rate capability has previously been a main concern in highly porous carbonaceous materials, we show that the slightly larger surface area created by the etching does not induce a significant increase of irreversible capacity. This study shows that it is important to limit the size of pores to the nanometer scale for excellent battery performance, which is possible by etching under relatively mild conditions.

  16. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  17. Hand-drawn&written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing.

    PubMed

    Yang, Hongmei; Kong, Qingkun; Wang, Shaowei; Xu, Jinmeng; Bian, Zhaoquan; Zheng, Xiaoxiao; Ma, Chao; Ge, Shenguang; Yu, Jinghua

    2014-11-15

    In this paper, a pen-on-paper electrochemiluminescence (PoP-ECL) device was entirely hand drawn and written in commercially available crayon and pencil in turn for the first time, and a constant potential-triggered sandwich-type immunosensor was introduced into the PoP-ECL device to form a low-cost ECL immunodevice proof. Each PoP-ECL device contained a hydrophilic paper channel and two PoP electrodes, and the PoP-ECL device was produced as follows: crayon was firstly used to draw hydrophobic regions on pure cellulose paper to create the hydrophilic paper channels followed with a baking treatment, and then a 6B-type black pencil with low resistivity was applied for precision writing, as the PoP electrodes, across the hydrophilic paper channel. For further point-of-care testing, a portable, low-cost rechargeable battery was employed as the power source to provide constant potential to the PoP electrodes to trigger the ECL. Using Carbohydrate antigen 199 as model analyte, this PoP-ECL immunodevice showed a good linear response range from 0.01-200 U mL(-1) with a detection limit of 0.0055 U mL(-1), a high sensitivity and stability. The proposed PoP-ECL immunodevice could be used in point-of-care testing of other tumor markers for remote regions and developing countries.

  18. Thermal Stability of NaxCrO2 for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-ray Diffraction.

    PubMed

    Yabuuchi, Naoaki; Ikeuchi, Issei; Kubota, Kei; Komaba, Shinichi

    2016-11-30

    Thermal stability and phase transition processes of NaCrO2 and Na0.5CrO2 are carefully examined by high-temperature synchrotron X-ray diffraction method. O3-type NaCrO2 shows anisotropic thermal expansion on heating, which is a common character as layered materials, without phase transition in the temperature range of 27-527 °C. In contrast, for the desodiated phase, in-plane distorted P3-type layered oxide (P'3 Na0.5CrO2), phase transition occurs in the following order. Monoclinic distortion associated with Na/vacancy ordering is gradually lost on heating, and its symmetry increases and changes to a rhombohedral lattice at 207 °C. On further heating, phase segregation to two P3 layered metastable phases, which have different interlayer distances (17.0 and 13.5 Å, presumably sodium-rich and sodium-free P3 phases, respectively) are observed on heating to 287-477 °C, but oxygen loss is not observed. Oxygen loss is observed at temperatures only above 500 °C, resulting in the formation of corundum-type Cr2O3 and O3 NaCrO2 as thermodynamically stable phases. From these results, possibility of NaxCrO2 as a positive electrode material for safe rechargeable sodium batteries is also discussed.

  19. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  20. Preparation of polyperinaphthalenic organic semiconductor thin films by excimer laser ablation and application to anode electrodes for ultrathin rechargable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nishio, Satoru; Kuriki, Sigenori; Tsujine, Yukari; Matsuzaki, Akiyoshi; Sato, Hiroyasu; Ando, Nobuo; Hato, Yukinori; Tanaka, Kazuyoshi

    2000-06-01

    Amorphous organic semiconductor thin films are prepared on temperature-controlled substrates by excimer laser ablation (ELA) of 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) or PTCDA/Co mixture target with a 308(XeCl) pulsed excimer laser beam. Drastic increase in conductivity was observed along with decrease in the IR peak intensities related to the side groups of PTCDA monomers for films prepared on substrates above 200°C. Electric conductivity of a film prepared on a substrate at 300°C comes up to 10-1Scm-1. Although carbon radicals are detected to some extent, indicating incomplete polymerization. Raman spectroscopic measurement reveals that this film basically consists of polyperinaphthalene (PPN) structure. This material is named polyperinaphthlenic organic semiconductor (PPNOS). ELA of mixture target of PTCDA and Co enables us to obtain PPNOS at room temperature. Electrochemical doping of PPNOS films with lithium ion suggests the passable performance of this film as anode electrodes of ultra thin rechargeable lithium ion batteries.